]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/md/dm-bufio.c
block: bio: pass bvec table to bio_init()
[mirror_ubuntu-zesty-kernel.git] / drivers / md / dm-bufio.c
1 /*
2 * Copyright (C) 2009-2011 Red Hat, Inc.
3 *
4 * Author: Mikulas Patocka <mpatocka@redhat.com>
5 *
6 * This file is released under the GPL.
7 */
8
9 #include "dm-bufio.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/jiffies.h>
15 #include <linux/vmalloc.h>
16 #include <linux/shrinker.h>
17 #include <linux/module.h>
18 #include <linux/rbtree.h>
19 #include <linux/stacktrace.h>
20
21 #define DM_MSG_PREFIX "bufio"
22
23 /*
24 * Memory management policy:
25 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
26 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
27 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
28 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
29 * dirty buffers.
30 */
31 #define DM_BUFIO_MIN_BUFFERS 8
32
33 #define DM_BUFIO_MEMORY_PERCENT 2
34 #define DM_BUFIO_VMALLOC_PERCENT 25
35 #define DM_BUFIO_WRITEBACK_PERCENT 75
36
37 /*
38 * Check buffer ages in this interval (seconds)
39 */
40 #define DM_BUFIO_WORK_TIMER_SECS 30
41
42 /*
43 * Free buffers when they are older than this (seconds)
44 */
45 #define DM_BUFIO_DEFAULT_AGE_SECS 300
46
47 /*
48 * The nr of bytes of cached data to keep around.
49 */
50 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024)
51
52 /*
53 * The number of bvec entries that are embedded directly in the buffer.
54 * If the chunk size is larger, dm-io is used to do the io.
55 */
56 #define DM_BUFIO_INLINE_VECS 16
57
58 /*
59 * Don't try to use kmem_cache_alloc for blocks larger than this.
60 * For explanation, see alloc_buffer_data below.
61 */
62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT (PAGE_SIZE >> 1)
63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT (PAGE_SIZE << (MAX_ORDER - 1))
64
65 /*
66 * dm_buffer->list_mode
67 */
68 #define LIST_CLEAN 0
69 #define LIST_DIRTY 1
70 #define LIST_SIZE 2
71
72 /*
73 * Linking of buffers:
74 * All buffers are linked to cache_hash with their hash_list field.
75 *
76 * Clean buffers that are not being written (B_WRITING not set)
77 * are linked to lru[LIST_CLEAN] with their lru_list field.
78 *
79 * Dirty and clean buffers that are being written are linked to
80 * lru[LIST_DIRTY] with their lru_list field. When the write
81 * finishes, the buffer cannot be relinked immediately (because we
82 * are in an interrupt context and relinking requires process
83 * context), so some clean-not-writing buffers can be held on
84 * dirty_lru too. They are later added to lru in the process
85 * context.
86 */
87 struct dm_bufio_client {
88 struct mutex lock;
89
90 struct list_head lru[LIST_SIZE];
91 unsigned long n_buffers[LIST_SIZE];
92
93 struct block_device *bdev;
94 unsigned block_size;
95 unsigned char sectors_per_block_bits;
96 unsigned char pages_per_block_bits;
97 unsigned char blocks_per_page_bits;
98 unsigned aux_size;
99 void (*alloc_callback)(struct dm_buffer *);
100 void (*write_callback)(struct dm_buffer *);
101
102 struct dm_io_client *dm_io;
103
104 struct list_head reserved_buffers;
105 unsigned need_reserved_buffers;
106
107 unsigned minimum_buffers;
108
109 struct rb_root buffer_tree;
110 wait_queue_head_t free_buffer_wait;
111
112 int async_write_error;
113
114 struct list_head client_list;
115 struct shrinker shrinker;
116 };
117
118 /*
119 * Buffer state bits.
120 */
121 #define B_READING 0
122 #define B_WRITING 1
123 #define B_DIRTY 2
124
125 /*
126 * Describes how the block was allocated:
127 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
128 * See the comment at alloc_buffer_data.
