]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/bcache/writeback.c
block: add a bi_error field to struct bio
[mirror_ubuntu-artful-kernel.git] / drivers / md / bcache / writeback.c
1 /*
2 * background writeback - scan btree for dirty data and write it to the backing
3 * device
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "writeback.h"
13
14 #include <linux/delay.h>
15 #include <linux/freezer.h>
16 #include <linux/kthread.h>
17 #include <trace/events/bcache.h>
18
19 /* Rate limiting */
20
21 static void __update_writeback_rate(struct cached_dev *dc)
22 {
23 struct cache_set *c = dc->disk.c;
24 uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size;
25 uint64_t cache_dirty_target =
26 div_u64(cache_sectors * dc->writeback_percent, 100);
27
28 int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
29 c->cached_dev_sectors);
30
31 /* PD controller */
32
33 int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
34 int64_t derivative = dirty - dc->disk.sectors_dirty_last;
35 int64_t proportional = dirty - target;
36 int64_t change;
37
38 dc->disk.sectors_dirty_last = dirty;
39
40 /* Scale to sectors per second */
41
42 proportional *= dc->writeback_rate_update_seconds;
43 proportional = div_s64(proportional, dc->writeback_rate_p_term_inverse);
44
45 derivative = div_s64(derivative, dc->writeback_rate_update_seconds);
46
47 derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
48 (dc->writeback_rate_d_term /
49 dc->writeback_rate_update_seconds) ?: 1, 0);
50
51 derivative *= dc->writeback_rate_d_term;
52 derivative = div_s64(derivative, dc->writeback_rate_p_term_inverse);
53
54 change = proportional + derivative;
55
56 /* Don't increase writeback rate if the device isn't keeping up */
57 if (change > 0 &&
58 time_after64(local_clock(),
59 dc->writeback_rate.next + NSEC_PER_MSEC))
60 change = 0;
61
62 dc->writeback_rate.rate =
63 clamp_t(int64_t, (int64_t) dc->writeback_rate.rate + change,
64 1, NSEC_PER_MSEC);
65
66 dc->writeback_rate_proportional = proportional;
67 dc->writeback_rate_derivative = derivative;
68 dc->writeback_rate_change = change;
69 dc->writeback_rate_target = target;
70 }
71
72 static void update_writeback_rate(struct work_struct *work)
73 {
74 struct cached_dev *dc = container_of(to_delayed_work(work),
75 struct cached_dev,
76 writeback_rate_update);
77
78 down_read(&dc->writeback_lock);
79
80 if (atomic_read(&dc->has_dirty) &&
81 dc->writeback_percent)
82 __update_writeback_rate(dc);
83
84 up_read(&dc->writeback_lock);
85
86 schedule_delayed_work(&dc->writeback_rate_update,
87 dc->writeback_rate_update_seconds * HZ);
88 }
89
90 static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
91 {
92 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
93 !dc->writeback_percent)
94 return 0;
95
96 return bch_next_delay(&dc->writeback_rate, sectors);
97 }
98
99 struct dirty_io {
100 struct closure cl;
101 struct cached_dev *dc;
102 struct bio bio;
103 };
104
105 static void dirty_init(struct keybuf_key *w)
106 {
107 struct dirty_io *io = w->private;
108 struct bio *bio = &io->bio;
109
110 bio_init(bio);
111 if (!io->dc->writeback_percent)
112 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
113
114 bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9;
115 bio->bi_max_vecs = DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS);
116 bio->bi_private = w;
117 bio->bi_io_vec = bio->bi_inline_vecs;
118 bch_bio_map(bio, NULL);
119 }
120
121 static void dirty_io_destructor(struct closure *cl)
122 {
123 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
124 kfree(io);
125 }
126
127 static void write_dirty_finish(struct closure *cl)
128 {
129 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
130 struct keybuf_key *w = io->bio.bi_private;
131 struct cached_dev *dc = io->dc;
132 struct bio_vec *bv;
133 int i;
134
135 bio_for_each_segment_all(bv, &io->bio, i)
136 __free_page(bv->bv_page);
137
138 /* This is kind of a dumb way of signalling errors. */
139 if (KEY_DIRTY(&w->key)) {
140 int ret;
141 unsigned i;
142 struct keylist keys;
143
144 bch_keylist_init(&keys);
145
146 bkey_copy(keys.top, &w->key);
147 SET_KEY_DIRTY(keys.top, false);
148 bch_keylist_push(&keys);
149
150 for (i = 0; i < KEY_PTRS(&w->key); i++)
151 atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
152
153 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
154
155 if (ret)
156 trace_bcache_writeback_collision(&w->key);
