]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/bcache/writeback.c
bcache: Fix a dumb CPU spinning bug in writeback
[mirror_ubuntu-artful-kernel.git] / drivers / md / bcache / writeback.c
1 /*
2 * background writeback - scan btree for dirty data and write it to the backing
3 * device
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "writeback.h"
13
14 #include <trace/events/bcache.h>
15
16 static struct workqueue_struct *dirty_wq;
17
18 static void read_dirty(struct closure *);
19
20 struct dirty_io {
21 struct closure cl;
22 struct cached_dev *dc;
23 struct bio bio;
24 };
25
26 /* Rate limiting */
27
28 static void __update_writeback_rate(struct cached_dev *dc)
29 {
30 struct cache_set *c = dc->disk.c;
31 uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size;
32 uint64_t cache_dirty_target =
33 div_u64(cache_sectors * dc->writeback_percent, 100);
34
35 int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
36 c->cached_dev_sectors);
37
38 /* PD controller */
39
40 int change = 0;
41 int64_t error;
42 int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
43 int64_t derivative = dirty - dc->disk.sectors_dirty_last;
44
45 dc->disk.sectors_dirty_last = dirty;
46
47 derivative *= dc->writeback_rate_d_term;
48 derivative = clamp(derivative, -dirty, dirty);
49
50 derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
51 dc->writeback_rate_d_smooth, 0);
52
53 /* Avoid divide by zero */
54 if (!target)
55 goto out;
56
57 error = div64_s64((dirty + derivative - target) << 8, target);
58
59 change = div_s64((dc->writeback_rate.rate * error) >> 8,
60 dc->writeback_rate_p_term_inverse);
61
62 /* Don't increase writeback rate if the device isn't keeping up */
63 if (change > 0 &&
64 time_after64(local_clock(),
65 dc->writeback_rate.next + 10 * NSEC_PER_MSEC))
66 change = 0;
67
68 dc->writeback_rate.rate =
69 clamp_t(int64_t, dc->writeback_rate.rate + change,
70 1, NSEC_PER_MSEC);
71 out:
72 dc->writeback_rate_derivative = derivative;
73 dc->writeback_rate_change = change;
74 dc->writeback_rate_target = target;
75
76 schedule_delayed_work(&dc->writeback_rate_update,
77 dc->writeback_rate_update_seconds * HZ);
78 }
79
80 static void update_writeback_rate(struct work_struct *work)
81 {
82 struct cached_dev *dc = container_of(to_delayed_work(work),
83 struct cached_dev,
84 writeback_rate_update);
85
86 down_read(&dc->writeback_lock);
87
88 if (atomic_read(&dc->has_dirty) &&
89 dc->writeback_percent)
90 __update_writeback_rate(dc);
91
92 up_read(&dc->writeback_lock);
93 }
94
95 static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
96 {
97 uint64_t ret;
98
99 if (atomic_read(&dc->disk.detaching) ||
100 !dc->writeback_percent)
101 return 0;
102
103 ret = bch_next_delay(&dc->writeback_rate, sectors * 10000000ULL);
104
105 return min_t(uint64_t, ret, HZ);
106 }
107
108 /* Background writeback */
109
110 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
111 {
112 return KEY_DIRTY(k);
113 }
114
115 static bool dirty_full_stripe_pred(struct keybuf *buf, struct bkey *k)
116 {
117 uint64_t stripe;
118 unsigned nr_sectors = KEY_SIZE(k);
119 struct cached_dev *dc = container_of(buf, struct cached_dev,
120 writeback_keys);
121 unsigned stripe_size = 1 << dc->disk.stripe_size_bits;
122
123 if (!KEY_DIRTY(k))
124 return false;
125
126 stripe = KEY_START(k) >> dc->disk.stripe_size_bits;
127 while (1) {
128 if (atomic_read(dc->disk.stripe_sectors_dirty + stripe) !=
