]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/bcache/super.c
block/fs/drivers: remove rw argument from submit_bio
[mirror_ubuntu-bionic-kernel.git] / drivers / md / bcache / super.c
1 /*
2 * bcache setup/teardown code, and some metadata io - read a superblock and
3 * figure out what to do with it.
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "extents.h"
13 #include "request.h"
14 #include "writeback.h"
15
16 #include <linux/blkdev.h>
17 #include <linux/buffer_head.h>
18 #include <linux/debugfs.h>
19 #include <linux/genhd.h>
20 #include <linux/idr.h>
21 #include <linux/kthread.h>
22 #include <linux/module.h>
23 #include <linux/random.h>
24 #include <linux/reboot.h>
25 #include <linux/sysfs.h>
26
27 MODULE_LICENSE("GPL");
28 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
29
30 static const char bcache_magic[] = {
31 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
32 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
33 };
34
35 static const char invalid_uuid[] = {
36 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
37 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
38 };
39
40 /* Default is -1; we skip past it for struct cached_dev's cache mode */
41 const char * const bch_cache_modes[] = {
42 "default",
43 "writethrough",
44 "writeback",
45 "writearound",
46 "none",
47 NULL
48 };
49
50 static struct kobject *bcache_kobj;
51 struct mutex bch_register_lock;
52 LIST_HEAD(bch_cache_sets);
53 static LIST_HEAD(uncached_devices);
54
55 static int bcache_major;
56 static DEFINE_IDA(bcache_minor);
57 static wait_queue_head_t unregister_wait;
58 struct workqueue_struct *bcache_wq;
59
60 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
61
62 /* Superblock */
63
64 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
65 struct page **res)
66 {
67 const char *err;
68 struct cache_sb *s;
69 struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
70 unsigned i;
71
72 if (!bh)
73 return "IO error";
74
75 s = (struct cache_sb *) bh->b_data;
76
77 sb->offset = le64_to_cpu(s->offset);
78 sb->version = le64_to_cpu(s->version);
79
80 memcpy(sb->magic, s->magic, 16);
81 memcpy(sb->uuid, s->uuid, 16);
82 memcpy(sb->set_uuid, s->set_uuid, 16);
83 memcpy(sb->label, s->label, SB_LABEL_SIZE);
84
85 sb->flags = le64_to_cpu(s->flags);
86 sb->seq = le64_to_cpu(s->seq);
87 sb->last_mount = le32_to_cpu(s->last_mount);
88 sb->first_bucket = le16_to_cpu(s->first_bucket);
89 sb->keys = le16_to_cpu(s->keys);
90
91 for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
92 sb->d[i] = le64_to_cpu(s->d[i]);
93
94 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
95 sb->version, sb->flags, sb->seq, sb->keys);
96
97 err = "Not a bcache superblock";
98 if (sb->offset != SB_SECTOR)
99 goto err;
100
101 if (memcmp(sb->magic, bcache_magic, 16))
102 goto err;
103
104 err = "Too many journal buckets";
105 if (sb->keys > SB_JOURNAL_BUCKETS)
106 goto err;
107
108 err = "Bad checksum";
109 if (s->csum != csum_set(s))
110 goto err;
111
112 err = "Bad UUID";
113 if (bch_is_zero(sb->uuid, 16))
114 goto err;
115
116 sb->block_size = le16_to_cpu(s->block_size);
117
118 err = "Superblock block size smaller than device block size";
119 if (sb->block_size << 9 < bdev_logical_block_size(bdev))
120 goto err;
121
122 switch (sb->version) {
123 case BCACHE_SB_VERSION_BDEV:
124 sb->data_offset = BDEV_DATA_START_DEFAULT;
125 break;
126 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
127 sb->data_offset = le64_to_cpu(s->data_offset);
128
129 err = "Bad data offset";
130 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
131 goto err;
132
133 break;
134 case BCACHE_SB_VERSION_CDEV:
135 case BCACHE_SB_VERSION_CDEV_WITH_UUID:
136 sb->nbuckets = le64_to_cpu(s->nbuckets);
137 sb->block_size = le16_to_cpu(s->block_size);
138 sb->bucket_size = le16_to_cpu(s->bucket_size);
139
140 sb->nr_in_set = le16_to_cpu(s->nr_in_set);
141 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
142
143 err = "Too many buckets";
144 if (sb->nbuckets > LONG_MAX)
145 goto err;
146
147 err = "Not enough buckets";
148 if (sb->nbuckets < 1 << 7)
149 goto err;
150
151 err = "Bad block/bucket size";
152 if (!is_power_of_2(sb->block_size) ||
153 sb->block_size > PAGE_SECTORS ||
154 !is_power_of_2(sb->bucket_size) ||
155 sb->bucket_size < PAGE_SECTORS)
156 goto err;
157
158 err = "Invalid superblock: device too small";
159 if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
160 goto err;
161
162 err = "Bad UUID";
163 if (bch_is_zero(sb->set_uuid, 16))
164 goto err;
165
166 err = "Bad cache device number in set";
167 if (!sb->nr_in_set ||
168 sb->nr_in_set <= sb->nr_this_dev ||
169 sb->nr_in_set > MAX_CACHES_PER_SET)
170 goto err;
171
172 err = "Journal buckets not sequential";
173 for (i = 0; i < sb->keys; i++)
174 if (sb->d[i] != sb->first_bucket + i)
175 goto err;
176
177 err = "Too many journal buckets";
178 if (sb->first_bucket + sb->keys > sb->nbuckets)
179 goto err;
180
181 err = "Invalid superblock: first bucket comes before end of super";
182 if (sb->first_bucket * sb->bucket_size < 16)
183 goto err;
184
185 break;
186 default:
187 err = "Unsupported superblock version";
188 goto err;
189 }
190
191 sb->last_mount = get_seconds();
192 err = NULL;
193
194 get_page(bh->b_page);
195 *res = bh->b_page;
196 err:
197 put_bh(bh);
198 return err;
199 }
200
201 static void write_bdev_super_endio(struct bio *bio)
202 {
203 struct cached_dev *dc = bio->bi_private;
204 /* XXX: error checking */
205
206 closure_put(&dc->sb_write);
207 }
208
209 static void __write_super(struct cache_sb *sb, struct bio *bio)
210 {
211 struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
212 unsigned i;
213
214 bio->bi_iter.bi_sector = SB_SECTOR;
215 bio->bi_rw = REQ_WRITE|REQ_SYNC|REQ_META;
216 bio->bi_iter.bi_size = SB_SIZE;
217 bch_bio_map(bio, NULL);
218
219 out->offset = cpu_to_le64(sb->offset);
220 out->version = cpu_to_le64(sb->version);
221
222 memcpy(out->uuid, sb->uuid, 16);
223 memcpy(out->set_uuid, sb->set_uuid, 16);
224 memcpy(out->label, sb->label, SB_LABEL_SIZE);
225
226 out->flags = cpu_to_le64(sb->flags);
227 out->seq = cpu_to_le64(sb->seq);
228
229 out->last_mount = cpu_to_le32(sb->last_mount);
230 out->first_bucket = cpu_to_le16(sb->first_bucket);
231 out->keys = cpu_to_le16(sb->keys);
232
233 for (i = 0; i < sb->keys; i++)
234 out->d[i] = cpu_to_le64(sb->d[i]);
235
236 out->csum = csum_set(out);
237
238 pr_debug("ver %llu, flags %llu, seq %llu",
239 sb->version, sb->flags, sb->seq);
240
241 submit_bio(bio);