157
158 atomic_long_inc(ret
159 ? &dc->disk.c->writeback_keys_failed
160 : &dc->disk.c->writeback_keys_done);
161 }
162
163 bch_keybuf_del(&dc->writeback_keys, w);
164 up(&dc->in_flight);
165
166 closure_return_with_destructor(cl, dirty_io_destructor);
167 }
168
169 static void dirty_endio(struct bio *bio)
170 {
171 struct keybuf_key *w = bio->bi_private;
172 struct dirty_io *io = w->private;
173
174 if (bio->bi_error)
175 SET_KEY_DIRTY(&w->key, false);
176
177 closure_put(&io->cl);
178 }
179
180 static void write_dirty(struct closure *cl)
181 {
182 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
183 struct keybuf_key *w = io->bio.bi_private;
184
185 dirty_init(w);
186 io->bio.bi_rw = WRITE;
187 io->bio.bi_iter.bi_sector = KEY_START(&w->key);
188 io->bio.bi_bdev = io->dc->bdev;
189 io->bio.bi_end_io = dirty_endio;
190
191 closure_bio_submit(&io->bio, cl, &io->dc->disk);
192
193 continue_at(cl, write_dirty_finish, system_wq);
194 }
195
196 static void read_dirty_endio(struct bio *bio)
197 {
198 struct keybuf_key *w = bio->bi_private;
199 struct dirty_io *io = w->private;
200
201 bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
202 bio->bi_error, "reading dirty data from cache");
203
204 dirty_endio(bio);
205 }
206
207 static void read_dirty_submit(struct closure *cl)
208 {
209 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
210
211 closure_bio_submit(&io->bio, cl, &io->dc->disk);
212
213 continue_at(cl, write_dirty, system_wq);
214 }
215
216 static void read_dirty(struct cached_dev *dc)
217 {
218 unsigned delay = 0;
219 struct keybuf_key *w;
220 struct dirty_io *io;
221 struct closure cl;
222
223 closure_init_stack(&cl);
224
225 /*
226 * XXX: if we error, background writeback just spins. Should use some
227 * mempools.
228 */
229
230 while (!kthread_should_stop()) {
231 try_to_freeze();
232
233 w = bch_keybuf_next(&dc->writeback_keys);
234 if (!w)
235 break;
236
237 BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
238
239 if (KEY_START(&w->key) != dc->last_read ||
240 jiffies_to_msecs(delay) > 50)
241 while (!kthread_should_stop() && delay)
242 delay = schedule_timeout_interruptible(delay);
243
244 dc->last_read = KEY_OFFSET(&w->key);
245
246 io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
247 * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
248 GFP_KERNEL);
249 if (!io)
250 goto err;
251
252 w->private = io;
253 io->dc = dc;
254
255 dirty_init(w);
256 io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
257 io->bio.bi_bdev = PTR_CACHE(dc->disk.c,
258 &w->key, 0)->bdev;
259 io->bio.bi_rw = READ;
260 io->bio.bi_end_io = read_dirty_endio;
261
262 if (bio_alloc_pages(&io->bio, GFP_KERNEL))
263 goto err_free;
264
265 trace_bcache_writeback(&w->key);
266
267 down(&dc->in_flight);
268 closure_call(&io->cl, read_dirty_submit, NULL, &cl);
269
270 delay = writeback_delay(dc, KEY_SIZE(&w->key));
271 }
272
273 if (0) {
274 err_free:
275 kfree(w->private);
276 err:
277 bch_keybuf_del(&dc->writeback_keys, w);
278 }
279
280 /*
281 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
282 * freed) before refilling again
283 */
284 closure_sync(&cl);
285 }
286
287 /* Scan for dirty data */
288
289 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
290 uint64_t offset, int nr_sectors)
291 {
292 struct bcache_device *d = c->devices[inode];
293 unsigned stripe_offset, stripe, sectors_dirty;
294
295 if (!d)
296 return;
297
298 stripe = offset_to_stripe(d, offset);
299 stripe_offset = offset & (d->stripe_size - 1);
300
301 while (nr_sectors) {
302 int s = min_t(unsigned, abs(nr_sectors),
303 d->stripe_size - stripe_offset);
304
305 if (nr_sectors < 0)
306 s = -s;
307
308 if (stripe >= d->nr_stripes)
309 return;
310
311 sectors_dirty = atomic_add_return(s,
312 d->stripe_sectors_dirty + stripe);
313 if (sectors_dirty == d->stripe_size)
314 set_bit(stripe, d->full_dirty_stripes);
315 else
316 clear_bit(stripe, d->full_dirty_stripes);
317
318 nr_sectors -= s;
319 stripe_offset = 0;
320 stripe++;
321 }
322 }
323
324 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
325 {
326 return KEY_DIRTY(k);
327 }
328
329 static void refill_full_stripes(struct cached_dev *dc)
330 {
331 struct keybuf *buf = &dc->writeback_keys;
332 unsigned start_stripe, stripe, next_stripe;
333 bool wrapped = false;
334
335 stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
336
337 if (stripe >= dc->disk.nr_stripes)
