]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/bcache/request.c
Merge branches 'for-4.11/upstream-fixes', 'for-4.12/accutouch', 'for-4.12/cp2112...
[mirror_ubuntu-artful-kernel.git] / drivers / md / bcache / request.c
1 /*
2 * Main bcache entry point - handle a read or a write request and decide what to
3 * do with it; the make_request functions are called by the block layer.
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
14
15 #include <linux/module.h>
16 #include <linux/hash.h>
17 #include <linux/random.h>
18 #include <linux/backing-dev.h>
19
20 #include <trace/events/bcache.h>
21
22 #define CUTOFF_CACHE_ADD 95
23 #define CUTOFF_CACHE_READA 90
24
25 struct kmem_cache *bch_search_cache;
26
27 static void bch_data_insert_start(struct closure *);
28
29 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
30 {
31 return BDEV_CACHE_MODE(&dc->sb);
32 }
33
34 static bool verify(struct cached_dev *dc, struct bio *bio)
35 {
36 return dc->verify;
37 }
38
39 static void bio_csum(struct bio *bio, struct bkey *k)
40 {
41 struct bio_vec bv;
42 struct bvec_iter iter;
43 uint64_t csum = 0;
44
45 bio_for_each_segment(bv, bio, iter) {
46 void *d = kmap(bv.bv_page) + bv.bv_offset;
47 csum = bch_crc64_update(csum, d, bv.bv_len);
48 kunmap(bv.bv_page);
49 }
50
51 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
52 }
53
54 /* Insert data into cache */
55
56 static void bch_data_insert_keys(struct closure *cl)
57 {
58 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
59 atomic_t *journal_ref = NULL;
60 struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
61 int ret;
62
63 /*
64 * If we're looping, might already be waiting on
65 * another journal write - can't wait on more than one journal write at
66 * a time
67 *
68 * XXX: this looks wrong
69 */
70 #if 0
71 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
72 closure_sync(&s->cl);
73 #endif
74
75 if (!op->replace)
76 journal_ref = bch_journal(op->c, &op->insert_keys,
77 op->flush_journal ? cl : NULL);
78
79 ret = bch_btree_insert(op->c, &op->insert_keys,
80 journal_ref, replace_key);
81 if (ret == -ESRCH) {
82 op->replace_collision = true;
83 } else if (ret) {
84 op->error = -ENOMEM;
85 op->insert_data_done = true;
86 }
87
88 if (journal_ref)
89 atomic_dec_bug(journal_ref);
90
91 if (!op->insert_data_done) {
92 continue_at(cl, bch_data_insert_start, op->wq);
93 return;
94 }
95
96 bch_keylist_free(&op->insert_keys);
97 closure_return(cl);
98 }
99
100 static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
101 struct cache_set *c)
102 {
103 size_t oldsize = bch_keylist_nkeys(l);
104 size_t newsize = oldsize + u64s;
105
106 /*
107 * The journalling code doesn't handle the case where the keys to insert
108 * is bigger than an empty write: If we just return -ENOMEM here,
109 * bio_insert() and bio_invalidate() will insert the keys created so far
110 * and finish the rest when the keylist is empty.
111 */
112 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
113 return -ENOMEM;
114
115 return __bch_keylist_realloc(l, u64s);
116 }
117
118 static void bch_data_invalidate(struct closure *cl)
119 {
120 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
121 struct bio *bio = op->bio;
122
123 pr_debug("invalidating %i sectors from %llu",
124 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
125
126 while (bio_sectors(bio)) {
127 unsigned sectors = min(bio_sectors(bio),
128 1U << (KEY_SIZE_BITS - 1));
129
130 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
131 goto out;
132
133 bio->bi_iter.bi_sector += sectors;
134 bio->bi_iter.bi_size -= sectors << 9;
135
136 bch_keylist_add(&op->insert_keys,
137 &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
138 }
139
140 op->insert_data_done = true;
141 bio_put(bio);
142 out:
143 continue_at(cl, bch_data_insert_keys, op->wq);
144 }
145
146 static void bch_data_insert_error(struct closure *cl)
147 {
148 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
149
150 /*
151 * Our data write just errored, which means we've got a bunch of keys to
152 * insert that point to data that wasn't succesfully written.