242 }
243
244 static void bch_write_bdev_super_unlock(struct closure *cl)
245 {
246 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
247
248 up(&dc->sb_write_mutex);
249 }
250
251 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
252 {
253 struct closure *cl = &dc->sb_write;
254 struct bio *bio = &dc->sb_bio;
255
256 down(&dc->sb_write_mutex);
257 closure_init(cl, parent);
258
259 bio_reset(bio);
260 bio->bi_bdev = dc->bdev;
261 bio->bi_end_io = write_bdev_super_endio;
262 bio->bi_private = dc;
263
264 closure_get(cl);
265 __write_super(&dc->sb, bio);
266
267 closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
268 }
269
270 static void write_super_endio(struct bio *bio)
271 {
272 struct cache *ca = bio->bi_private;
273
274 bch_count_io_errors(ca, bio->bi_error, "writing superblock");
275 closure_put(&ca->set->sb_write);
276 }
277
278 static void bcache_write_super_unlock(struct closure *cl)
279 {
280 struct cache_set *c = container_of(cl, struct cache_set, sb_write);
281
282 up(&c->sb_write_mutex);
283 }
284
285 void bcache_write_super(struct cache_set *c)
286 {
287 struct closure *cl = &c->sb_write;
288 struct cache *ca;
289 unsigned i;
290
291 down(&c->sb_write_mutex);
292 closure_init(cl, &c->cl);
293
294 c->sb.seq++;
295
296 for_each_cache(ca, c, i) {
297 struct bio *bio = &ca->sb_bio;
298
299 ca->sb.version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
300 ca->sb.seq = c->sb.seq;
301 ca->sb.last_mount = c->sb.last_mount;
302
303 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
304
305 bio_reset(bio);
306 bio->bi_bdev = ca->bdev;
307 bio->bi_end_io = write_super_endio;
308 bio->bi_private = ca;
309
310 closure_get(cl);
311 __write_super(&ca->sb, bio);
312 }
313
314 closure_return_with_destructor(cl, bcache_write_super_unlock);
315 }
316
317 /* UUID io */
318
319 static void uuid_endio(struct bio *bio)
320 {
321 struct closure *cl = bio->bi_private;
322 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
323
324 cache_set_err_on(bio->bi_error, c, "accessing uuids");
325 bch_bbio_free(bio, c);
326 closure_put(cl);
327 }
328
329 static void uuid_io_unlock(struct closure *cl)
330 {
331 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
332
333 up(&c->uuid_write_mutex);
334 }
335
336 static void uuid_io(struct cache_set *c, unsigned long rw,
337 struct bkey *k, struct closure *parent)
338 {
339 struct closure *cl = &c->uuid_write;
340 struct uuid_entry *u;
341 unsigned i;
342 char buf[80];
343
344 BUG_ON(!parent);
345 down(&c->uuid_write_mutex);
346 closure_init(cl, parent);
347
348 for (i = 0; i < KEY_PTRS(k); i++) {
349 struct bio *bio = bch_bbio_alloc(c);
350
351 bio->bi_rw = REQ_SYNC|REQ_META|rw;
352 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
353
354 bio->bi_end_io = uuid_endio;
355 bio->bi_private = cl;
356 bch_bio_map(bio, c->uuids);
357
358 bch_submit_bbio(bio, c, k, i);
359
360 if (!(rw & WRITE))
361 break;
362 }
363
364 bch_extent_to_text(buf, sizeof(buf), k);
365 pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read", buf);
366
367 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
368 if (!bch_is_zero(u->uuid, 16))
369 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
370 u - c->uuids, u->uuid, u->label,
371 u->first_reg, u->last_reg, u->invalidated);
372
373 closure_return_with_destructor(cl, uuid_io_unlock);
374 }
375
376 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
377 {
378 struct bkey *k = &j->uuid_bucket;
379
380 if (__bch_btree_ptr_invalid(c, k))
381 return "bad uuid pointer";
382
383 bkey_copy(&c->uuid_bucket, k);
384 uuid_io(c, READ_SYNC, k, cl);
385
386 if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
387 struct uuid_entry_v0 *u0 = (void *) c->uuids;
388 struct uuid_entry *u1 = (void *) c->uuids;
389 int i;
390
391 closure_sync(cl);
392
393 /*
394 * Since the new uuid entry is bigger than the old, we have to
395 * convert starting at the highest memory address and work down
396 * in order to do it in place
397 */
398
399 for (i = c->nr_uuids - 1;
400 i >= 0;
401 --i) {
402 memcpy(u1[i].uuid, u0[i].uuid, 16);
403 memcpy(u1[i].label, u0[i].label, 32);
404
405 u1[i].first_reg = u0[i].first_reg;
406 u1[i].last_reg = u0[i].last_reg;
407 u1[i].invalidated = u0[i].invalidated;
408
409 u1[i].flags = 0;
410 u1[i].sectors = 0;
411 }
412 }
413
414 return NULL;
415 }
416
417 static int __uuid_write(struct cache_set *c)
418 {
419 BKEY_PADDED(key) k;
420 struct closure cl;
421 closure_init_stack(&cl);
422
423 lockdep_assert_held(&bch_register_lock);
424
425 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
426 return 1;
427
428 SET_KEY_SIZE(&k.key, c->sb.bucket_size);
429 uuid_io(c, REQ_WRITE, &k.key, &cl);
430 closure_sync(&cl);
431
432 bkey_copy(&c->uuid_bucket, &k.key);
433 bkey_put(c, &k.key);
434 return 0;
435 }
436
437 int bch_uuid_write(struct cache_set *c)
438 {
439 int ret = __uuid_write(c);
440
441 if (!ret)
442 bch_journal_meta(c, NULL);
443
444 return ret;
445 }
446
447 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
448 {
449 struct uuid_entry *u;
450
451 for (u = c->uuids;
452 u < c->uuids + c->nr_uuids; u++)
453 if (!memcmp(u->uuid, uuid, 16))
454 return u;
455
456 return NULL;
457 }
458
459 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
460 {
461 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
462 return uuid_find(c, zero_uuid);
463 }
464
465 /*
466 * Bucket priorities/gens:
467 *
468 * For each bucket, we store on disk its
469 * 8 bit gen
470 * 16 bit priority
471 *
472 * See alloc.c for an explanation of the gen. The priority is used to implement
473 * lru (and in the future other) cache replacement policies; for most purposes
474 * it's just an opaque integer.
475 *
476 * The gens and the priorities don't have a whole lot to do with each other, and
477 * it's actually the gens that must be written out at specific times - it's no
478 * big deal if the priorities don't get written, if we lose them we just reuse
479 * buckets in suboptimal order.
480 *
481 * On disk they're stored in a packed array, and in as many buckets are required
482 * to fit them all. The buckets we use to store them form a list; the journal
483 * header points to the first bucket, the first bucket points to the second
484 * bucket, et cetera.
485 *
486 * This code is used by the allocation code; periodically (whenever it runs out
487 * of buckets to allocate from) the allocation code will invalidate some
488 * buckets, but it can't use those buckets until their new gens are safely on
489 * disk.
