]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/bcache/request.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / drivers / md / bcache / request.c
1 /*
2 * Main bcache entry point - handle a read or a write request and decide what to
3 * do with it; the make_request functions are called by the block layer.
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
14
15 #include <linux/module.h>
16 #include <linux/hash.h>
17 #include <linux/random.h>
18 #include <linux/backing-dev.h>
19
20 #include <trace/events/bcache.h>
21
22 #define CUTOFF_CACHE_ADD 95
23 #define CUTOFF_CACHE_READA 90
24
25 struct kmem_cache *bch_search_cache;
26
27 static void bch_data_insert_start(struct closure *);
28
29 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
30 {
31 return BDEV_CACHE_MODE(&dc->sb);
32 }
33
34 static bool verify(struct cached_dev *dc, struct bio *bio)
35 {
36 return dc->verify;
37 }
38
39 static void bio_csum(struct bio *bio, struct bkey *k)
40 {
41 struct bio_vec bv;
42 struct bvec_iter iter;
43 uint64_t csum = 0;
44
45 bio_for_each_segment(bv, bio, iter) {
46 void *d = kmap(bv.bv_page) + bv.bv_offset;
47 csum = bch_crc64_update(csum, d, bv.bv_len);
48 kunmap(bv.bv_page);
49 }
50
51 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
52 }
53
54 /* Insert data into cache */
55
56 static void bch_data_insert_keys(struct closure *cl)
57 {
58 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
59 atomic_t *journal_ref = NULL;
60 struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
61 int ret;
62
63 /*
64 * If we're looping, might already be waiting on
65 * another journal write - can't wait on more than one journal write at
66 * a time
67 *
68 * XXX: this looks wrong
69 */
70 #if 0
71 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
72 closure_sync(&s->cl);
73 #endif
74
75 if (!op->replace)
76 journal_ref = bch_journal(op->c, &op->insert_keys,
77 op->flush_journal ? cl : NULL);
78
79 ret = bch_btree_insert(op->c, &op->insert_keys,
80 journal_ref, replace_key);
81 if (ret == -ESRCH) {
82 op->replace_collision = true;
83 } else if (ret) {
84 op->status = BLK_STS_RESOURCE;
85 op->insert_data_done = true;
86 }
87
88 if (journal_ref)
89 atomic_dec_bug(journal_ref);
90
91 if (!op->insert_data_done) {
92 continue_at(cl, bch_data_insert_start, op->wq);
93 return;
94 }
95
96 bch_keylist_free(&op->insert_keys);
97 closure_return(cl);
98 }
99
100 static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
101 struct cache_set *c)
102 {
103 size_t oldsize = bch_keylist_nkeys(l);
104 size_t newsize = oldsize + u64s;
105
106 /*
107 * The journalling code doesn't handle the case where the keys to insert
108 * is bigger than an empty write: If we just return -ENOMEM here,
109 * bio_insert() and bio_invalidate() will insert the keys created so far
110 * and finish the rest when the keylist is empty.
111 */
112 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
113 return -ENOMEM;
114
115 return __bch_keylist_realloc(l, u64s);
116 }
117
118 static void bch_data_invalidate(struct closure *cl)
119 {
120 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
121 struct bio *bio = op->bio;
122
123 pr_debug("invalidating %i sectors from %llu",
124 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
125
126 while (bio_sectors(bio)) {
127 unsigned sectors = min(bio_sectors(bio),
128 1U << (KEY_SIZE_BITS - 1));
129
130 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
131 goto out;
132
133 bio->bi_iter.bi_sector += sectors;
134 bio->bi_iter.bi_size -= sectors << 9;
135
136 bch_keylist_add(&op->insert_keys,
137 &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
138 }
139
140 op->insert_data_done = true;
141 bio_put(bio);
142 out:
143 continue_at(cl, bch_data_insert_keys, op->wq);
144 }
145
146 static void bch_data_insert_error(struct closure *cl)
147 {
148 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
149
150 /*
151 * Our data write just errored, which means we've got a bunch of keys to
152 * insert that point to data that wasn't succesfully written.
153 *
154 * We don't have to insert those keys but we still have to invalidate
155 * that region of the cache - so, if we just strip off all the pointers
156 * from the keys we'll accomplish just that.
