]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/md/bcache/request.c
sh: switch to NO_BOOTMEM
[mirror_ubuntu-eoan-kernel.git] / drivers / md / bcache / request.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Main bcache entry point - handle a read or a write request and decide what to
4 * do with it; the make_request functions are called by the block layer.
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "request.h"
14 #include "writeback.h"
15
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include <linux/backing-dev.h>
20
21 #include <trace/events/bcache.h>
22
23 #define CUTOFF_CACHE_ADD 95
24 #define CUTOFF_CACHE_READA 90
25
26 struct kmem_cache *bch_search_cache;
27
28 static void bch_data_insert_start(struct closure *);
29
30 static unsigned cache_mode(struct cached_dev *dc)
31 {
32 return BDEV_CACHE_MODE(&dc->sb);
33 }
34
35 static bool verify(struct cached_dev *dc)
36 {
37 return dc->verify;
38 }
39
40 static void bio_csum(struct bio *bio, struct bkey *k)
41 {
42 struct bio_vec bv;
43 struct bvec_iter iter;
44 uint64_t csum = 0;
45
46 bio_for_each_segment(bv, bio, iter) {
47 void *d = kmap(bv.bv_page) + bv.bv_offset;
48 csum = bch_crc64_update(csum, d, bv.bv_len);
49 kunmap(bv.bv_page);
50 }
51
52 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
53 }
54
55 /* Insert data into cache */
56
57 static void bch_data_insert_keys(struct closure *cl)
58 {
59 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
60 atomic_t *journal_ref = NULL;
61 struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
62 int ret;
63
64 /*
65 * If we're looping, might already be waiting on
66 * another journal write - can't wait on more than one journal write at
67 * a time
68 *
69 * XXX: this looks wrong
70 */
71 #if 0
72 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
73 closure_sync(&s->cl);
74 #endif
75
76 if (!op->replace)
77 journal_ref = bch_journal(op->c, &op->insert_keys,
78 op->flush_journal ? cl : NULL);
79
80 ret = bch_btree_insert(op->c, &op->insert_keys,
81 journal_ref, replace_key);
82 if (ret == -ESRCH) {
83 op->replace_collision = true;
84 } else if (ret) {
85 op->status = BLK_STS_RESOURCE;
86 op->insert_data_done = true;
87 }
88
89 if (journal_ref)
90 atomic_dec_bug(journal_ref);
91
92 if (!op->insert_data_done) {
93 continue_at(cl, bch_data_insert_start, op->wq);
94 return;
95 }
96
97 bch_keylist_free(&op->insert_keys);
98 closure_return(cl);
99 }
100
101 static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
102 struct cache_set *c)
103 {
104 size_t oldsize = bch_keylist_nkeys(l);
105 size_t newsize = oldsize + u64s;
106
107 /*
108 * The journalling code doesn't handle the case where the keys to insert
109 * is bigger than an empty write: If we just return -ENOMEM here,
110 * bio_insert() and bio_invalidate() will insert the keys created so far
111 * and finish the rest when the keylist is empty.
112 */
113 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
114 return -ENOMEM;
115
116 return __bch_keylist_realloc(l, u64s);
117 }
118
119 static void bch_data_invalidate(struct closure *cl)
120 {
121 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
122 struct bio *bio = op->bio;
123
124 pr_debug("invalidating %i sectors from %llu",
125 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
126
127 while (bio_sectors(bio)) {
128 unsigned sectors = min(bio_sectors(bio),
129 1U << (KEY_SIZE_BITS - 1));
130
131 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
132 goto out;
133
134 bio->bi_iter.bi_sector += sectors;
135 bio->bi_iter.bi_size -= sectors << 9;
136
137 bch_keylist_add(&op->insert_keys,
138 &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
139 }
140
141 op->insert_data_done = true;
142 /* get in bch_data_insert() */
143 bio_put(bio);
144 out:
145 continue_at(cl, bch_data_insert_keys, op->wq);
146 }
147
148 static void bch_data_insert_error(struct closure *cl)
149 {
150 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
151
152 /*
153 * Our data write just errored, which means we've got a bunch of keys to
154 * insert that point to data that wasn't succesfully written.
155 *
156 * We don't have to insert those keys but we still have to invalidate
157 * that region of the cache - so, if we just strip off all the pointers
158 * from the keys we'll accomplish just that.
159 */
160
161 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
162
163 while (src != op->insert_keys.top) {
164 struct bkey *n = bkey_next(src);
165
166 SET_KEY_PTRS(src, 0);
167 memmove(dst, src, bkey_bytes(src));
168
169 dst = bkey_next(dst);
170 src = n;
171 }
172
173 op->insert_keys.top = dst;
174
175 bch_data_insert_keys(cl);
176 }
177
178 static void bch_data_insert_endio(struct bio *bio)
179 {
180 struct closure *cl = bio->bi_private;
181 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
182
183 if (bio->bi_status) {
184 /* TODO: We could try to recover from this. */
185 if (op->writeback)
186 op->status = bio->bi_status;
187 else if (!op->replace)
188 set_closure_fn(cl, bch_data_insert_error, op->wq);
189 else
190 set_closure_fn(cl, NULL, NULL);
191 }
192
193 bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
194 }
195
196 static void bch_data_insert_start(struct closure *cl)
197 {
198 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
199 struct bio *bio = op->bio, *n;
200
201 if (op->bypass)
202 return bch_data_invalidate(cl);
203
204 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
205 wake_up_gc(op->c);
206
207 /*
208 * Journal writes are marked REQ_PREFLUSH; if the original write was a
209 * flush, it'll wait on the journal write.