153 *
154 * We don't have to insert those keys but we still have to invalidate
155 * that region of the cache - so, if we just strip off all the pointers
156 * from the keys we'll accomplish just that.
157 */
158
159 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
160
161 while (src != op->insert_keys.top) {
162 struct bkey *n = bkey_next(src);
163
164 SET_KEY_PTRS(src, 0);
165 memmove(dst, src, bkey_bytes(src));
166
167 dst = bkey_next(dst);
168 src = n;
169 }
170
171 op->insert_keys.top = dst;
172
173 bch_data_insert_keys(cl);
174 }
175
176 static void bch_data_insert_endio(struct bio *bio)
177 {
178 struct closure *cl = bio->bi_private;
179 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
180
181 if (bio->bi_error) {
182 /* TODO: We could try to recover from this. */
183 if (op->writeback)
184 op->error = bio->bi_error;
185 else if (!op->replace)
186 set_closure_fn(cl, bch_data_insert_error, op->wq);
187 else
188 set_closure_fn(cl, NULL, NULL);
189 }
190
191 bch_bbio_endio(op->c, bio, bio->bi_error, "writing data to cache");
192 }
193
194 static void bch_data_insert_start(struct closure *cl)
195 {
196 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
197 struct bio *bio = op->bio, *n;
198
199 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
200 wake_up_gc(op->c);
201
202 if (op->bypass)
203 return bch_data_invalidate(cl);
204
205 /*
206 * Journal writes are marked REQ_PREFLUSH; if the original write was a
207 * flush, it'll wait on the journal write.
208 */
209 bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
210
211 do {
212 unsigned i;
213 struct bkey *k;
214 struct bio_set *split = op->c->bio_split;
215
216 /* 1 for the device pointer and 1 for the chksum */
217 if (bch_keylist_realloc(&op->insert_keys,
218 3 + (op->csum ? 1 : 0),
219 op->c)) {
220 continue_at(cl, bch_data_insert_keys, op->wq);
221 return;
222 }
223
224 k = op->insert_keys.top;
225 bkey_init(k);
226 SET_KEY_INODE(k, op->inode);
227 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
228
229 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
230 op->write_point, op->write_prio,
231 op->writeback))
232 goto err;
233
234 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
235
236 n->bi_end_io = bch_data_insert_endio;
237 n->bi_private = cl;
238
239 if (op->writeback) {
240 SET_KEY_DIRTY(k, true);
241
242 for (i = 0; i < KEY_PTRS(k); i++)
243 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
244 GC_MARK_DIRTY);
245 }
246
247 SET_KEY_CSUM(k, op->csum);
248 if (KEY_CSUM(k))
249 bio_csum(n, k);
250
251 trace_bcache_cache_insert(k);
252 bch_keylist_push(&op->insert_keys);
253
254 bio_set_op_attrs(n, REQ_OP_WRITE, 0);
255 bch_submit_bbio(n, op->c, k, 0);
256 } while (n != bio);
257
258 op->insert_data_done = true;
259 continue_at(cl, bch_data_insert_keys, op->wq);
260 return;
261 err:
262 /* bch_alloc_sectors() blocks if s->writeback = true */
263 BUG_ON(op->writeback);
264
265 /*
266 * But if it's not a writeback write we'd rather just bail out if
267 * there aren't any buckets ready to write to - it might take awhile and
268 * we might be starving btree writes for gc or something.
269 */
270
271 if (!op->replace) {
272 /*
273 * Writethrough write: We can't complete the write until we've
274 * updated the index. But we don't want to delay the write while
275 * we wait for buckets to be freed up, so just invalidate the
276 * rest of the write.
277 */
278 op->bypass = true;
279 return bch_data_invalidate(cl);
280 } else {
281 /*
282 * From a cache miss, we can just insert the keys for the data
283 * we have written or bail out if we didn't do anything.
284 */
285 op->insert_data_done = true;
286 bio_put(bio);
287
288 if (!bch_keylist_empty(&op->insert_keys))
289 continue_at(cl, bch_data_insert_keys, op->wq);
290 else
291 closure_return(cl);
292 }
293 }
294
295 /**
296 * bch_data_insert - stick some data in the cache
297 *
298 * This is the starting point for any data to end up in a cache device; it could
299 * be from a normal write, or a writeback write, or a write to a flash only
300 * volume - it's also used by the moving garbage collector to compact data in
301 * mostly empty buckets.