129 */
130 enum data_mode {
131 DATA_MODE_SLAB = 0,
132 DATA_MODE_GET_FREE_PAGES = 1,
133 DATA_MODE_VMALLOC = 2,
134 DATA_MODE_LIMIT = 3
135 };
136
137 struct dm_buffer {
138 struct rb_node node;
139 struct list_head lru_list;
140 sector_t block;
141 void *data;
142 enum data_mode data_mode;
143 unsigned char list_mode; /* LIST_* */
144 unsigned hold_count;
145 int read_error;
146 int write_error;
147 unsigned long state;
148 unsigned long last_accessed;
149 struct dm_bufio_client *c;
150 struct list_head write_list;
151 struct bio bio;
152 struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
153 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
154 #define MAX_STACK 10
155 struct stack_trace stack_trace;
156 unsigned long stack_entries[MAX_STACK];
157 #endif
158 };
159
160 /*----------------------------------------------------------------*/
161
162 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
163 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
164
165 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
166 {
167 unsigned ret = c->blocks_per_page_bits - 1;
168
169 BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
170
171 return ret;
172 }
173
174 #define DM_BUFIO_CACHE(c) (dm_bufio_caches[dm_bufio_cache_index(c)])
175 #define DM_BUFIO_CACHE_NAME(c) (dm_bufio_cache_names[dm_bufio_cache_index(c)])
176
177 #define dm_bufio_in_request() (!!current->bio_list)
178
179 static void dm_bufio_lock(struct dm_bufio_client *c)
180 {
181 mutex_lock_nested(&c->lock, dm_bufio_in_request());
182 }
183
184 static int dm_bufio_trylock(struct dm_bufio_client *c)
185 {
186 return mutex_trylock(&c->lock);
187 }
188
189 static void dm_bufio_unlock(struct dm_bufio_client *c)
190 {
191 mutex_unlock(&c->lock);
192 }
193
194 /*----------------------------------------------------------------*/
195
196 /*
197 * Default cache size: available memory divided by the ratio.
198 */
199 static unsigned long dm_bufio_default_cache_size;
200
201 /*
202 * Total cache size set by the user.
203 */
204 static unsigned long dm_bufio_cache_size;
205
206 /*
207 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
208 * at any time. If it disagrees, the user has changed cache size.
209 */
210 static unsigned long dm_bufio_cache_size_latch;
211
212 static DEFINE_SPINLOCK(param_spinlock);
213
214 /*
215 * Buffers are freed after this timeout
216 */
217 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
218 static unsigned dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
219
220 static unsigned long dm_bufio_peak_allocated;
221 static unsigned long dm_bufio_allocated_kmem_cache;
222 static unsigned long dm_bufio_allocated_get_free_pages;
223 static unsigned long dm_bufio_allocated_vmalloc;
224 static unsigned long dm_bufio_current_allocated;
225
226 /*----------------------------------------------------------------*/
227
228 /*
229 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
230 */
231 static unsigned long dm_bufio_cache_size_per_client;
232
233 /*
234 * The current number of clients.
235 */
236 static int dm_bufio_client_count;
237
238 /*
239 * The list of all clients.
240 */
241 static LIST_HEAD(dm_bufio_all_clients);
242
243 /*
244 * This mutex protects dm_bufio_cache_size_latch,
245 * dm_bufio_cache_size_per_client and dm_bufio_client_count
246 */
247 static DEFINE_MUTEX(dm_bufio_clients_lock);
248
249 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
250 static void buffer_record_stack(struct dm_buffer *b)
251 {
252 b->stack_trace.nr_entries = 0;
253 b->stack_trace.max_entries = MAX_STACK;
254 b->stack_trace.entries = b->stack_entries;
255 b->stack_trace.skip = 2;
256 save_stack_trace(&b->stack_trace);
257 }
258 #endif
259
260 /*----------------------------------------------------------------
261 * A red/black tree acts as an index for all the buffers.
262 *--------------------------------------------------------------*/
263 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
264 {
265 struct rb_node *n = c->buffer_tree.rb_node;
266 struct dm_buffer *b;
267
268 while (n) {
269 b = container_of(n, struct dm_buffer, node);
270
271 if (b->block == block)
272 return b;
273
274 n = (b->block < block) ? n->rb_left : n->rb_right;
275 }
276
277 return NULL;
278 }
279
280 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
281 {
282 struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
283 struct dm_buffer *found;
284
285 while (*new) {
286 found = container_of(*new, struct dm_buffer, node);
287
288 if (found->block == b->block) {
289 BUG_ON(found != b);
290 return;
291 }
292
293 parent = *new;
294 new = (found->block < b->block) ?