490 */
491
492 static void prio_endio(struct bio *bio)
493 {
494 struct cache *ca = bio->bi_private;
495
496 cache_set_err_on(bio->bi_error, ca->set, "accessing priorities");
497 bch_bbio_free(bio, ca->set);
498 closure_put(&ca->prio);
499 }
500
501 static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
502 {
503 struct closure *cl = &ca->prio;
504 struct bio *bio = bch_bbio_alloc(ca->set);
505
506 closure_init_stack(cl);
507
508 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size;
509 bio->bi_bdev = ca->bdev;
510 bio->bi_rw = REQ_SYNC|REQ_META|rw;
511 bio->bi_iter.bi_size = bucket_bytes(ca);
512
513 bio->bi_end_io = prio_endio;
514 bio->bi_private = ca;
515 bch_bio_map(bio, ca->disk_buckets);
516
517 closure_bio_submit(bio, &ca->prio);
518 closure_sync(cl);
519 }
520
521 void bch_prio_write(struct cache *ca)
522 {
523 int i;
524 struct bucket *b;
525 struct closure cl;
526
527 closure_init_stack(&cl);
528
529 lockdep_assert_held(&ca->set->bucket_lock);
530
531 ca->disk_buckets->seq++;
532
533 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
534 &ca->meta_sectors_written);
535
536 //pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
537 // fifo_used(&ca->free_inc), fifo_used(&ca->unused));
538
539 for (i = prio_buckets(ca) - 1; i >= 0; --i) {
540 long bucket;
541 struct prio_set *p = ca->disk_buckets;
542 struct bucket_disk *d = p->data;
543 struct bucket_disk *end = d + prios_per_bucket(ca);
544
545 for (b = ca->buckets + i * prios_per_bucket(ca);
546 b < ca->buckets + ca->sb.nbuckets && d < end;
547 b++, d++) {
548 d->prio = cpu_to_le16(b->prio);
549 d->gen = b->gen;
550 }
551
552 p->next_bucket = ca->prio_buckets[i + 1];
553 p->magic = pset_magic(&ca->sb);
554 p->csum = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
555
556 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
557 BUG_ON(bucket == -1);
558
559 mutex_unlock(&ca->set->bucket_lock);
560 prio_io(ca, bucket, REQ_WRITE);
561 mutex_lock(&ca->set->bucket_lock);
562
563 ca->prio_buckets[i] = bucket;
564 atomic_dec_bug(&ca->buckets[bucket].pin);
565 }
566
567 mutex_unlock(&ca->set->bucket_lock);
568
569 bch_journal_meta(ca->set, &cl);
570 closure_sync(&cl);
571
572 mutex_lock(&ca->set->bucket_lock);
573
574 /*
575 * Don't want the old priorities to get garbage collected until after we
576 * finish writing the new ones, and they're journalled
577 */
578 for (i = 0; i < prio_buckets(ca); i++) {
579 if (ca->prio_last_buckets[i])
580 __bch_bucket_free(ca,
581 &ca->buckets[ca->prio_last_buckets[i]]);
582
583 ca->prio_last_buckets[i] = ca->prio_buckets[i];
584 }
585 }
586
587 static void prio_read(struct cache *ca, uint64_t bucket)
588 {
589 struct prio_set *p = ca->disk_buckets;
590 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
591 struct bucket *b;
592 unsigned bucket_nr = 0;
593
594 for (b = ca->buckets;
595 b < ca->buckets + ca->sb.nbuckets;
596 b++, d++) {
597 if (d == end) {
598 ca->prio_buckets[bucket_nr] = bucket;
599 ca->prio_last_buckets[bucket_nr] = bucket;
600 bucket_nr++;
601
602 prio_io(ca, bucket, READ_SYNC);
603
604 if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
605 pr_warn("bad csum reading priorities");
606
607 if (p->magic != pset_magic(&ca->sb))
608 pr_warn("bad magic reading priorities");
609
610 bucket = p->next_bucket;
611 d = p->data;
612 }
613
614 b->prio = le16_to_cpu(d->prio);
615 b->gen = b->last_gc = d->gen;
616 }
617 }
618
619 /* Bcache device */
620
621 static int open_dev(struct block_device *b, fmode_t mode)
622 {
623 struct bcache_device *d = b->bd_disk->private_data;
624 if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
625 return -ENXIO;
626
627 closure_get(&d->cl);
628 return 0;
629 }
630
631 static void release_dev(struct gendisk *b, fmode_t mode)
632 {
633 struct bcache_device *d = b->private_data;
634 closure_put(&d->cl);
635 }
636
637 static int ioctl_dev(struct block_device *b, fmode_t mode,
638 unsigned int cmd, unsigned long arg)
639 {
640 struct bcache_device *d = b->bd_disk->private_data;
641 return d->ioctl(d, mode, cmd, arg);
642 }
643
644 static const struct block_device_operations bcache_ops = {
645 .open = open_dev,
646 .release = release_dev,
647 .ioctl = ioctl_dev,
648 .owner = THIS_MODULE,
649 };
650
651 void bcache_device_stop(struct bcache_device *d)
652 {
653 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
654 closure_queue(&d->cl);
655 }
656
657 static void bcache_device_unlink(struct bcache_device *d)
658 {
659 lockdep_assert_held(&bch_register_lock);
660
661 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
662 unsigned i;
663 struct cache *ca;
664
665 sysfs_remove_link(&d->c->kobj, d->name);
666 sysfs_remove_link(&d->kobj, "cache");
667
668 for_each_cache(ca, d->c, i)
669 bd_unlink_disk_holder(ca->bdev, d->disk);
670 }
671 }
672
673 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
674 const char *name)
675 {
676 unsigned i;
677 struct cache *ca;
678
679 for_each_cache(ca, d->c, i)
680 bd_link_disk_holder(ca->bdev, d->disk);
681
682 snprintf(d->name, BCACHEDEVNAME_SIZE,
683 "%s%u", name, d->id);
684
685 WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
686 sysfs_create_link(&c->kobj, &d->kobj, d->name),
687 "Couldn't create device <-> cache set symlinks");
688
689 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
690 }
691
692 static void bcache_device_detach(struct bcache_device *d)
693 {
694 lockdep_assert_held(&bch_register_lock);
695
696 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
697 struct uuid_entry *u = d->c->uuids + d->id;
698
699 SET_UUID_FLASH_ONLY(u, 0);
700 memcpy(u->uuid, invalid_uuid, 16);
701 u->invalidated = cpu_to_le32(get_seconds());
702 bch_uuid_write(d->c);
703 }
704
705 bcache_device_unlink(d);
706
707 d->c->devices[d->id] = NULL;
708 closure_put(&d->c->caching);
709 d->c = NULL;
710 }
711
712 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
713 unsigned id)
714 {
715 d->id = id;
716 d->c = c;
717 c->devices[id] = d;
718
719 closure_get(&c->caching);
720 }
721
722 static void bcache_device_free(struct bcache_device *d)
723 {
724 lockdep_assert_held(&bch_register_lock);
725
726 pr_info("%s stopped", d->disk->disk_name);
727
728 if (d->c)
729 bcache_device_detach(d);
730 if (d->disk && d->disk->flags & GENHD_FL_UP)
731 del_gendisk(d->disk);
732 if (d->disk && d->disk->queue)
733 blk_cleanup_queue(d->disk->queue);
734 if (d->disk) {
735 ida_simple_remove(&bcache_minor, d->disk->first_minor);
736 put_disk(d->disk);
737 }
738
739 if (d->bio_split)
740 bioset_free(d->bio_split);
741 kvfree(d->full_dirty_stripes);
742 kvfree(d->stripe_sectors_dirty);
743
744 closure_debug_destroy(&d->cl);
745 }
746
747 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
748 sector_t sectors)
749 {
750 struct request_queue *q;
751 size_t n;
752 int minor;
753
754 if (!d->stripe_size)
755 d->stripe_size = 1 << 31;
756
757 d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
758
759 if (!d->nr_stripes ||
760 d->nr_stripes > INT_MAX ||
761 d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
762 pr_err("nr_stripes too large");
763 return -ENOMEM;
764 }
765
766 n = d->nr_stripes * sizeof(atomic_t);
767 d->stripe_sectors_dirty = n < PAGE_SIZE << 6
768 ? kzalloc(n, GFP_KERNEL)
769 : vzalloc(n);
770 if (!d->stripe_sectors_dirty)
771 return -ENOMEM;
772
773 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
774 d->full_dirty_stripes = n < PAGE_SIZE << 6
775 ? kzalloc(n, GFP_KERNEL)
