]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/bcache/super.c
bcache: Remove deprecated create_workqueue
[mirror_ubuntu-artful-kernel.git] / drivers / md / bcache / super.c
1 /*
2 * bcache setup/teardown code, and some metadata io - read a superblock and
3 * figure out what to do with it.
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "extents.h"
13 #include "request.h"
14 #include "writeback.h"
15
16 #include <linux/blkdev.h>
17 #include <linux/buffer_head.h>
18 #include <linux/debugfs.h>
19 #include <linux/genhd.h>
20 #include <linux/idr.h>
21 #include <linux/kthread.h>
22 #include <linux/module.h>
23 #include <linux/random.h>
24 #include <linux/reboot.h>
25 #include <linux/sysfs.h>
26
27 MODULE_LICENSE("GPL");
28 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
29
30 static const char bcache_magic[] = {
31 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
32 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
33 };
34
35 static const char invalid_uuid[] = {
36 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
37 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
38 };
39
40 /* Default is -1; we skip past it for struct cached_dev's cache mode */
41 const char * const bch_cache_modes[] = {
42 "default",
43 "writethrough",
44 "writeback",
45 "writearound",
46 "none",
47 NULL
48 };
49
50 static struct kobject *bcache_kobj;
51 struct mutex bch_register_lock;
52 LIST_HEAD(bch_cache_sets);
53 static LIST_HEAD(uncached_devices);
54
55 static int bcache_major;
56 static DEFINE_IDA(bcache_minor);
57 static wait_queue_head_t unregister_wait;
58 struct workqueue_struct *bcache_wq;
59
60 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
61
62 /* Superblock */
63
64 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
65 struct page **res)
66 {
67 const char *err;
68 struct cache_sb *s;
69 struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
70 unsigned i;
71
72 if (!bh)
73 return "IO error";
74
75 s = (struct cache_sb *) bh->b_data;
76
77 sb->offset = le64_to_cpu(s->offset);
78 sb->version = le64_to_cpu(s->version);
79
80 memcpy(sb->magic, s->magic, 16);
81 memcpy(sb->uuid, s->uuid, 16);
82 memcpy(sb->set_uuid, s->set_uuid, 16);
83 memcpy(sb->label, s->label, SB_LABEL_SIZE);
84
85 sb->flags = le64_to_cpu(s->flags);
86 sb->seq = le64_to_cpu(s->seq);
87 sb->last_mount = le32_to_cpu(s->last_mount);
88 sb->first_bucket = le16_to_cpu(s->first_bucket);
89 sb->keys = le16_to_cpu(s->keys);
90
91 for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
92 sb->d[i] = le64_to_cpu(s->d[i]);
93
94 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
95 sb->version, sb->flags, sb->seq, sb->keys);
96
97 err = "Not a bcache superblock";
98 if (sb->offset != SB_SECTOR)
99 goto err;
100
101 if (memcmp(sb->magic, bcache_magic, 16))
102 goto err;
103
104 err = "Too many journal buckets";
105 if (sb->keys > SB_JOURNAL_BUCKETS)
106 goto err;
107
108 err = "Bad checksum";
109 if (s->csum != csum_set(s))
110 goto err;
111
112 err = "Bad UUID";
113 if (bch_is_zero(sb->uuid, 16))
114 goto err;
115
116 sb->block_size = le16_to_cpu(s->block_size);
117
118 err = "Superblock block size smaller than device block size";
119 if (sb->block_size << 9 < bdev_logical_block_size(bdev))
120 goto err;
121
122 switch (sb->version) {
123 case BCACHE_SB_VERSION_BDEV:
124 sb->data_offset = BDEV_DATA_START_DEFAULT;
125 break;
126 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
127 sb->data_offset = le64_to_cpu(s->data_offset);
128
129 err = "Bad data offset";
130 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
131 goto err;
132
133 break;
134 case BCACHE_SB_VERSION_CDEV:
135 case BCACHE_SB_VERSION_CDEV_WITH_UUID:
136 sb->nbuckets = le64_to_cpu(s->nbuckets);
137 sb->block_size = le16_to_cpu(s->block_size);
138 sb->bucket_size = le16_to_cpu(s->bucket_size);
139
140 sb->nr_in_set = le16_to_cpu(s->nr_in_set);
141 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
142
143 err = "Too many buckets";
144 if (sb->nbuckets > LONG_MAX)
145 goto err;
146
147 err = "Not enough buckets";
148 if (sb->nbuckets < 1 << 7)
149 goto err;
150
151 err = "Bad block/bucket size";
152 if (!is_power_of_2(sb->block_size) ||
153 sb->block_size > PAGE_SECTORS ||
154 !is_power_of_2(sb->bucket_size) ||
155 sb->bucket_size < PAGE_SECTORS)
156 goto err;
157
158 err = "Invalid superblock: device too small";
159 if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
160 goto err;
161
162 err = "Bad UUID";
163 if (bch_is_zero(sb->set_uuid, 16))
164 goto err;
165
166 err = "Bad cache device number in set";
167 if (!sb->nr_in_set ||
168 sb->nr_in_set <= sb->nr_this_dev ||
169 sb->nr_in_set > MAX_CACHES_PER_SET)
170 goto err;
171
172 err = "Journal buckets not sequential";
173 for (i = 0; i < sb->keys; i++)
174 if (sb->d[i] != sb->first_bucket + i)
175 goto err;
176
177 err = "Too many journal buckets";
178 if (sb->first_bucket + sb->keys > sb->nbuckets)
179 goto err;
180
181 err = "Invalid superblock: first bucket comes before end of super";
182 if (sb->first_bucket * sb->bucket_size < 16)
183 goto err;
184
185 break;
186 default:
187 err = "Unsupported superblock version";
188 goto err;
189 }
190
191 sb->last_mount = get_seconds();
192 err = NULL;
193
194 get_page(bh->b_page);
195 *res = bh->b_page;
196 err:
197 put_bh(bh);
198 return err;
199 }
200
201 static void write_bdev_super_endio(struct bio *bio)
202 {
203 struct cached_dev *dc = bio->bi_private;
204 /* XXX: error checking */
205
206 closure_put(&dc->sb_write);
207 }
208
209 static void __write_super(struct cache_sb *sb, struct bio *bio)
210 {
211 struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
212 unsigned i;
213
214 bio->bi_iter.bi_sector = SB_SECTOR;
215 bio->bi_iter.bi_size = SB_SIZE;
216 bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META);
217 bch_bio_map(bio, NULL);
218
219 out->offset = cpu_to_le64(sb->offset);
220 out->version = cpu_to_le64(sb->version);
221
222 memcpy(out->uuid, sb->uuid, 16);
223 memcpy(out->set_uuid, sb->set_uuid, 16);
224 memcpy(out->label, sb->label, SB_LABEL_SIZE);
225
226 out->flags = cpu_to_le64(sb->flags);
227 out->seq = cpu_to_le64(sb->seq);
228
229 out->last_mount = cpu_to_le32(sb->last_mount);
230 out->first_bucket = cpu_to_le16(sb->first_bucket);
231 out->keys = cpu_to_le16(sb->keys);
232
233 for (i = 0; i < sb->keys; i++)
234 out->d[i] = cpu_to_le64(sb->d[i]);
235
236 out->csum = csum_set(out);
237
238 pr_debug("ver %llu, flags %llu, seq %llu",
239 sb->version, sb->flags, sb->seq);
240
241 submit_bio(bio);
242 }
243
244 static void bch_write_bdev_super_unlock(struct closure *cl)