295 &((*new)->rb_left) : &((*new)->rb_right);
296 }
297
298 rb_link_node(&b->node, parent, new);
299 rb_insert_color(&b->node, &c->buffer_tree);
300 }
301
302 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
303 {
304 rb_erase(&b->node, &c->buffer_tree);
305 }
306
307 /*----------------------------------------------------------------*/
308
309 static void adjust_total_allocated(enum data_mode data_mode, long diff)
310 {
311 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
312 &dm_bufio_allocated_kmem_cache,
313 &dm_bufio_allocated_get_free_pages,
314 &dm_bufio_allocated_vmalloc,
315 };
316
317 spin_lock(&param_spinlock);
318
319 *class_ptr[data_mode] += diff;
320
321 dm_bufio_current_allocated += diff;
322
323 if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
324 dm_bufio_peak_allocated = dm_bufio_current_allocated;
325
326 spin_unlock(&param_spinlock);
327 }
328
329 /*
330 * Change the number of clients and recalculate per-client limit.
331 */
332 static void __cache_size_refresh(void)
333 {
334 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
335 BUG_ON(dm_bufio_client_count < 0);
336
337 dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
338
339 /*
340 * Use default if set to 0 and report the actual cache size used.
341 */
342 if (!dm_bufio_cache_size_latch) {
343 (void)cmpxchg(&dm_bufio_cache_size, 0,
344 dm_bufio_default_cache_size);
345 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
346 }
347
348 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
349 (dm_bufio_client_count ? : 1);
350 }
351
352 /*
353 * Allocating buffer data.
354 *
355 * Small buffers are allocated with kmem_cache, to use space optimally.
356 *
357 * For large buffers, we choose between get_free_pages and vmalloc.
358 * Each has advantages and disadvantages.
359 *
360 * __get_free_pages can randomly fail if the memory is fragmented.
361 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
362 * as low as 128M) so using it for caching is not appropriate.
363 *
364 * If the allocation may fail we use __get_free_pages. Memory fragmentation
365 * won't have a fatal effect here, but it just causes flushes of some other
366 * buffers and more I/O will be performed. Don't use __get_free_pages if it
367 * always fails (i.e. order >= MAX_ORDER).
368 *
369 * If the allocation shouldn't fail we use __vmalloc. This is only for the
370 * initial reserve allocation, so there's no risk of wasting all vmalloc
371 * space.
372 */
373 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
374 enum data_mode *data_mode)
375 {
376 unsigned noio_flag;
377 void *ptr;
378
379 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
380 *data_mode = DATA_MODE_SLAB;
381 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
382 }
383
384 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
385 gfp_mask & __GFP_NORETRY) {
386 *data_mode = DATA_MODE_GET_FREE_PAGES;
387 return (void *)__get_free_pages(gfp_mask,
388 c->pages_per_block_bits);
389 }
390
391 *data_mode = DATA_MODE_VMALLOC;
392
393 /*
394 * __vmalloc allocates the data pages and auxiliary structures with
395 * gfp_flags that were specified, but pagetables are always allocated
396 * with GFP_KERNEL, no matter what was specified as gfp_mask.
397 *
398 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
399 * all allocations done by this process (including pagetables) are done
400 * as if GFP_NOIO was specified.
401 */
402
403 if (gfp_mask & __GFP_NORETRY)
404 noio_flag = memalloc_noio_save();
405
406 ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
407
408 if (gfp_mask & __GFP_NORETRY)
409 memalloc_noio_restore(noio_flag);
410
411 return ptr;
412 }
413
414 /*
415 * Free buffer's data.
416 */
417 static void free_buffer_data(struct dm_bufio_client *c,
418 void *data, enum data_mode data_mode)
419 {
420 switch (data_mode) {
421 case DATA_MODE_SLAB:
422 kmem_cache_free(DM_BUFIO_CACHE(c), data);
423 break;
424
425 case DATA_MODE_GET_FREE_PAGES:
426 free_pages((unsigned long)data, c->pages_per_block_bits);
427 break;
428
429 case DATA_MODE_VMALLOC:
430 vfree(data);
431 break;
432
433 default:
434 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
435 data_mode);
436 BUG();
437 }
438 }
439
440 /*
441 * Allocate buffer and its data.
442 */
443 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
444 {
445 struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
446 gfp_mask);
447
448 if (!b)
449 return NULL;
450
451 b->c = c;
452
453 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
454 if (!b->data) {
455 kfree(b);
456 return NULL;
457 }
458
459 adjust_total_allocated(b->data_mode, (long)c->block_size);
460
461 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
462 memset(&b->stack_trace, 0, sizeof(b->stack_trace));
463 #endif
464 return b;
465 }
466
467 /*
468 * Free buffer and its data.