210 */
211 bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
212
213 do {
214 unsigned i;
215 struct bkey *k;
216 struct bio_set *split = op->c->bio_split;
217
218 /* 1 for the device pointer and 1 for the chksum */
219 if (bch_keylist_realloc(&op->insert_keys,
220 3 + (op->csum ? 1 : 0),
221 op->c)) {
222 continue_at(cl, bch_data_insert_keys, op->wq);
223 return;
224 }
225
226 k = op->insert_keys.top;
227 bkey_init(k);
228 SET_KEY_INODE(k, op->inode);
229 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
230
231 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
232 op->write_point, op->write_prio,
233 op->writeback))
234 goto err;
235
236 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
237
238 n->bi_end_io = bch_data_insert_endio;
239 n->bi_private = cl;
240
241 if (op->writeback) {
242 SET_KEY_DIRTY(k, true);
243
244 for (i = 0; i < KEY_PTRS(k); i++)
245 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
246 GC_MARK_DIRTY);
247 }
248
249 SET_KEY_CSUM(k, op->csum);
250 if (KEY_CSUM(k))
251 bio_csum(n, k);
252
253 trace_bcache_cache_insert(k);
254 bch_keylist_push(&op->insert_keys);
255
256 bio_set_op_attrs(n, REQ_OP_WRITE, 0);
257 bch_submit_bbio(n, op->c, k, 0);
258 } while (n != bio);
259
260 op->insert_data_done = true;
261 continue_at(cl, bch_data_insert_keys, op->wq);
262 return;
263 err:
264 /* bch_alloc_sectors() blocks if s->writeback = true */
265 BUG_ON(op->writeback);
266
267 /*
268 * But if it's not a writeback write we'd rather just bail out if
269 * there aren't any buckets ready to write to - it might take awhile and
270 * we might be starving btree writes for gc or something.
271 */
272
273 if (!op->replace) {
274 /*
275 * Writethrough write: We can't complete the write until we've
276 * updated the index. But we don't want to delay the write while
277 * we wait for buckets to be freed up, so just invalidate the
278 * rest of the write.
279 */
280 op->bypass = true;
281 return bch_data_invalidate(cl);
282 } else {
283 /*
284 * From a cache miss, we can just insert the keys for the data
285 * we have written or bail out if we didn't do anything.
286 */
287 op->insert_data_done = true;
288 bio_put(bio);
289
290 if (!bch_keylist_empty(&op->insert_keys))
291 continue_at(cl, bch_data_insert_keys, op->wq);
292 else
293 closure_return(cl);
294 }
295 }
296
297 /**
298 * bch_data_insert - stick some data in the cache
299 * @cl: closure pointer.
300 *
301 * This is the starting point for any data to end up in a cache device; it could
302 * be from a normal write, or a writeback write, or a write to a flash only
303 * volume - it's also used by the moving garbage collector to compact data in
304 * mostly empty buckets.
305 *
306 * It first writes the data to the cache, creating a list of keys to be inserted
307 * (if the data had to be fragmented there will be multiple keys); after the
308 * data is written it calls bch_journal, and after the keys have been added to
309 * the next journal write they're inserted into the btree.
310 *
311 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
312 * and op->inode is used for the key inode.
313 *
314 * If s->bypass is true, instead of inserting the data it invalidates the
315 * region of the cache represented by s->cache_bio and op->inode.
316 */
317 void bch_data_insert(struct closure *cl)
318 {
319 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
320
321 trace_bcache_write(op->c, op->inode, op->bio,
322 op->writeback, op->bypass);
323
324 bch_keylist_init(&op->insert_keys);
325 bio_get(op->bio);
326 bch_data_insert_start(cl);
327 }
328
329 /* Congested? */
330
331 unsigned bch_get_congested(struct cache_set *c)
332 {
333 int i;
334 long rand;
335
336 if (!c->congested_read_threshold_us &&
337 !c->congested_write_threshold_us)
338 return 0;
339
340 i = (local_clock_us() - c->congested_last_us) / 1024;
341 if (i < 0)
342 return 0;
343
344 i += atomic_read(&c->congested);
345 if (i >= 0)
346 return 0;
347
348 i += CONGESTED_MAX;
349
350 if (i > 0)
351 i = fract_exp_two(i, 6);
352
353 rand = get_random_int();
354 i -= bitmap_weight(&rand, BITS_PER_LONG);
355
356 return i > 0 ? i : 1;
357 }
358
359 static void add_sequential(struct task_struct *t)
360 {
361 ewma_add(t->sequential_io_avg,
362 t->sequential_io, 8, 0);
363
364 t->sequential_io = 0;
365 }
366
367 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
368 {
369 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
370 }
371
372 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
373 {
374 struct cache_set *c = dc->disk.c;
375 unsigned mode = cache_mode(dc);
376 unsigned sectors, congested = bch_get_congested(c);
377 struct task_struct *task = current;
378 struct io *i;
379
380 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
381 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
382 (bio_op(bio) == REQ_OP_DISCARD))
383 goto skip;
384
385 if (mode == CACHE_MODE_NONE ||
386 (mode == CACHE_MODE_WRITEAROUND &&
387 op_is_write(bio_op(bio))))
388 goto skip;
389
390 /*
391 * Flag for bypass if the IO is for read-ahead or background,
392 * unless the read-ahead request is for metadata (eg, for gfs2).
