]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/bcache/util.h
6920616610bd50b77d882bdc7b97bd47d93c2038
[mirror_ubuntu-bionic-kernel.git] / drivers / md / bcache / util.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2
3 #ifndef _BCACHE_UTIL_H
4 #define _BCACHE_UTIL_H
5
6 #include <linux/blkdev.h>
7 #include <linux/errno.h>
8 #include <linux/kernel.h>
9 #include <linux/sched/clock.h>
10 #include <linux/llist.h>
11 #include <linux/ratelimit.h>
12 #include <linux/vmalloc.h>
13 #include <linux/workqueue.h>
14
15 #include "closure.h"
16
17 #define PAGE_SECTORS (PAGE_SIZE / 512)
18
19 struct closure;
20
21 #ifdef CONFIG_BCACHE_DEBUG
22
23 #define EBUG_ON(cond) BUG_ON(cond)
24 #define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0)
25 #define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i)
26
27 #else /* DEBUG */
28
29 #define EBUG_ON(cond) do { if (cond); } while (0)
30 #define atomic_dec_bug(v) atomic_dec(v)
31 #define atomic_inc_bug(v, i) atomic_inc(v)
32
33 #endif
34
35 #define DECLARE_HEAP(type, name) \
36 struct { \
37 size_t size, used; \
38 type *data; \
39 } name
40
41 #define init_heap(heap, _size, gfp) \
42 ({ \
43 size_t _bytes; \
44 (heap)->used = 0; \
45 (heap)->size = (_size); \
46 _bytes = (heap)->size * sizeof(*(heap)->data); \
47 (heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \
48 (heap)->data; \
49 })
50
51 #define free_heap(heap) \
52 do { \
53 kvfree((heap)->data); \
54 (heap)->data = NULL; \
55 } while (0)
56
57 #define heap_swap(h, i, j) swap((h)->data[i], (h)->data[j])
58
59 #define heap_sift(h, i, cmp) \
60 do { \
61 size_t _r, _j = i; \
62 \
63 for (; _j * 2 + 1 < (h)->used; _j = _r) { \
64 _r = _j * 2 + 1; \
65 if (_r + 1 < (h)->used && \
66 cmp((h)->data[_r], (h)->data[_r + 1])) \
67 _r++; \
68 \
69 if (cmp((h)->data[_r], (h)->data[_j])) \
70 break; \
71 heap_swap(h, _r, _j); \
72 } \
73 } while (0)
74
75 #define heap_sift_down(h, i, cmp) \
76 do { \
77 while (i) { \
78 size_t p = (i - 1) / 2; \
79 if (cmp((h)->data[i], (h)->data[p])) \
80 break; \
81 heap_swap(h, i, p); \
82 i = p; \
83 } \
84 } while (0)
85
86 #define heap_add(h, d, cmp) \
87 ({ \
88 bool _r = !heap_full(h); \
89 if (_r) { \
90 size_t _i = (h)->used++; \
91 (h)->data[_i] = d; \
92 \
93 heap_sift_down(h, _i, cmp); \
94 heap_sift(h, _i, cmp); \
95 } \
96 _r; \
97 })
98
99 #define heap_pop(h, d, cmp) \
100 ({ \
101 bool _r = (h)->used; \
102 if (_r) { \
103 (d) = (h)->data[0]; \
104 (h)->used--; \
105 heap_swap(h, 0, (h)->used); \
106 heap_sift(h, 0, cmp); \
107 } \
108 _r; \
109 })
110
111 #define heap_peek(h) ((h)->used ? (h)->data[0] : NULL)
112
113 #define heap_full(h) ((h)->used == (h)->size)
114
115 #define heap_empty(h) ((h)->used == 0)
116
117 #define DECLARE_FIFO(type, name) \
118 struct { \
119 size_t front, back, size, mask; \
120 type *data; \
121 } name
122
123 #define fifo_for_each(c, fifo, iter) \
124 for (iter = (fifo)->front; \
125 c = (fifo)->data[iter], iter != (fifo)->back; \
126 iter = (iter + 1) & (fifo)->mask)
127
128 #define __init_fifo(fifo, gfp) \
129 ({ \
130 size_t _allocated_size, _bytes; \
131 BUG_ON(!(fifo)->size); \
132 \
133 _allocated_size = roundup_pow_of_two((fifo)->size + 1); \
134 _bytes = _allocated_size * sizeof(*(fifo)->data); \
135 \
136 (fifo)->mask = _allocated_size - 1; \
137 (fifo)->front = (fifo)->back = 0; \
138 \
139 (fifo)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \
140 (fifo)->data; \
141 })
142
143 #define init_fifo_exact(fifo, _size, gfp) \
144 ({ \
145 (fifo)->size = (_size); \
146 __init_fifo(fifo, gfp); \
147 })
148
149 #define init_fifo(fifo, _size, gfp) \
150 ({ \
151 (fifo)->size = (_size); \
152 if ((fifo)->size > 4) \
153 (fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \
154 __init_fifo(fifo, gfp); \
155 })
156
157 #define free_fifo(fifo) \
158 do { \
159 kvfree((fifo)->data); \