469 */
470 static void free_buffer(struct dm_buffer *b)
471 {
472 struct dm_bufio_client *c = b->c;
473
474 adjust_total_allocated(b->data_mode, -(long)c->block_size);
475
476 free_buffer_data(c, b->data, b->data_mode);
477 kfree(b);
478 }
479
480 /*
481 * Link buffer to the hash list and clean or dirty queue.
482 */
483 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
484 {
485 struct dm_bufio_client *c = b->c;
486
487 c->n_buffers[dirty]++;
488 b->block = block;
489 b->list_mode = dirty;
490 list_add(&b->lru_list, &c->lru[dirty]);
491 __insert(b->c, b);
492 b->last_accessed = jiffies;
493 }
494
495 /*
496 * Unlink buffer from the hash list and dirty or clean queue.
497 */
498 static void __unlink_buffer(struct dm_buffer *b)
499 {
500 struct dm_bufio_client *c = b->c;
501
502 BUG_ON(!c->n_buffers[b->list_mode]);
503
504 c->n_buffers[b->list_mode]--;
505 __remove(b->c, b);
506 list_del(&b->lru_list);
507 }
508
509 /*
510 * Place the buffer to the head of dirty or clean LRU queue.
511 */
512 static void __relink_lru(struct dm_buffer *b, int dirty)
513 {
514 struct dm_bufio_client *c = b->c;
515
516 BUG_ON(!c->n_buffers[b->list_mode]);
517
518 c->n_buffers[b->list_mode]--;
519 c->n_buffers[dirty]++;
520 b->list_mode = dirty;
521 list_move(&b->lru_list, &c->lru[dirty]);
522 b->last_accessed = jiffies;
523 }
524
525 /*----------------------------------------------------------------
526 * Submit I/O on the buffer.
527 *
528 * Bio interface is faster but it has some problems:
529 * the vector list is limited (increasing this limit increases
530 * memory-consumption per buffer, so it is not viable);
531 *
532 * the memory must be direct-mapped, not vmalloced;
533 *
534 * the I/O driver can reject requests spuriously if it thinks that
535 * the requests are too big for the device or if they cross a
536 * controller-defined memory boundary.
537 *
538 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
539 * it is not vmalloced, try using the bio interface.
540 *
541 * If the buffer is big, if it is vmalloced or if the underlying device
542 * rejects the bio because it is too large, use dm-io layer to do the I/O.
543 * The dm-io layer splits the I/O into multiple requests, avoiding the above
544 * shortcomings.
545 *--------------------------------------------------------------*/
546
547 /*
548 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
549 * that the request was handled directly with bio interface.
550 */
551 static void dmio_complete(unsigned long error, void *context)
552 {
553 struct dm_buffer *b = context;
554
555 b->bio.bi_error = error ? -EIO : 0;
556 b->bio.bi_end_io(&b->bio);
557 }
558
559 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
560 bio_end_io_t *end_io)
561 {
562 int r;
563 struct dm_io_request io_req = {
564 .bi_op = rw,
565 .bi_op_flags = 0,
566 .notify.fn = dmio_complete,
567 .notify.context = b,
568 .client = b->c->dm_io,
569 };
570 struct dm_io_region region = {
571 .bdev = b->c->bdev,
572 .sector = block << b->c->sectors_per_block_bits,
573 .count = b->c->block_size >> SECTOR_SHIFT,
574 };
575
576 if (b->data_mode != DATA_MODE_VMALLOC) {
577 io_req.mem.type = DM_IO_KMEM;
578 io_req.mem.ptr.addr = b->data;
579 } else {
580 io_req.mem.type = DM_IO_VMA;
581 io_req.mem.ptr.vma = b->data;
582 }
583
584 b->bio.bi_end_io = end_io;
585
586 r = dm_io(&io_req, 1, &region, NULL);
587 if (r) {
588 b->bio.bi_error = r;
589 end_io(&b->bio);
590 }
591 }
592
593 static void inline_endio(struct bio *bio)
594 {
595 bio_end_io_t *end_fn = bio->bi_private;
596 int error = bio->bi_error;
597
598 /*
599 * Reset the bio to free any attached resources
600 * (e.g. bio integrity profiles).
601 */
602 bio_reset(bio);
603
604 bio->bi_error = error;
605 end_fn(bio);
606 }
607
608 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
609 bio_end_io_t *end_io)
610 {
611 char *ptr;
612 int len;
613
614 bio_init(&b->bio, b->bio_vec, DM_BUFIO_INLINE_VECS);
615 b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits;
616 b->bio.bi_bdev = b->c->bdev;
617 b->bio.bi_end_io = inline_endio;
618 /*
619 * Use of .bi_private isn't a problem here because
620 * the dm_buffer's inline bio is local to bufio.
