]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/md/bcache/request.c
ASoC: tlv320aic31xx: Reset registers during power up
[mirror_ubuntu-focal-kernel.git] / drivers / md / bcache / request.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Main bcache entry point - handle a read or a write request and decide what to
4 * do with it; the make_request functions are called by the block layer.
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "request.h"
14 #include "writeback.h"
15
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include <linux/backing-dev.h>
20
21 #include <trace/events/bcache.h>
22
23 #define CUTOFF_CACHE_ADD 95
24 #define CUTOFF_CACHE_READA 90
25
26 struct kmem_cache *bch_search_cache;
27
28 static void bch_data_insert_start(struct closure *);
29
30 static unsigned cache_mode(struct cached_dev *dc)
31 {
32 return BDEV_CACHE_MODE(&dc->sb);
33 }
34
35 static bool verify(struct cached_dev *dc)
36 {
37 return dc->verify;
38 }
39
40 static void bio_csum(struct bio *bio, struct bkey *k)
41 {
42 struct bio_vec bv;
43 struct bvec_iter iter;
44 uint64_t csum = 0;
45
46 bio_for_each_segment(bv, bio, iter) {
47 void *d = kmap(bv.bv_page) + bv.bv_offset;
48 csum = bch_crc64_update(csum, d, bv.bv_len);
49 kunmap(bv.bv_page);
50 }
51
52 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
53 }
54
55 /* Insert data into cache */
56
57 static void bch_data_insert_keys(struct closure *cl)
58 {
59 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
60 atomic_t *journal_ref = NULL;
61 struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
62 int ret;
63
64 /*
65 * If we're looping, might already be waiting on
66 * another journal write - can't wait on more than one journal write at
67 * a time
68 *
69 * XXX: this looks wrong
70 */
71 #if 0
72 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
73 closure_sync(&s->cl);
74 #endif
75
76 if (!op->replace)
77 journal_ref = bch_journal(op->c, &op->insert_keys,
78 op->flush_journal ? cl : NULL);
79
80 ret = bch_btree_insert(op->c, &op->insert_keys,
81 journal_ref, replace_key);
82 if (ret == -ESRCH) {
83 op->replace_collision = true;
84 } else if (ret) {
85 op->status = BLK_STS_RESOURCE;
86 op->insert_data_done = true;
87 }
88
89 if (journal_ref)
90 atomic_dec_bug(journal_ref);
91
92 if (!op->insert_data_done) {
93 continue_at(cl, bch_data_insert_start, op->wq);
94 return;
95 }
96
97 bch_keylist_free(&op->insert_keys);
98 closure_return(cl);
99 }
100
101 static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
102 struct cache_set *c)
103 {
104 size_t oldsize = bch_keylist_nkeys(l);
105 size_t newsize = oldsize + u64s;
106
107 /*
108 * The journalling code doesn't handle the case where the keys to insert
109 * is bigger than an empty write: If we just return -ENOMEM here,
110 * bio_insert() and bio_invalidate() will insert the keys created so far
111 * and finish the rest when the keylist is empty.
112 */
113 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
114 return -ENOMEM;
115
116 return __bch_keylist_realloc(l, u64s);
117 }
118
119 static void bch_data_invalidate(struct closure *cl)
120 {
121 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
122 struct bio *bio = op->bio;
123
124 pr_debug("invalidating %i sectors from %llu",
125 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
126
127 while (bio_sectors(bio)) {
128 unsigned sectors = min(bio_sectors(bio),
129 1U << (KEY_SIZE_BITS - 1));
130
131 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
132 goto out;
133
134 bio->bi_iter.bi_sector += sectors;
135 bio->bi_iter.bi_size -= sectors << 9;
136
137 bch_keylist_add(&op->insert_keys,
138 &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
139 }
140
141 op->insert_data_done = true;
142 bio_put(bio);
143 out:
144 continue_at(cl, bch_data_insert_keys, op->wq);
145 }
146
147 static void bch_data_insert_error(struct closure *cl)
148 {
149 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
150
151 /*
152 * Our data write just errored, which means we've got a bunch of keys to
153 * insert that point to data that wasn't succesfully written.
154 *
155 * We don't have to insert those keys but we still have to invalidate
156 * that region of the cache - so, if we just strip off all the pointers
157 * from the keys we'll accomplish just that.