160 (fifo)->data = NULL; \
161 } while (0)
162
163 #define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask)
164 #define fifo_free(fifo) ((fifo)->size - fifo_used(fifo))
165
166 #define fifo_empty(fifo) (!fifo_used(fifo))
167 #define fifo_full(fifo) (!fifo_free(fifo))
168
169 #define fifo_front(fifo) ((fifo)->data[(fifo)->front])
170 #define fifo_back(fifo) \
171 ((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
172
173 #define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask)
174
175 #define fifo_push_back(fifo, i) \
176 ({ \
177 bool _r = !fifo_full((fifo)); \
178 if (_r) { \
179 (fifo)->data[(fifo)->back++] = (i); \
180 (fifo)->back &= (fifo)->mask; \
181 } \
182 _r; \
183 })
184
185 #define fifo_pop_front(fifo, i) \
186 ({ \
187 bool _r = !fifo_empty((fifo)); \
188 if (_r) { \
189 (i) = (fifo)->data[(fifo)->front++]; \
190 (fifo)->front &= (fifo)->mask; \
191 } \
192 _r; \
193 })
194
195 #define fifo_push_front(fifo, i) \
196 ({ \
197 bool _r = !fifo_full((fifo)); \
198 if (_r) { \
199 --(fifo)->front; \
200 (fifo)->front &= (fifo)->mask; \
201 (fifo)->data[(fifo)->front] = (i); \
202 } \
203 _r; \
204 })
205
206 #define fifo_pop_back(fifo, i) \
207 ({ \
208 bool _r = !fifo_empty((fifo)); \
209 if (_r) { \
210 --(fifo)->back; \
211 (fifo)->back &= (fifo)->mask; \
212 (i) = (fifo)->data[(fifo)->back] \
213 } \
214 _r; \
215 })
216
217 #define fifo_push(fifo, i) fifo_push_back(fifo, (i))
218 #define fifo_pop(fifo, i) fifo_pop_front(fifo, (i))
219
220 #define fifo_swap(l, r) \
221 do { \
222 swap((l)->front, (r)->front); \
223 swap((l)->back, (r)->back); \
224 swap((l)->size, (r)->size); \
225 swap((l)->mask, (r)->mask); \
226 swap((l)->data, (r)->data); \
227 } while (0)
228
229 #define fifo_move(dest, src) \
230 do { \
231 typeof(*((dest)->data)) _t; \
232 while (!fifo_full(dest) && \
233 fifo_pop(src, _t)) \
234 fifo_push(dest, _t); \
235 } while (0)
236
237 /*
238 * Simple array based allocator - preallocates a number of elements and you can
239 * never allocate more than that, also has no locking.
240 *
241 * Handy because if you know you only need a fixed number of elements you don't
242 * have to worry about memory allocation failure, and sometimes a mempool isn't
243 * what you want.
244 *
245 * We treat the free elements as entries in a singly linked list, and the
246 * freelist as a stack - allocating and freeing push and pop off the freelist.
247 */
248
249 #define DECLARE_ARRAY_ALLOCATOR(type, name, size) \
250 struct { \
251 type *freelist; \
252 type data[size]; \
253 } name
254
255 #define array_alloc(array) \
256 ({ \
257 typeof((array)->freelist) _ret = (array)->freelist; \
258 \
259 if (_ret) \
260 (array)->freelist = *((typeof((array)->freelist) *) _ret);\
261 \
262 _ret; \
263 })
264
265 #define array_free(array, ptr) \
266 do { \
267 typeof((array)->freelist) _ptr = ptr; \
268 \
269 *((typeof((array)->freelist) *) _ptr) = (array)->freelist; \
270 (array)->freelist = _ptr; \
271 } while (0)
272
273 #define array_allocator_init(array) \
274 do { \
275 typeof((array)->freelist) _i; \
276 \
277 BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \
278 (array)->freelist = NULL; \
279 \
280 for (_i = (array)->data; \
281 _i < (array)->data + ARRAY_SIZE((array)->data); \
282 _i++) \
283 array_free(array, _i); \
284 } while (0)
285
286 #define array_freelist_empty(array) ((array)->freelist == NULL)
287
288 #define ANYSINT_MAX(t) \
289 ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
290
291 int bch_strtoint_h(const char *, int *);
292 int bch_strtouint_h(const char *, unsigned int *);
293 int bch_strtoll_h(const char *, long long *);
294 int bch_strtoull_h(const char *, unsigned long long *);
295
296 static inline int bch_strtol_h(const char *cp, long *res)
297 {
298 #if BITS_PER_LONG == 32
299 return bch_strtoint_h(cp, (int *) res);
300 #else