621 */
622 b->bio.bi_private = end_io;
623 bio_set_op_attrs(&b->bio, rw, 0);
624
625 /*
626 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
627 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
628 */
629 ptr = b->data;
630 len = b->c->block_size;
631
632 if (len >= PAGE_SIZE)
633 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
634 else
635 BUG_ON((unsigned long)ptr & (len - 1));
636
637 do {
638 if (!bio_add_page(&b->bio, virt_to_page(ptr),
639 len < PAGE_SIZE ? len : PAGE_SIZE,
640 offset_in_page(ptr))) {
641 BUG_ON(b->c->block_size <= PAGE_SIZE);
642 use_dmio(b, rw, block, end_io);
643 return;
644 }
645
646 len -= PAGE_SIZE;
647 ptr += PAGE_SIZE;
648 } while (len > 0);
649
650 submit_bio(&b->bio);
651 }
652
653 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
654 bio_end_io_t *end_io)
655 {
656 if (rw == WRITE && b->c->write_callback)
657 b->c->write_callback(b);
658
659 if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
660 b->data_mode != DATA_MODE_VMALLOC)
661 use_inline_bio(b, rw, block, end_io);
662 else
663 use_dmio(b, rw, block, end_io);
664 }
665
666 /*----------------------------------------------------------------
667 * Writing dirty buffers
668 *--------------------------------------------------------------*/
669
670 /*
671 * The endio routine for write.
672 *
673 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
674 * it.
675 */
676 static void write_endio(struct bio *bio)
677 {
678 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
679
680 b->write_error = bio->bi_error;
681 if (unlikely(bio->bi_error)) {
682 struct dm_bufio_client *c = b->c;
683 int error = bio->bi_error;
684 (void)cmpxchg(&c->async_write_error, 0, error);
685 }
686
687 BUG_ON(!test_bit(B_WRITING, &b->state));
688
689 smp_mb__before_atomic();
690 clear_bit(B_WRITING, &b->state);
691 smp_mb__after_atomic();
692
693 wake_up_bit(&b->state, B_WRITING);
694 }
695
696 /*
697 * Initiate a write on a dirty buffer, but don't wait for it.
698 *
699 * - If the buffer is not dirty, exit.
700 * - If there some previous write going on, wait for it to finish (we can't
701 * have two writes on the same buffer simultaneously).
702 * - Submit our write and don't wait on it. We set B_WRITING indicating
703 * that there is a write in progress.
704 */
705 static void __write_dirty_buffer(struct dm_buffer *b,
706 struct list_head *write_list)
707 {
708 if (!test_bit(B_DIRTY, &b->state))
709 return;
710
711 clear_bit(B_DIRTY, &b->state);
712 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
713
714 if (!write_list)
715 submit_io(b, WRITE, b->block, write_endio);
716 else
717 list_add_tail(&b->write_list, write_list);
718 }
719
720 static void __flush_write_list(struct list_head *write_list)
721 {
722 struct blk_plug plug;
723 blk_start_plug(&plug);
724 while (!list_empty(write_list)) {
725 struct dm_buffer *b =
726 list_entry(write_list->next, struct dm_buffer, write_list);
727 list_del(&b->write_list);
728 submit_io(b, WRITE, b->block, write_endio);
729 cond_resched();
730 }
731 blk_finish_plug(&plug);
732 }
733
734 /*
735 * Wait until any activity on the buffer finishes. Possibly write the
736 * buffer if it is dirty. When this function finishes, there is no I/O
737 * running on the buffer and the buffer is not dirty.
738 */
739 static void __make_buffer_clean(struct dm_buffer *b)
740 {
741 BUG_ON(b->hold_count);
742
743 if (!b->state) /* fast case */
744 return;
745
746 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
747 __write_dirty_buffer(b, NULL);
748 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
749 }
750
751 /*
752 * Find some buffer that is not held by anybody, clean it, unlink it and
753 * return it.
754 */
755 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
756 {
757 struct dm_buffer *b;
758
759 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
760 BUG_ON(test_bit(B_WRITING, &b->state));
761 BUG_ON(test_bit(B_DIRTY, &b->state));
762
763 if (!b->hold_count) {
764 __make_buffer_clean(b);
765 __unlink_buffer(b);
766 return b;
767 }
768 cond_resched();
769 }
770
771 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
772 BUG_ON(test_bit(B_READING, &b->state));
773
774 if (!b->hold_count) {
775 __make_buffer_clean(b);
776 __unlink_buffer(b);
777 return b;
778 }
779 cond_resched();
780 }
781
782 return NULL;
783 }
784
785 /*
786 * Wait until some other threads free some buffer or release hold count on
787 * some buffer.