158 */
159
160 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
161
162 while (src != op->insert_keys.top) {
163 struct bkey *n = bkey_next(src);
164
165 SET_KEY_PTRS(src, 0);
166 memmove(dst, src, bkey_bytes(src));
167
168 dst = bkey_next(dst);
169 src = n;
170 }
171
172 op->insert_keys.top = dst;
173
174 bch_data_insert_keys(cl);
175 }
176
177 static void bch_data_insert_endio(struct bio *bio)
178 {
179 struct closure *cl = bio->bi_private;
180 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
181
182 if (bio->bi_status) {
183 /* TODO: We could try to recover from this. */
184 if (op->writeback)
185 op->status = bio->bi_status;
186 else if (!op->replace)
187 set_closure_fn(cl, bch_data_insert_error, op->wq);
188 else
189 set_closure_fn(cl, NULL, NULL);
190 }
191
192 bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
193 }
194
195 static void bch_data_insert_start(struct closure *cl)
196 {
197 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
198 struct bio *bio = op->bio, *n;
199
200 if (op->bypass)
201 return bch_data_invalidate(cl);
202
203 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
204 wake_up_gc(op->c);
205
206 /*
207 * Journal writes are marked REQ_PREFLUSH; if the original write was a
208 * flush, it'll wait on the journal write.
209 */
210 bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
211
212 do {
213 unsigned i;
214 struct bkey *k;
215 struct bio_set *split = op->c->bio_split;
216
217 /* 1 for the device pointer and 1 for the chksum */
218 if (bch_keylist_realloc(&op->insert_keys,
219 3 + (op->csum ? 1 : 0),
220 op->c)) {
221 continue_at(cl, bch_data_insert_keys, op->wq);
222 return;
223 }
224
225 k = op->insert_keys.top;
226 bkey_init(k);
227 SET_KEY_INODE(k, op->inode);
228 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
229
230 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
231 op->write_point, op->write_prio,
232 op->writeback))
233 goto err;
234
235 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
236
237 n->bi_end_io = bch_data_insert_endio;
238 n->bi_private = cl;
239
240 if (op->writeback) {
241 SET_KEY_DIRTY(k, true);
242
243 for (i = 0; i < KEY_PTRS(k); i++)
244 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
245 GC_MARK_DIRTY);
246 }
247
248 SET_KEY_CSUM(k, op->csum);
249 if (KEY_CSUM(k))
250 bio_csum(n, k);
251
252 trace_bcache_cache_insert(k);
253 bch_keylist_push(&op->insert_keys);
254
255 bio_set_op_attrs(n, REQ_OP_WRITE, 0);
256 bch_submit_bbio(n, op->c, k, 0);
257 } while (n != bio);
258
259 op->insert_data_done = true;
260 continue_at(cl, bch_data_insert_keys, op->wq);
261 return;
262 err:
263 /* bch_alloc_sectors() blocks if s->writeback = true */
264 BUG_ON(op->writeback);
265
266 /*
267 * But if it's not a writeback write we'd rather just bail out if
268 * there aren't any buckets ready to write to - it might take awhile and
269 * we might be starving btree writes for gc or something.
270 */
271
272 if (!op->replace) {
273 /*
274 * Writethrough write: We can't complete the write until we've
275 * updated the index. But we don't want to delay the write while
276 * we wait for buckets to be freed up, so just invalidate the
277 * rest of the write.
278 */
279 op->bypass = true;
280 return bch_data_invalidate(cl);
281 } else {
282 /*
283 * From a cache miss, we can just insert the keys for the data
284 * we have written or bail out if we didn't do anything.
285 */
286 op->insert_data_done = true;
287 bio_put(bio);
288
289 if (!bch_keylist_empty(&op->insert_keys))
290 continue_at(cl, bch_data_insert_keys, op->wq);
291 else
292 closure_return(cl);
293 }
294 }
295
296 /**
297 * bch_data_insert - stick some data in the cache
298 *
299 * This is the starting point for any data to end up in a cache device; it could
300 * be from a normal write, or a writeback write, or a write to a flash only
301 * volume - it's also used by the moving garbage collector to compact data in
302 * mostly empty buckets.
303 *
304 * It first writes the data to the cache, creating a list of keys to be inserted
305 * (if the data had to be fragmented there will be multiple keys); after the
306 * data is written it calls bch_journal, and after the keys have been added to
307 * the next journal write they're inserted into the btree.