302 *
303 * It first writes the data to the cache, creating a list of keys to be inserted
304 * (if the data had to be fragmented there will be multiple keys); after the
305 * data is written it calls bch_journal, and after the keys have been added to
306 * the next journal write they're inserted into the btree.
307 *
308 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
309 * and op->inode is used for the key inode.
310 *
311 * If s->bypass is true, instead of inserting the data it invalidates the
312 * region of the cache represented by s->cache_bio and op->inode.
313 */
314 void bch_data_insert(struct closure *cl)
315 {
316 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
317
318 trace_bcache_write(op->c, op->inode, op->bio,
319 op->writeback, op->bypass);
320
321 bch_keylist_init(&op->insert_keys);
322 bio_get(op->bio);
323 bch_data_insert_start(cl);
324 }
325
326 /* Congested? */
327
328 unsigned bch_get_congested(struct cache_set *c)
329 {
330 int i;
331 long rand;
332
333 if (!c->congested_read_threshold_us &&
334 !c->congested_write_threshold_us)
335 return 0;
336
337 i = (local_clock_us() - c->congested_last_us) / 1024;
338 if (i < 0)
339 return 0;
340
341 i += atomic_read(&c->congested);
342 if (i >= 0)
343 return 0;
344
345 i += CONGESTED_MAX;
346
347 if (i > 0)
348 i = fract_exp_two(i, 6);
349
350 rand = get_random_int();
351 i -= bitmap_weight(&rand, BITS_PER_LONG);
352
353 return i > 0 ? i : 1;
354 }
355
356 static void add_sequential(struct task_struct *t)
357 {
358 ewma_add(t->sequential_io_avg,
359 t->sequential_io, 8, 0);
360
361 t->sequential_io = 0;
362 }
363
364 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
365 {
366 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
367 }
368
369 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
370 {
371 struct cache_set *c = dc->disk.c;
372 unsigned mode = cache_mode(dc, bio);
373 unsigned sectors, congested = bch_get_congested(c);
374 struct task_struct *task = current;
375 struct io *i;
376
377 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
378 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
379 (bio_op(bio) == REQ_OP_DISCARD))
380 goto skip;
381
382 if (mode == CACHE_MODE_NONE ||
383 (mode == CACHE_MODE_WRITEAROUND &&
384 op_is_write(bio_op(bio))))
385 goto skip;
386
387 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
388 bio_sectors(bio) & (c->sb.block_size - 1)) {
389 pr_debug("skipping unaligned io");
390 goto skip;
391 }
392
393 if (bypass_torture_test(dc)) {
394 if ((get_random_int() & 3) == 3)
395 goto skip;
396 else
397 goto rescale;
398 }
399
400 if (!congested && !dc->sequential_cutoff)
401 goto rescale;
402
403 if (!congested &&
404 mode == CACHE_MODE_WRITEBACK &&
405 op_is_write(bio->bi_opf) &&
406 op_is_sync(bio->bi_opf))
407 goto rescale;
408
409 spin_lock(&dc->io_lock);
410
411 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
412 if (i->last == bio->bi_iter.bi_sector &&
413 time_before(jiffies, i->jiffies))
414 goto found;
415
416 i = list_first_entry(&dc->io_lru, struct io, lru);
417
418 add_sequential(task);
419 i->sequential = 0;
420 found:
421 if (i->sequential + bio->bi_iter.bi_size > i->sequential)
422 i->sequential += bio->bi_iter.bi_size;
423
424 i->last = bio_end_sector(bio);
425 i->jiffies = jiffies + msecs_to_jiffies(5000);
426 task->sequential_io = i->sequential;
427
428 hlist_del(&i->hash);
429 hlist_add_head(&i->hash, iohash(dc, i->last));
430 list_move_tail(&i->lru, &dc->io_lru);
431
432 spin_unlock(&dc->io_lock);
433
434 sectors = max(task->sequential_io,
435 task->sequential_io_avg) >> 9;
436
437 if (dc->sequential_cutoff &&