245 {
246 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
247
248 up(&dc->sb_write_mutex);
249 }
250
251 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
252 {
253 struct closure *cl = &dc->sb_write;
254 struct bio *bio = &dc->sb_bio;
255
256 down(&dc->sb_write_mutex);
257 closure_init(cl, parent);
258
259 bio_reset(bio);
260 bio->bi_bdev = dc->bdev;
261 bio->bi_end_io = write_bdev_super_endio;
262 bio->bi_private = dc;
263
264 closure_get(cl);
265 __write_super(&dc->sb, bio);
266
267 closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
268 }
269
270 static void write_super_endio(struct bio *bio)
271 {
272 struct cache *ca = bio->bi_private;
273
274 bch_count_io_errors(ca, bio->bi_error, "writing superblock");
275 closure_put(&ca->set->sb_write);
276 }
277
278 static void bcache_write_super_unlock(struct closure *cl)
279 {
280 struct cache_set *c = container_of(cl, struct cache_set, sb_write);
281
282 up(&c->sb_write_mutex);
283 }
284
285 void bcache_write_super(struct cache_set *c)
286 {
287 struct closure *cl = &c->sb_write;
288 struct cache *ca;
289 unsigned i;
290
291 down(&c->sb_write_mutex);
292 closure_init(cl, &c->cl);
293
294 c->sb.seq++;
295
296 for_each_cache(ca, c, i) {
297 struct bio *bio = &ca->sb_bio;
298
299 ca->sb.version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
300 ca->sb.seq = c->sb.seq;
301 ca->sb.last_mount = c->sb.last_mount;
302
303 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
304
305 bio_reset(bio);
306 bio->bi_bdev = ca->bdev;
307 bio->bi_end_io = write_super_endio;
308 bio->bi_private = ca;
309
310 closure_get(cl);
311 __write_super(&ca->sb, bio);
312 }
313
314 closure_return_with_destructor(cl, bcache_write_super_unlock);
315 }
316
317 /* UUID io */
318
319 static void uuid_endio(struct bio *bio)
320 {
321 struct closure *cl = bio->bi_private;
322 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
323
324 cache_set_err_on(bio->bi_error, c, "accessing uuids");
325 bch_bbio_free(bio, c);
326 closure_put(cl);
327 }
328
329 static void uuid_io_unlock(struct closure *cl)
330 {
331 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
332
333 up(&c->uuid_write_mutex);
334 }
335
336 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
337 struct bkey *k, struct closure *parent)
338 {
339 struct closure *cl = &c->uuid_write;
340 struct uuid_entry *u;
341 unsigned i;
342 char buf[80];
343
344 BUG_ON(!parent);
345 down(&c->uuid_write_mutex);
346 closure_init(cl, parent);
347
348 for (i = 0; i < KEY_PTRS(k); i++) {
349 struct bio *bio = bch_bbio_alloc(c);
350
351 bio->bi_rw = REQ_SYNC|REQ_META|op_flags;
352 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
353
354 bio->bi_end_io = uuid_endio;
355 bio->bi_private = cl;
356 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
357 bch_bio_map(bio, c->uuids);
358
359 bch_submit_bbio(bio, c, k, i);
360
361 if (op != REQ_OP_WRITE)
362 break;
363 }
364
365 bch_extent_to_text(buf, sizeof(buf), k);
366 pr_debug("%s UUIDs at %s", op == REQ_OP_WRITE ? "wrote" : "read", buf);
367
368 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
369 if (!bch_is_zero(u->uuid, 16))
370 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
371 u - c->uuids, u->uuid, u->label,
372 u->first_reg, u->last_reg, u->invalidated);
373
374 closure_return_with_destructor(cl, uuid_io_unlock);
375 }
376
377 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
378 {
379 struct bkey *k = &j->uuid_bucket;
380
381 if (__bch_btree_ptr_invalid(c, k))
382 return "bad uuid pointer";
383
384 bkey_copy(&c->uuid_bucket, k);
385 uuid_io(c, REQ_OP_READ, READ_SYNC, k, cl);
386
387 if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
388 struct uuid_entry_v0 *u0 = (void *) c->uuids;
389 struct uuid_entry *u1 = (void *) c->uuids;
390 int i;
391
392 closure_sync(cl);
393
394 /*
395 * Since the new uuid entry is bigger than the old, we have to
396 * convert starting at the highest memory address and work down
397 * in order to do it in place
398 */
399
400 for (i = c->nr_uuids - 1;
401 i >= 0;
402 --i) {
403 memcpy(u1[i].uuid, u0[i].uuid, 16);
404 memcpy(u1[i].label, u0[i].label, 32);
405
406 u1[i].first_reg = u0[i].first_reg;
407 u1[i].last_reg = u0[i].last_reg;
408 u1[i].invalidated = u0[i].invalidated;
409
410 u1[i].flags = 0;
411 u1[i].sectors = 0;
412 }
413 }
414
415 return NULL;
416 }
417
418 static int __uuid_write(struct cache_set *c)
419 {
420 BKEY_PADDED(key) k;
421 struct closure cl;
422 closure_init_stack(&cl);
423
424 lockdep_assert_held(&bch_register_lock);
425
426 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
427 return 1;
428
429 SET_KEY_SIZE(&k.key, c->sb.bucket_size);
430 uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
431 closure_sync(&cl);
432
433 bkey_copy(&c->uuid_bucket, &k.key);
434 bkey_put(c, &k.key);
435 return 0;
436 }
437
438 int bch_uuid_write(struct cache_set *c)
439 {
440 int ret = __uuid_write(c);
441
442 if (!ret)
443 bch_journal_meta(c, NULL);
444
445 return ret;
446 }
447
448 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
449 {
450 struct uuid_entry *u;
451
452 for (u = c->uuids;
453 u < c->uuids + c->nr_uuids; u++)
454 if (!memcmp(u->uuid, uuid, 16))
455 return u;
456
457 return NULL;
458 }
459
460 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
461 {
462 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
463 return uuid_find(c, zero_uuid);
464 }
465
466 /*
467 * Bucket priorities/gens:
468 *
469 * For each bucket, we store on disk its
470 * 8 bit gen
471 * 16 bit priority
472 *
473 * See alloc.c for an explanation of the gen. The priority is used to implement
474 * lru (and in the future other) cache replacement policies; for most purposes
475 * it's just an opaque integer.
476 *
477 * The gens and the priorities don't have a whole lot to do with each other, and
478 * it's actually the gens that must be written out at specific times - it's no
479 * big deal if the priorities don't get written, if we lose them we just reuse
480 * buckets in suboptimal order.
481 *
482 * On disk they're stored in a packed array, and in as many buckets are required
483 * to fit them all. The buckets we use to store them form a list; the journal
484 * header points to the first bucket, the first bucket points to the second
485 * bucket, et cetera.
486 *
487 * This code is used by the allocation code; periodically (whenever it runs out
488 * of buckets to allocate from) the allocation code will invalidate some
489 * buckets, but it can't use those buckets until their new gens are safely on
490 * disk.