776 : vzalloc(n);
777 if (!d->full_dirty_stripes)
778 return -ENOMEM;
779
780 minor = ida_simple_get(&bcache_minor, 0, MINORMASK + 1, GFP_KERNEL);
781 if (minor < 0)
782 return minor;
783
784 if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
785 !(d->disk = alloc_disk(1))) {
786 ida_simple_remove(&bcache_minor, minor);
787 return -ENOMEM;
788 }
789
790 set_capacity(d->disk, sectors);
791 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", minor);
792
793 d->disk->major = bcache_major;
794 d->disk->first_minor = minor;
795 d->disk->fops = &bcache_ops;
796 d->disk->private_data = d;
797
798 q = blk_alloc_queue(GFP_KERNEL);
799 if (!q)
800 return -ENOMEM;
801
802 blk_queue_make_request(q, NULL);
803 d->disk->queue = q;
804 q->queuedata = d;
805 q->backing_dev_info.congested_data = d;
806 q->limits.max_hw_sectors = UINT_MAX;
807 q->limits.max_sectors = UINT_MAX;
808 q->limits.max_segment_size = UINT_MAX;
809 q->limits.max_segments = BIO_MAX_PAGES;
810 blk_queue_max_discard_sectors(q, UINT_MAX);
811 q->limits.discard_granularity = 512;
812 q->limits.io_min = block_size;
813 q->limits.logical_block_size = block_size;
814 q->limits.physical_block_size = block_size;
815 set_bit(QUEUE_FLAG_NONROT, &d->disk->queue->queue_flags);
816 clear_bit(QUEUE_FLAG_ADD_RANDOM, &d->disk->queue->queue_flags);
817 set_bit(QUEUE_FLAG_DISCARD, &d->disk->queue->queue_flags);
818
819 blk_queue_write_cache(q, true, true);
820
821 return 0;
822 }
823
824 /* Cached device */
825
826 static void calc_cached_dev_sectors(struct cache_set *c)
827 {
828 uint64_t sectors = 0;
829 struct cached_dev *dc;
830
831 list_for_each_entry(dc, &c->cached_devs, list)
832 sectors += bdev_sectors(dc->bdev);
833
834 c->cached_dev_sectors = sectors;
835 }
836
837 void bch_cached_dev_run(struct cached_dev *dc)
838 {
839 struct bcache_device *d = &dc->disk;
840 char buf[SB_LABEL_SIZE + 1];
841 char *env[] = {
842 "DRIVER=bcache",
843 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
844 NULL,
845 NULL,
846 };
847
848 memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
849 buf[SB_LABEL_SIZE] = '\0';
850 env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
851
852 if (atomic_xchg(&dc->running, 1)) {
853 kfree(env[1]);
854 kfree(env[2]);
855 return;
856 }
857
858 if (!d->c &&
859 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
860 struct closure cl;
861 closure_init_stack(&cl);
862
863 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
864 bch_write_bdev_super(dc, &cl);
865 closure_sync(&cl);
866 }
867
868 add_disk(d->disk);
869 bd_link_disk_holder(dc->bdev, dc->disk.disk);
870 /* won't show up in the uevent file, use udevadm monitor -e instead
871 * only class / kset properties are persistent */
872 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
873 kfree(env[1]);
874 kfree(env[2]);
875
876 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
877 sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
878 pr_debug("error creating sysfs link");
879 }
880
881 static void cached_dev_detach_finish(struct work_struct *w)
882 {
883 struct cached_dev *dc = container_of(w, struct cached_dev, detach);
884 char buf[BDEVNAME_SIZE];
885 struct closure cl;
886 closure_init_stack(&cl);
887
888 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
889 BUG_ON(atomic_read(&dc->count));
890
891 mutex_lock(&bch_register_lock);
892
893 memset(&dc->sb.set_uuid, 0, 16);
894 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
895
896 bch_write_bdev_super(dc, &cl);
897 closure_sync(&cl);
898
899 bcache_device_detach(&dc->disk);
900 list_move(&dc->list, &uncached_devices);
901
902 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
903 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
904
905 mutex_unlock(&bch_register_lock);
906
907 pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
908
909 /* Drop ref we took in cached_dev_detach() */
910 closure_put(&dc->disk.cl);
911 }
912
913 void bch_cached_dev_detach(struct cached_dev *dc)
914 {
915 lockdep_assert_held(&bch_register_lock);
916
917 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
918 return;
919
920 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
921 return;
922
923 /*
924 * Block the device from being closed and freed until we're finished
925 * detaching
926 */
927 closure_get(&dc->disk.cl);
928
929 bch_writeback_queue(dc);
930 cached_dev_put(dc);
931 }
932
933 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
934 {
935 uint32_t rtime = cpu_to_le32(get_seconds());
936 struct uuid_entry *u;
937 char buf[BDEVNAME_SIZE];
938
939 bdevname(dc->bdev, buf);
940
941 if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
942 return -ENOENT;
943
944 if (dc->disk.c) {
945 pr_err("Can't attach %s: already attached", buf);
946 return -EINVAL;
947 }
948
949 if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
950 pr_err("Can't attach %s: shutting down", buf);
951 return -EINVAL;
952 }
953
954 if (dc->sb.block_size < c->sb.block_size) {
955 /* Will die */
956 pr_err("Couldn't attach %s: block size less than set's block size",
957 buf);
958 return -EINVAL;
959 }
960
961 u = uuid_find(c, dc->sb.uuid);
962
963 if (u &&
964 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
965 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
966 memcpy(u->uuid, invalid_uuid, 16);
967 u->invalidated = cpu_to_le32(get_seconds());
968 u = NULL;
969 }
970
971 if (!u) {
972 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
973 pr_err("Couldn't find uuid for %s in set", buf);
974 return -ENOENT;
975 }
976
977 u = uuid_find_empty(c);
978 if (!u) {
979 pr_err("Not caching %s, no room for UUID", buf);
980 return -EINVAL;
981 }
982 }
983
984 /* Deadlocks since we're called via sysfs...
985 sysfs_remove_file(&dc->kobj, &sysfs_attach);
986 */
987
988 if (bch_is_zero(u->uuid, 16)) {
989 struct closure cl;
990 closure_init_stack(&cl);
991
992 memcpy(u->uuid, dc->sb.uuid, 16);
993 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
994 u->first_reg = u->last_reg = rtime;
995 bch_uuid_write(c);
996
997 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
998 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
999
1000 bch_write_bdev_super(dc, &cl);
1001 closure_sync(&cl);
1002 } else {
1003 u->last_reg = rtime;
1004 bch_uuid_write(c);
1005 }
1006
1007 bcache_device_attach(&dc->disk, c, u - c->uuids);
1008 list_move(&dc->list, &c->cached_devs);
1009 calc_cached_dev_sectors(c);
1010
1011 smp_wmb();
1012 /*
1013 * dc->c must be set before dc->count != 0 - paired with the mb in
1014 * cached_dev_get()
1015 */
1016 atomic_set(&dc->count, 1);
1017
1018 /* Block writeback thread, but spawn it */
1019 down_write(&dc->writeback_lock);
1020 if (bch_cached_dev_writeback_start(dc)) {
1021 up_write(&dc->writeback_lock);
1022 return -ENOMEM;
1023 }
1024
1025 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1026 bch_sectors_dirty_init(dc);
1027 atomic_set(&dc->has_dirty, 1);
1028 atomic_inc(&dc->count);
1029 bch_writeback_queue(dc);
1030 }
1031
1032 bch_cached_dev_run(dc);
1033 bcache_device_link(&dc->disk, c, "bdev");
1034
1035 /* Allow the writeback thread to proceed */
1036 up_write(&dc->writeback_lock);
1037
1038 pr_info("Caching %s as %s on set %pU",
1039 bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1040 dc->disk.c->sb.set_uuid);
1041 return 0;
1042 }
1043
1044 void bch_cached_dev_release(struct kobject *kobj)
1045 {
1046 struct cached_dev *dc = container_of(kobj, struct cached_dev,
