]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/bcache/util.h
ASoC: wm_adsp: add support for DSP region lock
[mirror_ubuntu-bionic-kernel.git] / drivers / md / bcache / util.h
1
2 #ifndef _BCACHE_UTIL_H
3 #define _BCACHE_UTIL_H
4
5 #include <linux/blkdev.h>
6 #include <linux/errno.h>
7 #include <linux/blkdev.h>
8 #include <linux/kernel.h>
9 #include <linux/sched/clock.h>
10 #include <linux/llist.h>
11 #include <linux/ratelimit.h>
12 #include <linux/vmalloc.h>
13 #include <linux/workqueue.h>
14
15 #include "closure.h"
16
17 #define PAGE_SECTORS (PAGE_SIZE / 512)
18
19 struct closure;
20
21 #ifdef CONFIG_BCACHE_DEBUG
22
23 #define EBUG_ON(cond) BUG_ON(cond)
24 #define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0)
25 #define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i)
26
27 #else /* DEBUG */
28
29 #define EBUG_ON(cond) do { if (cond); } while (0)
30 #define atomic_dec_bug(v) atomic_dec(v)
31 #define atomic_inc_bug(v, i) atomic_inc(v)
32
33 #endif
34
35 #define DECLARE_HEAP(type, name) \
36 struct { \
37 size_t size, used; \
38 type *data; \
39 } name
40
41 #define init_heap(heap, _size, gfp) \
42 ({ \
43 size_t _bytes; \
44 (heap)->used = 0; \
45 (heap)->size = (_size); \
46 _bytes = (heap)->size * sizeof(*(heap)->data); \
47 (heap)->data = NULL; \
48 if (_bytes < KMALLOC_MAX_SIZE) \
49 (heap)->data = kmalloc(_bytes, (gfp)); \
50 if ((!(heap)->data) && ((gfp) & GFP_KERNEL)) \
51 (heap)->data = vmalloc(_bytes); \
52 (heap)->data; \
53 })
54
55 #define free_heap(heap) \
56 do { \
57 kvfree((heap)->data); \
58 (heap)->data = NULL; \
59 } while (0)
60
61 #define heap_swap(h, i, j) swap((h)->data[i], (h)->data[j])
62
63 #define heap_sift(h, i, cmp) \
64 do { \
65 size_t _r, _j = i; \
66 \
67 for (; _j * 2 + 1 < (h)->used; _j = _r) { \
68 _r = _j * 2 + 1; \
69 if (_r + 1 < (h)->used && \
70 cmp((h)->data[_r], (h)->data[_r + 1])) \
71 _r++; \
72 \
73 if (cmp((h)->data[_r], (h)->data[_j])) \
74 break; \
75 heap_swap(h, _r, _j); \
76 } \
77 } while (0)
78
79 #define heap_sift_down(h, i, cmp) \
80 do { \
81 while (i) { \
82 size_t p = (i - 1) / 2; \
83 if (cmp((h)->data[i], (h)->data[p])) \
84 break; \
85 heap_swap(h, i, p); \
86 i = p; \
87 } \
88 } while (0)
89
90 #define heap_add(h, d, cmp) \
91 ({ \
92 bool _r = !heap_full(h); \
93 if (_r) { \
94 size_t _i = (h)->used++; \
95 (h)->data[_i] = d; \
96 \
97 heap_sift_down(h, _i, cmp); \
98 heap_sift(h, _i, cmp); \
99 } \
100 _r; \
101 })
102
103 #define heap_pop(h, d, cmp) \
104 ({ \
105 bool _r = (h)->used; \
106 if (_r) { \
107 (d) = (h)->data[0]; \
108 (h)->used--; \
109 heap_swap(h, 0, (h)->used); \
110 heap_sift(h, 0, cmp); \
111 } \
112 _r; \
113 })
114
115 #define heap_peek(h) ((h)->used ? (h)->data[0] : NULL)
116
117 #define heap_full(h) ((h)->used == (h)->size)
118
119 #define DECLARE_FIFO(type, name) \
120 struct { \
121 size_t front, back, size, mask; \
122 type *data; \
123 } name
124
125 #define fifo_for_each(c, fifo, iter) \
126 for (iter = (fifo)->front; \
127 c = (fifo)->data[iter], iter != (fifo)->back; \