491 */
492
493 static void prio_endio(struct bio *bio)
494 {
495 struct cache *ca = bio->bi_private;
496
497 cache_set_err_on(bio->bi_error, ca->set, "accessing priorities");
498 bch_bbio_free(bio, ca->set);
499 closure_put(&ca->prio);
500 }
501
502 static void prio_io(struct cache *ca, uint64_t bucket, int op,
503 unsigned long op_flags)
504 {
505 struct closure *cl = &ca->prio;
506 struct bio *bio = bch_bbio_alloc(ca->set);
507
508 closure_init_stack(cl);
509
510 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size;
511 bio->bi_bdev = ca->bdev;
512 bio->bi_iter.bi_size = bucket_bytes(ca);
513
514 bio->bi_end_io = prio_endio;
515 bio->bi_private = ca;
516 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
517 bch_bio_map(bio, ca->disk_buckets);
518
519 closure_bio_submit(bio, &ca->prio);
520 closure_sync(cl);
521 }
522
523 void bch_prio_write(struct cache *ca)
524 {
525 int i;
526 struct bucket *b;
527 struct closure cl;
528
529 closure_init_stack(&cl);
530
531 lockdep_assert_held(&ca->set->bucket_lock);
532
533 ca->disk_buckets->seq++;
534
535 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
536 &ca->meta_sectors_written);
537
538 //pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
539 // fifo_used(&ca->free_inc), fifo_used(&ca->unused));
540
541 for (i = prio_buckets(ca) - 1; i >= 0; --i) {
542 long bucket;
543 struct prio_set *p = ca->disk_buckets;
544 struct bucket_disk *d = p->data;
545 struct bucket_disk *end = d + prios_per_bucket(ca);
546
547 for (b = ca->buckets + i * prios_per_bucket(ca);
548 b < ca->buckets + ca->sb.nbuckets && d < end;
549 b++, d++) {
550 d->prio = cpu_to_le16(b->prio);
551 d->gen = b->gen;
552 }
553
554 p->next_bucket = ca->prio_buckets[i + 1];
555 p->magic = pset_magic(&ca->sb);
556 p->csum = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
557
558 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
559 BUG_ON(bucket == -1);
560
561 mutex_unlock(&ca->set->bucket_lock);
562 prio_io(ca, bucket, REQ_OP_WRITE, 0);
563 mutex_lock(&ca->set->bucket_lock);
564
565 ca->prio_buckets[i] = bucket;
566 atomic_dec_bug(&ca->buckets[bucket].pin);
567 }
568
569 mutex_unlock(&ca->set->bucket_lock);
570
571 bch_journal_meta(ca->set, &cl);
572 closure_sync(&cl);
573
574 mutex_lock(&ca->set->bucket_lock);
575
576 /*
577 * Don't want the old priorities to get garbage collected until after we
578 * finish writing the new ones, and they're journalled
579 */
580 for (i = 0; i < prio_buckets(ca); i++) {
581 if (ca->prio_last_buckets[i])
582 __bch_bucket_free(ca,
583 &ca->buckets[ca->prio_last_buckets[i]]);
584
585 ca->prio_last_buckets[i] = ca->prio_buckets[i];
586 }
587 }
588
589 static void prio_read(struct cache *ca, uint64_t bucket)
590 {
591 struct prio_set *p = ca->disk_buckets;
592 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
593 struct bucket *b;
594 unsigned bucket_nr = 0;
595
596 for (b = ca->buckets;
597 b < ca->buckets + ca->sb.nbuckets;
598 b++, d++) {
599 if (d == end) {
600 ca->prio_buckets[bucket_nr] = bucket;
601 ca->prio_last_buckets[bucket_nr] = bucket;
602 bucket_nr++;
603
604 prio_io(ca, bucket, REQ_OP_READ, READ_SYNC);
605
606 if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
607 pr_warn("bad csum reading priorities");
608
609 if (p->magic != pset_magic(&ca->sb))
610 pr_warn("bad magic reading priorities");
611
612 bucket = p->next_bucket;
613 d = p->data;
614 }
615
616 b->prio = le16_to_cpu(d->prio);
617 b->gen = b->last_gc = d->gen;
618 }
619 }
620
621 /* Bcache device */
622
623 static int open_dev(struct block_device *b, fmode_t mode)
624 {
625 struct bcache_device *d = b->bd_disk->private_data;
626 if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
627 return -ENXIO;
628
629 closure_get(&d->cl);
630 return 0;
631 }
632
633 static void release_dev(struct gendisk *b, fmode_t mode)
634 {
635 struct bcache_device *d = b->private_data;
636 closure_put(&d->cl);
637 }
638
639 static int ioctl_dev(struct block_device *b, fmode_t mode,
640 unsigned int cmd, unsigned long arg)
641 {
642 struct bcache_device *d = b->bd_disk->private_data;
643 return d->ioctl(d, mode, cmd, arg);
644 }
645
646 static const struct block_device_operations bcache_ops = {
647 .open = open_dev,
648 .release = release_dev,
649 .ioctl = ioctl_dev,
650 .owner = THIS_MODULE,
651 };
652
653 void bcache_device_stop(struct bcache_device *d)
654 {
655 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
656 closure_queue(&d->cl);
657 }
658
659 static void bcache_device_unlink(struct bcache_device *d)
660 {
661 lockdep_assert_held(&bch_register_lock);
662
663 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
664 unsigned i;
665 struct cache *ca;
666
667 sysfs_remove_link(&d->c->kobj, d->name);
668 sysfs_remove_link(&d->kobj, "cache");
669
670 for_each_cache(ca, d->c, i)
671 bd_unlink_disk_holder(ca->bdev, d->disk);
672 }
673 }
674
675 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
676 const char *name)
677 {
678 unsigned i;
679 struct cache *ca;
680
681 for_each_cache(ca, d->c, i)
682 bd_link_disk_holder(ca->bdev, d->disk);
683
684 snprintf(d->name, BCACHEDEVNAME_SIZE,
685 "%s%u", name, d->id);
686
687 WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
688 sysfs_create_link(&c->kobj, &d->kobj, d->name),
689 "Couldn't create device <-> cache set symlinks");
690
691 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
692 }
693
694 static void bcache_device_detach(struct bcache_device *d)
695 {
696 lockdep_assert_held(&bch_register_lock);
697
698 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
699 struct uuid_entry *u = d->c->uuids + d->id;
700
701 SET_UUID_FLASH_ONLY(u, 0);
702 memcpy(u->uuid, invalid_uuid, 16);
703 u->invalidated = cpu_to_le32(get_seconds());
704 bch_uuid_write(d->c);
705 }
706
707 bcache_device_unlink(d);
708
709 d->c->devices[d->id] = NULL;
710 closure_put(&d->c->caching);
711 d->c = NULL;
712 }
713
714 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
715 unsigned id)
716 {
717 d->id = id;
718 d->c = c;
719 c->devices[id] = d;
720
721 closure_get(&c->caching);
722 }
723
724 static void bcache_device_free(struct bcache_device *d)
725 {
726 lockdep_assert_held(&bch_register_lock);
727
728 pr_info("%s stopped", d->disk->disk_name);
729
730 if (d->c)
731 bcache_device_detach(d);
732 if (d->disk && d->disk->flags & GENHD_FL_UP)
733 del_gendisk(d->disk);
734 if (d->disk && d->disk->queue)
735 blk_cleanup_queue(d->disk->queue);
736 if (d->disk) {
737 ida_simple_remove(&bcache_minor, d->disk->first_minor);
738 put_disk(d->disk);
739 }
740
741 if (d->bio_split)
742 bioset_free(d->bio_split);
743 kvfree(d->full_dirty_stripes);
744 kvfree(d->stripe_sectors_dirty);
745
746 closure_debug_destroy(&d->cl);
747 }
748
749 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
750 sector_t sectors)
751 {
752 struct request_queue *q;
753 size_t n;
754 int minor;
755
756 if (!d->stripe_size)
757 d->stripe_size = 1 << 31;
758
759 d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
760
761 if (!d->nr_stripes ||
762 d->nr_stripes > INT_MAX ||
763 d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
764 pr_err("nr_stripes too large");
765 return -ENOMEM;
766 }
767
768 n = d->nr_stripes * sizeof(atomic_t);
769 d->stripe_sectors_dirty = n < PAGE_SIZE << 6
770 ? kzalloc(n, GFP_KERNEL)
771 : vzalloc(n);
772 if (!d->stripe_sectors_dirty)
773 return -ENOMEM;
774
775 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
776 d->full_dirty_stripes = n < PAGE_SIZE << 6