438 sectors >= dc->sequential_cutoff >> 9) {
439 trace_bcache_bypass_sequential(bio);
440 goto skip;
441 }
442
443 if (congested && sectors >= congested) {
444 trace_bcache_bypass_congested(bio);
445 goto skip;
446 }
447
448 rescale:
449 bch_rescale_priorities(c, bio_sectors(bio));
450 return false;
451 skip:
452 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
453 return true;
454 }
455
456 /* Cache lookup */
457
458 struct search {
459 /* Stack frame for bio_complete */
460 struct closure cl;
461
462 struct bbio bio;
463 struct bio *orig_bio;
464 struct bio *cache_miss;
465 struct bcache_device *d;
466
467 unsigned insert_bio_sectors;
468 unsigned recoverable:1;
469 unsigned write:1;
470 unsigned read_dirty_data:1;
471
472 unsigned long start_time;
473
474 struct btree_op op;
475 struct data_insert_op iop;
476 };
477
478 static void bch_cache_read_endio(struct bio *bio)
479 {
480 struct bbio *b = container_of(bio, struct bbio, bio);
481 struct closure *cl = bio->bi_private;
482 struct search *s = container_of(cl, struct search, cl);
483
484 /*
485 * If the bucket was reused while our bio was in flight, we might have
486 * read the wrong data. Set s->error but not error so it doesn't get
487 * counted against the cache device, but we'll still reread the data
488 * from the backing device.
489 */
490
491 if (bio->bi_error)
492 s->iop.error = bio->bi_error;
493 else if (!KEY_DIRTY(&b->key) &&
494 ptr_stale(s->iop.c, &b->key, 0)) {
495 atomic_long_inc(&s->iop.c->cache_read_races);
496 s->iop.error = -EINTR;
497 }
498
499 bch_bbio_endio(s->iop.c, bio, bio->bi_error, "reading from cache");
500 }
501
502 /*
503 * Read from a single key, handling the initial cache miss if the key starts in
504 * the middle of the bio
505 */
506 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
507 {
508 struct search *s = container_of(op, struct search, op);
509 struct bio *n, *bio = &s->bio.bio;
510 struct bkey *bio_key;
511 unsigned ptr;
512
513 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
514 return MAP_CONTINUE;
515
516 if (KEY_INODE(k) != s->iop.inode ||
517 KEY_START(k) > bio->bi_iter.bi_sector) {
518 unsigned bio_sectors = bio_sectors(bio);
519 unsigned sectors = KEY_INODE(k) == s->iop.inode
520 ? min_t(uint64_t, INT_MAX,
521 KEY_START(k) - bio->bi_iter.bi_sector)
522 : INT_MAX;
523
524 int ret = s->d->cache_miss(b, s, bio, sectors);
525 if (ret != MAP_CONTINUE)
526 return ret;
527
528 /* if this was a complete miss we shouldn't get here */
529 BUG_ON(bio_sectors <= sectors);
530 }
531
532 if (!KEY_SIZE(k))
533 return MAP_CONTINUE;
534
535 /* XXX: figure out best pointer - for multiple cache devices */
536 ptr = 0;
537
538 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
539
540 if (KEY_DIRTY(k))
541 s->read_dirty_data = true;
542
543 n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
544 KEY_OFFSET(k) - bio->bi_iter.bi_sector),
545 GFP_NOIO, s->d->bio_split);
546
547 bio_key = &container_of(n, struct bbio, bio)->key;
548 bch_bkey_copy_single_ptr(bio_key, k, ptr);
549
550 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
551 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
552
553 n->bi_end_io = bch_cache_read_endio;
554 n->bi_private = &s->cl;
555
556 /*
557 * The bucket we're reading from might be reused while our bio
558 * is in flight, and we could then end up reading the wrong
559 * data.
560 *
561 * We guard against this by checking (in cache_read_endio()) if
562 * the pointer is stale again; if so, we treat it as an error
563 * and reread from the backing device (but we don't pass that
564 * error up anywhere).