157 */
158
159 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
160
161 while (src != op->insert_keys.top) {
162 struct bkey *n = bkey_next(src);
163
164 SET_KEY_PTRS(src, 0);
165 memmove(dst, src, bkey_bytes(src));
166
167 dst = bkey_next(dst);
168 src = n;
169 }
170
171 op->insert_keys.top = dst;
172
173 bch_data_insert_keys(cl);
174 }
175
176 static void bch_data_insert_endio(struct bio *bio)
177 {
178 struct closure *cl = bio->bi_private;
179 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
180
181 if (bio->bi_status) {
182 /* TODO: We could try to recover from this. */
183 if (op->writeback)
184 op->status = bio->bi_status;
185 else if (!op->replace)
186 set_closure_fn(cl, bch_data_insert_error, op->wq);
187 else
188 set_closure_fn(cl, NULL, NULL);
189 }
190
191 bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
192 }
193
194 static void bch_data_insert_start(struct closure *cl)
195 {
196 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
197 struct bio *bio = op->bio, *n;
198
199 if (op->bypass)
200 return bch_data_invalidate(cl);
201
202 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
203 wake_up_gc(op->c);
204
205 /*
206 * Journal writes are marked REQ_PREFLUSH; if the original write was a
207 * flush, it'll wait on the journal write.
208 */
209 bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
210
211 do {
212 unsigned i;
213 struct bkey *k;
214 struct bio_set *split = op->c->bio_split;
215
216 /* 1 for the device pointer and 1 for the chksum */
217 if (bch_keylist_realloc(&op->insert_keys,
218 3 + (op->csum ? 1 : 0),
219 op->c)) {
220 continue_at(cl, bch_data_insert_keys, op->wq);
221 return;
222 }
223
224 k = op->insert_keys.top;
225 bkey_init(k);
226 SET_KEY_INODE(k, op->inode);
227 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
228
229 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
230 op->write_point, op->write_prio,
231 op->writeback))
232 goto err;
233
234 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
235
236 n->bi_end_io = bch_data_insert_endio;
237 n->bi_private = cl;
238
239 if (op->writeback) {
240 SET_KEY_DIRTY(k, true);
241
242 for (i = 0; i < KEY_PTRS(k); i++)
243 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
244 GC_MARK_DIRTY);
245 }
246
247 SET_KEY_CSUM(k, op->csum);
248 if (KEY_CSUM(k))
249 bio_csum(n, k);
250
251 trace_bcache_cache_insert(k);
252 bch_keylist_push(&op->insert_keys);
253
254 bio_set_op_attrs(n, REQ_OP_WRITE, 0);
255 bch_submit_bbio(n, op->c, k, 0);
256 } while (n != bio);
257
258 op->insert_data_done = true;
259 continue_at(cl, bch_data_insert_keys, op->wq);
260 return;
261 err:
262 /* bch_alloc_sectors() blocks if s->writeback = true */
263 BUG_ON(op->writeback);
264
265 /*
266 * But if it's not a writeback write we'd rather just bail out if
267 * there aren't any buckets ready to write to - it might take awhile and
268 * we might be starving btree writes for gc or something.
269 */
270
271 if (!op->replace) {
272 /*
273 * Writethrough write: We can't complete the write until we've
274 * updated the index. But we don't want to delay the write while
275 * we wait for buckets to be freed up, so just invalidate the
276 * rest of the write.
277 */
278 op->bypass = true;
279 return bch_data_invalidate(cl);
280 } else {
281 /*
282 * From a cache miss, we can just insert the keys for the data
283 * we have written or bail out if we didn't do anything.
284 */
285 op->insert_data_done = true;
286 bio_put(bio);
287
288 if (!bch_keylist_empty(&op->insert_keys))
289 continue_at(cl, bch_data_insert_keys, op->wq);
290 else
291 closure_return(cl);
292 }
293 }
294
295 /**
296 * bch_data_insert - stick some data in the cache
297 *
298 * This is the starting point for any data to end up in a cache device; it could
299 * be from a normal write, or a writeback write, or a write to a flash only
300 * volume - it's also used by the moving garbage collector to compact data in
301 * mostly empty buckets.