129 stripe_size)
130 return false;
131
132 if (nr_sectors <= stripe_size)
133 return true;
134
135 nr_sectors -= stripe_size;
136 stripe++;
137 }
138 }
139
140 static void dirty_init(struct keybuf_key *w)
141 {
142 struct dirty_io *io = w->private;
143 struct bio *bio = &io->bio;
144
145 bio_init(bio);
146 if (!io->dc->writeback_percent)
147 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
148
149 bio->bi_size = KEY_SIZE(&w->key) << 9;
150 bio->bi_max_vecs = DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS);
151 bio->bi_private = w;
152 bio->bi_io_vec = bio->bi_inline_vecs;
153 bch_bio_map(bio, NULL);
154 }
155
156 static void refill_dirty(struct closure *cl)
157 {
158 struct cached_dev *dc = container_of(cl, struct cached_dev,
159 writeback.cl);
160 struct keybuf *buf = &dc->writeback_keys;
161 bool searched_from_start = false;
162 struct bkey end = MAX_KEY;
163 SET_KEY_INODE(&end, dc->disk.id);
164
165 if (!atomic_read(&dc->disk.detaching) &&
166 !dc->writeback_running)
167 closure_return(cl);
168
169 down_write(&dc->writeback_lock);
170
171 if (!atomic_read(&dc->has_dirty)) {
172 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
173 bch_write_bdev_super(dc, NULL);
174
175 up_write(&dc->writeback_lock);
176 closure_return(cl);
177 }
178
179 if (bkey_cmp(&buf->last_scanned, &end) >= 0) {
180 buf->last_scanned = KEY(dc->disk.id, 0, 0);
181 searched_from_start = true;
182 }
183
184 if (dc->partial_stripes_expensive) {
185 uint64_t i;
186
187 for (i = 0; i < dc->disk.nr_stripes; i++)
188 if (atomic_read(dc->disk.stripe_sectors_dirty + i) ==
189 1 << dc->disk.stripe_size_bits)
190 goto full_stripes;
191
192 goto normal_refill;
193 full_stripes:
194 bch_refill_keybuf(dc->disk.c, buf, &end,
195 dirty_full_stripe_pred);
196 } else {
197 normal_refill:
198 bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
199 }
200
201 if (bkey_cmp(&buf->last_scanned, &end) >= 0 && searched_from_start) {
202 /* Searched the entire btree - delay awhile */
203
204 if (RB_EMPTY_ROOT(&buf->keys)) {
205 atomic_set(&dc->has_dirty, 0);
206 cached_dev_put(dc);
207 }
208
209 if (!atomic_read(&dc->disk.detaching))
210 closure_delay(&dc->writeback, dc->writeback_delay * HZ);
211 }
212
213 up_write(&dc->writeback_lock);
214
215 bch_ratelimit_reset(&dc->writeback_rate);
216
217 /* Punt to workqueue only so we don't recurse and blow the stack */
218 continue_at(cl, read_dirty, dirty_wq);
219 }
220
221 void bch_writeback_queue(struct cached_dev *dc)
222 {
223 if (closure_trylock(&dc->writeback.cl, &dc->disk.cl)) {
224 if (!atomic_read(&dc->disk.detaching))
225 closure_delay(&dc->writeback, dc->writeback_delay * HZ);
226
227 continue_at(&dc->writeback.cl, refill_dirty, dirty_wq);
228 }
229 }
230
231 void bch_writeback_add(struct cached_dev *dc)
232 {
233 if (!atomic_read(&dc->has_dirty) &&
234 !atomic_xchg(&dc->has_dirty, 1)) {
235 atomic_inc(&dc->count);
236
237 if (BDEV_STATE(&dc->sb) != BDEV_STATE_DIRTY) {
238 SET_BDEV_STATE(&dc->sb, BDEV_STATE_DIRTY);
239 /* XXX: should do this synchronously */
240 bch_write_bdev_super(dc, NULL);
241 }
242
243 bch_writeback_queue(dc);
244
245 if (dc->writeback_percent)
246 schedule_delayed_work(&dc->writeback_rate_update,
247 dc->writeback_rate_update_seconds * HZ);
248 }
249 }
250
251 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
252 uint64_t offset, int nr_sectors)
253 {
254 struct bcache_device *d = c->devices[inode];