777 ? kzalloc(n, GFP_KERNEL)
778 : vzalloc(n);
779 if (!d->full_dirty_stripes)
780 return -ENOMEM;
781
782 minor = ida_simple_get(&bcache_minor, 0, MINORMASK + 1, GFP_KERNEL);
783 if (minor < 0)
784 return minor;
785
786 if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
787 !(d->disk = alloc_disk(1))) {
788 ida_simple_remove(&bcache_minor, minor);
789 return -ENOMEM;
790 }
791
792 set_capacity(d->disk, sectors);
793 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", minor);
794
795 d->disk->major = bcache_major;
796 d->disk->first_minor = minor;
797 d->disk->fops = &bcache_ops;
798 d->disk->private_data = d;
799
800 q = blk_alloc_queue(GFP_KERNEL);
801 if (!q)
802 return -ENOMEM;
803
804 blk_queue_make_request(q, NULL);
805 d->disk->queue = q;
806 q->queuedata = d;
807 q->backing_dev_info.congested_data = d;
808 q->limits.max_hw_sectors = UINT_MAX;
809 q->limits.max_sectors = UINT_MAX;
810 q->limits.max_segment_size = UINT_MAX;
811 q->limits.max_segments = BIO_MAX_PAGES;
812 blk_queue_max_discard_sectors(q, UINT_MAX);
813 q->limits.discard_granularity = 512;
814 q->limits.io_min = block_size;
815 q->limits.logical_block_size = block_size;
816 q->limits.physical_block_size = block_size;
817 set_bit(QUEUE_FLAG_NONROT, &d->disk->queue->queue_flags);
818 clear_bit(QUEUE_FLAG_ADD_RANDOM, &d->disk->queue->queue_flags);
819 set_bit(QUEUE_FLAG_DISCARD, &d->disk->queue->queue_flags);
820
821 blk_queue_write_cache(q, true, true);
822
823 return 0;
824 }
825
826 /* Cached device */
827
828 static void calc_cached_dev_sectors(struct cache_set *c)
829 {
830 uint64_t sectors = 0;
831 struct cached_dev *dc;
832
833 list_for_each_entry(dc, &c->cached_devs, list)
834 sectors += bdev_sectors(dc->bdev);
835
836 c->cached_dev_sectors = sectors;
837 }
838
839 void bch_cached_dev_run(struct cached_dev *dc)
840 {
841 struct bcache_device *d = &dc->disk;
842 char buf[SB_LABEL_SIZE + 1];
843 char *env[] = {
844 "DRIVER=bcache",
845 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
846 NULL,
847 NULL,
848 };
849
850 memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
851 buf[SB_LABEL_SIZE] = '\0';
852 env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
853
854 if (atomic_xchg(&dc->running, 1)) {
855 kfree(env[1]);
856 kfree(env[2]);
857 return;
858 }
859
860 if (!d->c &&
861 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
862 struct closure cl;
863 closure_init_stack(&cl);
864
865 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
866 bch_write_bdev_super(dc, &cl);
867 closure_sync(&cl);
868 }
869
870 add_disk(d->disk);
871 bd_link_disk_holder(dc->bdev, dc->disk.disk);
872 /* won't show up in the uevent file, use udevadm monitor -e instead
873 * only class / kset properties are persistent */
874 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
875 kfree(env[1]);
876 kfree(env[2]);
877
878 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
879 sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
880 pr_debug("error creating sysfs link");
881 }
882
883 static void cached_dev_detach_finish(struct work_struct *w)
884 {
885 struct cached_dev *dc = container_of(w, struct cached_dev, detach);
886 char buf[BDEVNAME_SIZE];
887 struct closure cl;
888 closure_init_stack(&cl);
889
890 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
891 BUG_ON(atomic_read(&dc->count));
892
893 mutex_lock(&bch_register_lock);
894
895 memset(&dc->sb.set_uuid, 0, 16);
896 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
897
898 bch_write_bdev_super(dc, &cl);
899 closure_sync(&cl);
900
901 bcache_device_detach(&dc->disk);
902 list_move(&dc->list, &uncached_devices);
903
904 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
905 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
906
907 mutex_unlock(&bch_register_lock);
908
909 pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
910
911 /* Drop ref we took in cached_dev_detach() */
912 closure_put(&dc->disk.cl);
913 }
914
915 void bch_cached_dev_detach(struct cached_dev *dc)
916 {
917 lockdep_assert_held(&bch_register_lock);
918
919 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
920 return;
921
922 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
923 return;
924
925 /*
926 * Block the device from being closed and freed until we're finished
927 * detaching
928 */
929 closure_get(&dc->disk.cl);
930
931 bch_writeback_queue(dc);
932 cached_dev_put(dc);
933 }
934
935 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
936 {
937 uint32_t rtime = cpu_to_le32(get_seconds());
938 struct uuid_entry *u;
939 char buf[BDEVNAME_SIZE];
940
941 bdevname(dc->bdev, buf);
942
943 if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
944 return -ENOENT;
945
946 if (dc->disk.c) {
947 pr_err("Can't attach %s: already attached", buf);
948 return -EINVAL;
949 }
950
951 if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
952 pr_err("Can't attach %s: shutting down", buf);
953 return -EINVAL;
954 }
955
956 if (dc->sb.block_size < c->sb.block_size) {
957 /* Will die */
958 pr_err("Couldn't attach %s: block size less than set's block size",
959 buf);
960 return -EINVAL;
961 }
962
963 u = uuid_find(c, dc->sb.uuid);
964
965 if (u &&
966 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
967 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
968 memcpy(u->uuid, invalid_uuid, 16);
969 u->invalidated = cpu_to_le32(get_seconds());
970 u = NULL;
971 }
972
973 if (!u) {
974 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
975 pr_err("Couldn't find uuid for %s in set", buf);
976 return -ENOENT;
977 }
978
979 u = uuid_find_empty(c);
980 if (!u) {
981 pr_err("Not caching %s, no room for UUID", buf);
982 return -EINVAL;
983 }
984 }
985
986 /* Deadlocks since we're called via sysfs...
987 sysfs_remove_file(&dc->kobj, &sysfs_attach);
988 */
989
990 if (bch_is_zero(u->uuid, 16)) {
991 struct closure cl;
992 closure_init_stack(&cl);
993
994 memcpy(u->uuid, dc->sb.uuid, 16);
995 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
996 u->first_reg = u->last_reg = rtime;
997 bch_uuid_write(c);
998
999 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1000 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1001
1002 bch_write_bdev_super(dc, &cl);
1003 closure_sync(&cl);
1004 } else {
1005 u->last_reg = rtime;
1006 bch_uuid_write(c);
1007 }
1008
1009 bcache_device_attach(&dc->disk, c, u - c->uuids);
1010 list_move(&dc->list, &c->cached_devs);
1011 calc_cached_dev_sectors(c);
1012
1013 smp_wmb();
1014 /*
1015 * dc->c must be set before dc->count != 0 - paired with the mb in
1016 * cached_dev_get()
1017 */
1018 atomic_set(&dc->count, 1);
1019
1020 /* Block writeback thread, but spawn it */
1021 down_write(&dc->writeback_lock);
1022 if (bch_cached_dev_writeback_start(dc)) {
1023 up_write(&dc->writeback_lock);
1024 return -ENOMEM;
1025 }
1026
1027 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1028 bch_sectors_dirty_init(dc);
1029 atomic_set(&dc->has_dirty, 1);
1030 atomic_inc(&dc->count);
1031 bch_writeback_queue(dc);
1032 }
1033
1034 bch_cached_dev_run(dc);
1035 bcache_device_link(&dc->disk, c, "bdev");
1036
1037 /* Allow the writeback thread to proceed */
1038 up_write(&dc->writeback_lock);
1039
1040 pr_info("Caching %s as %s on set %pU",
1041 bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1042 dc->disk.c->sb.set_uuid);
1043 return 0;
1044 }
1045
1046 void bch_cached_dev_release(struct kobject *kobj)
1047 {