302 *
303 * It first writes the data to the cache, creating a list of keys to be inserted
304 * (if the data had to be fragmented there will be multiple keys); after the
305 * data is written it calls bch_journal, and after the keys have been added to
306 * the next journal write they're inserted into the btree.
307 *
308 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
309 * and op->inode is used for the key inode.
310 *
311 * If s->bypass is true, instead of inserting the data it invalidates the
312 * region of the cache represented by s->cache_bio and op->inode.
313 */
314 void bch_data_insert(struct closure *cl)
315 {
316 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
317
318 trace_bcache_write(op->c, op->inode, op->bio,
319 op->writeback, op->bypass);
320
321 bch_keylist_init(&op->insert_keys);
322 bio_get(op->bio);
323 bch_data_insert_start(cl);
324 }
325
326 /* Congested? */
327
328 unsigned bch_get_congested(struct cache_set *c)
329 {
330 int i;
331 long rand;
332
333 if (!c->congested_read_threshold_us &&
334 !c->congested_write_threshold_us)
335 return 0;
336
337 i = (local_clock_us() - c->congested_last_us) / 1024;
338 if (i < 0)
339 return 0;
340
341 i += atomic_read(&c->congested);
342 if (i >= 0)
343 return 0;
344
345 i += CONGESTED_MAX;
346
347 if (i > 0)
348 i = fract_exp_two(i, 6);
349
350 rand = get_random_int();
351 i -= bitmap_weight(&rand, BITS_PER_LONG);
352
353 return i > 0 ? i : 1;
354 }
355
356 static void add_sequential(struct task_struct *t)
357 {
358 ewma_add(t->sequential_io_avg,
359 t->sequential_io, 8, 0);
360
361 t->sequential_io = 0;
362 }
363
364 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
365 {
366 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
367 }
368
369 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
370 {
371 struct cache_set *c = dc->disk.c;
372 unsigned mode = cache_mode(dc, bio);
373 unsigned sectors, congested = bch_get_congested(c);
374 struct task_struct *task = current;
375 struct io *i;
376
377 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
378 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
379 (bio_op(bio) == REQ_OP_DISCARD))
380 goto skip;
381
382 if (mode == CACHE_MODE_NONE ||
383 (mode == CACHE_MODE_WRITEAROUND &&
384 op_is_write(bio_op(bio))))
385 goto skip;
386
387 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
388 bio_sectors(bio) & (c->sb.block_size - 1)) {
389 pr_debug("skipping unaligned io");
390 goto skip;
391 }
392
393 if (bypass_torture_test(dc)) {
394 if ((get_random_int() & 3) == 3)
395 goto skip;
396 else
397 goto rescale;
398 }
399
400 if (!congested && !dc->sequential_cutoff)
401 goto rescale;
402
403 spin_lock(&dc->io_lock);
404
405 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
406 if (i->last == bio->bi_iter.bi_sector &&
407 time_before(jiffies, i->jiffies))
408 goto found;
409
410 i = list_first_entry(&dc->io_lru, struct io, lru);
411
412 add_sequential(task);
413 i->sequential = 0;
414 found:
415 if (i->sequential + bio->bi_iter.bi_size > i->sequential)
416 i->sequential += bio->bi_iter.bi_size;
417
418 i->last = bio_end_sector(bio);
419 i->jiffies = jiffies + msecs_to_jiffies(5000);
420 task->sequential_io = i->sequential;
421
422 hlist_del(&i->hash);
423 hlist_add_head(&i->hash, iohash(dc, i->last));
424 list_move_tail(&i->lru, &dc->io_lru);
425
426 spin_unlock(&dc->io_lock);
427
428 sectors = max(task->sequential_io,
429 task->sequential_io_avg) >> 9;
430
431 if (dc->sequential_cutoff &&
432 sectors >= dc->sequential_cutoff >> 9) {
433 trace_bcache_bypass_sequential(bio);
434 goto skip;
435 }
436
437 if (congested && sectors >= congested) {
438 trace_bcache_bypass_congested(bio);
439 goto skip;
440 }
441
442 rescale:
443 bch_rescale_priorities(c, bio_sectors(bio));
444 return false;
445 skip:
446 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
447 return true;
448 }
449
450 /* Cache lookup */
451
452 struct search {
453 /* Stack frame for bio_complete */
454 struct closure cl;
455
456 struct bbio bio;
457 struct bio *orig_bio;
458 struct bio *cache_miss;
459 struct bcache_device *d;
460
461 unsigned insert_bio_sectors;
462 unsigned recoverable:1;
463 unsigned write:1;
464 unsigned read_dirty_data:1;
465
466 unsigned long start_time;
467
468 struct btree_op op;
469 struct data_insert_op iop;
470 };
471
472 static void bch_cache_read_endio(struct bio *bio)
473 {
474 struct bbio *b = container_of(bio, struct bbio, bio);
475 struct closure *cl = bio->bi_private;
476 struct search *s = container_of(cl, struct search, cl);
477
478 /*
479 * If the bucket was reused while our bio was in flight, we might have
480 * read the wrong data. Set s->error but not error so it doesn't get
481 * counted against the cache device, but we'll still reread the data
482 * from the backing device.