393 */
394 if (bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND) &&
395 !(bio->bi_opf & REQ_META))
396 goto skip;
397
398 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
399 bio_sectors(bio) & (c->sb.block_size - 1)) {
400 pr_debug("skipping unaligned io");
401 goto skip;
402 }
403
404 if (bypass_torture_test(dc)) {
405 if ((get_random_int() & 3) == 3)
406 goto skip;
407 else
408 goto rescale;
409 }
410
411 if (!congested && !dc->sequential_cutoff)
412 goto rescale;
413
414 spin_lock(&dc->io_lock);
415
416 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
417 if (i->last == bio->bi_iter.bi_sector &&
418 time_before(jiffies, i->jiffies))
419 goto found;
420
421 i = list_first_entry(&dc->io_lru, struct io, lru);
422
423 add_sequential(task);
424 i->sequential = 0;
425 found:
426 if (i->sequential + bio->bi_iter.bi_size > i->sequential)
427 i->sequential += bio->bi_iter.bi_size;
428
429 i->last = bio_end_sector(bio);
430 i->jiffies = jiffies + msecs_to_jiffies(5000);
431 task->sequential_io = i->sequential;
432
433 hlist_del(&i->hash);
434 hlist_add_head(&i->hash, iohash(dc, i->last));
435 list_move_tail(&i->lru, &dc->io_lru);
436
437 spin_unlock(&dc->io_lock);
438
439 sectors = max(task->sequential_io,
440 task->sequential_io_avg) >> 9;
441
442 if (dc->sequential_cutoff &&
443 sectors >= dc->sequential_cutoff >> 9) {
444 trace_bcache_bypass_sequential(bio);
445 goto skip;
446 }
447
448 if (congested && sectors >= congested) {
449 trace_bcache_bypass_congested(bio);
450 goto skip;
451 }
452
453 rescale:
454 bch_rescale_priorities(c, bio_sectors(bio));
455 return false;
456 skip:
457 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
458 return true;
459 }
460
461 /* Cache lookup */
462
463 struct search {
464 /* Stack frame for bio_complete */
465 struct closure cl;
466
467 struct bbio bio;
468 struct bio *orig_bio;
469 struct bio *cache_miss;
470 struct bcache_device *d;
471
472 unsigned insert_bio_sectors;
473 unsigned recoverable:1;
474 unsigned write:1;
475 unsigned read_dirty_data:1;
476 unsigned cache_missed:1;
477
478 unsigned long start_time;
479
480 struct btree_op op;
481 struct data_insert_op iop;
482 };
483
484 static void bch_cache_read_endio(struct bio *bio)
485 {
486 struct bbio *b = container_of(bio, struct bbio, bio);
487 struct closure *cl = bio->bi_private;
488 struct search *s = container_of(cl, struct search, cl);
489
490 /*
491 * If the bucket was reused while our bio was in flight, we might have
492 * read the wrong data. Set s->error but not error so it doesn't get
493 * counted against the cache device, but we'll still reread the data
494 * from the backing device.