1048 struct cached_dev *dc = container_of(kobj, struct cached_dev,
1049 disk.kobj);
1050 kfree(dc);
1051 module_put(THIS_MODULE);
1052 }
1053
1054 static void cached_dev_free(struct closure *cl)
1055 {
1056 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1057
1058 cancel_delayed_work_sync(&dc->writeback_rate_update);
1059 if (!IS_ERR_OR_NULL(dc->writeback_thread))
1060 kthread_stop(dc->writeback_thread);
1061
1062 mutex_lock(&bch_register_lock);
1063
1064 if (atomic_read(&dc->running))
1065 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1066 bcache_device_free(&dc->disk);
1067 list_del(&dc->list);
1068
1069 mutex_unlock(&bch_register_lock);
1070
1071 if (!IS_ERR_OR_NULL(dc->bdev))
1072 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1073
1074 wake_up(&unregister_wait);
1075
1076 kobject_put(&dc->disk.kobj);
1077 }
1078
1079 static void cached_dev_flush(struct closure *cl)
1080 {
1081 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1082 struct bcache_device *d = &dc->disk;
1083
1084 mutex_lock(&bch_register_lock);
1085 bcache_device_unlink(d);
1086 mutex_unlock(&bch_register_lock);
1087
1088 bch_cache_accounting_destroy(&dc->accounting);
1089 kobject_del(&d->kobj);
1090
1091 continue_at(cl, cached_dev_free, system_wq);
1092 }
1093
1094 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1095 {
1096 int ret;
1097 struct io *io;
1098 struct request_queue *q = bdev_get_queue(dc->bdev);
1099
1100 __module_get(THIS_MODULE);
1101 INIT_LIST_HEAD(&dc->list);
1102 closure_init(&dc->disk.cl, NULL);
1103 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1104 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1105 INIT_WORK(&dc->detach, cached_dev_detach_finish);
1106 sema_init(&dc->sb_write_mutex, 1);
1107 INIT_LIST_HEAD(&dc->io_lru);
1108 spin_lock_init(&dc->io_lock);
1109 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1110
1111 dc->sequential_cutoff = 4 << 20;
1112
1113 for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1114 list_add(&io->lru, &dc->io_lru);
1115 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1116 }
1117
1118 dc->disk.stripe_size = q->limits.io_opt >> 9;
1119
1120 if (dc->disk.stripe_size)
1121 dc->partial_stripes_expensive =
1122 q->limits.raid_partial_stripes_expensive;
1123
1124 ret = bcache_device_init(&dc->disk, block_size,
1125 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1126 if (ret)
1127 return ret;
1128
1129 set_capacity(dc->disk.disk,
1130 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1131
1132 dc->disk.disk->queue->backing_dev_info.ra_pages =
1133 max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1134 q->backing_dev_info.ra_pages);
1135
1136 bch_cached_dev_request_init(dc);
1137 bch_cached_dev_writeback_init(dc);
1138 return 0;
1139 }
1140
1141 /* Cached device - bcache superblock */
1142
1143 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1144 struct block_device *bdev,
1145 struct cached_dev *dc)
1146 {
1147 char name[BDEVNAME_SIZE];
1148 const char *err = "cannot allocate memory";
1149 struct cache_set *c;
1150
1151 memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1152 dc->bdev = bdev;
1153 dc->bdev->bd_holder = dc;
1154
1155 bio_init(&dc->sb_bio);
1156 dc->sb_bio.bi_max_vecs = 1;
1157 dc->sb_bio.bi_io_vec = dc->sb_bio.bi_inline_vecs;
1158 dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1159 get_page(sb_page);
1160
1161 if (cached_dev_init(dc, sb->block_size << 9))
1162 goto err;
1163
1164 err = "error creating kobject";
1165 if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1166 "bcache"))
1167 goto err;
1168 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1169 goto err;
1170
1171 pr_info("registered backing device %s", bdevname(bdev, name));
1172
1173 list_add(&dc->list, &uncached_devices);
1174 list_for_each_entry(c, &bch_cache_sets, list)
1175 bch_cached_dev_attach(dc, c);
1176
1177 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1178 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1179 bch_cached_dev_run(dc);
1180
1181 return;
1182 err:
1183 pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1184 bcache_device_stop(&dc->disk);
1185 }
1186
1187 /* Flash only volumes */
1188
1189 void bch_flash_dev_release(struct kobject *kobj)
1190 {
1191 struct bcache_device *d = container_of(kobj, struct bcache_device,
1192 kobj);
1193 kfree(d);
1194 }
1195
1196 static void flash_dev_free(struct closure *cl)
1197 {
1198 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1199 mutex_lock(&bch_register_lock);
1200 bcache_device_free(d);
1201 mutex_unlock(&bch_register_lock);
1202 kobject_put(&d->kobj);
1203 }
1204
1205 static void flash_dev_flush(struct closure *cl)
1206 {
1207 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1208
1209 mutex_lock(&bch_register_lock);
1210 bcache_device_unlink(d);
1211 mutex_unlock(&bch_register_lock);
1212 kobject_del(&d->kobj);
1213 continue_at(cl, flash_dev_free, system_wq);
1214 }
1215
1216 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1217 {
1218 struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1219 GFP_KERNEL);
1220 if (!d)
1221 return -ENOMEM;
1222
1223 closure_init(&d->cl, NULL);
1224 set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1225
1226 kobject_init(&d->kobj, &bch_flash_dev_ktype);
1227
1228 if (bcache_device_init(d, block_bytes(c), u->sectors))
1229 goto err;
1230
1231 bcache_device_attach(d, c, u - c->uuids);
1232 bch_flash_dev_request_init(d);
1233 add_disk(d->disk);
1234
1235 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1236 goto err;
1237
1238 bcache_device_link(d, c, "volume");
1239
1240 return 0;
1241 err:
1242 kobject_put(&d->kobj);
1243 return -ENOMEM;
1244 }
1245
1246 static int flash_devs_run(struct cache_set *c)
1247 {
1248 int ret = 0;
1249 struct uuid_entry *u;
1250
1251 for (u = c->uuids;
1252 u < c->uuids + c->nr_uuids && !ret;
1253 u++)
1254 if (UUID_FLASH_ONLY(u))
1255 ret = flash_dev_run(c, u);
1256
1257 return ret;
1258 }
1259
1260 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1261 {
1262 struct uuid_entry *u;
1263
1264 if (test_bit(CACHE_SET_STOPPING, &c->flags))
1265 return -EINTR;
1266
1267 if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1268 return -EPERM;
1269
1270 u = uuid_find_empty(c);
1271 if (!u) {
1272 pr_err("Can't create volume, no room for UUID");
1273 return -EINVAL;
1274 }
1275
1276 get_random_bytes(u->uuid, 16);
1277 memset(u->label, 0, 32);
1278 u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1279
1280 SET_UUID_FLASH_ONLY(u, 1);
1281 u->sectors = size >> 9;
1282
1283 bch_uuid_write(c);
1284
1285 return flash_dev_run(c, u);
1286 }
1287
1288 /* Cache set */
1289
1290 __printf(2, 3)
1291 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1292 {
1293 va_list args;
1294
1295 if (c->on_error != ON_ERROR_PANIC &&
1296 test_bit(CACHE_SET_STOPPING, &c->flags))
1297 return false;
1298
1299 /* XXX: we can be called from atomic context
1300 acquire_console_sem();
1301 */
1302
1303 printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1304
1305 va_start(args, fmt);
1306 vprintk(fmt, args);
1307 va_end(args);
1308
1309 printk(", disabling caching\n");
1310
1311 if (c->on_error == ON_ERROR_PANIC)
1312 panic("panic forced after error\n");
1313
1314 bch_cache_set_unregister(c);
1315 return true;
1316 }
1317
1318 void bch_cache_set_release(struct kobject *kobj)
1319 {
1320 struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1321 kfree(c);
1322 module_put(THIS_MODULE);