301 return bch_strtoll_h(cp, (long long *) res);
302 #endif
303 }
304
305 static inline int bch_strtoul_h(const char *cp, long *res)
306 {
307 #if BITS_PER_LONG == 32
308 return bch_strtouint_h(cp, (unsigned int *) res);
309 #else
310 return bch_strtoull_h(cp, (unsigned long long *) res);
311 #endif
312 }
313
314 #define strtoi_h(cp, res) \
315 (__builtin_types_compatible_p(typeof(*res), int) \
316 ? bch_strtoint_h(cp, (void *) res) \
317 : __builtin_types_compatible_p(typeof(*res), long) \
318 ? bch_strtol_h(cp, (void *) res) \
319 : __builtin_types_compatible_p(typeof(*res), long long) \
320 ? bch_strtoll_h(cp, (void *) res) \
321 : __builtin_types_compatible_p(typeof(*res), unsigned int) \
322 ? bch_strtouint_h(cp, (void *) res) \
323 : __builtin_types_compatible_p(typeof(*res), unsigned long) \
324 ? bch_strtoul_h(cp, (void *) res) \
325 : __builtin_types_compatible_p(typeof(*res), unsigned long long)\
326 ? bch_strtoull_h(cp, (void *) res) : -EINVAL)
327
328 #define strtoul_safe(cp, var) \
329 ({ \
330 unsigned long _v; \
331 int _r = kstrtoul(cp, 10, &_v); \
332 if (!_r) \
333 var = _v; \
334 _r; \
335 })
336
337 #define strtoul_safe_clamp(cp, var, min, max) \
338 ({ \
339 unsigned long _v; \
340 int _r = kstrtoul(cp, 10, &_v); \
341 if (!_r) \
342 var = clamp_t(typeof(var), _v, min, max); \
343 _r; \
344 })
345
346 #define snprint(buf, size, var) \
347 snprintf(buf, size, \
348 __builtin_types_compatible_p(typeof(var), int) \
349 ? "%i\n" : \
350 __builtin_types_compatible_p(typeof(var), unsigned) \
351 ? "%u\n" : \
352 __builtin_types_compatible_p(typeof(var), long) \
353 ? "%li\n" : \
354 __builtin_types_compatible_p(typeof(var), unsigned long)\
355 ? "%lu\n" : \
356 __builtin_types_compatible_p(typeof(var), int64_t) \
357 ? "%lli\n" : \
358 __builtin_types_compatible_p(typeof(var), uint64_t) \
359 ? "%llu\n" : \
360 __builtin_types_compatible_p(typeof(var), const char *) \
361 ? "%s\n" : "%i\n", var)
362
363 ssize_t bch_hprint(char *buf, int64_t v);
364
365 bool bch_is_zero(const char *p, size_t n);
366 int bch_parse_uuid(const char *s, char *uuid);
367
368 ssize_t bch_snprint_string_list(char *buf, size_t size, const char * const list[],
369 size_t selected);
370
371 ssize_t bch_read_string_list(const char *buf, const char * const list[]);
372
373 struct time_stats {
374 spinlock_t lock;
375 /*
376 * all fields are in nanoseconds, averages are ewmas stored left shifted
377 * by 8
378 */
379 uint64_t max_duration;
380 uint64_t average_duration;
381 uint64_t average_frequency;
382 uint64_t last;
383 };
384
385 void bch_time_stats_update(struct time_stats *stats, uint64_t time);
386
387 static inline unsigned local_clock_us(void)
388 {
389 return local_clock() >> 10;
390 }
391
392 #define NSEC_PER_ns 1L
393 #define NSEC_PER_us NSEC_PER_USEC
394 #define NSEC_PER_ms NSEC_PER_MSEC
395 #define NSEC_PER_sec NSEC_PER_SEC
396
397 #define __print_time_stat(stats, name, stat, units) \
398 sysfs_print(name ## _ ## stat ## _ ## units, \
399 div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
400
401 #define sysfs_print_time_stats(stats, name, \
402 frequency_units, \
403 duration_units) \
404 do { \
405 __print_time_stat(stats, name, \
406 average_frequency, frequency_units); \
407 __print_time_stat(stats, name, \
408 average_duration, duration_units); \
409 sysfs_print(name ## _ ##max_duration ## _ ## duration_units, \
410 div_u64((stats)->max_duration, NSEC_PER_ ## duration_units));\
411 \
412 sysfs_print(name ## _last_ ## frequency_units, (stats)->last \
413 ? div_s64(local_clock() - (stats)->last, \
414 NSEC_PER_ ## frequency_units) \
415 : -1LL); \
416 } while (0)
417
418 #define sysfs_time_stats_attribute(name, \
419 frequency_units, \
420 duration_units) \
421 read_attribute(name ## _average_frequency_ ## frequency_units); \
422 read_attribute(name ## _average_duration_ ## duration_units); \