495 */
496
497 if (bio->bi_status)
498 s->iop.status = bio->bi_status;
499 else if (!KEY_DIRTY(&b->key) &&
500 ptr_stale(s->iop.c, &b->key, 0)) {
501 atomic_long_inc(&s->iop.c->cache_read_races);
502 s->iop.status = BLK_STS_IOERR;
503 }
504
505 bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
506 }
507
508 /*
509 * Read from a single key, handling the initial cache miss if the key starts in
510 * the middle of the bio
511 */
512 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
513 {
514 struct search *s = container_of(op, struct search, op);
515 struct bio *n, *bio = &s->bio.bio;
516 struct bkey *bio_key;
517 unsigned ptr;
518
519 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
520 return MAP_CONTINUE;
521
522 if (KEY_INODE(k) != s->iop.inode ||
523 KEY_START(k) > bio->bi_iter.bi_sector) {
524 unsigned bio_sectors = bio_sectors(bio);
525 unsigned sectors = KEY_INODE(k) == s->iop.inode
526 ? min_t(uint64_t, INT_MAX,
527 KEY_START(k) - bio->bi_iter.bi_sector)
528 : INT_MAX;
529
530 int ret = s->d->cache_miss(b, s, bio, sectors);
531 if (ret != MAP_CONTINUE)
532 return ret;
533
534 /* if this was a complete miss we shouldn't get here */
535 BUG_ON(bio_sectors <= sectors);
536 }
537
538 if (!KEY_SIZE(k))
539 return MAP_CONTINUE;
540
541 /* XXX: figure out best pointer - for multiple cache devices */
542 ptr = 0;
543
544 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
545
546 if (KEY_DIRTY(k))
547 s->read_dirty_data = true;
548
549 n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
550 KEY_OFFSET(k) - bio->bi_iter.bi_sector),
551 GFP_NOIO, s->d->bio_split);
552
553 bio_key = &container_of(n, struct bbio, bio)->key;
554 bch_bkey_copy_single_ptr(bio_key, k, ptr);
555
556 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
557 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
558
559 n->bi_end_io = bch_cache_read_endio;
560 n->bi_private = &s->cl;
561
562 /*
563 * The bucket we're reading from might be reused while our bio
564 * is in flight, and we could then end up reading the wrong
565 * data.
566 *
567 * We guard against this by checking (in cache_read_endio()) if
568 * the pointer is stale again; if so, we treat it as an error
569 * and reread from the backing device (but we don't pass that
570 * error up anywhere).
571 */
572
573 __bch_submit_bbio(n, b->c);
574 return n == bio ? MAP_DONE : MAP_CONTINUE;
575 }
576
577 static void cache_lookup(struct closure *cl)
578 {
579 struct search *s = container_of(cl, struct search, iop.cl);
580 struct bio *bio = &s->bio.bio;
581 struct cached_dev *dc;
582 int ret;
583
584 bch_btree_op_init(&s->op, -1);
585
586 ret = bch_btree_map_keys(&s->op, s->iop.c,
587 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
588 cache_lookup_fn, MAP_END_KEY);
589 if (ret == -EAGAIN) {
590 continue_at(cl, cache_lookup, bcache_wq);
591 return;
592 }
593
594 /*
595 * We might meet err when searching the btree, If that happens, we will
596 * get negative ret, in this scenario we should not recover data from
597 * backing device (when cache device is dirty) because we don't know
598 * whether bkeys the read request covered are all clean.
599 *
600 * And after that happened, s->iop.status is still its initial value
601 * before we submit s->bio.bio
602 */
603 if (ret < 0) {
604 BUG_ON(ret == -EINTR);
605 if (s->d && s->d->c &&
606 !UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
607 dc = container_of(s->d, struct cached_dev, disk);
608 if (dc && atomic_read(&dc->has_dirty))
609 s->recoverable = false;
610 }
611 if (!s->iop.status)
612 s->iop.status = BLK_STS_IOERR;
613 }
614
615 closure_return(cl);
616 }
617
618 /* Common code for the make_request functions */
619
620 static void request_endio(struct bio *bio)
621 {
622 struct closure *cl = bio->bi_private;
623
624 if (bio->bi_status) {
625 struct search *s = container_of(cl, struct search, cl);
626 s->iop.status = bio->bi_status;
627 /* Only cache read errors are recoverable */
628 s->recoverable = false;
629 }
630
631 bio_put(bio);
632 closure_put(cl);
633 }
634
635 static void backing_request_endio(struct bio *bio)
636 {
637 struct closure *cl = bio->bi_private;
638
639 if (bio->bi_status) {
640 struct search *s = container_of(cl, struct search, cl);
641 struct cached_dev *dc = container_of(s->d,
642 struct cached_dev, disk);
643 /*
644 * If a bio has REQ_PREFLUSH for writeback mode, it is
645 * speically assembled in cached_dev_write() for a non-zero
646 * write request which has REQ_PREFLUSH. we don't set
647 * s->iop.status by this failure, the status will be decided
648 * by result of bch_data_insert() operation.