565 */
566
567 __bch_submit_bbio(n, b->c);
568 return n == bio ? MAP_DONE : MAP_CONTINUE;
569 }
570
571 static void cache_lookup(struct closure *cl)
572 {
573 struct search *s = container_of(cl, struct search, iop.cl);
574 struct bio *bio = &s->bio.bio;
575 int ret;
576
577 bch_btree_op_init(&s->op, -1);
578
579 ret = bch_btree_map_keys(&s->op, s->iop.c,
580 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
581 cache_lookup_fn, MAP_END_KEY);
582 if (ret == -EAGAIN) {
583 continue_at(cl, cache_lookup, bcache_wq);
584 return;
585 }
586
587 closure_return(cl);
588 }
589
590 /* Common code for the make_request functions */
591
592 static void request_endio(struct bio *bio)
593 {
594 struct closure *cl = bio->bi_private;
595
596 if (bio->bi_error) {
597 struct search *s = container_of(cl, struct search, cl);
598 s->iop.error = bio->bi_error;
599 /* Only cache read errors are recoverable */
600 s->recoverable = false;
601 }
602
603 bio_put(bio);
604 closure_put(cl);
605 }
606
607 static void bio_complete(struct search *s)
608 {
609 if (s->orig_bio) {
610 generic_end_io_acct(bio_data_dir(s->orig_bio),
611 &s->d->disk->part0, s->start_time);
612
613 trace_bcache_request_end(s->d, s->orig_bio);
614 s->orig_bio->bi_error = s->iop.error;
615 bio_endio(s->orig_bio);
616 s->orig_bio = NULL;
617 }
618 }
619
620 static void do_bio_hook(struct search *s, struct bio *orig_bio)
621 {
622 struct bio *bio = &s->bio.bio;
623
624 bio_init(bio, NULL, 0);
625 __bio_clone_fast(bio, orig_bio);
626 bio->bi_end_io = request_endio;
627 bio->bi_private = &s->cl;
628
629 bio_cnt_set(bio, 3);
630 }
631
632 static void search_free(struct closure *cl)
633 {
634 struct search *s = container_of(cl, struct search, cl);
635 bio_complete(s);
636
637 if (s->iop.bio)
638 bio_put(s->iop.bio);
639
640 closure_debug_destroy(cl);
641 mempool_free(s, s->d->c->search);
642 }
643
644 static inline struct search *search_alloc(struct bio *bio,
645 struct bcache_device *d)
646 {
647 struct search *s;
648
649 s = mempool_alloc(d->c->search, GFP_NOIO);
650
651 closure_init(&s->cl, NULL);
652 do_bio_hook(s, bio);
653
654 s->orig_bio = bio;
655 s->cache_miss = NULL;
656 s->d = d;
657 s->recoverable = 1;
658 s->write = op_is_write(bio_op(bio));
659 s->read_dirty_data = 0;
660 s->start_time = jiffies;
661
662 s->iop.c = d->c;
663 s->iop.bio = NULL;
664 s->iop.inode = d->id;
665 s->iop.write_point = hash_long((unsigned long) current, 16);
666 s->iop.write_prio = 0;
667 s->iop.error = 0;
668 s->iop.flags = 0;
669 s->iop.flush_journal = op_is_flush(bio->bi_opf);
670 s->iop.wq = bcache_wq;
671
672 return s;
673 }
674
675 /* Cached devices */
676
677 static void cached_dev_bio_complete(struct closure *cl)
678 {
679 struct search *s = container_of(cl, struct search, cl);
680 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
681
682 search_free(cl);
683 cached_dev_put(dc);
684 }
685
686 /* Process reads */
687
688 static void cached_dev_cache_miss_done(struct closure *cl)
689 {
690 struct search *s = container_of(cl, struct search, cl);
691
692 if (s->iop.replace_collision)
693 bch_mark_cache_miss_collision(s->iop.c, s->d);
694
695 if (s->iop.bio)
696 bio_free_pages(s->iop.bio);
697
698 cached_dev_bio_complete(cl);
699 }
700
701 static void cached_dev_read_error(struct closure *cl)
702 {
703 struct search *s = container_of(cl, struct search, cl);
704 struct bio *bio = &s->bio.bio;
705
706 if (s->recoverable) {
707 /* Retry from the backing device: */
708 trace_bcache_read_retry(s->orig_bio);
709
710 s->iop.error = 0;
711 do_bio_hook(s, s->orig_bio);
712
713 /* XXX: invalidate cache */
714
715 closure_bio_submit(bio, cl);
716 }
717
718 continue_at(cl, cached_dev_cache_miss_done, NULL);
719 }
720
721 static void cached_dev_read_done(struct closure *cl)
722 {
723 struct search *s = container_of(cl, struct search, cl);
724 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
725
726 /*
727 * We had a cache miss; cache_bio now contains data ready to be inserted
728 * into the cache.