423 read_attribute(name ## _max_duration_ ## duration_units); \
424 read_attribute(name ## _last_ ## frequency_units)
425
426 #define sysfs_time_stats_attribute_list(name, \
427 frequency_units, \
428 duration_units) \
429 &sysfs_ ## name ## _average_frequency_ ## frequency_units, \
430 &sysfs_ ## name ## _average_duration_ ## duration_units, \
431 &sysfs_ ## name ## _max_duration_ ## duration_units, \
432 &sysfs_ ## name ## _last_ ## frequency_units,
433
434 #define ewma_add(ewma, val, weight, factor) \
435 ({ \
436 (ewma) *= (weight) - 1; \
437 (ewma) += (val) << factor; \
438 (ewma) /= (weight); \
439 (ewma) >> factor; \
440 })
441
442 struct bch_ratelimit {
443 /* Next time we want to do some work, in nanoseconds */
444 uint64_t next;
445
446 /*
447 * Rate at which we want to do work, in units per second
448 * The units here correspond to the units passed to bch_next_delay()
449 */
450 uint32_t rate;
451 };
452
453 static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
454 {
455 d->next = local_clock();
456 }
457
458 uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
459
460 #define __DIV_SAFE(n, d, zero) \
461 ({ \
462 typeof(n) _n = (n); \
463 typeof(d) _d = (d); \
464 _d ? _n / _d : zero; \
465 })
466
467 #define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0)
468
469 #define container_of_or_null(ptr, type, member) \
470 ({ \
471 typeof(ptr) _ptr = ptr; \
472 _ptr ? container_of(_ptr, type, member) : NULL; \
473 })
474
475 #define RB_INSERT(root, new, member, cmp) \
476 ({ \
477 __label__ dup; \
478 struct rb_node **n = &(root)->rb_node, *parent = NULL; \
479 typeof(new) this; \
480 int res, ret = -1; \
481 \
482 while (*n) { \
483 parent = *n; \
484 this = container_of(*n, typeof(*(new)), member); \
485 res = cmp(new, this); \
486 if (!res) \
487 goto dup; \
488 n = res < 0 \
489 ? &(*n)->rb_left \
490 : &(*n)->rb_right; \
491 } \
492 \
493 rb_link_node(&(new)->member, parent, n); \
494 rb_insert_color(&(new)->member, root); \
495 ret = 0; \
496 dup: \
497 ret; \
498 })
499
500 #define RB_SEARCH(root, search, member, cmp) \
501 ({ \
502 struct rb_node *n = (root)->rb_node; \
503 typeof(&(search)) this, ret = NULL; \
504 int res; \
505 \
506 while (n) { \
507 this = container_of(n, typeof(search), member); \
508 res = cmp(&(search), this); \
509 if (!res) { \
510 ret = this; \
511 break; \
512 } \
513 n = res < 0 \
514 ? n->rb_left \
515 : n->rb_right; \
516 } \
517 ret; \
518 })
519
520 #define RB_GREATER(root, search, member, cmp) \
521 ({ \
522 struct rb_node *n = (root)->rb_node; \
523 typeof(&(search)) this, ret = NULL; \
524 int res; \
525 \
526 while (n) { \
527 this = container_of(n, typeof(search), member); \
528 res = cmp(&(search), this); \
529 if (res < 0) { \
530 ret = this; \
531 n = n->rb_left; \
532 } else \
533 n = n->rb_right; \
534 } \
535 ret; \
536 })
537
538 #define RB_FIRST(root, type, member) \
539 container_of_or_null(rb_first(root), type, member)
540
541 #define RB_LAST(root, type, member) \
542 container_of_or_null(rb_last(root), type, member)
543
544 #define RB_NEXT(ptr, member) \
545 container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
546
547 #define RB_PREV(ptr, member) \
548 container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
549
550 /* Does linear interpolation between powers of two */
551 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
552 {
553 unsigned fract = x & ~(~0 << fract_bits);
554
555 x >>= fract_bits;
556 x = 1 << x;
557 x += (x * fract) >> fract_bits;
558
559 return x;
560 }
561
562 void bch_bio_map(struct bio *bio, void *base);
563
564 static inline sector_t bdev_sectors(struct block_device *bdev)
565 {
566 return bdev->bd_inode->i_size >> 9;
567 }
568
569 uint64_t bch_crc64_update(uint64_t, const void *, size_t);
570 uint64_t bch_crc64(const void *, size_t);
571
572 #endif /* _BCACHE_UTIL_H */