]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/bcache/writeback.c
spi: orion: remove redundant assignment of status to zero
[mirror_ubuntu-bionic-kernel.git] / drivers / md / bcache / writeback.c
1 /*
2 * background writeback - scan btree for dirty data and write it to the backing
3 * device
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "writeback.h"
13
14 #include <linux/delay.h>
15 #include <linux/kthread.h>
16 #include <linux/sched/clock.h>
17 #include <trace/events/bcache.h>
18
19 /* Rate limiting */
20
21 static void __update_writeback_rate(struct cached_dev *dc)
22 {
23 struct cache_set *c = dc->disk.c;
24 uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size -
25 bcache_flash_devs_sectors_dirty(c);
26 uint64_t cache_dirty_target =
27 div_u64(cache_sectors * dc->writeback_percent, 100);
28
29 int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
30 c->cached_dev_sectors);
31
32 /* PD controller */
33
34 int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
35 int64_t derivative = dirty - dc->disk.sectors_dirty_last;
36 int64_t proportional = dirty - target;
37 int64_t change;
38
39 dc->disk.sectors_dirty_last = dirty;
40
41 /* Scale to sectors per second */
42
43 proportional *= dc->writeback_rate_update_seconds;
44 proportional = div_s64(proportional, dc->writeback_rate_p_term_inverse);
45
46 derivative = div_s64(derivative, dc->writeback_rate_update_seconds);
47
48 derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
49 (dc->writeback_rate_d_term /
50 dc->writeback_rate_update_seconds) ?: 1, 0);
51
52 derivative *= dc->writeback_rate_d_term;
53 derivative = div_s64(derivative, dc->writeback_rate_p_term_inverse);
54
55 change = proportional + derivative;
56
57 /* Don't increase writeback rate if the device isn't keeping up */
58 if (change > 0 &&
59 time_after64(local_clock(),
60 dc->writeback_rate.next + NSEC_PER_MSEC))
61 change = 0;
62
63 dc->writeback_rate.rate =
64 clamp_t(int64_t, (int64_t) dc->writeback_rate.rate + change,
65 1, NSEC_PER_MSEC);
66
67 dc->writeback_rate_proportional = proportional;
68 dc->writeback_rate_derivative = derivative;
69 dc->writeback_rate_change = change;
70 dc->writeback_rate_target = target;
71 }
72
73 static void update_writeback_rate(struct work_struct *work)
74 {
75 struct cached_dev *dc = container_of(to_delayed_work(work),
76 struct cached_dev,
77 writeback_rate_update);
78
79 down_read(&dc->writeback_lock);
80
81 if (atomic_read(&dc->has_dirty) &&
82 dc->writeback_percent)
83 __update_writeback_rate(dc);
84
85 up_read(&dc->writeback_lock);
86
87 schedule_delayed_work(&dc->writeback_rate_update,
88 dc->writeback_rate_update_seconds * HZ);
89 }
90
91 static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
92 {
93 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
94 !dc->writeback_percent)
95 return 0;
96
97 return bch_next_delay(&dc->writeback_rate, sectors);
98 }
99
100 struct dirty_io {
101 struct closure cl;
102 struct cached_dev *dc;
103 struct bio bio;
104 };
105
106 static void dirty_init(struct keybuf_key *w)
107 {
108 struct dirty_io *io = w->private;
109 struct bio *bio = &io->bio;
110
111 bio_init(bio, bio->bi_inline_vecs,
112 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
113 if (!io->dc->writeback_percent)
114 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
115
116 bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9;
117 bio->bi_private = w;
118 bch_bio_map(bio, NULL);
119 }
120
121 static void dirty_io_destructor(struct closure *cl)
122 {
123 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
124 kfree(io);
125 }
126
127 static void write_dirty_finish(struct closure *cl)
128 {
129 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
130 struct keybuf_key *w = io->bio.bi_private;
131 struct cached_dev *dc = io->dc;
132
133 bio_free_pages(&io->bio);
134
135 /* This is kind of a dumb way of signalling errors. */
136 if (KEY_DIRTY(&w->key)) {
137 int ret;
138 unsigned i;
139 struct keylist keys;
140
141 bch_keylist_init(&keys);
142
143 bkey_copy(keys.top, &w->key);
144 SET_KEY_DIRTY(keys.top, false);
145 bch_keylist_push(&keys);
146
147 for (i = 0; i < KEY_PTRS(&w->key); i++)
148 atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
149
150 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
151
152 if (ret)
153 trace_bcache_writeback_collision(&w->key);
154
155 atomic_long_inc(ret
156 ? &dc->disk.c->writeback_keys_failed
157 : &dc->disk.c->writeback_keys_done);
158 }
159
160 bch_keybuf_del(&dc->writeback_keys, w);
161 up(&dc->in_flight);
162
163 closure_return_with_destructor(cl, dirty_io_destructor);
164 }
165
166 static void dirty_endio(struct bio *bio)
167 {
168 struct keybuf_key *w = bio->bi_private;
169 struct dirty_io *io = w->private;
170
171 if (bio->bi_status)
172 SET_KEY_DIRTY(&w->key, false);
173
174 closure_put(&io->cl);
175 }
176
177 static void write_dirty(struct closure *cl)
178 {
179 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
180 struct keybuf_key *w = io->bio.bi_private;
181
182 dirty_init(w);
183 bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
184 io->bio.bi_iter.bi_sector = KEY_START(&w->key);
185 bio_set_dev(&io->bio, io->dc->bdev);
186 io->bio.bi_end_io = dirty_endio;
187
188 closure_bio_submit(&io->bio, cl);
189
190 continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
191 }
192
193 static void read_dirty_endio(struct bio *bio)
194 {
195 struct keybuf_key *w = bio->bi_private;
196 struct dirty_io *io = w->private;
197
198 bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
199 bio->bi_status, "reading dirty data from cache");
200
201 dirty_endio(bio);
202 }
203
204 static void read_dirty_submit(struct closure *cl)
205 {
206 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
207
208 closure_bio_submit(&io->bio, cl);
209
210 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
211 }
212
213 static void read_dirty(struct cached_dev *dc)
214 {
215 unsigned delay = 0;
216 struct keybuf_key *w;
217 struct dirty_io *io;
218 struct closure cl;
219
220 closure_init_stack(&cl);
221
222 /*
223 * XXX: if we error, background writeback just spins. Should use some
224 * mempools.