308 *
309 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
310 * and op->inode is used for the key inode.
311 *
312 * If s->bypass is true, instead of inserting the data it invalidates the
313 * region of the cache represented by s->cache_bio and op->inode.
314 */
315 void bch_data_insert(struct closure *cl)
316 {
317 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
318
319 trace_bcache_write(op->c, op->inode, op->bio,
320 op->writeback, op->bypass);
321
322 bch_keylist_init(&op->insert_keys);
323 bio_get(op->bio);
324 bch_data_insert_start(cl);
325 }
326
327 /* Congested? */
328
329 unsigned bch_get_congested(struct cache_set *c)
330 {
331 int i;
332 long rand;
333
334 if (!c->congested_read_threshold_us &&
335 !c->congested_write_threshold_us)
336 return 0;
337
338 i = (local_clock_us() - c->congested_last_us) / 1024;
339 if (i < 0)
340 return 0;
341
342 i += atomic_read(&c->congested);
343 if (i >= 0)
344 return 0;
345
346 i += CONGESTED_MAX;
347
348 if (i > 0)
349 i = fract_exp_two(i, 6);
350
351 rand = get_random_int();
352 i -= bitmap_weight(&rand, BITS_PER_LONG);
353
354 return i > 0 ? i : 1;
355 }
356
357 static void add_sequential(struct task_struct *t)
358 {
359 ewma_add(t->sequential_io_avg,
360 t->sequential_io, 8, 0);
361
362 t->sequential_io = 0;
363 }
364
365 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
366 {
367 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
368 }
369
370 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
371 {
372 struct cache_set *c = dc->disk.c;
373 unsigned mode = cache_mode(dc);
374 unsigned sectors, congested = bch_get_congested(c);
375 struct task_struct *task = current;
376 struct io *i;
377
378 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
379 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
380 (bio_op(bio) == REQ_OP_DISCARD))
381 goto skip;
382
383 if (mode == CACHE_MODE_NONE ||
384 (mode == CACHE_MODE_WRITEAROUND &&
385 op_is_write(bio_op(bio))))
386 goto skip;
387
388 /*
389 * Flag for bypass if the IO is for read-ahead or background,
390 * unless the read-ahead request is for metadata (eg, for gfs2).
391 */
392 if (bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND) &&
393 !(bio->bi_opf & REQ_META))
394 goto skip;
395
396 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
397 bio_sectors(bio) & (c->sb.block_size - 1)) {
398 pr_debug("skipping unaligned io");
399 goto skip;
400 }
401
402 if (bypass_torture_test(dc)) {
403 if ((get_random_int() & 3) == 3)
404 goto skip;
405 else
406 goto rescale;
407 }
408
409 if (!congested && !dc->sequential_cutoff)
410 goto rescale;
411
412 spin_lock(&dc->io_lock);
413
414 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
415 if (i->last == bio->bi_iter.bi_sector &&
416 time_before(jiffies, i->jiffies))
417 goto found;
418
419 i = list_first_entry(&dc->io_lru, struct io, lru);
420
421 add_sequential(task);
422 i->sequential = 0;
423 found:
424 if (i->sequential + bio->bi_iter.bi_size > i->sequential)
425 i->sequential += bio->bi_iter.bi_size;
426
427 i->last = bio_end_sector(bio);
428 i->jiffies = jiffies + msecs_to_jiffies(5000);
429 task->sequential_io = i->sequential;
430
431 hlist_del(&i->hash);
432 hlist_add_head(&i->hash, iohash(dc, i->last));
433 list_move_tail(&i->lru, &dc->io_lru);
434
435 spin_unlock(&dc->io_lock);
436
437 sectors = max(task->sequential_io,
438 task->sequential_io_avg) >> 9;
439
440 if (dc->sequential_cutoff &&
441 sectors >= dc->sequential_cutoff >> 9) {
442 trace_bcache_bypass_sequential(bio);
443 goto skip;
444 }
445
446 if (congested && sectors >= congested) {
447 trace_bcache_bypass_congested(bio);
448 goto skip;
449 }
450
451 rescale:
452 bch_rescale_priorities(c, bio_sectors(bio));
453 return false;
454 skip:
455 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
456 return true;
457 }
458
459 /* Cache lookup */
460
461 struct search {
462 /* Stack frame for bio_complete */
463 struct closure cl;
464
465 struct bbio bio;
466 struct bio *orig_bio;
467 struct bio *cache_miss;
468 struct bcache_device *d;
469
470 unsigned insert_bio_sectors;
471 unsigned recoverable:1;
472 unsigned write:1;
473 unsigned read_dirty_data:1;
474 unsigned cache_missed:1;
475
476 unsigned long start_time;
477
478 struct btree_op op;
479 struct data_insert_op iop;
480 };
481
482 static void bch_cache_read_endio(struct bio *bio)
483 {
484 struct bbio *b = container_of(bio, struct bbio, bio);
485 struct closure *cl = bio->bi_private;
486 struct search *s = container_of(cl, struct search, cl);
487
488 /*
489 * If the bucket was reused while our bio was in flight, we might have
490 * read the wrong data. Set s->error but not error so it doesn't get
491 * counted against the cache device, but we'll still reread the data
492 * from the backing device.