128 iter = (iter + 1) & (fifo)->mask)
129
130 #define __init_fifo(fifo, gfp) \
131 ({ \
132 size_t _allocated_size, _bytes; \
133 BUG_ON(!(fifo)->size); \
134 \
135 _allocated_size = roundup_pow_of_two((fifo)->size + 1); \
136 _bytes = _allocated_size * sizeof(*(fifo)->data); \
137 \
138 (fifo)->mask = _allocated_size - 1; \
139 (fifo)->front = (fifo)->back = 0; \
140 (fifo)->data = NULL; \
141 \
142 if (_bytes < KMALLOC_MAX_SIZE) \
143 (fifo)->data = kmalloc(_bytes, (gfp)); \
144 if ((!(fifo)->data) && ((gfp) & GFP_KERNEL)) \
145 (fifo)->data = vmalloc(_bytes); \
146 (fifo)->data; \
147 })
148
149 #define init_fifo_exact(fifo, _size, gfp) \
150 ({ \
151 (fifo)->size = (_size); \
152 __init_fifo(fifo, gfp); \
153 })
154
155 #define init_fifo(fifo, _size, gfp) \
156 ({ \
157 (fifo)->size = (_size); \
158 if ((fifo)->size > 4) \
159 (fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \
160 __init_fifo(fifo, gfp); \
161 })
162
163 #define free_fifo(fifo) \
164 do { \
165 kvfree((fifo)->data); \
166 (fifo)->data = NULL; \
167 } while (0)
168
169 #define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask)
170 #define fifo_free(fifo) ((fifo)->size - fifo_used(fifo))
171
172 #define fifo_empty(fifo) (!fifo_used(fifo))
173 #define fifo_full(fifo) (!fifo_free(fifo))
174
175 #define fifo_front(fifo) ((fifo)->data[(fifo)->front])
176 #define fifo_back(fifo) \
177 ((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
178
179 #define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask)
180
181 #define fifo_push_back(fifo, i) \
182 ({ \
183 bool _r = !fifo_full((fifo)); \
184 if (_r) { \
185 (fifo)->data[(fifo)->back++] = (i); \
186 (fifo)->back &= (fifo)->mask; \
187 } \
188 _r; \
189 })
190
191 #define fifo_pop_front(fifo, i) \
192 ({ \
193 bool _r = !fifo_empty((fifo)); \
194 if (_r) { \
195 (i) = (fifo)->data[(fifo)->front++]; \
196 (fifo)->front &= (fifo)->mask; \
197 } \
198 _r; \
199 })
200
201 #define fifo_push_front(fifo, i) \
202 ({ \
203 bool _r = !fifo_full((fifo)); \
204 if (_r) { \
205 --(fifo)->front; \
206 (fifo)->front &= (fifo)->mask; \
207 (fifo)->data[(fifo)->front] = (i); \
208 } \
209 _r; \
210 })
211
212 #define fifo_pop_back(fifo, i) \
213 ({ \
214 bool _r = !fifo_empty((fifo)); \
215 if (_r) { \
216 --(fifo)->back; \
217 (fifo)->back &= (fifo)->mask; \
218 (i) = (fifo)->data[(fifo)->back] \
219 } \
220 _r; \
221 })
222
223 #define fifo_push(fifo, i) fifo_push_back(fifo, (i))
224 #define fifo_pop(fifo, i) fifo_pop_front(fifo, (i))
225
226 #define fifo_swap(l, r) \
227 do { \
228 swap((l)->front, (r)->front); \
229 swap((l)->back, (r)->back); \
230 swap((l)->size, (r)->size); \
231 swap((l)->mask, (r)->mask); \
232 swap((l)->data, (r)->data); \
233 } while (0)
234
235 #define fifo_move(dest, src) \
236 do { \
237 typeof(*((dest)->data)) _t; \
238 while (!fifo_full(dest) && \
239 fifo_pop(src, _t)) \
240 fifo_push(dest, _t); \
241 } while (0)
242
243 /*
244 * Simple array based allocator - preallocates a number of elements and you can
245 * never allocate more than that, also has no locking.