729 *
730 * First, we copy the data we just read from cache_bio's bounce buffers
731 * to the buffers the original bio pointed to:
732 */
733
734 if (s->iop.bio) {
735 bio_reset(s->iop.bio);
736 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
737 s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
738 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
739 bch_bio_map(s->iop.bio, NULL);
740
741 bio_copy_data(s->cache_miss, s->iop.bio);
742
743 bio_put(s->cache_miss);
744 s->cache_miss = NULL;
745 }
746
747 if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
748 bch_data_verify(dc, s->orig_bio);
749
750 bio_complete(s);
751
752 if (s->iop.bio &&
753 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
754 BUG_ON(!s->iop.replace);
755 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
756 }
757
758 continue_at(cl, cached_dev_cache_miss_done, NULL);
759 }
760
761 static void cached_dev_read_done_bh(struct closure *cl)
762 {
763 struct search *s = container_of(cl, struct search, cl);
764 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
765
766 bch_mark_cache_accounting(s->iop.c, s->d,
767 !s->cache_miss, s->iop.bypass);
768 trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
769
770 if (s->iop.error)
771 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
772 else if (s->iop.bio || verify(dc, &s->bio.bio))
773 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
774 else
775 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
776 }
777
778 static int cached_dev_cache_miss(struct btree *b, struct search *s,
779 struct bio *bio, unsigned sectors)
780 {
781 int ret = MAP_CONTINUE;
782 unsigned reada = 0;
783 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
784 struct bio *miss, *cache_bio;
785
786 if (s->cache_miss || s->iop.bypass) {
787 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
788 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
789 goto out_submit;
790 }
791
792 if (!(bio->bi_opf & REQ_RAHEAD) &&
793 !(bio->bi_opf & REQ_META) &&
794 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
795 reada = min_t(sector_t, dc->readahead >> 9,
796 bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
797
798 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
799
800 s->iop.replace_key = KEY(s->iop.inode,
801 bio->bi_iter.bi_sector + s->insert_bio_sectors,
802 s->insert_bio_sectors);
803
804 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
805 if (ret)
806 return ret;
807
808 s->iop.replace = true;
809
810 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
811
812 /* btree_search_recurse()'s btree iterator is no good anymore */
813 ret = miss == bio ? MAP_DONE : -EINTR;
814
815 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
816 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
817 dc->disk.bio_split);
818 if (!cache_bio)
819 goto out_submit;
820
821 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector;
822 cache_bio->bi_bdev = miss->bi_bdev;
823 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
824
825 cache_bio->bi_end_io = request_endio;
826 cache_bio->bi_private = &s->cl;
827
828 bch_bio_map(cache_bio, NULL);
829 if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
830 goto out_put;
831
832 if (reada)
833 bch_mark_cache_readahead(s->iop.c, s->d);
834
835 s->cache_miss = miss;
836 s->iop.bio = cache_bio;
837 bio_get(cache_bio);
838 closure_bio_submit(cache_bio, &s->cl);
839
840 return ret;
841 out_put:
842 bio_put(cache_bio);
843 out_submit:
844 miss->bi_end_io = request_endio;
845 miss->bi_private = &s->cl;
846 closure_bio_submit(miss, &s->cl);
847 return ret;
848 }
849
850 static void cached_dev_read(struct cached_dev *dc, struct search *s)
851 {
852 struct closure *cl = &s->cl;
853
854 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
855 continue_at(cl, cached_dev_read_done_bh, NULL);
856 }
857
858 /* Process writes */
859
860 static void cached_dev_write_complete(struct closure *cl)
861 {
862 struct search *s = container_of(cl, struct search, cl);
863 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
864
865 up_read_non_owner(&dc->writeback_lock);
866 cached_dev_bio_complete(cl);
867 }
868
869 static void cached_dev_write(struct cached_dev *dc, struct search *s)
870 {
871 struct closure *cl = &s->cl;
872 struct bio *bio = &s->bio.bio;
873 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
874 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
875
876 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
877
878 down_read_non_owner(&dc->writeback_lock);
879 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
880 /*
881 * We overlap with some dirty data undergoing background
882 * writeback, force this write to writeback
883 */
884 s->iop.bypass = false;
885 s->iop.writeback = true;
886 }
887
888 /*
889 * Discards aren't _required_ to do anything, so skipping if
890 * check_overlapping returned true is ok
891 *
892 * But check_overlapping drops dirty keys for which io hasn't started,
893 * so we still want to call it.