788 *
789 * This function is entered with c->lock held, drops it and regains it
790 * before exiting.
791 */
792 static void __wait_for_free_buffer(struct dm_bufio_client *c)
793 {
794 DECLARE_WAITQUEUE(wait, current);
795
796 add_wait_queue(&c->free_buffer_wait, &wait);
797 set_task_state(current, TASK_UNINTERRUPTIBLE);
798 dm_bufio_unlock(c);
799
800 io_schedule();
801
802 remove_wait_queue(&c->free_buffer_wait, &wait);
803
804 dm_bufio_lock(c);
805 }
806
807 enum new_flag {
808 NF_FRESH = 0,
809 NF_READ = 1,
810 NF_GET = 2,
811 NF_PREFETCH = 3
812 };
813
814 /*
815 * Allocate a new buffer. If the allocation is not possible, wait until
816 * some other thread frees a buffer.
817 *
818 * May drop the lock and regain it.
819 */
820 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
821 {
822 struct dm_buffer *b;
823
824 /*
825 * dm-bufio is resistant to allocation failures (it just keeps
826 * one buffer reserved in cases all the allocations fail).
827 * So set flags to not try too hard:
828 * GFP_NOIO: don't recurse into the I/O layer
829 * __GFP_NORETRY: don't retry and rather return failure
830 * __GFP_NOMEMALLOC: don't use emergency reserves
831 * __GFP_NOWARN: don't print a warning in case of failure
832 *
833 * For debugging, if we set the cache size to 1, no new buffers will
834 * be allocated.
835 */
836 while (1) {
837 if (dm_bufio_cache_size_latch != 1) {
838 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
839 if (b)
840 return b;
841 }
842
843 if (nf == NF_PREFETCH)
844 return NULL;
845
846 if (!list_empty(&c->reserved_buffers)) {
847 b = list_entry(c->reserved_buffers.next,
848 struct dm_buffer, lru_list);
849 list_del(&b->lru_list);
850 c->need_reserved_buffers++;
851
852 return b;
853 }
854
855 b = __get_unclaimed_buffer(c);
856 if (b)
857 return b;
858
859 __wait_for_free_buffer(c);
860 }
861 }
862
863 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
864 {
865 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
866
867 if (!b)
868 return NULL;
869
870 if (c->alloc_callback)
871 c->alloc_callback(b);
872
873 return b;
874 }
875
876 /*
877 * Free a buffer and wake other threads waiting for free buffers.
878 */
879 static void __free_buffer_wake(struct dm_buffer *b)
880 {
881 struct dm_bufio_client *c = b->c;
882
883 if (!c->need_reserved_buffers)
884 free_buffer(b);
885 else {
886 list_add(&b->lru_list, &c->reserved_buffers);
887 c->need_reserved_buffers--;
888 }
889
890 wake_up(&c->free_buffer_wait);
891 }
892
893 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
894 struct list_head *write_list)
895 {
896 struct dm_buffer *b, *tmp;
897
898 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
899 BUG_ON(test_bit(B_READING, &b->state));
900
901 if (!test_bit(B_DIRTY, &b->state) &&
902 !test_bit(B_WRITING, &b->state)) {
903 __relink_lru(b, LIST_CLEAN);
904 continue;
905 }
906
907 if (no_wait && test_bit(B_WRITING, &b->state))
908 return;
909
910 __write_dirty_buffer(b, write_list);
911 cond_resched();
912 }
913 }
914
915 /*
916 * Get writeback threshold and buffer limit for a given client.
917 */
918 static void __get_memory_limit(struct dm_bufio_client *c,
919 unsigned long *threshold_buffers,
920 unsigned long *limit_buffers)
921 {
922 unsigned long buffers;
923
924 if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
925 mutex_lock(&dm_bufio_clients_lock);
926 __cache_size_refresh();
927 mutex_unlock(&dm_bufio_clients_lock);
928 }
929
930 buffers = dm_bufio_cache_size_per_client >>
931 (c->sectors_per_block_bits + SECTOR_SHIFT);
932
933 if (buffers < c->minimum_buffers)
934 buffers = c->minimum_buffers;
935
936 *limit_buffers = buffers;
937 *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
938 }
939
940 /*
941 * Check if we're over watermark.