493 */
494
495 if (bio->bi_status)
496 s->iop.status = bio->bi_status;
497 else if (!KEY_DIRTY(&b->key) &&
498 ptr_stale(s->iop.c, &b->key, 0)) {
499 atomic_long_inc(&s->iop.c->cache_read_races);
500 s->iop.status = BLK_STS_IOERR;
501 }
502
503 bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
504 }
505
506 /*
507 * Read from a single key, handling the initial cache miss if the key starts in
508 * the middle of the bio
509 */
510 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
511 {
512 struct search *s = container_of(op, struct search, op);
513 struct bio *n, *bio = &s->bio.bio;
514 struct bkey *bio_key;
515 unsigned ptr;
516
517 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
518 return MAP_CONTINUE;
519
520 if (KEY_INODE(k) != s->iop.inode ||
521 KEY_START(k) > bio->bi_iter.bi_sector) {
522 unsigned bio_sectors = bio_sectors(bio);
523 unsigned sectors = KEY_INODE(k) == s->iop.inode
524 ? min_t(uint64_t, INT_MAX,
525 KEY_START(k) - bio->bi_iter.bi_sector)
526 : INT_MAX;
527
528 int ret = s->d->cache_miss(b, s, bio, sectors);
529 if (ret != MAP_CONTINUE)
530 return ret;
531
532 /* if this was a complete miss we shouldn't get here */
533 BUG_ON(bio_sectors <= sectors);
534 }
535
536 if (!KEY_SIZE(k))
537 return MAP_CONTINUE;
538
539 /* XXX: figure out best pointer - for multiple cache devices */
540 ptr = 0;
541
542 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
543
544 if (KEY_DIRTY(k))
545 s->read_dirty_data = true;
546
547 n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
548 KEY_OFFSET(k) - bio->bi_iter.bi_sector),
549 GFP_NOIO, s->d->bio_split);
550
551 bio_key = &container_of(n, struct bbio, bio)->key;
552 bch_bkey_copy_single_ptr(bio_key, k, ptr);
553
554 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
555 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
556
557 n->bi_end_io = bch_cache_read_endio;
558 n->bi_private = &s->cl;
559
560 /*
561 * The bucket we're reading from might be reused while our bio
562 * is in flight, and we could then end up reading the wrong
563 * data.
564 *
565 * We guard against this by checking (in cache_read_endio()) if
566 * the pointer is stale again; if so, we treat it as an error
567 * and reread from the backing device (but we don't pass that
568 * error up anywhere).