894 */
895 if (bio_op(bio) == REQ_OP_DISCARD)
896 s->iop.bypass = true;
897
898 if (should_writeback(dc, s->orig_bio,
899 cache_mode(dc, bio),
900 s->iop.bypass)) {
901 s->iop.bypass = false;
902 s->iop.writeback = true;
903 }
904
905 if (s->iop.bypass) {
906 s->iop.bio = s->orig_bio;
907 bio_get(s->iop.bio);
908
909 if ((bio_op(bio) != REQ_OP_DISCARD) ||
910 blk_queue_discard(bdev_get_queue(dc->bdev)))
911 closure_bio_submit(bio, cl);
912 } else if (s->iop.writeback) {
913 bch_writeback_add(dc);
914 s->iop.bio = bio;
915
916 if (bio->bi_opf & REQ_PREFLUSH) {
917 /* Also need to send a flush to the backing device */
918 struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
919 dc->disk.bio_split);
920
921 flush->bi_bdev = bio->bi_bdev;
922 flush->bi_end_io = request_endio;
923 flush->bi_private = cl;
924 flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
925
926 closure_bio_submit(flush, cl);
927 }
928 } else {
929 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
930
931 closure_bio_submit(bio, cl);
932 }
933
934 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
935 continue_at(cl, cached_dev_write_complete, NULL);
936 }
937
938 static void cached_dev_nodata(struct closure *cl)
939 {
940 struct search *s = container_of(cl, struct search, cl);
941 struct bio *bio = &s->bio.bio;
942
943 if (s->iop.flush_journal)
944 bch_journal_meta(s->iop.c, cl);
945
946 /* If it's a flush, we send the flush to the backing device too */
947 closure_bio_submit(bio, cl);
948
949 continue_at(cl, cached_dev_bio_complete, NULL);
950 }
951
952 /* Cached devices - read & write stuff */
953
954 static blk_qc_t cached_dev_make_request(struct request_queue *q,
955 struct bio *bio)
956 {
957 struct search *s;
958 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
959 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
960 int rw = bio_data_dir(bio);
961
962 generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
963
964 bio->bi_bdev = dc->bdev;
965 bio->bi_iter.bi_sector += dc->sb.data_offset;
966
967 if (cached_dev_get(dc)) {
968 s = search_alloc(bio, d);
969 trace_bcache_request_start(s->d, bio);
970
971 if (!bio->bi_iter.bi_size) {
972 /*
973 * can't call bch_journal_meta from under
974 * generic_make_request
975 */
976 continue_at_nobarrier(&s->cl,
977 cached_dev_nodata,
978 bcache_wq);
979 } else {
980 s->iop.bypass = check_should_bypass(dc, bio);
981
982 if (rw)
983 cached_dev_write(dc, s);
984 else
985 cached_dev_read(dc, s);
986 }
987 } else {
988 if ((bio_op(bio) == REQ_OP_DISCARD) &&
989 !blk_queue_discard(bdev_get_queue(dc->bdev)))
990 bio_endio(bio);
991 else
992 generic_make_request(bio);
993 }
994
995 return BLK_QC_T_NONE;
996 }
997
998 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
999 unsigned int cmd, unsigned long arg)
1000 {
1001 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1002 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1003 }
1004
1005 static int cached_dev_congested(void *data, int bits)
1006 {
1007 struct bcache_device *d = data;
1008 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1009 struct request_queue *q = bdev_get_queue(dc->bdev);
1010 int ret = 0;
1011
1012 if (bdi_congested(q->backing_dev_info, bits))
1013 return 1;
1014
1015 if (cached_dev_get(dc)) {
1016 unsigned i;
1017 struct cache *ca;
1018
1019 for_each_cache(ca, d->c, i) {
1020 q = bdev_get_queue(ca->bdev);
1021 ret |= bdi_congested(q->backing_dev_info, bits);