483 */
484
485 if (bio->bi_status)
486 s->iop.status = bio->bi_status;
487 else if (!KEY_DIRTY(&b->key) &&
488 ptr_stale(s->iop.c, &b->key, 0)) {
489 atomic_long_inc(&s->iop.c->cache_read_races);
490 s->iop.status = BLK_STS_IOERR;
491 }
492
493 bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
494 }
495
496 /*
497 * Read from a single key, handling the initial cache miss if the key starts in
498 * the middle of the bio
499 */
500 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
501 {
502 struct search *s = container_of(op, struct search, op);
503 struct bio *n, *bio = &s->bio.bio;
504 struct bkey *bio_key;
505 unsigned ptr;
506
507 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
508 return MAP_CONTINUE;
509
510 if (KEY_INODE(k) != s->iop.inode ||
511 KEY_START(k) > bio->bi_iter.bi_sector) {
512 unsigned bio_sectors = bio_sectors(bio);
513 unsigned sectors = KEY_INODE(k) == s->iop.inode
514 ? min_t(uint64_t, INT_MAX,
515 KEY_START(k) - bio->bi_iter.bi_sector)
516 : INT_MAX;
517
518 int ret = s->d->cache_miss(b, s, bio, sectors);
519 if (ret != MAP_CONTINUE)
520 return ret;
521
522 /* if this was a complete miss we shouldn't get here */
523 BUG_ON(bio_sectors <= sectors);
524 }
525
526 if (!KEY_SIZE(k))
527 return MAP_CONTINUE;
528
529 /* XXX: figure out best pointer - for multiple cache devices */
530 ptr = 0;
531
532 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
533
534 if (KEY_DIRTY(k))
535 s->read_dirty_data = true;
536
537 n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
538 KEY_OFFSET(k) - bio->bi_iter.bi_sector),
539 GFP_NOIO, s->d->bio_split);
540
541 bio_key = &container_of(n, struct bbio, bio)->key;
542 bch_bkey_copy_single_ptr(bio_key, k, ptr);
543
544 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
545 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
546
547 n->bi_end_io = bch_cache_read_endio;
548 n->bi_private = &s->cl;
549
550 /*
551 * The bucket we're reading from might be reused while our bio
552 * is in flight, and we could then end up reading the wrong
553 * data.
554 *
555 * We guard against this by checking (in cache_read_endio()) if
556 * the pointer is stale again; if so, we treat it as an error
557 * and reread from the backing device (but we don't pass that
558 * error up anywhere).