246 *
247 * Handy because if you know you only need a fixed number of elements you don't
248 * have to worry about memory allocation failure, and sometimes a mempool isn't
249 * what you want.
250 *
251 * We treat the free elements as entries in a singly linked list, and the
252 * freelist as a stack - allocating and freeing push and pop off the freelist.
253 */
254
255 #define DECLARE_ARRAY_ALLOCATOR(type, name, size) \
256 struct { \
257 type *freelist; \
258 type data[size]; \
259 } name
260
261 #define array_alloc(array) \
262 ({ \
263 typeof((array)->freelist) _ret = (array)->freelist; \
264 \
265 if (_ret) \
266 (array)->freelist = *((typeof((array)->freelist) *) _ret);\
267 \
268 _ret; \
269 })
270
271 #define array_free(array, ptr) \
272 do { \
273 typeof((array)->freelist) _ptr = ptr; \
274 \
275 *((typeof((array)->freelist) *) _ptr) = (array)->freelist; \
276 (array)->freelist = _ptr; \
277 } while (0)
278
279 #define array_allocator_init(array) \
280 do { \
281 typeof((array)->freelist) _i; \
282 \
283 BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \
284 (array)->freelist = NULL; \
285 \
286 for (_i = (array)->data; \
287 _i < (array)->data + ARRAY_SIZE((array)->data); \
288 _i++) \
289 array_free(array, _i); \
290 } while (0)
291
292 #define array_freelist_empty(array) ((array)->freelist == NULL)
293
294 #define ANYSINT_MAX(t) \
295 ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
296
297 int bch_strtoint_h(const char *, int *);
298 int bch_strtouint_h(const char *, unsigned int *);
299 int bch_strtoll_h(const char *, long long *);
300 int bch_strtoull_h(const char *, unsigned long long *);
301
302 static inline int bch_strtol_h(const char *cp, long *res)
303 {
304 #if BITS_PER_LONG == 32
305 return bch_strtoint_h(cp, (int *) res);
306 #else
307 return bch_strtoll_h(cp, (long long *) res);
308 #endif
309 }
310
311 static inline int bch_strtoul_h(const char *cp, long *res)
312 {
313 #if BITS_PER_LONG == 32
314 return bch_strtouint_h(cp, (unsigned int *) res);
315 #else
316 return bch_strtoull_h(cp, (unsigned long long *) res);
317 #endif
318 }
319
320 #define strtoi_h(cp, res) \
321 (__builtin_types_compatible_p(typeof(*res), int) \
322 ? bch_strtoint_h(cp, (void *) res) \
323 : __builtin_types_compatible_p(typeof(*res), long) \
324 ? bch_strtol_h(cp, (void *) res) \
325 : __builtin_types_compatible_p(typeof(*res), long long) \
326 ? bch_strtoll_h(cp, (void *) res) \
327 : __builtin_types_compatible_p(typeof(*res), unsigned int) \
328 ? bch_strtouint_h(cp, (void *) res) \
329 : __builtin_types_compatible_p(typeof(*res), unsigned long) \
330 ? bch_strtoul_h(cp, (void *) res) \
331 : __builtin_types_compatible_p(typeof(*res), unsigned long long)\
332 ? bch_strtoull_h(cp, (void *) res) : -EINVAL)
333
334 #define strtoul_safe(cp, var) \
335 ({ \
336 unsigned long _v; \
337 int _r = kstrtoul(cp, 10, &_v); \
338 if (!_r) \
339 var = _v; \
340 _r; \
341 })
342
343 #define strtoul_safe_clamp(cp, var, min, max) \
344 ({ \
345 unsigned long _v; \
346 int _r = kstrtoul(cp, 10, &_v); \
347 if (!_r) \
348 var = clamp_t(typeof(var), _v, min, max); \
349 _r; \
350 })
351
352 #define snprint(buf, size, var) \
353 snprintf(buf, size, \