1323 }
1324
1325 static void cache_set_free(struct closure *cl)
1326 {
1327 struct cache_set *c = container_of(cl, struct cache_set, cl);
1328 struct cache *ca;
1329 unsigned i;
1330
1331 if (!IS_ERR_OR_NULL(c->debug))
1332 debugfs_remove(c->debug);
1333
1334 bch_open_buckets_free(c);
1335 bch_btree_cache_free(c);
1336 bch_journal_free(c);
1337
1338 for_each_cache(ca, c, i)
1339 if (ca) {
1340 ca->set = NULL;
1341 c->cache[ca->sb.nr_this_dev] = NULL;
1342 kobject_put(&ca->kobj);
1343 }
1344
1345 bch_bset_sort_state_free(&c->sort);
1346 free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1347
1348 if (c->moving_gc_wq)
1349 destroy_workqueue(c->moving_gc_wq);
1350 if (c->bio_split)
1351 bioset_free(c->bio_split);
1352 if (c->fill_iter)
1353 mempool_destroy(c->fill_iter);
1354 if (c->bio_meta)
1355 mempool_destroy(c->bio_meta);
1356 if (c->search)
1357 mempool_destroy(c->search);
1358 kfree(c->devices);
1359
1360 mutex_lock(&bch_register_lock);
1361 list_del(&c->list);
1362 mutex_unlock(&bch_register_lock);
1363
1364 pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1365 wake_up(&unregister_wait);
1366
1367 closure_debug_destroy(&c->cl);
1368 kobject_put(&c->kobj);
1369 }
1370
1371 static void cache_set_flush(struct closure *cl)
1372 {
1373 struct cache_set *c = container_of(cl, struct cache_set, caching);
1374 struct cache *ca;
1375 struct btree *b;
1376 unsigned i;
1377
1378 if (!c)
1379 closure_return(cl);
1380
1381 bch_cache_accounting_destroy(&c->accounting);
1382
1383 kobject_put(&c->internal);
1384 kobject_del(&c->kobj);
1385
1386 if (c->gc_thread)
1387 kthread_stop(c->gc_thread);
1388
1389 if (!IS_ERR_OR_NULL(c->root))
1390 list_add(&c->root->list, &c->btree_cache);
1391
1392 /* Should skip this if we're unregistering because of an error */
1393 list_for_each_entry(b, &c->btree_cache, list) {
1394 mutex_lock(&b->write_lock);
1395 if (btree_node_dirty(b))
1396 __bch_btree_node_write(b, NULL);
1397 mutex_unlock(&b->write_lock);
1398 }
1399
1400 for_each_cache(ca, c, i)
1401 if (ca->alloc_thread)
1402 kthread_stop(ca->alloc_thread);
1403
1404 if (c->journal.cur) {
1405 cancel_delayed_work_sync(&c->journal.work);
1406 /* flush last journal entry if needed */
1407 c->journal.work.work.func(&c->journal.work.work);
1408 }
1409
1410 closure_return(cl);
1411 }
1412
1413 static void __cache_set_unregister(struct closure *cl)
1414 {
1415 struct cache_set *c = container_of(cl, struct cache_set, caching);
1416 struct cached_dev *dc;
1417 size_t i;
1418
1419 mutex_lock(&bch_register_lock);
1420
1421 for (i = 0; i < c->nr_uuids; i++)
1422 if (c->devices[i]) {
1423 if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1424 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1425 dc = container_of(c->devices[i],
1426 struct cached_dev, disk);
1427 bch_cached_dev_detach(dc);
1428 } else {
1429 bcache_device_stop(c->devices[i]);
1430 }
1431 }
1432
1433 mutex_unlock(&bch_register_lock);
1434
1435 continue_at(cl, cache_set_flush, system_wq);
1436 }
1437
1438 void bch_cache_set_stop(struct cache_set *c)
1439 {
1440 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1441 closure_queue(&c->caching);
1442 }
1443
1444 void bch_cache_set_unregister(struct cache_set *c)
1445 {
1446 set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1447 bch_cache_set_stop(c);
1448 }
1449
1450 #define alloc_bucket_pages(gfp, c) \
1451 ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1452
1453 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1454 {
1455 int iter_size;
1456 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1457 if (!c)
1458 return NULL;
1459
1460 __module_get(THIS_MODULE);
1461 closure_init(&c->cl, NULL);
1462 set_closure_fn(&c->cl, cache_set_free, system_wq);
1463
1464 closure_init(&c->caching, &c->cl);
1465 set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1466
1467 /* Maybe create continue_at_noreturn() and use it here? */
1468 closure_set_stopped(&c->cl);
1469 closure_put(&c->cl);
1470
1471 kobject_init(&c->kobj, &bch_cache_set_ktype);
1472 kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1473
1474 bch_cache_accounting_init(&c->accounting, &c->cl);
1475
1476 memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1477 c->sb.block_size = sb->block_size;
1478 c->sb.bucket_size = sb->bucket_size;
1479 c->sb.nr_in_set = sb->nr_in_set;
1480 c->sb.last_mount = sb->last_mount;
1481 c->bucket_bits = ilog2(sb->bucket_size);
1482 c->block_bits = ilog2(sb->block_size);
1483 c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry);
1484
1485 c->btree_pages = bucket_pages(c);
1486 if (c->btree_pages > BTREE_MAX_PAGES)
1487 c->btree_pages = max_t(int, c->btree_pages / 4,
1488 BTREE_MAX_PAGES);
1489
1490 sema_init(&c->sb_write_mutex, 1);
1491 mutex_init(&c->bucket_lock);
1492 init_waitqueue_head(&c->btree_cache_wait);
1493 init_waitqueue_head(&c->bucket_wait);
1494 sema_init(&c->uuid_write_mutex, 1);
1495
1496 spin_lock_init(&c->btree_gc_time.lock);
1497 spin_lock_init(&c->btree_split_time.lock);
1498 spin_lock_init(&c->btree_read_time.lock);
1499
1500 bch_moving_init_cache_set(c);
1501
1502 INIT_LIST_HEAD(&c->list);
1503 INIT_LIST_HEAD(&c->cached_devs);
1504 INIT_LIST_HEAD(&c->btree_cache);
1505 INIT_LIST_HEAD(&c->btree_cache_freeable);
1506 INIT_LIST_HEAD(&c->btree_cache_freed);
1507 INIT_LIST_HEAD(&c->data_buckets);
1508
1509 c->search = mempool_create_slab_pool(32, bch_search_cache);
1510 if (!c->search)
1511 goto err;
1512
1513 iter_size = (sb->bucket_size / sb->block_size + 1) *
1514 sizeof(struct btree_iter_set);
1515
1516 if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1517 !(c->bio_meta = mempool_create_kmalloc_pool(2,
1518 sizeof(struct bbio) + sizeof(struct bio_vec) *
1519 bucket_pages(c))) ||
1520 !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1521 !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1522 !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1523 !(c->moving_gc_wq = alloc_workqueue("bcache_gc",
1524 WQ_MEM_RECLAIM, 0)) ||
1525 bch_journal_alloc(c) ||
1526 bch_btree_cache_alloc(c) ||
1527 bch_open_buckets_alloc(c) ||
1528 bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1529 goto err;
1530
1531 c->congested_read_threshold_us = 2000;
1532 c->congested_write_threshold_us = 20000;
1533 c->error_limit = 8 << IO_ERROR_SHIFT;
1534
1535 return c;
1536 err:
1537 bch_cache_set_unregister(c);
1538 return NULL;
1539 }
1540
1541 static void run_cache_set(struct cache_set *c)
1542 {
1543 const char *err = "cannot allocate memory";
1544 struct cached_dev *dc, *t;
1545 struct cache *ca;
1546 struct closure cl;
1547 unsigned i;
1548
1549 closure_init_stack(&cl);
1550
1551 for_each_cache(ca, c, i)
1552 c->nbuckets += ca->sb.nbuckets;
1553
1554 if (CACHE_SYNC(&c->sb)) {
1555 LIST_HEAD(journal);
1556 struct bkey *k;
1557 struct jset *j;
1558
1559 err = "cannot allocate memory for journal";
1560 if (bch_journal_read(c, &journal))
1561 goto err;
1562
1563 pr_debug("btree_journal_read() done");
1564
1565 err = "no journal entries found";
1566 if (list_empty(&journal))
1567 goto err;
1568
1569 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1570
1571 err = "IO error reading priorities";
1572 for_each_cache(ca, c, i)
1573 prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1574
1575 /*
1576 * If prio_read() fails it'll call cache_set_error and we'll
1577 * tear everything down right away, but if we perhaps checked
1578 * sooner we could avoid journal replay.