559 */
560
561 __bch_submit_bbio(n, b->c);
562 return n == bio ? MAP_DONE : MAP_CONTINUE;
563 }
564
565 static void cache_lookup(struct closure *cl)
566 {
567 struct search *s = container_of(cl, struct search, iop.cl);
568 struct bio *bio = &s->bio.bio;
569 int ret;
570
571 bch_btree_op_init(&s->op, -1);
572
573 ret = bch_btree_map_keys(&s->op, s->iop.c,
574 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
575 cache_lookup_fn, MAP_END_KEY);
576 if (ret == -EAGAIN) {
577 continue_at(cl, cache_lookup, bcache_wq);
578 return;
579 }
580
581 closure_return(cl);
582 }
583
584 /* Common code for the make_request functions */
585
586 static void request_endio(struct bio *bio)
587 {
588 struct closure *cl = bio->bi_private;
589
590 if (bio->bi_status) {
591 struct search *s = container_of(cl, struct search, cl);
592 s->iop.status = bio->bi_status;
593 /* Only cache read errors are recoverable */
594 s->recoverable = false;
595 }
596
597 bio_put(bio);
598 closure_put(cl);
599 }
600
601 static void bio_complete(struct search *s)
602 {
603 if (s->orig_bio) {
604 generic_end_io_acct(bio_data_dir(s->orig_bio),
605 &s->d->disk->part0, s->start_time);
606
607 trace_bcache_request_end(s->d, s->orig_bio);
608 s->orig_bio->bi_status = s->iop.status;
609 bio_endio(s->orig_bio);
610 s->orig_bio = NULL;
611 }
612 }
613
614 static void do_bio_hook(struct search *s, struct bio *orig_bio)
615 {
616 struct bio *bio = &s->bio.bio;
617
618 bio_init(bio, NULL, 0);
619 __bio_clone_fast(bio, orig_bio);
620 bio->bi_end_io = request_endio;
621 bio->bi_private = &s->cl;
622
623 bio_cnt_set(bio, 3);
624 }
625
626 static void search_free(struct closure *cl)
627 {
628 struct search *s = container_of(cl, struct search, cl);
629 bio_complete(s);
630
631 if (s->iop.bio)
632 bio_put(s->iop.bio);
633
634 closure_debug_destroy(cl);
635 mempool_free(s, s->d->c->search);
636 }
637
638 static inline struct search *search_alloc(struct bio *bio,
639 struct bcache_device *d)
640 {
641 struct search *s;
642
643 s = mempool_alloc(d->c->search, GFP_NOIO);
644
645 closure_init(&s->cl, NULL);
646 do_bio_hook(s, bio);
647
648 s->orig_bio = bio;
649 s->cache_miss = NULL;
650 s->d = d;
651 s->recoverable = 1;
652 s->write = op_is_write(bio_op(bio));
653 s->read_dirty_data = 0;
654 s->start_time = jiffies;
655
656 s->iop.c = d->c;
657 s->iop.bio = NULL;
658 s->iop.inode = d->id;
659 s->iop.write_point = hash_long((unsigned long) current, 16);
660 s->iop.write_prio = 0;
661 s->iop.status = 0;
662 s->iop.flags = 0;
663 s->iop.flush_journal = op_is_flush(bio->bi_opf);
664 s->iop.wq = bcache_wq;
665
666 return s;
667 }
668
669 /* Cached devices */
670
671 static void cached_dev_bio_complete(struct closure *cl)
672 {
673 struct search *s = container_of(cl, struct search, cl);
674 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
675
676 search_free(cl);
677 cached_dev_put(dc);
678 }
679
680 /* Process reads */
681
682 static void cached_dev_cache_miss_done(struct closure *cl)
683 {
684 struct search *s = container_of(cl, struct search, cl);
685
686 if (s->iop.replace_collision)
687 bch_mark_cache_miss_collision(s->iop.c, s->d);
688
689 if (s->iop.bio)
690 bio_free_pages(s->iop.bio);
691
692 cached_dev_bio_complete(cl);
693 }
694
695 static void cached_dev_read_error(struct closure *cl)
696 {
697 struct search *s = container_of(cl, struct search, cl);
698 struct bio *bio = &s->bio.bio;
699
700 if (s->recoverable) {
701 /* Retry from the backing device: */
702 trace_bcache_read_retry(s->orig_bio);
703
704 s->iop.status = 0;
705 do_bio_hook(s, s->orig_bio);
706
707 /* XXX: invalidate cache */
708
709 closure_bio_submit(bio, cl);
710 }
711
712 continue_at(cl, cached_dev_cache_miss_done, NULL);
713 }
714
715 static void cached_dev_read_done(struct closure *cl)
716 {
717 struct search *s = container_of(cl, struct search, cl);
718 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
719
720 /*
721 * We had a cache miss; cache_bio now contains data ready to be inserted
722 * into the cache.