569 */
570
571 __bch_submit_bbio(n, b->c);
572 return n == bio ? MAP_DONE : MAP_CONTINUE;
573 }
574
575 static void cache_lookup(struct closure *cl)
576 {
577 struct search *s = container_of(cl, struct search, iop.cl);
578 struct bio *bio = &s->bio.bio;
579 int ret;
580
581 bch_btree_op_init(&s->op, -1);
582
583 ret = bch_btree_map_keys(&s->op, s->iop.c,
584 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
585 cache_lookup_fn, MAP_END_KEY);
586 if (ret == -EAGAIN) {
587 continue_at(cl, cache_lookup, bcache_wq);
588 return;
589 }
590
591 closure_return(cl);
592 }
593
594 /* Common code for the make_request functions */
595
596 static void request_endio(struct bio *bio)
597 {
598 struct closure *cl = bio->bi_private;
599
600 if (bio->bi_status) {
601 struct search *s = container_of(cl, struct search, cl);
602 s->iop.status = bio->bi_status;
603 /* Only cache read errors are recoverable */
604 s->recoverable = false;
605 }
606
607 bio_put(bio);
608 closure_put(cl);
609 }
610
611 static void bio_complete(struct search *s)
612 {
613 if (s->orig_bio) {
614 struct request_queue *q = s->orig_bio->bi_disk->queue;
615 generic_end_io_acct(q, bio_data_dir(s->orig_bio),
616 &s->d->disk->part0, s->start_time);
617
618 trace_bcache_request_end(s->d, s->orig_bio);
619 s->orig_bio->bi_status = s->iop.status;
620 bio_endio(s->orig_bio);
621 s->orig_bio = NULL;
622 }
623 }
624
625 static void do_bio_hook(struct search *s, struct bio *orig_bio)
626 {
627 struct bio *bio = &s->bio.bio;
628
629 bio_init(bio, NULL, 0);
630 __bio_clone_fast(bio, orig_bio);
631 bio->bi_end_io = request_endio;
632 bio->bi_private = &s->cl;
633
634 bio_cnt_set(bio, 3);
635 }
636
637 static void search_free(struct closure *cl)
638 {
639 struct search *s = container_of(cl, struct search, cl);
640 bio_complete(s);
641
642 if (s->iop.bio)
643 bio_put(s->iop.bio);
644
645 closure_debug_destroy(cl);
646 mempool_free(s, s->d->c->search);
647 }
648
649 static inline struct search *search_alloc(struct bio *bio,
650 struct bcache_device *d)
651 {
652 struct search *s;
653
654 s = mempool_alloc(d->c->search, GFP_NOIO);
655
656 closure_init(&s->cl, NULL);
657 do_bio_hook(s, bio);
658
659 s->orig_bio = bio;
660 s->cache_miss = NULL;
661 s->cache_missed = 0;
662 s->d = d;
663 s->recoverable = 1;
664 s->write = op_is_write(bio_op(bio));
665 s->read_dirty_data = 0;
666 s->start_time = jiffies;
667
668 s->iop.c = d->c;
669 s->iop.bio = NULL;
670 s->iop.inode = d->id;
671 s->iop.write_point = hash_long((unsigned long) current, 16);
672 s->iop.write_prio = 0;
673 s->iop.status = 0;
674 s->iop.flags = 0;
675 s->iop.flush_journal = op_is_flush(bio->bi_opf);
676 s->iop.wq = bcache_wq;
677
678 return s;
679 }
680
681 /* Cached devices */
682
683 static void cached_dev_bio_complete(struct closure *cl)
684 {
685 struct search *s = container_of(cl, struct search, cl);
686 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
687
688 search_free(cl);
689 cached_dev_put(dc);
690 }
691
692 /* Process reads */
693
694 static void cached_dev_cache_miss_done(struct closure *cl)
695 {
696 struct search *s = container_of(cl, struct search, cl);
697
698 if (s->iop.replace_collision)
699 bch_mark_cache_miss_collision(s->iop.c, s->d);
700
701 if (s->iop.bio)
702 bio_free_pages(s->iop.bio);
703
704 cached_dev_bio_complete(cl);
705 }
706
707 static void cached_dev_read_error(struct closure *cl)
708 {
709 struct search *s = container_of(cl, struct search, cl);
710 struct bio *bio = &s->bio.bio;
711 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
712
713 /*
714 * If cache device is dirty (dc->has_dirty is non-zero), then
715 * recovery a failed read request from cached device may get a
716 * stale data back. So read failure recovery is only permitted
717 * when cache device is clean.
718 */
719 if (s->recoverable &&
720 (dc && !atomic_read(&dc->has_dirty))) {
721 /* Retry from the backing device: */
722 trace_bcache_read_retry(s->orig_bio);
723
724 s->iop.status = 0;
725 do_bio_hook(s, s->orig_bio);
726
727 /* XXX: invalidate cache */
728
729 closure_bio_submit(bio, cl);
730 }
731
732 continue_at(cl, cached_dev_cache_miss_done, NULL);
733 }
734
735 static void cached_dev_read_done(struct closure *cl)
736 {
737 struct search *s = container_of(cl, struct search, cl);
738 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
739
740 /*
741 * We had a cache miss; cache_bio now contains data ready to be inserted
742 * into the cache.