255 unsigned stripe_size, stripe_offset;
256 uint64_t stripe;
257
258 if (!d)
259 return;
260
261 stripe_size = 1 << d->stripe_size_bits;
262 stripe = offset >> d->stripe_size_bits;
263 stripe_offset = offset & (stripe_size - 1);
264
265 while (nr_sectors) {
266 int s = min_t(unsigned, abs(nr_sectors),
267 stripe_size - stripe_offset);
268
269 if (nr_sectors < 0)
270 s = -s;
271
272 atomic_add(s, d->stripe_sectors_dirty + stripe);
273 nr_sectors -= s;
274 stripe_offset = 0;
275 stripe++;
276 }
277 }
278
279 /* Background writeback - IO loop */
280
281 static void dirty_io_destructor(struct closure *cl)
282 {
283 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
284 kfree(io);
285 }
286
287 static void write_dirty_finish(struct closure *cl)
288 {
289 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
290 struct keybuf_key *w = io->bio.bi_private;
291 struct cached_dev *dc = io->dc;
292 struct bio_vec *bv;
293 int i;
294
295 bio_for_each_segment_all(bv, &io->bio, i)
296 __free_page(bv->bv_page);
297
298 /* This is kind of a dumb way of signalling errors. */
299 if (KEY_DIRTY(&w->key)) {
300 unsigned i;
301 struct btree_op op;
302 bch_btree_op_init_stack(&op);
303
304 op.type = BTREE_REPLACE;
305 bkey_copy(&op.replace, &w->key);
306
307 SET_KEY_DIRTY(&w->key, false);
308 bch_keylist_add(&op.keys, &w->key);
309
310 for (i = 0; i < KEY_PTRS(&w->key); i++)
311 atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
312
313 bch_btree_insert(&op, dc->disk.c);
314 closure_sync(&op.cl);
315
316 if (op.insert_collision)
317 trace_bcache_writeback_collision(&w->key);
318
319 atomic_long_inc(op.insert_collision
320 ? &dc->disk.c->writeback_keys_failed
321 : &dc->disk.c->writeback_keys_done);
322 }
323
324 bch_keybuf_del(&dc->writeback_keys, w);
325 up(&dc->in_flight);
326
327 closure_return_with_destructor(cl, dirty_io_destructor);
328 }
329
330 static void dirty_endio(struct bio *bio, int error)
331 {
332 struct keybuf_key *w = bio->bi_private;
333 struct dirty_io *io = w->private;
334
335 if (error)
336 SET_KEY_DIRTY(&w->key, false);
337
338 closure_put(&io->cl);
339 }
340
341 static void write_dirty(struct closure *cl)
342 {
343 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
344 struct keybuf_key *w = io->bio.bi_private;
345
346 dirty_init(w);
347 io->bio.bi_rw = WRITE;
348 io->bio.bi_sector = KEY_START(&w->key);
349 io->bio.bi_bdev = io->dc->bdev;
350 io->bio.bi_end_io = dirty_endio;
351
352 closure_bio_submit(&io->bio, cl, &io->dc->disk);
353
354 continue_at(cl, write_dirty_finish, system_wq);
355 }
356
357 static void read_dirty_endio(struct bio *bio, int error)
358 {
359 struct keybuf_key *w = bio->bi_private;
360 struct dirty_io *io = w->private;
361
362 bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
363 error, "reading dirty data from cache");
364
365 dirty_endio(bio, error);
366 }
367
368 static void read_dirty_submit(struct closure *cl)
369 {
370 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
371
372 closure_bio_submit(&io->bio, cl, &io->dc->disk);
373
374 continue_at(cl, write_dirty, system_wq);
375 }
376
377 static void read_dirty(struct closure *cl)
378 {
379 struct cached_dev *dc = container_of(cl, struct cached_dev,
380 writeback.cl);
381 unsigned delay = writeback_delay(dc, 0);
382 struct keybuf_key *w;
383 struct dirty_io *io;
384
385 /*
386 * XXX: if we error, background writeback just spins. Should use some
387 * mempools.