723 *
724 * First, we copy the data we just read from cache_bio's bounce buffers
725 * to the buffers the original bio pointed to:
726 */
727
728 if (s->iop.bio) {
729 bio_reset(s->iop.bio);
730 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
731 s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
732 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
733 bch_bio_map(s->iop.bio, NULL);
734
735 bio_copy_data(s->cache_miss, s->iop.bio);
736
737 bio_put(s->cache_miss);
738 s->cache_miss = NULL;
739 }
740
741 if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
742 bch_data_verify(dc, s->orig_bio);
743
744 bio_complete(s);
745
746 if (s->iop.bio &&
747 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
748 BUG_ON(!s->iop.replace);
749 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
750 }
751
752 continue_at(cl, cached_dev_cache_miss_done, NULL);
753 }
754
755 static void cached_dev_read_done_bh(struct closure *cl)
756 {
757 struct search *s = container_of(cl, struct search, cl);
758 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
759
760 bch_mark_cache_accounting(s->iop.c, s->d,
761 !s->cache_miss, s->iop.bypass);
762 trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
763
764 if (s->iop.status)
765 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
766 else if (s->iop.bio || verify(dc, &s->bio.bio))
767 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
768 else
769 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
770 }
771
772 static int cached_dev_cache_miss(struct btree *b, struct search *s,
773 struct bio *bio, unsigned sectors)
774 {
775 int ret = MAP_CONTINUE;
776 unsigned reada = 0;
777 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
778 struct bio *miss, *cache_bio;
779
780 if (s->cache_miss || s->iop.bypass) {
781 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
782 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
783 goto out_submit;
784 }
785
786 if (!(bio->bi_opf & REQ_RAHEAD) &&
787 !(bio->bi_opf & REQ_META) &&
788 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
789 reada = min_t(sector_t, dc->readahead >> 9,
790 bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
791
792 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
793
794 s->iop.replace_key = KEY(s->iop.inode,
795 bio->bi_iter.bi_sector + s->insert_bio_sectors,
796 s->insert_bio_sectors);
797
798 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
799 if (ret)
800 return ret;
801
802 s->iop.replace = true;
803
804 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
805
806 /* btree_search_recurse()'s btree iterator is no good anymore */
807 ret = miss == bio ? MAP_DONE : -EINTR;
808
809 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
810 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
811 dc->disk.bio_split);
812 if (!cache_bio)
813 goto out_submit;
814
815 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector;
816 cache_bio->bi_bdev = miss->bi_bdev;
817 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
818
819 cache_bio->bi_end_io = request_endio;
820 cache_bio->bi_private = &s->cl;
821
822 bch_bio_map(cache_bio, NULL);
823 if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
824 goto out_put;
825
826 if (reada)
827 bch_mark_cache_readahead(s->iop.c, s->d);
828
829 s->cache_miss = miss;
830 s->iop.bio = cache_bio;
831 bio_get(cache_bio);
832 closure_bio_submit(cache_bio, &s->cl);
833
834 return ret;
835 out_put:
836 bio_put(cache_bio);
837 out_submit:
838 miss->bi_end_io = request_endio;
839 miss->bi_private = &s->cl;
840 closure_bio_submit(miss, &s->cl);
841 return ret;
842 }
843
844 static void cached_dev_read(struct cached_dev *dc, struct search *s)
845 {
846 struct closure *cl = &s->cl;
847
848 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
849 continue_at(cl, cached_dev_read_done_bh, NULL);
850 }
851
852 /* Process writes */
853
854 static void cached_dev_write_complete(struct closure *cl)
855 {
856 struct search *s = container_of(cl, struct search, cl);
857 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
858
859 up_read_non_owner(&dc->writeback_lock);
860 cached_dev_bio_complete(cl);
861 }
862
863 static void cached_dev_write(struct cached_dev *dc, struct search *s)
864 {
865 struct closure *cl = &s->cl;
866 struct bio *bio = &s->bio.bio;
867 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
868 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
869
870 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
871
872 down_read_non_owner(&dc->writeback_lock);
873 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
874 /*
875 * We overlap with some dirty data undergoing background
876 * writeback, force this write to writeback
877 */
878 s->iop.bypass = false;
879 s->iop.writeback = true;
880 }
881
882 /*
883 * Discards aren't _required_ to do anything, so skipping if
884 * check_overlapping returned true is ok
885 *
886 * But check_overlapping drops dirty keys for which io hasn't started,
887 * so we still want to call it.