1047 disk.kobj);
1048 kfree(dc);
1049 module_put(THIS_MODULE);
1050 }
1051
1052 static void cached_dev_free(struct closure *cl)
1053 {
1054 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1055
1056 cancel_delayed_work_sync(&dc->writeback_rate_update);
1057 if (!IS_ERR_OR_NULL(dc->writeback_thread))
1058 kthread_stop(dc->writeback_thread);
1059
1060 mutex_lock(&bch_register_lock);
1061
1062 if (atomic_read(&dc->running))
1063 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1064 bcache_device_free(&dc->disk);
1065 list_del(&dc->list);
1066
1067 mutex_unlock(&bch_register_lock);
1068
1069 if (!IS_ERR_OR_NULL(dc->bdev))
1070 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1071
1072 wake_up(&unregister_wait);
1073
1074 kobject_put(&dc->disk.kobj);
1075 }
1076
1077 static void cached_dev_flush(struct closure *cl)
1078 {
1079 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1080 struct bcache_device *d = &dc->disk;
1081
1082 mutex_lock(&bch_register_lock);
1083 bcache_device_unlink(d);
1084 mutex_unlock(&bch_register_lock);
1085
1086 bch_cache_accounting_destroy(&dc->accounting);
1087 kobject_del(&d->kobj);
1088
1089 continue_at(cl, cached_dev_free, system_wq);
1090 }
1091
1092 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1093 {
1094 int ret;
1095 struct io *io;
1096 struct request_queue *q = bdev_get_queue(dc->bdev);
1097
1098 __module_get(THIS_MODULE);
1099 INIT_LIST_HEAD(&dc->list);
1100 closure_init(&dc->disk.cl, NULL);
1101 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1102 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1103 INIT_WORK(&dc->detach, cached_dev_detach_finish);
1104 sema_init(&dc->sb_write_mutex, 1);
1105 INIT_LIST_HEAD(&dc->io_lru);
1106 spin_lock_init(&dc->io_lock);
1107 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1108
1109 dc->sequential_cutoff = 4 << 20;
1110
1111 for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1112 list_add(&io->lru, &dc->io_lru);
1113 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1114 }
1115
1116 dc->disk.stripe_size = q->limits.io_opt >> 9;
1117
1118 if (dc->disk.stripe_size)
1119 dc->partial_stripes_expensive =
1120 q->limits.raid_partial_stripes_expensive;
1121
1122 ret = bcache_device_init(&dc->disk, block_size,
1123 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1124 if (ret)
1125 return ret;
1126
1127 set_capacity(dc->disk.disk,
1128 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1129
1130 dc->disk.disk->queue->backing_dev_info.ra_pages =
1131 max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1132 q->backing_dev_info.ra_pages);
1133
1134 bch_cached_dev_request_init(dc);
1135 bch_cached_dev_writeback_init(dc);
1136 return 0;
1137 }
1138
1139 /* Cached device - bcache superblock */
1140
1141 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1142 struct block_device *bdev,
1143 struct cached_dev *dc)
1144 {
1145 char name[BDEVNAME_SIZE];
1146 const char *err = "cannot allocate memory";
1147 struct cache_set *c;
1148
1149 memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1150 dc->bdev = bdev;
1151 dc->bdev->bd_holder = dc;
1152
1153 bio_init(&dc->sb_bio);
1154 dc->sb_bio.bi_max_vecs = 1;
1155 dc->sb_bio.bi_io_vec = dc->sb_bio.bi_inline_vecs;
1156 dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1157 get_page(sb_page);
1158
1159 if (cached_dev_init(dc, sb->block_size << 9))
1160 goto err;
1161
1162 err = "error creating kobject";
1163 if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1164 "bcache"))
1165 goto err;
1166 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1167 goto err;
1168
1169 pr_info("registered backing device %s", bdevname(bdev, name));
1170
1171 list_add(&dc->list, &uncached_devices);
1172 list_for_each_entry(c, &bch_cache_sets, list)
1173 bch_cached_dev_attach(dc, c);
1174
1175 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1176 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1177 bch_cached_dev_run(dc);
1178
1179 return;
1180 err:
1181 pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1182 bcache_device_stop(&dc->disk);
1183 }
1184
1185 /* Flash only volumes */
1186
1187 void bch_flash_dev_release(struct kobject *kobj)
1188 {
1189 struct bcache_device *d = container_of(kobj, struct bcache_device,
1190 kobj);
1191 kfree(d);
1192 }
1193
1194 static void flash_dev_free(struct closure *cl)
1195 {
1196 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1197 mutex_lock(&bch_register_lock);
1198 bcache_device_free(d);
1199 mutex_unlock(&bch_register_lock);
1200 kobject_put(&d->kobj);
1201 }
1202
1203 static void flash_dev_flush(struct closure *cl)
1204 {
1205 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1206
1207 mutex_lock(&bch_register_lock);
1208 bcache_device_unlink(d);
1209 mutex_unlock(&bch_register_lock);
1210 kobject_del(&d->kobj);
1211 continue_at(cl, flash_dev_free, system_wq);
1212 }
1213
1214 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1215 {
1216 struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1217 GFP_KERNEL);
1218 if (!d)
1219 return -ENOMEM;
1220
1221 closure_init(&d->cl, NULL);
1222 set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1223
1224 kobject_init(&d->kobj, &bch_flash_dev_ktype);
1225
1226 if (bcache_device_init(d, block_bytes(c), u->sectors))
1227 goto err;
1228
1229 bcache_device_attach(d, c, u - c->uuids);
1230 bch_flash_dev_request_init(d);
1231 add_disk(d->disk);
1232
1233 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1234 goto err;
1235
1236 bcache_device_link(d, c, "volume");
1237
1238 return 0;
1239 err:
1240 kobject_put(&d->kobj);
1241 return -ENOMEM;
1242 }
1243
1244 static int flash_devs_run(struct cache_set *c)
1245 {
1246 int ret = 0;
1247 struct uuid_entry *u;
1248
1249 for (u = c->uuids;
1250 u < c->uuids + c->nr_uuids && !ret;
1251 u++)
1252 if (UUID_FLASH_ONLY(u))
1253 ret = flash_dev_run(c, u);
1254
1255 return ret;
1256 }
1257
1258 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1259 {
1260 struct uuid_entry *u;
1261
1262 if (test_bit(CACHE_SET_STOPPING, &c->flags))
1263 return -EINTR;
1264
1265 if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1266 return -EPERM;
1267
1268 u = uuid_find_empty(c);
1269 if (!u) {
1270 pr_err("Can't create volume, no room for UUID");
1271 return -EINVAL;
1272 }
1273
1274 get_random_bytes(u->uuid, 16);
1275 memset(u->label, 0, 32);
1276 u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1277
1278 SET_UUID_FLASH_ONLY(u, 1);
1279 u->sectors = size >> 9;
1280
1281 bch_uuid_write(c);
1282
1283 return flash_dev_run(c, u);
1284 }
1285
1286 /* Cache set */
1287
1288 __printf(2, 3)
1289 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1290 {
1291 va_list args;
1292
1293 if (c->on_error != ON_ERROR_PANIC &&
1294 test_bit(CACHE_SET_STOPPING, &c->flags))
1295 return false;
1296
1297 /* XXX: we can be called from atomic context
1298 acquire_console_sem();
1299 */
1300
1301 printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1302
1303 va_start(args, fmt);
1304 vprintk(fmt, args);
1305 va_end(args);
1306
1307 printk(", disabling caching\n");
1308
1309 if (c->on_error == ON_ERROR_PANIC)
1310 panic("panic forced after error\n");
1311
1312 bch_cache_set_unregister(c);
1313 return true;
1314 }
1315
1316 void bch_cache_set_release(struct kobject *kobj)
1317 {
1318 struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1319 kfree(c);
1320 module_put(THIS_MODULE);