225 */
226
227 while (!kthread_should_stop()) {
228
229 w = bch_keybuf_next(&dc->writeback_keys);
230 if (!w)
231 break;
232
233 BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
234
235 if (KEY_START(&w->key) != dc->last_read ||
236 jiffies_to_msecs(delay) > 50)
237 while (!kthread_should_stop() && delay)
238 delay = schedule_timeout_interruptible(delay);
239
240 dc->last_read = KEY_OFFSET(&w->key);
241
242 io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
243 * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
244 GFP_KERNEL);
245 if (!io)
246 goto err;
247
248 w->private = io;
249 io->dc = dc;
250
251 dirty_init(w);
252 bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
253 io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
254 bio_set_dev(&io->bio, PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
255 io->bio.bi_end_io = read_dirty_endio;
256
257 if (bio_alloc_pages(&io->bio, GFP_KERNEL))
258 goto err_free;
259
260 trace_bcache_writeback(&w->key);
261
262 down(&dc->in_flight);
263 closure_call(&io->cl, read_dirty_submit, NULL, &cl);
264
265 delay = writeback_delay(dc, KEY_SIZE(&w->key));
266 }
267
268 if (0) {
269 err_free:
270 kfree(w->private);
271 err:
272 bch_keybuf_del(&dc->writeback_keys, w);
273 }
274
275 /*
276 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
277 * freed) before refilling again
278 */
279 closure_sync(&cl);
280 }
281
282 /* Scan for dirty data */
283
284 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
285 uint64_t offset, int nr_sectors)
286 {
287 struct bcache_device *d = c->devices[inode];
288 unsigned stripe_offset, stripe, sectors_dirty;
289
290 if (!d)
291 return;
292
293 stripe = offset_to_stripe(d, offset);
294 stripe_offset = offset & (d->stripe_size - 1);
295
296 while (nr_sectors) {
297 int s = min_t(unsigned, abs(nr_sectors),
298 d->stripe_size - stripe_offset);
299
300 if (nr_sectors < 0)
301 s = -s;
302
303 if (stripe >= d->nr_stripes)
304 return;
305
306 sectors_dirty = atomic_add_return(s,
307 d->stripe_sectors_dirty + stripe);
308 if (sectors_dirty == d->stripe_size)
309 set_bit(stripe, d->full_dirty_stripes);
310 else
311 clear_bit(stripe, d->full_dirty_stripes);
312
313 nr_sectors -= s;
314 stripe_offset = 0;
315 stripe++;
316 }
317 }
318
319 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
320 {
321 struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys);
322
323 BUG_ON(KEY_INODE(k) != dc->disk.id);
324
325 return KEY_DIRTY(k);
326 }
327
328 static void refill_full_stripes(struct cached_dev *dc)
329 {
330 struct keybuf *buf = &dc->writeback_keys;
331 unsigned start_stripe, stripe, next_stripe;
332 bool wrapped = false;
333
334 stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
335
336 if (stripe >= dc->disk.nr_stripes)
337 stripe = 0;
338
339 start_stripe = stripe;
340
341 while (1) {
342 stripe = find_next_bit(dc->disk.full_dirty_stripes,
343 dc->disk.nr_stripes, stripe);
344
345 if (stripe == dc->disk.nr_stripes)
346 goto next;
347
348 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
349 dc->disk.nr_stripes, stripe);
350
351 buf->last_scanned = KEY(dc->disk.id,
352 stripe * dc->disk.stripe_size, 0);
353
354 bch_refill_keybuf(dc->disk.c, buf,
355 &KEY(dc->disk.id,
356 next_stripe * dc->disk.stripe_size, 0),
357 dirty_pred);
358
359 if (array_freelist_empty(&buf->freelist))
360 return;
361
362 stripe = next_stripe;
363 next:
364 if (wrapped && stripe > start_stripe)
365 return;
366
367 if (stripe == dc->disk.nr_stripes) {
368 stripe = 0;
369 wrapped = true;
370 }
371 }
372 }
373
374 /*
375 * Returns true if we scanned the entire disk
376 */
377 static bool refill_dirty(struct cached_dev *dc)
378 {
379 struct keybuf *buf = &dc->writeback_keys;
380 struct bkey start = KEY(dc->disk.id, 0, 0);
381 struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
382 struct bkey start_pos;
383
384 /*
385 * make sure keybuf pos is inside the range for this disk - at bringup