354 __builtin_types_compatible_p(typeof(var), int) \
355 ? "%i\n" : \
356 __builtin_types_compatible_p(typeof(var), unsigned) \
357 ? "%u\n" : \
358 __builtin_types_compatible_p(typeof(var), long) \
359 ? "%li\n" : \
360 __builtin_types_compatible_p(typeof(var), unsigned long)\
361 ? "%lu\n" : \
362 __builtin_types_compatible_p(typeof(var), int64_t) \
363 ? "%lli\n" : \
364 __builtin_types_compatible_p(typeof(var), uint64_t) \
365 ? "%llu\n" : \
366 __builtin_types_compatible_p(typeof(var), const char *) \
367 ? "%s\n" : "%i\n", var)
368
369 ssize_t bch_hprint(char *buf, int64_t v);
370
371 bool bch_is_zero(const char *p, size_t n);
372 int bch_parse_uuid(const char *s, char *uuid);
373
374 ssize_t bch_snprint_string_list(char *buf, size_t size, const char * const list[],
375 size_t selected);
376
377 ssize_t bch_read_string_list(const char *buf, const char * const list[]);
378
379 struct time_stats {
380 spinlock_t lock;
381 /*
382 * all fields are in nanoseconds, averages are ewmas stored left shifted
383 * by 8
384 */
385 uint64_t max_duration;
386 uint64_t average_duration;
387 uint64_t average_frequency;
388 uint64_t last;
389 };
390
391 void bch_time_stats_update(struct time_stats *stats, uint64_t time);
392
393 static inline unsigned local_clock_us(void)
394 {
395 return local_clock() >> 10;
396 }
397
398 #define NSEC_PER_ns 1L
399 #define NSEC_PER_us NSEC_PER_USEC
400 #define NSEC_PER_ms NSEC_PER_MSEC
401 #define NSEC_PER_sec NSEC_PER_SEC
402
403 #define __print_time_stat(stats, name, stat, units) \
404 sysfs_print(name ## _ ## stat ## _ ## units, \
405 div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
406
407 #define sysfs_print_time_stats(stats, name, \
408 frequency_units, \
409 duration_units) \
410 do { \
411 __print_time_stat(stats, name, \
412 average_frequency, frequency_units); \
413 __print_time_stat(stats, name, \
414 average_duration, duration_units); \
415 sysfs_print(name ## _ ##max_duration ## _ ## duration_units, \
416 div_u64((stats)->max_duration, NSEC_PER_ ## duration_units));\
417 \
418 sysfs_print(name ## _last_ ## frequency_units, (stats)->last \
419 ? div_s64(local_clock() - (stats)->last, \
420 NSEC_PER_ ## frequency_units) \
421 : -1LL); \
422 } while (0)
423
424 #define sysfs_time_stats_attribute(name, \
425 frequency_units, \
426 duration_units) \
427 read_attribute(name ## _average_frequency_ ## frequency_units); \
428 read_attribute(name ## _average_duration_ ## duration_units); \
429 read_attribute(name ## _max_duration_ ## duration_units); \
430 read_attribute(name ## _last_ ## frequency_units)
431
432 #define sysfs_time_stats_attribute_list(name, \
433 frequency_units, \
434 duration_units) \
435 &sysfs_ ## name ## _average_frequency_ ## frequency_units, \
436 &sysfs_ ## name ## _average_duration_ ## duration_units, \
437 &sysfs_ ## name ## _max_duration_ ## duration_units, \
438 &sysfs_ ## name ## _last_ ## frequency_units,
439
440 #define ewma_add(ewma, val, weight, factor) \
441 ({ \
442 (ewma) *= (weight) - 1; \
443 (ewma) += (val) << factor; \
444 (ewma) /= (weight); \
445 (ewma) >> factor; \
446 })
447
448 struct bch_ratelimit {
449 /* Next time we want to do some work, in nanoseconds */
450 uint64_t next;
451
452 /*