942 * If we are over threshold_buffers, start freeing buffers.
943 * If we're over "limit_buffers", block until we get under the limit.
944 */
945 static void __check_watermark(struct dm_bufio_client *c,
946 struct list_head *write_list)
947 {
948 unsigned long threshold_buffers, limit_buffers;
949
950 __get_memory_limit(c, &threshold_buffers, &limit_buffers);
951
952 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
953 limit_buffers) {
954
955 struct dm_buffer *b = __get_unclaimed_buffer(c);
956
957 if (!b)
958 return;
959
960 __free_buffer_wake(b);
961 cond_resched();
962 }
963
964 if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
965 __write_dirty_buffers_async(c, 1, write_list);
966 }
967
968 /*----------------------------------------------------------------
969 * Getting a buffer
970 *--------------------------------------------------------------*/
971
972 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
973 enum new_flag nf, int *need_submit,
974 struct list_head *write_list)
975 {
976 struct dm_buffer *b, *new_b = NULL;
977
978 *need_submit = 0;
979
980 b = __find(c, block);
981 if (b)
982 goto found_buffer;
983
984 if (nf == NF_GET)
985 return NULL;
986
987 new_b = __alloc_buffer_wait(c, nf);
988 if (!new_b)
989 return NULL;
990
991 /*
992 * We've had a period where the mutex was unlocked, so need to
993 * recheck the hash table.
994 */
995 b = __find(c, block);
996 if (b) {
997 __free_buffer_wake(new_b);
998 goto found_buffer;
999 }
1000
1001 __check_watermark(c, write_list);
1002
1003 b = new_b;
1004 b->hold_count = 1;
1005 b->read_error = 0;
1006 b->write_error = 0;
1007 __link_buffer(b, block, LIST_CLEAN);
1008
1009 if (nf == NF_FRESH) {
1010 b->state = 0;
1011 return b;
1012 }
1013
1014 b->state = 1 << B_READING;
1015 *need_submit = 1;
1016
1017 return b;
1018
1019 found_buffer:
1020 if (nf == NF_PREFETCH)
1021 return NULL;
1022 /*
1023 * Note: it is essential that we don't wait for the buffer to be
1024 * read if dm_bufio_get function is used. Both dm_bufio_get and
1025 * dm_bufio_prefetch can be used in the driver request routine.
1026 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1027 * the same buffer, it would deadlock if we waited.
1028 */
1029 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1030 return NULL;
1031
1032 b->hold_count++;
1033 __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1034 test_bit(B_WRITING, &b->state));
1035 return b;
1036 }
1037
1038 /*
1039 * The endio routine for reading: set the error, clear the bit and wake up
1040 * anyone waiting on the buffer.
1041 */
1042 static void read_endio(struct bio *bio)
1043 {
1044 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1045
1046 b->read_error = bio->bi_error;
1047
1048 BUG_ON(!test_bit(B_READING, &b->state));
1049
1050 smp_mb__before_atomic();
1051 clear_bit(B_READING, &b->state);
1052 smp_mb__after_atomic();
1053
1054 wake_up_bit(&b->state, B_READING);
1055 }
1056
1057 /*
1058 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these
1059 * functions is similar except that dm_bufio_new doesn't read the
1060 * buffer from the disk (assuming that the caller overwrites all the data
1061 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1062 */
1063 static void *new_read(struct dm_bufio_client *c, sector_t block,
1064 enum new_flag nf, struct dm_buffer **bp)
1065 {
1066 int need_submit;
1067 struct dm_buffer *b;
1068
1069 LIST_HEAD(write_list);
1070
1071 dm_bufio_lock(c);
1072 b = __bufio_new(c, block, nf, &need_submit, &write_list);
1073 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1074 if (b && b->hold_count == 1)
1075 buffer_record_stack(b);
1076 #endif
1077 dm_bufio_unlock(c);
1078
1079 __flush_write_list(&write_list);
1080
1081 if (!b)
1082 return NULL;
1083
1084 if (need_submit)
1085 submit_io(b, READ, b->block, read_endio);
1086
1087 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1088
1089 if (b->read_error) {
1090 int error = b->read_error;
1091
1092 dm_bufio_release(b);
1093
1094 return ERR_PTR(error);