1022 }
1023
1024 cached_dev_put(dc);
1025 }
1026
1027 return ret;
1028 }
1029
1030 void bch_cached_dev_request_init(struct cached_dev *dc)
1031 {
1032 struct gendisk *g = dc->disk.disk;
1033
1034 g->queue->make_request_fn = cached_dev_make_request;
1035 g->queue->backing_dev_info->congested_fn = cached_dev_congested;
1036 dc->disk.cache_miss = cached_dev_cache_miss;
1037 dc->disk.ioctl = cached_dev_ioctl;
1038 }
1039
1040 /* Flash backed devices */
1041
1042 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1043 struct bio *bio, unsigned sectors)
1044 {
1045 unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
1046
1047 swap(bio->bi_iter.bi_size, bytes);
1048 zero_fill_bio(bio);
1049 swap(bio->bi_iter.bi_size, bytes);
1050
1051 bio_advance(bio, bytes);
1052
1053 if (!bio->bi_iter.bi_size)
1054 return MAP_DONE;
1055
1056 return MAP_CONTINUE;
1057 }
1058
1059 static void flash_dev_nodata(struct closure *cl)
1060 {
1061 struct search *s = container_of(cl, struct search, cl);
1062
1063 if (s->iop.flush_journal)
1064 bch_journal_meta(s->iop.c, cl);
1065
1066 continue_at(cl, search_free, NULL);
1067 }
1068
1069 static blk_qc_t flash_dev_make_request(struct request_queue *q,
1070 struct bio *bio)
1071 {
1072 struct search *s;
1073 struct closure *cl;
1074 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1075 int rw = bio_data_dir(bio);
1076
1077 generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
1078
1079 s = search_alloc(bio, d);
1080 cl = &s->cl;
1081 bio = &s->bio.bio;
1082
1083 trace_bcache_request_start(s->d, bio);
1084
1085 if (!bio->bi_iter.bi_size) {
1086 /*
1087 * can't call bch_journal_meta from under
1088 * generic_make_request
1089 */
1090 continue_at_nobarrier(&s->cl,
1091 flash_dev_nodata,
1092 bcache_wq);
1093 return BLK_QC_T_NONE;
1094 } else if (rw) {
1095 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1096 &KEY(d->id, bio->bi_iter.bi_sector, 0),
1097 &KEY(d->id, bio_end_sector(bio), 0));
1098
1099 s->iop.bypass = (bio_op(bio) == REQ_OP_DISCARD) != 0;
1100 s->iop.writeback = true;
1101 s->iop.bio = bio;
1102
1103 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1104 } else {
1105 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1106 }
1107
1108 continue_at(cl, search_free, NULL);
1109 return BLK_QC_T_NONE;
1110 }
1111
1112 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1113 unsigned int cmd, unsigned long arg)
1114 {
1115 return -ENOTTY;
1116 }
1117
1118 static int flash_dev_congested(void *data, int bits)
1119 {
1120 struct bcache_device *d = data;
1121 struct request_queue *q;
1122 struct cache *ca;
1123 unsigned i;
1124 int ret = 0;
1125
1126 for_each_cache(ca, d->c, i) {
1127 q = bdev_get_queue(ca->bdev);
1128 ret |= bdi_congested(q->backing_dev_info, bits);
1129 }
1130
1131 return ret;
1132 }
1133
1134 void bch_flash_dev_request_init(struct bcache_device *d)
1135 {
1136 struct gendisk *g = d->disk;
1137
1138 g->queue->make_request_fn = flash_dev_make_request;
1139 g->queue->backing_dev_info->congested_fn = flash_dev_congested;
1140 d->cache_miss = flash_dev_cache_miss;
1141 d->ioctl = flash_dev_ioctl;
1142 }
1143
1144 void bch_request_exit(void)
1145 {
1146 if (bch_search_cache)
1147 kmem_cache_destroy(bch_search_cache);
1148 }
1149
1150 int __init bch_request_init(void)
1151 {
1152 bch_search_cache = KMEM_CACHE(search, 0);
1153 if (!bch_search_cache)
1154 return -ENOMEM;
1155
1156 return 0;
1157 }