649 */
650 if (unlikely(s->iop.writeback &&
651 bio->bi_opf & REQ_PREFLUSH)) {
652 char buf[BDEVNAME_SIZE];
653
654 bio_devname(bio, buf);
655 pr_err("Can't flush %s: returned bi_status %i",
656 buf, bio->bi_status);
657 } else {
658 /* set to orig_bio->bi_status in bio_complete() */
659 s->iop.status = bio->bi_status;
660 }
661 s->recoverable = false;
662 /* should count I/O error for backing device here */
663 bch_count_backing_io_errors(dc, bio);
664 }
665
666 bio_put(bio);
667 closure_put(cl);
668 }
669
670 static void bio_complete(struct search *s)
671 {
672 if (s->orig_bio) {
673 generic_end_io_acct(s->d->disk->queue,
674 bio_data_dir(s->orig_bio),
675 &s->d->disk->part0, s->start_time);
676
677 trace_bcache_request_end(s->d, s->orig_bio);
678 s->orig_bio->bi_status = s->iop.status;
679 bio_endio(s->orig_bio);
680 s->orig_bio = NULL;
681 }
682 }
683
684 static void do_bio_hook(struct search *s,
685 struct bio *orig_bio,
686 bio_end_io_t *end_io_fn)
687 {
688 struct bio *bio = &s->bio.bio;
689
690 bio_init(bio, NULL, 0);
691 __bio_clone_fast(bio, orig_bio);
692 /*
693 * bi_end_io can be set separately somewhere else, e.g. the
694 * variants in,
695 * - cache_bio->bi_end_io from cached_dev_cache_miss()
696 * - n->bi_end_io from cache_lookup_fn()
697 */
698 bio->bi_end_io = end_io_fn;
699 bio->bi_private = &s->cl;
700
701 bio_cnt_set(bio, 3);
702 }
703
704 static void search_free(struct closure *cl)
705 {
706 struct search *s = container_of(cl, struct search, cl);
707
708 if (s->iop.bio)
709 bio_put(s->iop.bio);
710
711 bio_complete(s);
712 closure_debug_destroy(cl);
713 mempool_free(s, s->d->c->search);
714 }
715
716 static inline struct search *search_alloc(struct bio *bio,
717 struct bcache_device *d)
718 {
719 struct search *s;
720
721 s = mempool_alloc(d->c->search, GFP_NOIO);
722
723 closure_init(&s->cl, NULL);
724 do_bio_hook(s, bio, request_endio);
725
726 s->orig_bio = bio;
727 s->cache_miss = NULL;
728 s->cache_missed = 0;
729 s->d = d;
730 s->recoverable = 1;
731 s->write = op_is_write(bio_op(bio));
732 s->read_dirty_data = 0;
733 s->start_time = jiffies;
734
735 s->iop.c = d->c;
736 s->iop.bio = NULL;
737 s->iop.inode = d->id;
738 s->iop.write_point = hash_long((unsigned long) current, 16);
739 s->iop.write_prio = 0;
740 s->iop.status = 0;
741 s->iop.flags = 0;
742 s->iop.flush_journal = op_is_flush(bio->bi_opf);
743 s->iop.wq = bcache_wq;
744
745 return s;
746 }
747
748 /* Cached devices */
749
750 static void cached_dev_bio_complete(struct closure *cl)
751 {
752 struct search *s = container_of(cl, struct search, cl);
753 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
754
755 search_free(cl);
756 cached_dev_put(dc);
757 }
758
759 /* Process reads */
760
761 static void cached_dev_cache_miss_done(struct closure *cl)
762 {
763 struct search *s = container_of(cl, struct search, cl);
764
765 if (s->iop.replace_collision)
766 bch_mark_cache_miss_collision(s->iop.c, s->d);
767
768 if (s->iop.bio)
769 bio_free_pages(s->iop.bio);
770
771 cached_dev_bio_complete(cl);
772 }
773
774 static void cached_dev_read_error(struct closure *cl)
775 {
776 struct search *s = container_of(cl, struct search, cl);
777 struct bio *bio = &s->bio.bio;
778
779 /*
780 * If read request hit dirty data (s->read_dirty_data is true),
781 * then recovery a failed read request from cached device may
782 * get a stale data back. So read failure recovery is only
783 * permitted when read request hit clean data in cache device,
784 * or when cache read race happened.
785 */
786 if (s->recoverable && !s->read_dirty_data) {
787 /* Retry from the backing device: */
788 trace_bcache_read_retry(s->orig_bio);
789
790 s->iop.status = 0;
791 do_bio_hook(s, s->orig_bio, backing_request_endio);
792
793 /* XXX: invalidate cache */
794
795 /* I/O request sent to backing device */
796 closure_bio_submit(s->iop.c, bio, cl);
797 }
798
799 continue_at(cl, cached_dev_cache_miss_done, NULL);
800 }
801
802 static void cached_dev_read_done(struct closure *cl)
803 {
804 struct search *s = container_of(cl, struct search, cl);
805 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
806
807 /*
808 * We had a cache miss; cache_bio now contains data ready to be inserted
809 * into the cache.