743 *
744 * First, we copy the data we just read from cache_bio's bounce buffers
745 * to the buffers the original bio pointed to:
746 */
747
748 if (s->iop.bio) {
749 bio_reset(s->iop.bio);
750 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
751 bio_copy_dev(s->iop.bio, s->cache_miss);
752 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
753 bch_bio_map(s->iop.bio, NULL);
754
755 bio_copy_data(s->cache_miss, s->iop.bio);
756
757 bio_put(s->cache_miss);
758 s->cache_miss = NULL;
759 }
760
761 if (verify(dc) && s->recoverable && !s->read_dirty_data)
762 bch_data_verify(dc, s->orig_bio);
763
764 bio_complete(s);
765
766 if (s->iop.bio &&
767 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
768 BUG_ON(!s->iop.replace);
769 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
770 }
771
772 continue_at(cl, cached_dev_cache_miss_done, NULL);
773 }
774
775 static void cached_dev_read_done_bh(struct closure *cl)
776 {
777 struct search *s = container_of(cl, struct search, cl);
778 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
779
780 bch_mark_cache_accounting(s->iop.c, s->d,
781 !s->cache_missed, s->iop.bypass);
782 trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
783
784 if (s->iop.status)
785 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
786 else if (s->iop.bio || verify(dc))
787 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
788 else
789 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
790 }
791
792 static int cached_dev_cache_miss(struct btree *b, struct search *s,
793 struct bio *bio, unsigned sectors)
794 {
795 int ret = MAP_CONTINUE;
796 unsigned reada = 0;
797 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
798 struct bio *miss, *cache_bio;
799
800 s->cache_missed = 1;
801
802 if (s->cache_miss || s->iop.bypass) {
803 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
804 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
805 goto out_submit;
806 }
807
808 if (!(bio->bi_opf & REQ_RAHEAD) &&
809 !(bio->bi_opf & REQ_META) &&
810 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
811 reada = min_t(sector_t, dc->readahead >> 9,
812 get_capacity(bio->bi_disk) - bio_end_sector(bio));
813
814 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
815
816 s->iop.replace_key = KEY(s->iop.inode,
817 bio->bi_iter.bi_sector + s->insert_bio_sectors,
818 s->insert_bio_sectors);
819
820 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
821 if (ret)
822 return ret;
823
824 s->iop.replace = true;
825
826 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
827
828 /* btree_search_recurse()'s btree iterator is no good anymore */
829 ret = miss == bio ? MAP_DONE : -EINTR;
830
831 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
832 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
833 dc->disk.bio_split);
834 if (!cache_bio)
835 goto out_submit;
836
837 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector;
838 bio_copy_dev(cache_bio, miss);
839 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
840
841 cache_bio->bi_end_io = request_endio;
842 cache_bio->bi_private = &s->cl;
843
844 bch_bio_map(cache_bio, NULL);
845 if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
846 goto out_put;
847
848 if (reada)
849 bch_mark_cache_readahead(s->iop.c, s->d);
850
851 s->cache_miss = miss;
852 s->iop.bio = cache_bio;
853 bio_get(cache_bio);
854 closure_bio_submit(cache_bio, &s->cl);
855
856 return ret;
857 out_put:
858 bio_put(cache_bio);
859 out_submit:
860 miss->bi_end_io = request_endio;
861 miss->bi_private = &s->cl;
862 closure_bio_submit(miss, &s->cl);
863 return ret;
864 }
865
866 static void cached_dev_read(struct cached_dev *dc, struct search *s)
867 {
868 struct closure *cl = &s->cl;
869
870 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
871 continue_at(cl, cached_dev_read_done_bh, NULL);
872 }
873
874 /* Process writes */
875
876 static void cached_dev_write_complete(struct closure *cl)
877 {
878 struct search *s = container_of(cl, struct search, cl);
879 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
880
881 up_read_non_owner(&dc->writeback_lock);
882 cached_dev_bio_complete(cl);
883 }
884
885 static void cached_dev_write(struct cached_dev *dc, struct search *s)
886 {
887 struct closure *cl = &s->cl;
888 struct bio *bio = &s->bio.bio;
889 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
890 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
891
892 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
893
894 down_read_non_owner(&dc->writeback_lock);
895 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
896 /*
897 * We overlap with some dirty data undergoing background
898 * writeback, force this write to writeback
899 */
900 s->iop.bypass = false;
901 s->iop.writeback = true;
902 }
903
904 /*
905 * Discards aren't _required_ to do anything, so skipping if
906 * check_overlapping returned true is ok
907 *
908 * But check_overlapping drops dirty keys for which io hasn't started,
909 * so we still want to call it.