888 */
889 if (bio_op(bio) == REQ_OP_DISCARD)
890 s->iop.bypass = true;
891
892 if (should_writeback(dc, s->orig_bio,
893 cache_mode(dc, bio),
894 s->iop.bypass)) {
895 s->iop.bypass = false;
896 s->iop.writeback = true;
897 }
898
899 if (s->iop.bypass) {
900 s->iop.bio = s->orig_bio;
901 bio_get(s->iop.bio);
902
903 if ((bio_op(bio) != REQ_OP_DISCARD) ||
904 blk_queue_discard(bdev_get_queue(dc->bdev)))
905 closure_bio_submit(bio, cl);
906 } else if (s->iop.writeback) {
907 bch_writeback_add(dc);
908 s->iop.bio = bio;
909
910 if (bio->bi_opf & REQ_PREFLUSH) {
911 /* Also need to send a flush to the backing device */
912 struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
913 dc->disk.bio_split);
914
915 flush->bi_bdev = bio->bi_bdev;
916 flush->bi_end_io = request_endio;
917 flush->bi_private = cl;
918 flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
919
920 closure_bio_submit(flush, cl);
921 }
922 } else {
923 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
924
925 closure_bio_submit(bio, cl);
926 }
927
928 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
929 continue_at(cl, cached_dev_write_complete, NULL);
930 }
931
932 static void cached_dev_nodata(struct closure *cl)
933 {
934 struct search *s = container_of(cl, struct search, cl);
935 struct bio *bio = &s->bio.bio;
936
937 if (s->iop.flush_journal)
938 bch_journal_meta(s->iop.c, cl);
939
940 /* If it's a flush, we send the flush to the backing device too */
941 closure_bio_submit(bio, cl);
942
943 continue_at(cl, cached_dev_bio_complete, NULL);
944 }
945
946 /* Cached devices - read & write stuff */
947
948 static blk_qc_t cached_dev_make_request(struct request_queue *q,
949 struct bio *bio)
950 {
951 struct search *s;
952 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
953 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
954 int rw = bio_data_dir(bio);
955
956 generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
957
958 bio->bi_bdev = dc->bdev;
959 bio->bi_iter.bi_sector += dc->sb.data_offset;
960
961 if (cached_dev_get(dc)) {
962 s = search_alloc(bio, d);
963 trace_bcache_request_start(s->d, bio);
964
965 if (!bio->bi_iter.bi_size) {
966 /*
967 * can't call bch_journal_meta from under
968 * generic_make_request
969 */
970 continue_at_nobarrier(&s->cl,
971 cached_dev_nodata,
972 bcache_wq);
973 } else {
974 s->iop.bypass = check_should_bypass(dc, bio);
975
976 if (rw)
977 cached_dev_write(dc, s);
978 else
979 cached_dev_read(dc, s);
980 }
981 } else {
982 if ((bio_op(bio) == REQ_OP_DISCARD) &&
983 !blk_queue_discard(bdev_get_queue(dc->bdev)))
984 bio_endio(bio);
985 else
986 generic_make_request(bio);
987 }
988
989 return BLK_QC_T_NONE;
990 }
991
992 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
993 unsigned int cmd, unsigned long arg)
994 {
995 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
996 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
997 }
998
999 static int cached_dev_congested(void *data, int bits)
1000 {
1001 struct bcache_device *d = data;
1002 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1003 struct request_queue *q = bdev_get_queue(dc->bdev);
1004 int ret = 0;
1005
1006 if (bdi_congested(q->backing_dev_info, bits))
1007 return 1;
1008
1009 if (cached_dev_get(dc)) {
1010 unsigned i;
1011 struct cache *ca;
1012
1013 for_each_cache(ca, d->c, i) {
1014 q = bdev_get_queue(ca->bdev);
1015 ret |= bdi_congested(q->backing_dev_info, bits);