388 */
389
390 while (1) {
391 w = bch_keybuf_next(&dc->writeback_keys);
392 if (!w)
393 break;
394
395 BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
396
397 if (delay > 0 &&
398 (KEY_START(&w->key) != dc->last_read ||
399 jiffies_to_msecs(delay) > 50))
400 delay = schedule_timeout_uninterruptible(delay);
401
402 dc->last_read = KEY_OFFSET(&w->key);
403
404 io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
405 * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
406 GFP_KERNEL);
407 if (!io)
408 goto err;
409
410 w->private = io;
411 io->dc = dc;
412
413 dirty_init(w);
414 io->bio.bi_sector = PTR_OFFSET(&w->key, 0);
415 io->bio.bi_bdev = PTR_CACHE(dc->disk.c,
416 &w->key, 0)->bdev;
417 io->bio.bi_rw = READ;
418 io->bio.bi_end_io = read_dirty_endio;
419
420 if (bio_alloc_pages(&io->bio, GFP_KERNEL))
421 goto err_free;
422
423 trace_bcache_writeback(&w->key);
424
425 down(&dc->in_flight);
426 closure_call(&io->cl, read_dirty_submit, NULL, cl);
427
428 delay = writeback_delay(dc, KEY_SIZE(&w->key));
429 }
430
431 if (0) {
432 err_free:
433 kfree(w->private);
434 err:
435 bch_keybuf_del(&dc->writeback_keys, w);
436 }
437
438 /*
439 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
440 * freed) before refilling again
441 */
442 continue_at(cl, refill_dirty, dirty_wq);
443 }
444
445 /* Init */
446
447 static int bch_btree_sectors_dirty_init(struct btree *b, struct btree_op *op,
448 struct cached_dev *dc)
449 {
450 struct bkey *k;
451 struct btree_iter iter;
452
453 bch_btree_iter_init(b, &iter, &KEY(dc->disk.id, 0, 0));
454 while ((k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad)))
455 if (!b->level) {
456 if (KEY_INODE(k) > dc->disk.id)
457 break;
458
459 if (KEY_DIRTY(k))
460 bcache_dev_sectors_dirty_add(b->c, dc->disk.id,
461 KEY_START(k),
462 KEY_SIZE(k));
463 } else {
464 btree(sectors_dirty_init, k, b, op, dc);
465 if (KEY_INODE(k) > dc->disk.id)
466 break;
467
468 cond_resched();
469 }
470
471 return 0;
472 }
473
474 void bch_sectors_dirty_init(struct cached_dev *dc)
475 {
476 struct btree_op op;
477
478 bch_btree_op_init_stack(&op);
479 btree_root(sectors_dirty_init, dc->disk.c, &op, dc);
480 }
481
482 void bch_cached_dev_writeback_init(struct cached_dev *dc)
483 {
484 sema_init(&dc->in_flight, 64);
485 closure_init_unlocked(&dc->writeback);
486 init_rwsem(&dc->writeback_lock);
487
488 bch_keybuf_init(&dc->writeback_keys);
489
490 dc->writeback_metadata = true;
491 dc->writeback_running = true;
492 dc->writeback_percent = 10;
493 dc->writeback_delay = 30;
494 dc->writeback_rate.rate = 1024;
495
496 dc->writeback_rate_update_seconds = 30;
497 dc->writeback_rate_d_term = 16;
498 dc->writeback_rate_p_term_inverse = 64;
499 dc->writeback_rate_d_smooth = 8;
500
501 INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
502 schedule_delayed_work(&dc->writeback_rate_update,
503 dc->writeback_rate_update_seconds * HZ);
504 }
505
506 void bch_writeback_exit(void)
507 {
508 if (dirty_wq)
509 destroy_workqueue(dirty_wq);
510 }
511
512 int __init bch_writeback_init(void)
513 {
514 dirty_wq = create_workqueue("bcache_writeback");
515 if (!dirty_wq)
516 return -ENOMEM;
517
518 return 0;
519 }