910 */
911 if (bio_op(bio) == REQ_OP_DISCARD)
912 s->iop.bypass = true;
913
914 if (should_writeback(dc, s->orig_bio,
915 cache_mode(dc),
916 s->iop.bypass)) {
917 s->iop.bypass = false;
918 s->iop.writeback = true;
919 }
920
921 if (s->iop.bypass) {
922 s->iop.bio = s->orig_bio;
923 bio_get(s->iop.bio);
924
925 if ((bio_op(bio) != REQ_OP_DISCARD) ||
926 blk_queue_discard(bdev_get_queue(dc->bdev)))
927 closure_bio_submit(bio, cl);
928 } else if (s->iop.writeback) {
929 bch_writeback_add(dc);
930 s->iop.bio = bio;
931
932 if (bio->bi_opf & REQ_PREFLUSH) {
933 /* Also need to send a flush to the backing device */
934 struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
935 dc->disk.bio_split);
936
937 bio_copy_dev(flush, bio);
938 flush->bi_end_io = request_endio;
939 flush->bi_private = cl;
940 flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
941
942 closure_bio_submit(flush, cl);
943 }
944 } else {
945 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
946
947 closure_bio_submit(bio, cl);
948 }
949
950 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
951 continue_at(cl, cached_dev_write_complete, NULL);
952 }
953
954 static void cached_dev_nodata(struct closure *cl)
955 {
956 struct search *s = container_of(cl, struct search, cl);
957 struct bio *bio = &s->bio.bio;
958
959 if (s->iop.flush_journal)
960 bch_journal_meta(s->iop.c, cl);
961
962 /* If it's a flush, we send the flush to the backing device too */
963 closure_bio_submit(bio, cl);
964
965 continue_at(cl, cached_dev_bio_complete, NULL);
966 }
967
968 /* Cached devices - read & write stuff */
969
970 static blk_qc_t cached_dev_make_request(struct request_queue *q,
971 struct bio *bio)
972 {
973 struct search *s;
974 struct bcache_device *d = bio->bi_disk->private_data;
975 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
976 int rw = bio_data_dir(bio);
977
978 generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0);
979
980 bio_set_dev(bio, dc->bdev);
981 bio->bi_iter.bi_sector += dc->sb.data_offset;
982
983 if (cached_dev_get(dc)) {
984 s = search_alloc(bio, d);
985 trace_bcache_request_start(s->d, bio);
986
987 if (!bio->bi_iter.bi_size) {
988 /*
989 * can't call bch_journal_meta from under
990 * generic_make_request
991 */
992 continue_at_nobarrier(&s->cl,
993 cached_dev_nodata,
994 bcache_wq);
995 } else {
996 s->iop.bypass = check_should_bypass(dc, bio);
997
998 if (rw)
999 cached_dev_write(dc, s);
1000 else
1001 cached_dev_read(dc, s);
1002 }
1003 } else {
1004 if ((bio_op(bio) == REQ_OP_DISCARD) &&
1005 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1006 bio_endio(bio);
1007 else
1008 generic_make_request(bio);
1009 }
1010
1011 return BLK_QC_T_NONE;
1012 }
1013
1014 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1015 unsigned int cmd, unsigned long arg)
1016 {
1017 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1018 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1019 }
1020
1021 static int cached_dev_congested(void *data, int bits)
1022 {
1023 struct bcache_device *d = data;
1024 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1025 struct request_queue *q = bdev_get_queue(dc->bdev);
1026 int ret = 0;
1027
1028 if (bdi_congested(q->backing_dev_info, bits))
1029 return 1;
1030
1031 if (cached_dev_get(dc)) {
1032 unsigned i;
1033 struct cache *ca;
1034
1035 for_each_cache(ca, d->c, i) {
1036 q = bdev_get_queue(ca->bdev);
1037 ret |= bdi_congested(q->backing_dev_info, bits);