1016 }
1017
1018 cached_dev_put(dc);
1019 }
1020
1021 return ret;
1022 }
1023
1024 void bch_cached_dev_request_init(struct cached_dev *dc)
1025 {
1026 struct gendisk *g = dc->disk.disk;
1027
1028 g->queue->make_request_fn = cached_dev_make_request;
1029 g->queue->backing_dev_info->congested_fn = cached_dev_congested;
1030 dc->disk.cache_miss = cached_dev_cache_miss;
1031 dc->disk.ioctl = cached_dev_ioctl;
1032 }
1033
1034 /* Flash backed devices */
1035
1036 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1037 struct bio *bio, unsigned sectors)
1038 {
1039 unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
1040
1041 swap(bio->bi_iter.bi_size, bytes);
1042 zero_fill_bio(bio);
1043 swap(bio->bi_iter.bi_size, bytes);
1044
1045 bio_advance(bio, bytes);
1046
1047 if (!bio->bi_iter.bi_size)
1048 return MAP_DONE;
1049
1050 return MAP_CONTINUE;
1051 }
1052
1053 static void flash_dev_nodata(struct closure *cl)
1054 {
1055 struct search *s = container_of(cl, struct search, cl);
1056
1057 if (s->iop.flush_journal)
1058 bch_journal_meta(s->iop.c, cl);
1059
1060 continue_at(cl, search_free, NULL);
1061 }
1062
1063 static blk_qc_t flash_dev_make_request(struct request_queue *q,
1064 struct bio *bio)
1065 {
1066 struct search *s;
1067 struct closure *cl;
1068 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1069 int rw = bio_data_dir(bio);
1070
1071 generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
1072
1073 s = search_alloc(bio, d);
1074 cl = &s->cl;
1075 bio = &s->bio.bio;
1076
1077 trace_bcache_request_start(s->d, bio);
1078
1079 if (!bio->bi_iter.bi_size) {
1080 /*
1081 * can't call bch_journal_meta from under
1082 * generic_make_request
1083 */
1084 continue_at_nobarrier(&s->cl,
1085 flash_dev_nodata,
1086 bcache_wq);
1087 return BLK_QC_T_NONE;
1088 } else if (rw) {
1089 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1090 &KEY(d->id, bio->bi_iter.bi_sector, 0),
1091 &KEY(d->id, bio_end_sector(bio), 0));
1092
1093 s->iop.bypass = (bio_op(bio) == REQ_OP_DISCARD) != 0;
1094 s->iop.writeback = true;
1095 s->iop.bio = bio;
1096
1097 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1098 } else {
1099 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1100 }
1101
1102 continue_at(cl, search_free, NULL);
1103 return BLK_QC_T_NONE;
1104 }
1105
1106 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1107 unsigned int cmd, unsigned long arg)
1108 {
1109 return -ENOTTY;
1110 }
1111
1112 static int flash_dev_congested(void *data, int bits)
1113 {
1114 struct bcache_device *d = data;
1115 struct request_queue *q;
1116 struct cache *ca;
1117 unsigned i;
1118 int ret = 0;
1119
1120 for_each_cache(ca, d->c, i) {
1121 q = bdev_get_queue(ca->bdev);
1122 ret |= bdi_congested(q->backing_dev_info, bits);
1123 }
1124
1125 return ret;
1126 }
1127
1128 void bch_flash_dev_request_init(struct bcache_device *d)
1129 {
1130 struct gendisk *g = d->disk;
1131
1132 g->queue->make_request_fn = flash_dev_make_request;
1133 g->queue->backing_dev_info->congested_fn = flash_dev_congested;
1134 d->cache_miss = flash_dev_cache_miss;
1135 d->ioctl = flash_dev_ioctl;
1136 }
1137
1138 void bch_request_exit(void)
1139 {
1140 if (bch_search_cache)
1141 kmem_cache_destroy(bch_search_cache);
1142 }
1143
1144 int __init bch_request_init(void)
1145 {
1146 bch_search_cache = KMEM_CACHE(search, 0);
1147 if (!bch_search_cache)
1148 return -ENOMEM;
1149
1150 return 0;
1151 }