1321 }
1322
1323 static void cache_set_free(struct closure *cl)
1324 {
1325 struct cache_set *c = container_of(cl, struct cache_set, cl);
1326 struct cache *ca;
1327 unsigned i;
1328
1329 if (!IS_ERR_OR_NULL(c->debug))
1330 debugfs_remove(c->debug);
1331
1332 bch_open_buckets_free(c);
1333 bch_btree_cache_free(c);
1334 bch_journal_free(c);
1335
1336 for_each_cache(ca, c, i)
1337 if (ca) {
1338 ca->set = NULL;
1339 c->cache[ca->sb.nr_this_dev] = NULL;
1340 kobject_put(&ca->kobj);
1341 }
1342
1343 bch_bset_sort_state_free(&c->sort);
1344 free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1345
1346 if (c->moving_gc_wq)
1347 destroy_workqueue(c->moving_gc_wq);
1348 if (c->bio_split)
1349 bioset_free(c->bio_split);
1350 if (c->fill_iter)
1351 mempool_destroy(c->fill_iter);
1352 if (c->bio_meta)
1353 mempool_destroy(c->bio_meta);
1354 if (c->search)
1355 mempool_destroy(c->search);
1356 kfree(c->devices);
1357
1358 mutex_lock(&bch_register_lock);
1359 list_del(&c->list);
1360 mutex_unlock(&bch_register_lock);
1361
1362 pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1363 wake_up(&unregister_wait);
1364
1365 closure_debug_destroy(&c->cl);
1366 kobject_put(&c->kobj);
1367 }
1368
1369 static void cache_set_flush(struct closure *cl)
1370 {
1371 struct cache_set *c = container_of(cl, struct cache_set, caching);
1372 struct cache *ca;
1373 struct btree *b;
1374 unsigned i;
1375
1376 if (!c)
1377 closure_return(cl);
1378
1379 bch_cache_accounting_destroy(&c->accounting);
1380
1381 kobject_put(&c->internal);
1382 kobject_del(&c->kobj);
1383
1384 if (c->gc_thread)
1385 kthread_stop(c->gc_thread);
1386
1387 if (!IS_ERR_OR_NULL(c->root))
1388 list_add(&c->root->list, &c->btree_cache);
1389
1390 /* Should skip this if we're unregistering because of an error */
1391 list_for_each_entry(b, &c->btree_cache, list) {
1392 mutex_lock(&b->write_lock);
1393 if (btree_node_dirty(b))
1394 __bch_btree_node_write(b, NULL);
1395 mutex_unlock(&b->write_lock);
1396 }
1397
1398 for_each_cache(ca, c, i)
1399 if (ca->alloc_thread)
1400 kthread_stop(ca->alloc_thread);
1401
1402 if (c->journal.cur) {
1403 cancel_delayed_work_sync(&c->journal.work);
1404 /* flush last journal entry if needed */
1405 c->journal.work.work.func(&c->journal.work.work);
1406 }
1407
1408 closure_return(cl);
1409 }
1410
1411 static void __cache_set_unregister(struct closure *cl)
1412 {
1413 struct cache_set *c = container_of(cl, struct cache_set, caching);
1414 struct cached_dev *dc;
1415 size_t i;
1416
1417 mutex_lock(&bch_register_lock);
1418
1419 for (i = 0; i < c->nr_uuids; i++)
1420 if (c->devices[i]) {
1421 if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1422 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1423 dc = container_of(c->devices[i],
1424 struct cached_dev, disk);
1425 bch_cached_dev_detach(dc);
1426 } else {
1427 bcache_device_stop(c->devices[i]);
1428 }
1429 }
1430
1431 mutex_unlock(&bch_register_lock);
1432
1433 continue_at(cl, cache_set_flush, system_wq);
1434 }
1435
1436 void bch_cache_set_stop(struct cache_set *c)
1437 {
1438 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1439 closure_queue(&c->caching);
1440 }
1441
1442 void bch_cache_set_unregister(struct cache_set *c)
1443 {
1444 set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1445 bch_cache_set_stop(c);
1446 }
1447
1448 #define alloc_bucket_pages(gfp, c) \
1449 ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1450
1451 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1452 {
1453 int iter_size;
1454 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1455 if (!c)
1456 return NULL;
1457
1458 __module_get(THIS_MODULE);
1459 closure_init(&c->cl, NULL);
1460 set_closure_fn(&c->cl, cache_set_free, system_wq);
1461
1462 closure_init(&c->caching, &c->cl);
1463 set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1464
1465 /* Maybe create continue_at_noreturn() and use it here? */
1466 closure_set_stopped(&c->cl);
1467 closure_put(&c->cl);
1468
1469 kobject_init(&c->kobj, &bch_cache_set_ktype);
1470 kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1471
1472 bch_cache_accounting_init(&c->accounting, &c->cl);
1473
1474 memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1475 c->sb.block_size = sb->block_size;
1476 c->sb.bucket_size = sb->bucket_size;
1477 c->sb.nr_in_set = sb->nr_in_set;
1478 c->sb.last_mount = sb->last_mount;
1479 c->bucket_bits = ilog2(sb->bucket_size);
1480 c->block_bits = ilog2(sb->block_size);
1481 c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry);
1482
1483 c->btree_pages = bucket_pages(c);
1484 if (c->btree_pages > BTREE_MAX_PAGES)
1485 c->btree_pages = max_t(int, c->btree_pages / 4,
1486 BTREE_MAX_PAGES);
1487
1488 sema_init(&c->sb_write_mutex, 1);
1489 mutex_init(&c->bucket_lock);
1490 init_waitqueue_head(&c->btree_cache_wait);
1491 init_waitqueue_head(&c->bucket_wait);
1492 sema_init(&c->uuid_write_mutex, 1);
1493
1494 spin_lock_init(&c->btree_gc_time.lock);
1495 spin_lock_init(&c->btree_split_time.lock);
1496 spin_lock_init(&c->btree_read_time.lock);
1497
1498 bch_moving_init_cache_set(c);
1499
1500 INIT_LIST_HEAD(&c->list);
1501 INIT_LIST_HEAD(&c->cached_devs);
1502 INIT_LIST_HEAD(&c->btree_cache);
1503 INIT_LIST_HEAD(&c->btree_cache_freeable);
1504 INIT_LIST_HEAD(&c->btree_cache_freed);
1505 INIT_LIST_HEAD(&c->data_buckets);
1506
1507 c->search = mempool_create_slab_pool(32, bch_search_cache);
1508 if (!c->search)
1509 goto err;
1510
1511 iter_size = (sb->bucket_size / sb->block_size + 1) *
1512 sizeof(struct btree_iter_set);
1513
1514 if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1515 !(c->bio_meta = mempool_create_kmalloc_pool(2,
1516 sizeof(struct bbio) + sizeof(struct bio_vec) *
1517 bucket_pages(c))) ||
1518 !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1519 !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1520 !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1521 !(c->moving_gc_wq = create_workqueue("bcache_gc")) ||
1522 bch_journal_alloc(c) ||
1523 bch_btree_cache_alloc(c) ||
1524 bch_open_buckets_alloc(c) ||
1525 bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1526 goto err;
1527
1528 c->congested_read_threshold_us = 2000;
1529 c->congested_write_threshold_us = 20000;
1530 c->error_limit = 8 << IO_ERROR_SHIFT;
1531
1532 return c;
1533 err:
1534 bch_cache_set_unregister(c);
1535 return NULL;
1536 }
1537
1538 static void run_cache_set(struct cache_set *c)
1539 {
1540 const char *err = "cannot allocate memory";
1541 struct cached_dev *dc, *t;
1542 struct cache *ca;
1543 struct closure cl;
1544 unsigned i;
1545
1546 closure_init_stack(&cl);
1547
1548 for_each_cache(ca, c, i)
1549 c->nbuckets += ca->sb.nbuckets;
1550
1551 if (CACHE_SYNC(&c->sb)) {
1552 LIST_HEAD(journal);
1553 struct bkey *k;
1554 struct jset *j;
1555
1556 err = "cannot allocate memory for journal";
1557 if (bch_journal_read(c, &journal))
1558 goto err;
1559
1560 pr_debug("btree_journal_read() done");
1561
1562 err = "no journal entries found";
1563 if (list_empty(&journal))
1564 goto err;
1565
1566 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1567
1568 err = "IO error reading priorities";
1569 for_each_cache(ca, c, i)
1570 prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1571
1572 /*
1573 * If prio_read() fails it'll call cache_set_error and we'll
1574 * tear everything down right away, but if we perhaps checked
1575 * sooner we could avoid journal replay.