810 *
811 * First, we copy the data we just read from cache_bio's bounce buffers
812 * to the buffers the original bio pointed to:
813 */
814
815 if (s->iop.bio) {
816 bio_reset(s->iop.bio);
817 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
818 bio_copy_dev(s->iop.bio, s->cache_miss);
819 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
820 bch_bio_map(s->iop.bio, NULL);
821
822 bio_copy_data(s->cache_miss, s->iop.bio);
823
824 bio_put(s->cache_miss);
825 s->cache_miss = NULL;
826 }
827
828 if (verify(dc) && s->recoverable && !s->read_dirty_data)
829 bch_data_verify(dc, s->orig_bio);
830
831 bio_complete(s);
832
833 if (s->iop.bio &&
834 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
835 BUG_ON(!s->iop.replace);
836 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
837 }
838
839 continue_at(cl, cached_dev_cache_miss_done, NULL);
840 }
841
842 static void cached_dev_read_done_bh(struct closure *cl)
843 {
844 struct search *s = container_of(cl, struct search, cl);
845 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
846
847 bch_mark_cache_accounting(s->iop.c, s->d,
848 !s->cache_missed, s->iop.bypass);
849 trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
850
851 if (s->iop.status)
852 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
853 else if (s->iop.bio || verify(dc))
854 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
855 else
856 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
857 }
858
859 static int cached_dev_cache_miss(struct btree *b, struct search *s,
860 struct bio *bio, unsigned sectors)
861 {
862 int ret = MAP_CONTINUE;
863 unsigned reada = 0;
864 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
865 struct bio *miss, *cache_bio;
866
867 s->cache_missed = 1;
868
869 if (s->cache_miss || s->iop.bypass) {
870 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
871 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
872 goto out_submit;
873 }
874
875 if (!(bio->bi_opf & REQ_RAHEAD) &&
876 !(bio->bi_opf & REQ_META) &&
877 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
878 reada = min_t(sector_t, dc->readahead >> 9,
879 get_capacity(bio->bi_disk) - bio_end_sector(bio));
880
881 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
882
883 s->iop.replace_key = KEY(s->iop.inode,
884 bio->bi_iter.bi_sector + s->insert_bio_sectors,
885 s->insert_bio_sectors);
886
887 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
888 if (ret)
889 return ret;
890
891 s->iop.replace = true;
892
893 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
894
895 /* btree_search_recurse()'s btree iterator is no good anymore */
896 ret = miss == bio ? MAP_DONE : -EINTR;
897
898 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
899 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
900 dc->disk.bio_split);
901 if (!cache_bio)
902 goto out_submit;
903
904 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector;
905 bio_copy_dev(cache_bio, miss);
906 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
907
908 cache_bio->bi_end_io = backing_request_endio;
909 cache_bio->bi_private = &s->cl;
910
911 bch_bio_map(cache_bio, NULL);
912 if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
913 goto out_put;
914
915 if (reada)
916 bch_mark_cache_readahead(s->iop.c, s->d);
917
918 s->cache_miss = miss;
919 s->iop.bio = cache_bio;
920 bio_get(cache_bio);
921 /* I/O request sent to backing device */
922 closure_bio_submit(s->iop.c, cache_bio, &s->cl);
923
924 return ret;
925 out_put:
926 bio_put(cache_bio);
927 out_submit:
928 miss->bi_end_io = backing_request_endio;
929 miss->bi_private = &s->cl;
930 /* I/O request sent to backing device */
931 closure_bio_submit(s->iop.c, miss, &s->cl);
932 return ret;
933 }
934
935 static void cached_dev_read(struct cached_dev *dc, struct search *s)
936 {
937 struct closure *cl = &s->cl;
938
939 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
940 continue_at(cl, cached_dev_read_done_bh, NULL);
941 }
942
943 /* Process writes */
944
945 static void cached_dev_write_complete(struct closure *cl)
946 {
947 struct search *s = container_of(cl, struct search, cl);
948 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
949
950 up_read_non_owner(&dc->writeback_lock);
951 cached_dev_bio_complete(cl);
952 }
953
954 static void cached_dev_write(struct cached_dev *dc, struct search *s)
955 {
956 struct closure *cl = &s->cl;
957 struct bio *bio = &s->bio.bio;
958 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
959 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
960
961 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
962
963 down_read_non_owner(&dc->writeback_lock);
964 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
965 /*
966 * We overlap with some dirty data undergoing background
967 * writeback, force this write to writeback
968 */
969 s->iop.bypass = false;
970 s->iop.writeback = true;
971 }
972
973 /*
974 * Discards aren't _required_ to do anything, so skipping if
975 * check_overlapping returned true is ok
976 *
977 * But check_overlapping drops dirty keys for which io hasn't started,
978 * so we still want to call it.
979 */
980 if (bio_op(bio) == REQ_OP_DISCARD)
981 s->iop.bypass = true;
982
983 if (should_writeback(dc, s->orig_bio,
984 cache_mode(dc),
985 s->iop.bypass)) {
986 s->iop.bypass = false;
987 s->iop.writeback = true;
988 }
989
990 if (s->iop.bypass) {
991 s->iop.bio = s->orig_bio;
992 bio_get(s->iop.bio);
993
994 if (bio_op(bio) == REQ_OP_DISCARD &&
995 !blk_queue_discard(bdev_get_queue(dc->bdev)))
996 goto insert_data;
997
998 /* I/O request sent to backing device */
999 bio->bi_end_io = backing_request_endio;
1000 closure_bio_submit(s->iop.c, bio, cl);
1001
1002 } else if (s->iop.writeback) {
1003 bch_writeback_add(dc);
1004 s->iop.bio = bio;
1005
1006 if (bio->bi_opf & REQ_PREFLUSH) {
1007 /*
1008 * Also need to send a flush to the backing
1009 * device.