1579 */
1580
1581 k = &j->btree_root;
1582
1583 err = "bad btree root";
1584 if (__bch_btree_ptr_invalid(c, k))
1585 goto err;
1586
1587 err = "error reading btree root";
1588 c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true, NULL);
1589 if (IS_ERR_OR_NULL(c->root))
1590 goto err;
1591
1592 list_del_init(&c->root->list);
1593 rw_unlock(true, c->root);
1594
1595 err = uuid_read(c, j, &cl);
1596 if (err)
1597 goto err;
1598
1599 err = "error in recovery";
1600 if (bch_btree_check(c))
1601 goto err;
1602
1603 bch_journal_mark(c, &journal);
1604 bch_initial_gc_finish(c);
1605 pr_debug("btree_check() done");
1606
1607 /*
1608 * bcache_journal_next() can't happen sooner, or
1609 * btree_gc_finish() will give spurious errors about last_gc >
1610 * gc_gen - this is a hack but oh well.
1611 */
1612 bch_journal_next(&c->journal);
1613
1614 err = "error starting allocator thread";
1615 for_each_cache(ca, c, i)
1616 if (bch_cache_allocator_start(ca))
1617 goto err;
1618
1619 /*
1620 * First place it's safe to allocate: btree_check() and
1621 * btree_gc_finish() have to run before we have buckets to
1622 * allocate, and bch_bucket_alloc_set() might cause a journal
1623 * entry to be written so bcache_journal_next() has to be called
1624 * first.
1625 *
1626 * If the uuids were in the old format we have to rewrite them
1627 * before the next journal entry is written:
1628 */
1629 if (j->version < BCACHE_JSET_VERSION_UUID)
1630 __uuid_write(c);
1631
1632 bch_journal_replay(c, &journal);
1633 } else {
1634 pr_notice("invalidating existing data");
1635
1636 for_each_cache(ca, c, i) {
1637 unsigned j;
1638
1639 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1640 2, SB_JOURNAL_BUCKETS);
1641
1642 for (j = 0; j < ca->sb.keys; j++)
1643 ca->sb.d[j] = ca->sb.first_bucket + j;
1644 }
1645
1646 bch_initial_gc_finish(c);
1647
1648 err = "error starting allocator thread";
1649 for_each_cache(ca, c, i)
1650 if (bch_cache_allocator_start(ca))
1651 goto err;
1652
1653 mutex_lock(&c->bucket_lock);
1654 for_each_cache(ca, c, i)
1655 bch_prio_write(ca);
1656 mutex_unlock(&c->bucket_lock);
1657
1658 err = "cannot allocate new UUID bucket";
1659 if (__uuid_write(c))
1660 goto err;
1661
1662 err = "cannot allocate new btree root";
1663 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1664 if (IS_ERR_OR_NULL(c->root))
1665 goto err;
1666
1667 mutex_lock(&c->root->write_lock);
1668 bkey_copy_key(&c->root->key, &MAX_KEY);
1669 bch_btree_node_write(c->root, &cl);
1670 mutex_unlock(&c->root->write_lock);
1671
1672 bch_btree_set_root(c->root);
1673 rw_unlock(true, c->root);
1674
1675 /*
1676 * We don't want to write the first journal entry until
1677 * everything is set up - fortunately journal entries won't be
1678 * written until the SET_CACHE_SYNC() here:
1679 */
1680 SET_CACHE_SYNC(&c->sb, true);
1681
1682 bch_journal_next(&c->journal);
1683 bch_journal_meta(c, &cl);
1684 }
1685
1686 err = "error starting gc thread";
1687 if (bch_gc_thread_start(c))
1688 goto err;
1689
1690 closure_sync(&cl);
1691 c->sb.last_mount = get_seconds();
1692 bcache_write_super(c);
1693
1694 list_for_each_entry_safe(dc, t, &uncached_devices, list)
1695 bch_cached_dev_attach(dc, c);
1696
1697 flash_devs_run(c);
1698
1699 set_bit(CACHE_SET_RUNNING, &c->flags);
1700 return;
1701 err:
1702 closure_sync(&cl);
1703 /* XXX: test this, it's broken */
1704 bch_cache_set_error(c, "%s", err);
1705 }
1706
1707 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1708 {
1709 return ca->sb.block_size == c->sb.block_size &&
1710 ca->sb.bucket_size == c->sb.bucket_size &&
1711 ca->sb.nr_in_set == c->sb.nr_in_set;
1712 }
1713
1714 static const char *register_cache_set(struct cache *ca)
1715 {
1716 char buf[12];
1717 const char *err = "cannot allocate memory";
1718 struct cache_set *c;
1719
1720 list_for_each_entry(c, &bch_cache_sets, list)
1721 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1722 if (c->cache[ca->sb.nr_this_dev])
1723 return "duplicate cache set member";
1724
1725 if (!can_attach_cache(ca, c))
1726 return "cache sb does not match set";
1727
1728 if (!CACHE_SYNC(&ca->sb))
1729 SET_CACHE_SYNC(&c->sb, false);
1730
1731 goto found;
1732 }
1733
1734 c = bch_cache_set_alloc(&ca->sb);
1735 if (!c)
1736 return err;
1737
1738 err = "error creating kobject";
1739 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1740 kobject_add(&c->internal, &c->kobj, "internal"))
1741 goto err;
1742
1743 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1744 goto err;
1745
1746 bch_debug_init_cache_set(c);
1747
1748 list_add(&c->list, &bch_cache_sets);
1749 found:
1750 sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1751 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1752 sysfs_create_link(&c->kobj, &ca->kobj, buf))
1753 goto err;
1754
1755 if (ca->sb.seq > c->sb.seq) {
1756 c->sb.version = ca->sb.version;
1757 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1758 c->sb.flags = ca->sb.flags;
1759 c->sb.seq = ca->sb.seq;
1760 pr_debug("set version = %llu", c->sb.version);
1761 }
1762
1763 kobject_get(&ca->kobj);
1764 ca->set = c;
1765 ca->set->cache[ca->sb.nr_this_dev] = ca;
1766 c->cache_by_alloc[c->caches_loaded++] = ca;
1767
1768 if (c->caches_loaded == c->sb.nr_in_set)
1769 run_cache_set(c);
1770
1771 return NULL;
1772 err:
1773 bch_cache_set_unregister(c);
1774 return err;
1775 }
1776
1777 /* Cache device */
1778
1779 void bch_cache_release(struct kobject *kobj)
1780 {
1781 struct cache *ca = container_of(kobj, struct cache, kobj);
1782 unsigned i;
1783
1784 if (ca->set) {
1785 BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
1786 ca->set->cache[ca->sb.nr_this_dev] = NULL;
1787 }
1788
1789 free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1790 kfree(ca->prio_buckets);
1791 vfree(ca->buckets);
1792
1793 free_heap(&ca->heap);
1794 free_fifo(&ca->free_inc);
1795
1796 for (i = 0; i < RESERVE_NR; i++)
1797 free_fifo(&ca->free[i]);
1798
1799 if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1800 put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1801
1802 if (!IS_ERR_OR_NULL(ca->bdev))
1803 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1804
1805 kfree(ca);
1806 module_put(THIS_MODULE);
1807 }
1808
1809 static int cache_alloc(struct cache_sb *sb, struct cache *ca)
1810 {
1811 size_t free;
1812 struct bucket *b;
1813
1814 __module_get(THIS_MODULE);
1815 kobject_init(&ca->kobj, &bch_cache_ktype);
1816
1817 bio_init(&ca->journal.bio);
1818 ca->journal.bio.bi_max_vecs = 8;
1819 ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1820
1821 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
1822
1823 if (!init_fifo(&ca->free[RESERVE_BTREE], 8, GFP_KERNEL) ||
1824 !init_fifo(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
1825 !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
1826 !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
1827 !init_fifo(&ca->free_inc, free << 2, GFP_KERNEL) ||
1828 !init_heap(&ca->heap, free << 3, GFP_KERNEL) ||
1829 !(ca->buckets = vzalloc(sizeof(struct bucket) *
1830 ca->sb.nbuckets)) ||
1831 !(ca->prio_buckets = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1832 2, GFP_KERNEL)) ||
1833 !(ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca)))
1834 return -ENOMEM;
1835