453 * Rate at which we want to do work, in units per nanosecond
454 * The units here correspond to the units passed to bch_next_delay()
455 */
456 unsigned rate;
457 };
458
459 static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
460 {
461 d->next = local_clock();
462 }
463
464 uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
465
466 #define __DIV_SAFE(n, d, zero) \
467 ({ \
468 typeof(n) _n = (n); \
469 typeof(d) _d = (d); \
470 _d ? _n / _d : zero; \
471 })
472
473 #define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0)
474
475 #define container_of_or_null(ptr, type, member) \
476 ({ \
477 typeof(ptr) _ptr = ptr; \
478 _ptr ? container_of(_ptr, type, member) : NULL; \
479 })
480
481 #define RB_INSERT(root, new, member, cmp) \
482 ({ \
483 __label__ dup; \
484 struct rb_node **n = &(root)->rb_node, *parent = NULL; \
485 typeof(new) this; \
486 int res, ret = -1; \
487 \
488 while (*n) { \
489 parent = *n; \
490 this = container_of(*n, typeof(*(new)), member); \
491 res = cmp(new, this); \
492 if (!res) \
493 goto dup; \
494 n = res < 0 \
495 ? &(*n)->rb_left \
496 : &(*n)->rb_right; \
497 } \
498 \
499 rb_link_node(&(new)->member, parent, n); \
500 rb_insert_color(&(new)->member, root); \
501 ret = 0; \
502 dup: \
503 ret; \
504 })
505
506 #define RB_SEARCH(root, search, member, cmp) \
507 ({ \
508 struct rb_node *n = (root)->rb_node; \
509 typeof(&(search)) this, ret = NULL; \
510 int res; \
511 \
512 while (n) { \
513 this = container_of(n, typeof(search), member); \
514 res = cmp(&(search), this); \
515 if (!res) { \
516 ret = this; \
517 break; \
518 } \
519 n = res < 0 \
520 ? n->rb_left \
521 : n->rb_right; \
522 } \
523 ret; \
524 })
525
526 #define RB_GREATER(root, search, member, cmp) \
527 ({ \
528 struct rb_node *n = (root)->rb_node; \
529 typeof(&(search)) this, ret = NULL; \
530 int res; \
531 \
532 while (n) { \
533 this = container_of(n, typeof(search), member); \
534 res = cmp(&(search), this); \
535 if (res < 0) { \
536 ret = this; \
537 n = n->rb_left; \
538 } else \
539 n = n->rb_right; \
540 } \
541 ret; \
542 })
543
544 #define RB_FIRST(root, type, member) \
545 container_of_or_null(rb_first(root), type, member)
546
547 #define RB_LAST(root, type, member) \
548 container_of_or_null(rb_last(root), type, member)
549
550 #define RB_NEXT(ptr, member) \
551 container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
552
553 #define RB_PREV(ptr, member) \
554 container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
555
556 /* Does linear interpolation between powers of two */
557 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
558 {
559 unsigned fract = x & ~(~0 << fract_bits);
560
561 x >>= fract_bits;
562 x = 1 << x;
563 x += (x * fract) >> fract_bits;
564
565 return x;
566 }
567
568 void bch_bio_map(struct bio *bio, void *base);
569
570 static inline sector_t bdev_sectors(struct block_device *bdev)
571 {
572 return bdev->bd_inode->i_size >> 9;
573 }
574
575 #define closure_bio_submit(bio, cl) \
576 do { \
577 closure_get(cl); \
578 generic_make_request(bio); \
579 } while (0)
580
581 uint64_t bch_crc64_update(uint64_t, const void *, size_t);
582 uint64_t bch_crc64(const void *, size_t);
583
584 #endif /* _BCACHE_UTIL_H */