386 * we might not be attached yet so this disk's inode nr isn't
387 * initialized then
388 */
389 if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
390 bkey_cmp(&buf->last_scanned, &end) > 0)
391 buf->last_scanned = start;
392
393 if (dc->partial_stripes_expensive) {
394 refill_full_stripes(dc);
395 if (array_freelist_empty(&buf->freelist))
396 return false;
397 }
398
399 start_pos = buf->last_scanned;
400 bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
401
402 if (bkey_cmp(&buf->last_scanned, &end) < 0)
403 return false;
404
405 /*
406 * If we get to the end start scanning again from the beginning, and
407 * only scan up to where we initially started scanning from:
408 */
409 buf->last_scanned = start;
410 bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
411
412 return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
413 }
414
415 static int bch_writeback_thread(void *arg)
416 {
417 struct cached_dev *dc = arg;
418 bool searched_full_index;
419
420 while (!kthread_should_stop()) {
421 down_write(&dc->writeback_lock);
422 if (!atomic_read(&dc->has_dirty) ||
423 (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
424 !dc->writeback_running)) {
425 up_write(&dc->writeback_lock);
426 set_current_state(TASK_INTERRUPTIBLE);
427
428 if (kthread_should_stop())
429 return 0;
430
431 schedule();
432 continue;
433 }
434
435 searched_full_index = refill_dirty(dc);
436
437 if (searched_full_index &&
438 RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
439 atomic_set(&dc->has_dirty, 0);
440 cached_dev_put(dc);
441 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
442 bch_write_bdev_super(dc, NULL);
443 }
444
445 up_write(&dc->writeback_lock);
446
447 bch_ratelimit_reset(&dc->writeback_rate);
448 read_dirty(dc);
449
450 if (searched_full_index) {
451 unsigned delay = dc->writeback_delay * HZ;
452
453 while (delay &&
454 !kthread_should_stop() &&
455 !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
456 delay = schedule_timeout_interruptible(delay);
457 }
458 }
459
460 return 0;
461 }
462
463 /* Init */
464
465 struct sectors_dirty_init {
466 struct btree_op op;
467 unsigned inode;
468 };
469
470 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
471 struct bkey *k)
472 {
473 struct sectors_dirty_init *op = container_of(_op,
474 struct sectors_dirty_init, op);
475 if (KEY_INODE(k) > op->inode)
476 return MAP_DONE;
477
478 if (KEY_DIRTY(k))
479 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
480 KEY_START(k), KEY_SIZE(k));
481
482 return MAP_CONTINUE;
483 }
484
485 void bch_sectors_dirty_init(struct bcache_device *d)
486 {
487 struct sectors_dirty_init op;
488
489 bch_btree_op_init(&op.op, -1);
490 op.inode = d->id;
491
492 bch_btree_map_keys(&op.op, d->c, &KEY(op.inode, 0, 0),
493 sectors_dirty_init_fn, 0);
494
495 d->sectors_dirty_last = bcache_dev_sectors_dirty(d);
496 }
497
498 void bch_cached_dev_writeback_init(struct cached_dev *dc)
499 {
500 sema_init(&dc->in_flight, 64);
501 init_rwsem(&dc->writeback_lock);
502 bch_keybuf_init(&dc->writeback_keys);
503
504 dc->writeback_metadata = true;
505 dc->writeback_running = true;
506 dc->writeback_percent = 10;
507 dc->writeback_delay = 30;
508 dc->writeback_rate.rate = 1024;
509
510 dc->writeback_rate_update_seconds = 5;
511 dc->writeback_rate_d_term = 30;
512 dc->writeback_rate_p_term_inverse = 6000;
513
514 INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
515 }
516
517 int bch_cached_dev_writeback_start(struct cached_dev *dc)
518 {
519 dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
520 WQ_MEM_RECLAIM, 0);
521 if (!dc->writeback_write_wq)
522 return -ENOMEM;
523
524 dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
525 "bcache_writeback");
526 if (IS_ERR(dc->writeback_thread))
527 return PTR_ERR(dc->writeback_thread);
528
529 schedule_delayed_work(&dc->writeback_rate_update,
530 dc->writeback_rate_update_seconds * HZ);
531
532 bch_writeback_queue(dc);
533
534 return 0;
535 }