1010 */
1011 struct bio *flush;
1012
1013 flush = bio_alloc_bioset(GFP_NOIO, 0,
1014 dc->disk.bio_split);
1015 if (!flush) {
1016 s->iop.status = BLK_STS_RESOURCE;
1017 goto insert_data;
1018 }
1019 bio_copy_dev(flush, bio);
1020 flush->bi_end_io = backing_request_endio;
1021 flush->bi_private = cl;
1022 flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1023 /* I/O request sent to backing device */
1024 closure_bio_submit(s->iop.c, flush, cl);
1025 }
1026 } else {
1027 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
1028 /* I/O request sent to backing device */
1029 bio->bi_end_io = backing_request_endio;
1030 closure_bio_submit(s->iop.c, bio, cl);
1031 }
1032
1033 insert_data:
1034 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1035 continue_at(cl, cached_dev_write_complete, NULL);
1036 }
1037
1038 static void cached_dev_nodata(struct closure *cl)
1039 {
1040 struct search *s = container_of(cl, struct search, cl);
1041 struct bio *bio = &s->bio.bio;
1042
1043 if (s->iop.flush_journal)
1044 bch_journal_meta(s->iop.c, cl);
1045
1046 /* If it's a flush, we send the flush to the backing device too */
1047 bio->bi_end_io = backing_request_endio;
1048 closure_bio_submit(s->iop.c, bio, cl);
1049
1050 continue_at(cl, cached_dev_bio_complete, NULL);
1051 }
1052
1053 struct detached_dev_io_private {
1054 struct bcache_device *d;
1055 unsigned long start_time;
1056 bio_end_io_t *bi_end_io;
1057 void *bi_private;
1058 };
1059
1060 static void detached_dev_end_io(struct bio *bio)
1061 {
1062 struct detached_dev_io_private *ddip;
1063
1064 ddip = bio->bi_private;
1065 bio->bi_end_io = ddip->bi_end_io;
1066 bio->bi_private = ddip->bi_private;
1067
1068 generic_end_io_acct(ddip->d->disk->queue,
1069 bio_data_dir(bio),
1070 &ddip->d->disk->part0, ddip->start_time);
1071
1072 if (bio->bi_status) {
1073 struct cached_dev *dc = container_of(ddip->d,
1074 struct cached_dev, disk);
1075 /* should count I/O error for backing device here */
1076 bch_count_backing_io_errors(dc, bio);
1077 }
1078
1079 kfree(ddip);
1080 bio->bi_end_io(bio);
1081 }
1082
1083 static void detached_dev_do_request(struct bcache_device *d, struct bio *bio)
1084 {
1085 struct detached_dev_io_private *ddip;
1086 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1087
1088 /*
1089 * no need to call closure_get(&dc->disk.cl),
1090 * because upper layer had already opened bcache device,
1091 * which would call closure_get(&dc->disk.cl)
1092 */
1093 ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO);
1094 ddip->d = d;
1095 ddip->start_time = jiffies;
1096 ddip->bi_end_io = bio->bi_end_io;
1097 ddip->bi_private = bio->bi_private;
1098 bio->bi_end_io = detached_dev_end_io;
1099 bio->bi_private = ddip;
1100
1101 if ((bio_op(bio) == REQ_OP_DISCARD) &&
1102 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1103 bio->bi_end_io(bio);
1104 else
1105 generic_make_request(bio);
1106 }
1107
1108 /* Cached devices - read & write stuff */
1109
1110 static blk_qc_t cached_dev_make_request(struct request_queue *q,
1111 struct bio *bio)
1112 {
1113 struct search *s;
1114 struct bcache_device *d = bio->bi_disk->private_data;
1115 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1116 int rw = bio_data_dir(bio);
1117
1118 if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) ||
1119 dc->io_disable)) {
1120 bio->bi_status = BLK_STS_IOERR;
1121 bio_endio(bio);
1122 return BLK_QC_T_NONE;
1123 }
1124
1125 atomic_set(&dc->backing_idle, 0);
1126 generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0);
1127
1128 bio_set_dev(bio, dc->bdev);
1129 bio->bi_iter.bi_sector += dc->sb.data_offset;
1130
1131 if (cached_dev_get(dc)) {
1132 s = search_alloc(bio, d);
1133 trace_bcache_request_start(s->d, bio);
1134
1135 if (!bio->bi_iter.bi_size) {
1136 /*
1137 * can't call bch_journal_meta from under
1138 * generic_make_request
1139 */
1140 continue_at_nobarrier(&s->cl,
1141 cached_dev_nodata,
1142 bcache_wq);
1143 } else {
1144 s->iop.bypass = check_should_bypass(dc, bio);
1145
1146 if (rw)
1147 cached_dev_write(dc, s);
1148 else
1149 cached_dev_read(dc, s);
1150 }
1151 } else
1152 /* I/O request sent to backing device */
1153 detached_dev_do_request(d, bio);
1154
1155 return BLK_QC_T_NONE;
1156 }
1157