1576 */
1577
1578 k = &j->btree_root;
1579
1580 err = "bad btree root";
1581 if (__bch_btree_ptr_invalid(c, k))
1582 goto err;
1583
1584 err = "error reading btree root";
1585 c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true, NULL);
1586 if (IS_ERR_OR_NULL(c->root))
1587 goto err;
1588
1589 list_del_init(&c->root->list);
1590 rw_unlock(true, c->root);
1591
1592 err = uuid_read(c, j, &cl);
1593 if (err)
1594 goto err;
1595
1596 err = "error in recovery";
1597 if (bch_btree_check(c))
1598 goto err;
1599
1600 bch_journal_mark(c, &journal);
1601 bch_initial_gc_finish(c);
1602 pr_debug("btree_check() done");
1603
1604 /*
1605 * bcache_journal_next() can't happen sooner, or
1606 * btree_gc_finish() will give spurious errors about last_gc >
1607 * gc_gen - this is a hack but oh well.
1608 */
1609 bch_journal_next(&c->journal);
1610
1611 err = "error starting allocator thread";
1612 for_each_cache(ca, c, i)
1613 if (bch_cache_allocator_start(ca))
1614 goto err;
1615
1616 /*
1617 * First place it's safe to allocate: btree_check() and
1618 * btree_gc_finish() have to run before we have buckets to
1619 * allocate, and bch_bucket_alloc_set() might cause a journal
1620 * entry to be written so bcache_journal_next() has to be called
1621 * first.
1622 *
1623 * If the uuids were in the old format we have to rewrite them
1624 * before the next journal entry is written:
1625 */
1626 if (j->version < BCACHE_JSET_VERSION_UUID)
1627 __uuid_write(c);
1628
1629 bch_journal_replay(c, &journal);
1630 } else {
1631 pr_notice("invalidating existing data");
1632
1633 for_each_cache(ca, c, i) {
1634 unsigned j;
1635
1636 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1637 2, SB_JOURNAL_BUCKETS);
1638
1639 for (j = 0; j < ca->sb.keys; j++)
1640 ca->sb.d[j] = ca->sb.first_bucket + j;
1641 }
1642
1643 bch_initial_gc_finish(c);
1644
1645 err = "error starting allocator thread";
1646 for_each_cache(ca, c, i)
1647 if (bch_cache_allocator_start(ca))
1648 goto err;
1649
1650 mutex_lock(&c->bucket_lock);
1651 for_each_cache(ca, c, i)
1652 bch_prio_write(ca);
1653 mutex_unlock(&c->bucket_lock);
1654
1655 err = "cannot allocate new UUID bucket";
1656 if (__uuid_write(c))
1657 goto err;
1658
1659 err = "cannot allocate new btree root";
1660 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1661 if (IS_ERR_OR_NULL(c->root))
1662 goto err;
1663
1664 mutex_lock(&c->root->write_lock);
1665 bkey_copy_key(&c->root->key, &MAX_KEY);
1666 bch_btree_node_write(c->root, &cl);
1667 mutex_unlock(&c->root->write_lock);
1668
1669 bch_btree_set_root(c->root);
1670 rw_unlock(true, c->root);
1671
1672 /*
1673 * We don't want to write the first journal entry until
1674 * everything is set up - fortunately journal entries won't be
1675 * written until the SET_CACHE_SYNC() here:
1676 */
1677 SET_CACHE_SYNC(&c->sb, true);
1678
1679 bch_journal_next(&c->journal);
1680 bch_journal_meta(c, &cl);
1681 }
1682
1683 err = "error starting gc thread";
1684 if (bch_gc_thread_start(c))
1685 goto err;
1686
1687 closure_sync(&cl);
1688 c->sb.last_mount = get_seconds();
1689 bcache_write_super(c);
1690
1691 list_for_each_entry_safe(dc, t, &uncached_devices, list)
1692 bch_cached_dev_attach(dc, c);
1693
1694 flash_devs_run(c);
1695
1696 set_bit(CACHE_SET_RUNNING, &c->flags);
1697 return;
1698 err:
1699 closure_sync(&cl);
1700 /* XXX: test this, it's broken */
1701 bch_cache_set_error(c, "%s", err);
1702 }
1703
1704 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1705 {
1706 return ca->sb.block_size == c->sb.block_size &&
1707 ca->sb.bucket_size == c->sb.bucket_size &&
1708 ca->sb.nr_in_set == c->sb.nr_in_set;
1709 }
1710
1711 static const char *register_cache_set(struct cache *ca)
1712 {
1713 char buf[12];
1714 const char *err = "cannot allocate memory";
1715 struct cache_set *c;
1716
1717 list_for_each_entry(c, &bch_cache_sets, list)
1718 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1719 if (c->cache[ca->sb.nr_this_dev])
1720 return "duplicate cache set member";
1721
1722 if (!can_attach_cache(ca, c))
1723 return "cache sb does not match set";
1724
1725 if (!CACHE_SYNC(&ca->sb))
1726 SET_CACHE_SYNC(&c->sb, false);
1727
1728 goto found;
1729 }
1730
1731 c = bch_cache_set_alloc(&ca->sb);
1732 if (!c)
1733 return err;
1734
1735 err = "error creating kobject";
1736 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1737 kobject_add(&c->internal, &c->kobj, "internal"))
1738 goto err;
1739
1740 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1741 goto err;
1742
1743 bch_debug_init_cache_set(c);
1744
1745 list_add(&c->list, &bch_cache_sets);
1746 found:
1747 sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1748 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1749 sysfs_create_link(&c->kobj, &ca->kobj, buf))
1750 goto err;
1751
1752 if (ca->sb.seq > c->sb.seq) {
1753 c->sb.version = ca->sb.version;
1754 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1755 c->sb.flags = ca->sb.flags;
1756 c->sb.seq = ca->sb.seq;
1757 pr_debug("set version = %llu", c->sb.version);
1758 }
1759
1760 kobject_get(&ca->kobj);
1761 ca->set = c;
1762 ca->set->cache[ca->sb.nr_this_dev] = ca;
1763 c->cache_by_alloc[c->caches_loaded++] = ca;
1764
1765 if (c->caches_loaded == c->sb.nr_in_set)
1766 run_cache_set(c);
1767
1768 return NULL;
1769 err:
1770 bch_cache_set_unregister(c);
1771 return err;
1772 }
1773
1774 /* Cache device */
1775
1776 void bch_cache_release(struct kobject *kobj)
1777 {
1778 struct cache *ca = container_of(kobj, struct cache, kobj);
1779 unsigned i;
1780
1781 if (ca->set) {
1782 BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
1783 ca->set->cache[ca->sb.nr_this_dev] = NULL;
1784 }
1785
1786 free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1787 kfree(ca->prio_buckets);
1788 vfree(ca->buckets);
1789
1790 free_heap(&ca->heap);
1791 free_fifo(&ca->free_inc);
1792
1793 for (i = 0; i < RESERVE_NR; i++)
1794 free_fifo(&ca->free[i]);
1795
1796 if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1797 put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1798
1799 if (!IS_ERR_OR_NULL(ca->bdev))
1800 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1801
1802 kfree(ca);
1803 module_put(THIS_MODULE);
1804 }
1805
1806 static int cache_alloc(struct cache_sb *sb, struct cache *ca)
1807 {
1808 size_t free;
1809 struct bucket *b;
1810
1811 __module_get(THIS_MODULE);
1812 kobject_init(&ca->kobj, &bch_cache_ktype);
1813
1814 bio_init(&ca->journal.bio);
1815 ca->journal.bio.bi_max_vecs = 8;
1816 ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1817
1818 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
1819
1820 if (!init_fifo(&ca->free[RESERVE_BTREE], 8, GFP_KERNEL) ||
1821 !init_fifo(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
1822 !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
1823 !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
1824 !init_fifo(&ca->free_inc, free << 2, GFP_KERNEL) ||
1825 !init_heap(&ca->heap, free << 3, GFP_KERNEL) ||
1826 !(ca->buckets = vzalloc(sizeof(struct bucket) *
1827 ca->sb.nbuckets)) ||
1828 !(ca->prio_buckets = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1829 2, GFP_KERNEL)) ||
1830 !(ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca)))
1831 return -ENOMEM;
1832