338 stripe = 0;
339
340 start_stripe = stripe;
341
342 while (1) {
343 stripe = find_next_bit(dc->disk.full_dirty_stripes,
344 dc->disk.nr_stripes, stripe);
345
346 if (stripe == dc->disk.nr_stripes)
347 goto next;
348
349 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
350 dc->disk.nr_stripes, stripe);
351
352 buf->last_scanned = KEY(dc->disk.id,
353 stripe * dc->disk.stripe_size, 0);
354
355 bch_refill_keybuf(dc->disk.c, buf,
356 &KEY(dc->disk.id,
357 next_stripe * dc->disk.stripe_size, 0),
358 dirty_pred);
359
360 if (array_freelist_empty(&buf->freelist))
361 return;
362
363 stripe = next_stripe;
364 next:
365 if (wrapped && stripe > start_stripe)
366 return;
367
368 if (stripe == dc->disk.nr_stripes) {
369 stripe = 0;
370 wrapped = true;
371 }
372 }
373 }
374
375 static bool refill_dirty(struct cached_dev *dc)
376 {
377 struct keybuf *buf = &dc->writeback_keys;
378 struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
379 bool searched_from_start = false;
380
381 if (dc->partial_stripes_expensive) {
382 refill_full_stripes(dc);
383 if (array_freelist_empty(&buf->freelist))
384 return false;
385 }
386
387 if (bkey_cmp(&buf->last_scanned, &end) >= 0) {
388 buf->last_scanned = KEY(dc->disk.id, 0, 0);
389 searched_from_start = true;
390 }
391
392 bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
393
394 return bkey_cmp(&buf->last_scanned, &end) >= 0 && searched_from_start;
395 }
396
397 static int bch_writeback_thread(void *arg)
398 {
399 struct cached_dev *dc = arg;
400 bool searched_full_index;
401
402 while (!kthread_should_stop()) {
403 down_write(&dc->writeback_lock);
404 if (!atomic_read(&dc->has_dirty) ||
405 (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
406 !dc->writeback_running)) {
407 up_write(&dc->writeback_lock);
408 set_current_state(TASK_INTERRUPTIBLE);
409
410 if (kthread_should_stop())
411 return 0;
412
413 try_to_freeze();
414 schedule();
415 continue;
416 }
417
418 searched_full_index = refill_dirty(dc);
419
420 if (searched_full_index &&
421 RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
422 atomic_set(&dc->has_dirty, 0);
423 cached_dev_put(dc);
424 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
425 bch_write_bdev_super(dc, NULL);
426 }
427
428 up_write(&dc->writeback_lock);
429
430 bch_ratelimit_reset(&dc->writeback_rate);
431 read_dirty(dc);
432
433 if (searched_full_index) {
434 unsigned delay = dc->writeback_delay * HZ;
435
436 while (delay &&
437 !kthread_should_stop() &&
438 !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
439 delay = schedule_timeout_interruptible(delay);
440 }
441 }
442
443 return 0;
444 }
445
446 /* Init */
447
448 struct sectors_dirty_init {
449 struct btree_op op;
450 unsigned inode;
451 };
452
453 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
454 struct bkey *k)
455 {
456 struct sectors_dirty_init *op = container_of(_op,
457 struct sectors_dirty_init, op);
458 if (KEY_INODE(k) > op->inode)
459 return MAP_DONE;
460
461 if (KEY_DIRTY(k))
462 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
463 KEY_START(k), KEY_SIZE(k));
464
465 return MAP_CONTINUE;
466 }
467
468 void bch_sectors_dirty_init(struct cached_dev *dc)
469 {
470 struct sectors_dirty_init op;
471
472 bch_btree_op_init(&op.op, -1);
473 op.inode = dc->disk.id;
474
475 bch_btree_map_keys(&op.op, dc->disk.c, &KEY(op.inode, 0, 0),
476 sectors_dirty_init_fn, 0);
477
478 dc->disk.sectors_dirty_last = bcache_dev_sectors_dirty(&dc->disk);
479 }
480
481 void bch_cached_dev_writeback_init(struct cached_dev *dc)
482 {
483 sema_init(&dc->in_flight, 64);
484 init_rwsem(&dc->writeback_lock);
485 bch_keybuf_init(&dc->writeback_keys);
486
487 dc->writeback_metadata = true;
488 dc->writeback_running = true;
489 dc->writeback_percent = 10;
490 dc->writeback_delay = 30;
491 dc->writeback_rate.rate = 1024;
492
493 dc->writeback_rate_update_seconds = 5;
494 dc->writeback_rate_d_term = 30;
495 dc->writeback_rate_p_term_inverse = 6000;
496
497 INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
498 }
499
500 int bch_cached_dev_writeback_start(struct cached_dev *dc)
501 {
502 dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
503 "bcache_writeback");
504 if (IS_ERR(dc->writeback_thread))
505 return PTR_ERR(dc->writeback_thread);
506
507 schedule_delayed_work(&dc->writeback_rate_update,
508 dc->writeback_rate_update_seconds * HZ);
509
510 bch_writeback_queue(dc);
511
512 return 0;
513 }