1158 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1159 unsigned int cmd, unsigned long arg)
1160 {
1161 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1162 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1163 }
1164
1165 static int cached_dev_congested(void *data, int bits)
1166 {
1167 struct bcache_device *d = data;
1168 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1169 struct request_queue *q = bdev_get_queue(dc->bdev);
1170 int ret = 0;
1171
1172 if (bdi_congested(q->backing_dev_info, bits))
1173 return 1;
1174
1175 if (cached_dev_get(dc)) {
1176 unsigned i;
1177 struct cache *ca;
1178
1179 for_each_cache(ca, d->c, i) {
1180 q = bdev_get_queue(ca->bdev);
1181 ret |= bdi_congested(q->backing_dev_info, bits);
1182 }
1183
1184 cached_dev_put(dc);
1185 }
1186
1187 return ret;
1188 }
1189
1190 void bch_cached_dev_request_init(struct cached_dev *dc)
1191 {
1192 struct gendisk *g = dc->disk.disk;
1193
1194 g->queue->make_request_fn = cached_dev_make_request;
1195 g->queue->backing_dev_info->congested_fn = cached_dev_congested;
1196 dc->disk.cache_miss = cached_dev_cache_miss;
1197 dc->disk.ioctl = cached_dev_ioctl;
1198 }
1199
1200 /* Flash backed devices */
1201
1202 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1203 struct bio *bio, unsigned sectors)
1204 {
1205 unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
1206
1207 swap(bio->bi_iter.bi_size, bytes);
1208 zero_fill_bio(bio);
1209 swap(bio->bi_iter.bi_size, bytes);
1210
1211 bio_advance(bio, bytes);
1212
1213 if (!bio->bi_iter.bi_size)
1214 return MAP_DONE;
1215
1216 return MAP_CONTINUE;
1217 }
1218
1219 static void flash_dev_nodata(struct closure *cl)
1220 {
1221 struct search *s = container_of(cl, struct search, cl);
1222
1223 if (s->iop.flush_journal)
1224 bch_journal_meta(s->iop.c, cl);
1225
1226 continue_at(cl, search_free, NULL);
1227 }
1228
1229 static blk_qc_t flash_dev_make_request(struct request_queue *q,
1230 struct bio *bio)
1231 {
1232 struct search *s;
1233 struct closure *cl;
1234 struct bcache_device *d = bio->bi_disk->private_data;
1235 int rw = bio_data_dir(bio);
1236
1237 if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
1238 bio->bi_status = BLK_STS_IOERR;
1239 bio_endio(bio);
1240 return BLK_QC_T_NONE;
1241 }
1242
1243 generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0);
1244
1245 s = search_alloc(bio, d);
1246 cl = &s->cl;
1247 bio = &s->bio.bio;
1248
1249 trace_bcache_request_start(s->d, bio);
1250
1251 if (!bio->bi_iter.bi_size) {
1252 /*
1253 * can't call bch_journal_meta from under
1254 * generic_make_request
1255 */
1256 continue_at_nobarrier(&s->cl,
1257 flash_dev_nodata,
1258 bcache_wq);
1259 return BLK_QC_T_NONE;
1260 } else if (rw) {
1261 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1262 &KEY(d->id, bio->bi_iter.bi_sector, 0),
1263 &KEY(d->id, bio_end_sector(bio), 0));
1264
1265 s->iop.bypass = (bio_op(bio) == REQ_OP_DISCARD) != 0;
1266 s->iop.writeback = true;
1267 s->iop.bio = bio;
1268
1269 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1270 } else {
1271 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1272 }
1273
1274 continue_at(cl, search_free, NULL);
1275 return BLK_QC_T_NONE;
1276 }
1277
1278 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1279 unsigned int cmd, unsigned long arg)
1280 {
1281 return -ENOTTY;
1282 }
1283
1284 static int flash_dev_congested(void *data, int bits)
1285 {
1286 struct bcache_device *d = data;
1287 struct request_queue *q;
1288 struct cache *ca;
1289 unsigned i;
1290 int ret = 0;
1291
1292 for_each_cache(ca, d->c, i) {
1293 q = bdev_get_queue(ca->bdev);
1294 ret |= bdi_congested(q->backing_dev_info, bits);
1295 }
1296
1297 return ret;
1298 }
1299
1300 void bch_flash_dev_request_init(struct bcache_device *d)
1301 {
1302 struct gendisk *g = d->disk;
1303
1304 g->queue->make_request_fn = flash_dev_make_request;
1305 g->queue->backing_dev_info->congested_fn = flash_dev_congested;
1306 d->cache_miss = flash_dev_cache_miss;
1307 d->ioctl = flash_dev_ioctl;
1308 }
1309
1310 void bch_request_exit(void)
1311 {
1312 if (bch_search_cache)
1313 kmem_cache_destroy(bch_search_cache);
1314 }
1315
1316 int __init bch_request_init(void)
1317 {
1318 bch_search_cache = KMEM_CACHE(search, 0);
1319 if (!bch_search_cache)
1320 return -ENOMEM;
1321
1322 return 0;
1323 }