1833 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1834
1835 for_each_bucket(b, ca)
1836 atomic_set(&b->pin, 0);
1837
1838 return 0;
1839 }
1840
1841 static int register_cache(struct cache_sb *sb, struct page *sb_page,
1842 struct block_device *bdev, struct cache *ca)
1843 {
1844 char name[BDEVNAME_SIZE];
1845 const char *err = NULL;
1846 int ret = 0;
1847
1848 memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1849 ca->bdev = bdev;
1850 ca->bdev->bd_holder = ca;
1851
1852 bio_init(&ca->sb_bio);
1853 ca->sb_bio.bi_max_vecs = 1;
1854 ca->sb_bio.bi_io_vec = ca->sb_bio.bi_inline_vecs;
1855 ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1856 get_page(sb_page);
1857
1858 if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1859 ca->discard = CACHE_DISCARD(&ca->sb);
1860
1861 ret = cache_alloc(sb, ca);
1862 if (ret != 0)
1863 goto err;
1864
1865 if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache")) {
1866 err = "error calling kobject_add";
1867 ret = -ENOMEM;
1868 goto out;
1869 }
1870
1871 mutex_lock(&bch_register_lock);
1872 err = register_cache_set(ca);
1873 mutex_unlock(&bch_register_lock);
1874
1875 if (err) {
1876 ret = -ENODEV;
1877 goto out;
1878 }
1879
1880 pr_info("registered cache device %s", bdevname(bdev, name));
1881
1882 out:
1883 kobject_put(&ca->kobj);
1884
1885 err:
1886 if (err)
1887 pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1888
1889 return ret;
1890 }
1891
1892 /* Global interfaces/init */
1893
1894 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1895 const char *, size_t);
1896
1897 kobj_attribute_write(register, register_bcache);
1898 kobj_attribute_write(register_quiet, register_bcache);
1899
1900 static bool bch_is_open_backing(struct block_device *bdev) {
1901 struct cache_set *c, *tc;
1902 struct cached_dev *dc, *t;
1903
1904 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1905 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1906 if (dc->bdev == bdev)
1907 return true;
1908 list_for_each_entry_safe(dc, t, &uncached_devices, list)
1909 if (dc->bdev == bdev)
1910 return true;
1911 return false;
1912 }
1913
1914 static bool bch_is_open_cache(struct block_device *bdev) {
1915 struct cache_set *c, *tc;
1916 struct cache *ca;
1917 unsigned i;
1918
1919 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1920 for_each_cache(ca, c, i)
1921 if (ca->bdev == bdev)
1922 return true;
1923 return false;
1924 }
1925
1926 static bool bch_is_open(struct block_device *bdev) {
1927 return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1928 }
1929
1930 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1931 const char *buffer, size_t size)
1932 {
1933 ssize_t ret = size;
1934 const char *err = "cannot allocate memory";
1935 char *path = NULL;
1936 struct cache_sb *sb = NULL;
1937 struct block_device *bdev = NULL;
1938 struct page *sb_page = NULL;
1939
1940 if (!try_module_get(THIS_MODULE))
1941 return -EBUSY;
1942
1943 if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1944 !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1945 goto err;
1946
1947 err = "failed to open device";
1948 bdev = blkdev_get_by_path(strim(path),
1949 FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1950 sb);
1951 if (IS_ERR(bdev)) {
1952 if (bdev == ERR_PTR(-EBUSY)) {
1953 bdev = lookup_bdev(strim(path));
1954 mutex_lock(&bch_register_lock);
1955 if (!IS_ERR(bdev) && bch_is_open(bdev))
1956 err = "device already registered";
1957 else
1958 err = "device busy";
1959 mutex_unlock(&bch_register_lock);
1960 if (attr == &ksysfs_register_quiet)
1961 goto out;
1962 }
1963 goto err;
1964 }
1965
1966 err = "failed to set blocksize";
1967 if (set_blocksize(bdev, 4096))
1968 goto err_close;
1969
1970 err = read_super(sb, bdev, &sb_page);
1971 if (err)
1972 goto err_close;
1973
1974 if (SB_IS_BDEV(sb)) {
1975 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1976 if (!dc)
1977 goto err_close;
1978
1979 mutex_lock(&bch_register_lock);
1980 register_bdev(sb, sb_page, bdev, dc);
1981 mutex_unlock(&bch_register_lock);
1982 } else {
1983 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1984 if (!ca)
1985 goto err_close;
1986
1987 if (register_cache(sb, sb_page, bdev, ca) != 0)
1988 goto err_close;
1989 }
1990 out:
1991 if (sb_page)
1992 put_page(sb_page);
1993 kfree(sb);
1994 kfree(path);
1995 module_put(THIS_MODULE);
1996 return ret;
1997
1998 err_close:
1999 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2000 err:
2001 pr_info("error opening %s: %s", path, err);
2002 ret = -EINVAL;
2003 goto out;
2004 }
2005
2006 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2007 {
2008 if (code == SYS_DOWN ||
2009 code == SYS_HALT ||
2010 code == SYS_POWER_OFF) {
2011 DEFINE_WAIT(wait);
2012 unsigned long start = jiffies;
2013 bool stopped = false;
2014
2015 struct cache_set *c, *tc;
2016 struct cached_dev *dc, *tdc;
2017
2018 mutex_lock(&bch_register_lock);
2019
2020 if (list_empty(&bch_cache_sets) &&
2021 list_empty(&uncached_devices))
2022 goto out;
2023
2024 pr_info("Stopping all devices:");
2025
2026 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2027 bch_cache_set_stop(c);
2028
2029 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2030 bcache_device_stop(&dc->disk);
2031
2032 /* What's a condition variable? */
2033 while (1) {
2034 long timeout = start + 2 * HZ - jiffies;
2035
2036 stopped = list_empty(&bch_cache_sets) &&
2037 list_empty(&uncached_devices);
2038
2039 if (timeout < 0 || stopped)
2040 break;
2041
2042 prepare_to_wait(&unregister_wait, &wait,
2043 TASK_UNINTERRUPTIBLE);
2044
2045 mutex_unlock(&bch_register_lock);
2046 schedule_timeout(timeout);
2047 mutex_lock(&bch_register_lock);
2048 }
2049
2050 finish_wait(&unregister_wait, &wait);
2051
2052 if (stopped)
2053 pr_info("All devices stopped");
2054 else
2055 pr_notice("Timeout waiting for devices to be closed");
2056 out:
2057 mutex_unlock(&bch_register_lock);
2058 }
2059
2060 return NOTIFY_DONE;
2061 }
2062
2063 static struct notifier_block reboot = {
2064 .notifier_call = bcache_reboot,
2065 .priority = INT_MAX, /* before any real devices */
2066 };
2067
2068 static void bcache_exit(void)
2069 {
2070 bch_debug_exit();
2071 bch_request_exit();
2072 if (bcache_kobj)
2073 kobject_put(bcache_kobj);
2074 if (bcache_wq)
2075 destroy_workqueue(bcache_wq);
2076 if (bcache_major)
2077 unregister_blkdev(bcache_major, "bcache");
2078 unregister_reboot_notifier(&reboot);
2079 }
2080
2081 static int __init bcache_init(void)
2082 {
2083 static const struct attribute *files[] = {
2084 &ksysfs_register.attr,
2085 &ksysfs_register_quiet.attr,
2086 NULL
2087 };
2088
2089 mutex_init(&bch_register_lock);
2090 init_waitqueue_head(&unregister_wait);
2091 register_reboot_notifier(&reboot);
2092 closure_debug_init();
2093
2094 bcache_major = register_blkdev(0, "bcache");
2095 if (bcache_major < 0) {
2096 unregister_reboot_notifier(&reboot);
2097 return bcache_major;
2098 }
2099
2100 if (!(bcache_wq = create_workqueue("bcache")) ||
2101 !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2102 sysfs_create_files(bcache_kobj, files) ||
2103 bch_request_init() ||
2104 bch_debug_init(bcache_kobj))
2105 goto err;
2106
2107 return 0;
2108 err:
2109 bcache_exit();
2110 return -ENOMEM;
2111 }
2112
2113 module_exit(bcache_exit);
2114 module_init(bcache_init);