1836 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1837
1838 for_each_bucket(b, ca)
1839 atomic_set(&b->pin, 0);
1840
1841 return 0;
1842 }
1843
1844 static int register_cache(struct cache_sb *sb, struct page *sb_page,
1845 struct block_device *bdev, struct cache *ca)
1846 {
1847 char name[BDEVNAME_SIZE];
1848 const char *err = NULL;
1849 int ret = 0;
1850
1851 memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1852 ca->bdev = bdev;
1853 ca->bdev->bd_holder = ca;
1854
1855 bio_init(&ca->sb_bio);
1856 ca->sb_bio.bi_max_vecs = 1;
1857 ca->sb_bio.bi_io_vec = ca->sb_bio.bi_inline_vecs;
1858 ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1859 get_page(sb_page);
1860
1861 if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1862 ca->discard = CACHE_DISCARD(&ca->sb);
1863
1864 ret = cache_alloc(sb, ca);
1865 if (ret != 0)
1866 goto err;
1867
1868 if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache")) {
1869 err = "error calling kobject_add";
1870 ret = -ENOMEM;
1871 goto out;
1872 }
1873
1874 mutex_lock(&bch_register_lock);
1875 err = register_cache_set(ca);
1876 mutex_unlock(&bch_register_lock);
1877
1878 if (err) {
1879 ret = -ENODEV;
1880 goto out;
1881 }
1882
1883 pr_info("registered cache device %s", bdevname(bdev, name));
1884
1885 out:
1886 kobject_put(&ca->kobj);
1887
1888 err:
1889 if (err)
1890 pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1891
1892 return ret;
1893 }
1894
1895 /* Global interfaces/init */
1896
1897 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1898 const char *, size_t);
1899
1900 kobj_attribute_write(register, register_bcache);
1901 kobj_attribute_write(register_quiet, register_bcache);
1902
1903 static bool bch_is_open_backing(struct block_device *bdev) {
1904 struct cache_set *c, *tc;
1905 struct cached_dev *dc, *t;
1906
1907 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1908 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1909 if (dc->bdev == bdev)
1910 return true;
1911 list_for_each_entry_safe(dc, t, &uncached_devices, list)
1912 if (dc->bdev == bdev)
1913 return true;
1914 return false;
1915 }
1916
1917 static bool bch_is_open_cache(struct block_device *bdev) {
1918 struct cache_set *c, *tc;
1919 struct cache *ca;
1920 unsigned i;
1921
1922 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1923 for_each_cache(ca, c, i)
1924 if (ca->bdev == bdev)
1925 return true;
1926 return false;
1927 }
1928
1929 static bool bch_is_open(struct block_device *bdev) {
1930 return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1931 }
1932
1933 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1934 const char *buffer, size_t size)
1935 {
1936 ssize_t ret = size;
1937 const char *err = "cannot allocate memory";
1938 char *path = NULL;
1939 struct cache_sb *sb = NULL;
1940 struct block_device *bdev = NULL;
1941 struct page *sb_page = NULL;
1942
1943 if (!try_module_get(THIS_MODULE))
1944 return -EBUSY;
1945
1946 if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1947 !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1948 goto err;
1949
1950 err = "failed to open device";
1951 bdev = blkdev_get_by_path(strim(path),
1952 FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1953 sb);
1954 if (IS_ERR(bdev)) {
1955 if (bdev == ERR_PTR(-EBUSY)) {
1956 bdev = lookup_bdev(strim(path));
1957 mutex_lock(&bch_register_lock);
1958 if (!IS_ERR(bdev) && bch_is_open(bdev))
1959 err = "device already registered";
1960 else
1961 err = "device busy";
1962 mutex_unlock(&bch_register_lock);
1963 if (attr == &ksysfs_register_quiet)
1964 goto out;
1965 }
1966 goto err;
1967 }
1968
1969 err = "failed to set blocksize";
1970 if (set_blocksize(bdev, 4096))
1971 goto err_close;
1972
1973 err = read_super(sb, bdev, &sb_page);
1974 if (err)
1975 goto err_close;
1976
1977 if (SB_IS_BDEV(sb)) {
1978 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1979 if (!dc)
1980 goto err_close;
1981
1982 mutex_lock(&bch_register_lock);
1983 register_bdev(sb, sb_page, bdev, dc);
1984 mutex_unlock(&bch_register_lock);
1985 } else {
1986 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1987 if (!ca)
1988 goto err_close;
1989
1990 if (register_cache(sb, sb_page, bdev, ca) != 0)
1991 goto err_close;
1992 }
1993 out:
1994 if (sb_page)
1995 put_page(sb_page);
1996 kfree(sb);
1997 kfree(path);
1998 module_put(THIS_MODULE);
1999 return ret;
2000
2001 err_close:
2002 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2003 err:
2004 pr_info("error opening %s: %s", path, err);
2005 ret = -EINVAL;
2006 goto out;
2007 }
2008
2009 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2010 {
2011 if (code == SYS_DOWN ||
2012 code == SYS_HALT ||
2013 code == SYS_POWER_OFF) {
2014 DEFINE_WAIT(wait);
2015 unsigned long start = jiffies;
2016 bool stopped = false;
2017
2018 struct cache_set *c, *tc;
2019 struct cached_dev *dc, *tdc;
2020
2021 mutex_lock(&bch_register_lock);
2022
2023 if (list_empty(&bch_cache_sets) &&
2024 list_empty(&uncached_devices))
2025 goto out;
2026
2027 pr_info("Stopping all devices:");
2028
2029 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2030 bch_cache_set_stop(c);
2031
2032 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2033 bcache_device_stop(&dc->disk);
2034
2035 /* What's a condition variable? */
2036 while (1) {
2037 long timeout = start + 2 * HZ - jiffies;
2038
2039 stopped = list_empty(&bch_cache_sets) &&
2040 list_empty(&uncached_devices);
2041
2042 if (timeout < 0 || stopped)
2043 break;
2044
2045 prepare_to_wait(&unregister_wait, &wait,
2046 TASK_UNINTERRUPTIBLE);
2047
2048 mutex_unlock(&bch_register_lock);
2049 schedule_timeout(timeout);
2050 mutex_lock(&bch_register_lock);
2051 }
2052
2053 finish_wait(&unregister_wait, &wait);
2054
2055 if (stopped)
2056 pr_info("All devices stopped");
2057 else
2058 pr_notice("Timeout waiting for devices to be closed");
2059 out:
2060 mutex_unlock(&bch_register_lock);
2061 }
2062
2063 return NOTIFY_DONE;
2064 }
2065
2066 static struct notifier_block reboot = {
2067 .notifier_call = bcache_reboot,
2068 .priority = INT_MAX, /* before any real devices */
2069 };
2070
2071 static void bcache_exit(void)
2072 {
2073 bch_debug_exit();
2074 bch_request_exit();
2075 if (bcache_kobj)
2076 kobject_put(bcache_kobj);
2077 if (bcache_wq)
2078 destroy_workqueue(bcache_wq);
2079 if (bcache_major)
2080 unregister_blkdev(bcache_major, "bcache");
2081 unregister_reboot_notifier(&reboot);
2082 }
2083
2084 static int __init bcache_init(void)
2085 {
2086 static const struct attribute *files[] = {
2087 &ksysfs_register.attr,
2088 &ksysfs_register_quiet.attr,
2089 NULL
2090 };
2091
2092 mutex_init(&bch_register_lock);
2093 init_waitqueue_head(&unregister_wait);
2094 register_reboot_notifier(&reboot);
2095 closure_debug_init();
2096
2097 bcache_major = register_blkdev(0, "bcache");
2098 if (bcache_major < 0) {
2099 unregister_reboot_notifier(&reboot);
2100 return bcache_major;
2101 }
2102
2103 if (!(bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0)) ||
2104 !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2105 sysfs_create_files(bcache_kobj, files) ||
2106 bch_request_init() ||
2107 bch_debug_init(bcache_kobj))
2108 goto err;
2109
2110 return 0;
2111 err:
2112 bcache_exit();
2113 return -ENOMEM;
2114 }
2115
2116 module_exit(bcache_exit);
2117 module_init(bcache_init);