1038 }
1039
1040 cached_dev_put(dc);
1041 }
1042
1043 return ret;
1044 }
1045
1046 void bch_cached_dev_request_init(struct cached_dev *dc)
1047 {
1048 struct gendisk *g = dc->disk.disk;
1049
1050 g->queue->make_request_fn = cached_dev_make_request;
1051 g->queue->backing_dev_info->congested_fn = cached_dev_congested;
1052 dc->disk.cache_miss = cached_dev_cache_miss;
1053 dc->disk.ioctl = cached_dev_ioctl;
1054 }
1055
1056 /* Flash backed devices */
1057
1058 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1059 struct bio *bio, unsigned sectors)
1060 {
1061 unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
1062
1063 swap(bio->bi_iter.bi_size, bytes);
1064 zero_fill_bio(bio);
1065 swap(bio->bi_iter.bi_size, bytes);
1066
1067 bio_advance(bio, bytes);
1068
1069 if (!bio->bi_iter.bi_size)
1070 return MAP_DONE;
1071
1072 return MAP_CONTINUE;
1073 }
1074
1075 static void flash_dev_nodata(struct closure *cl)
1076 {
1077 struct search *s = container_of(cl, struct search, cl);
1078
1079 if (s->iop.flush_journal)
1080 bch_journal_meta(s->iop.c, cl);
1081
1082 continue_at(cl, search_free, NULL);
1083 }
1084
1085 static blk_qc_t flash_dev_make_request(struct request_queue *q,
1086 struct bio *bio)
1087 {
1088 struct search *s;
1089 struct closure *cl;
1090 struct bcache_device *d = bio->bi_disk->private_data;
1091 int rw = bio_data_dir(bio);
1092
1093 generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0);
1094
1095 s = search_alloc(bio, d);
1096 cl = &s->cl;
1097 bio = &s->bio.bio;
1098
1099 trace_bcache_request_start(s->d, bio);
1100
1101 if (!bio->bi_iter.bi_size) {
1102 /*
1103 * can't call bch_journal_meta from under
1104 * generic_make_request
1105 */
1106 continue_at_nobarrier(&s->cl,
1107 flash_dev_nodata,
1108 bcache_wq);
1109 return BLK_QC_T_NONE;
1110 } else if (rw) {
1111 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1112 &KEY(d->id, bio->bi_iter.bi_sector, 0),
1113 &KEY(d->id, bio_end_sector(bio), 0));
1114
1115 s->iop.bypass = (bio_op(bio) == REQ_OP_DISCARD) != 0;
1116 s->iop.writeback = true;
1117 s->iop.bio = bio;
1118
1119 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1120 } else {
1121 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1122 }
1123
1124 continue_at(cl, search_free, NULL);
1125 return BLK_QC_T_NONE;
1126 }
1127
1128 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1129 unsigned int cmd, unsigned long arg)
1130 {
1131 return -ENOTTY;
1132 }
1133
1134 static int flash_dev_congested(void *data, int bits)
1135 {
1136 struct bcache_device *d = data;
1137 struct request_queue *q;
1138 struct cache *ca;
1139 unsigned i;
1140 int ret = 0;
1141
1142 for_each_cache(ca, d->c, i) {
1143 q = bdev_get_queue(ca->bdev);
1144 ret |= bdi_congested(q->backing_dev_info, bits);
1145 }
1146
1147 return ret;
1148 }
1149
1150 void bch_flash_dev_request_init(struct bcache_device *d)
1151 {
1152 struct gendisk *g = d->disk;
1153
1154 g->queue->make_request_fn = flash_dev_make_request;
1155 g->queue->backing_dev_info->congested_fn = flash_dev_congested;
1156 d->cache_miss = flash_dev_cache_miss;
1157 d->ioctl = flash_dev_ioctl;
1158 }
1159
1160 void bch_request_exit(void)
1161 {
1162 if (bch_search_cache)
1163 kmem_cache_destroy(bch_search_cache);
1164 }
1165
1166 int __init bch_request_init(void)
1167 {
1168 bch_search_cache = KMEM_CACHE(search, 0);
1169 if (!bch_search_cache)
1170 return -ENOMEM;
1171
1172 return 0;
1173 }