1095 }
1096
1097 *bp = b;
1098
1099 return b->data;
1100 }
1101
1102 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1103 struct dm_buffer **bp)
1104 {
1105 return new_read(c, block, NF_GET, bp);
1106 }
1107 EXPORT_SYMBOL_GPL(dm_bufio_get);
1108
1109 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1110 struct dm_buffer **bp)
1111 {
1112 BUG_ON(dm_bufio_in_request());
1113
1114 return new_read(c, block, NF_READ, bp);
1115 }
1116 EXPORT_SYMBOL_GPL(dm_bufio_read);
1117
1118 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1119 struct dm_buffer **bp)
1120 {
1121 BUG_ON(dm_bufio_in_request());
1122
1123 return new_read(c, block, NF_FRESH, bp);
1124 }
1125 EXPORT_SYMBOL_GPL(dm_bufio_new);
1126
1127 void dm_bufio_prefetch(struct dm_bufio_client *c,
1128 sector_t block, unsigned n_blocks)
1129 {
1130 struct blk_plug plug;
1131
1132 LIST_HEAD(write_list);
1133
1134 BUG_ON(dm_bufio_in_request());
1135
1136 blk_start_plug(&plug);
1137 dm_bufio_lock(c);
1138
1139 for (; n_blocks--; block++) {
1140 int need_submit;
1141 struct dm_buffer *b;
1142 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1143 &write_list);
1144 if (unlikely(!list_empty(&write_list))) {
1145 dm_bufio_unlock(c);
1146 blk_finish_plug(&plug);
1147 __flush_write_list(&write_list);
1148 blk_start_plug(&plug);
1149 dm_bufio_lock(c);
1150 }
1151 if (unlikely(b != NULL)) {
1152 dm_bufio_unlock(c);
1153
1154 if (need_submit)
1155 submit_io(b, READ, b->block, read_endio);
1156 dm_bufio_release(b);
1157
1158 cond_resched();
1159
1160 if (!n_blocks)
1161 goto flush_plug;
1162 dm_bufio_lock(c);
1163 }
1164 }
1165
1166 dm_bufio_unlock(c);
1167
1168 flush_plug:
1169 blk_finish_plug(&plug);
1170 }
1171 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1172
1173 void dm_bufio_release(struct dm_buffer *b)
1174 {
1175 struct dm_bufio_client *c = b->c;
1176
1177 dm_bufio_lock(c);
1178
1179 BUG_ON(!b->hold_count);
1180
1181 b->hold_count--;
1182 if (!b->hold_count) {
1183 wake_up(&c->free_buffer_wait);
1184
1185 /*
1186 * If there were errors on the buffer, and the buffer is not
1187 * to be written, free the buffer. There is no point in caching
1188 * invalid buffer.
1189 */
1190 if ((b->read_error || b->write_error) &&
1191 !test_bit(B_READING, &b->state) &&
1192 !test_bit(B_WRITING, &b->state) &&
1193 !test_bit(B_DIRTY, &b->state)) {
1194 __unlink_buffer(b);
1195 __free_buffer_wake(b);
1196 }
1197 }
1198
1199 dm_bufio_unlock(c);
1200 }
1201 EXPORT_SYMBOL_GPL(dm_bufio_release);
1202
1203 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1204 {
1205 struct dm_bufio_client *c = b->c;
1206
1207 dm_bufio_lock(c);
1208
1209 BUG_ON(test_bit(B_READING, &b->state));
1210
1211 if (!test_and_set_bit(B_DIRTY, &b->state))
1212 __relink_lru(b, LIST_DIRTY);
1213
1214 dm_bufio_unlock(c);
1215 }
1216 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1217
1218 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1219 {
1220 LIST_HEAD(write_list);
1221
1222 BUG_ON(dm_bufio_in_request());
1223
1224 dm_bufio_lock(c);
1225 __write_dirty_buffers_async(c, 0, &write_list);
1226 dm_bufio_unlock(c);
1227 __flush_write_list(&write_list);
1228 }
1229 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1230
1231 /*
1232 * For performance, it is essential that the buffers are written asynchronously
1233 * and simultaneously (so that the block layer can merge the writes) and then
1234 * waited upon.
1235 *
1236 * Finally, we flush hardware disk cache.
1237 */
1238 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1239 {
1240 int a, f;
1241 unsigned long buffers_processed = 0;
1242 struct dm_buffer *b, *tmp;
1243
1244 LIST_HEAD(write_list);
1245
1246 dm_bufio_lock(c);
1247 __write_dirty_buffers_async(c, 0, &write_list);
1248 dm_bufio_unlock(c);
1249 __flush_write_list(&write_list);
1250 dm_bufio_lock(c);
1251
1252 again:
1253 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1254 int dropped_lock = 0;
1255
1256 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1257 buffers_processed++;
1258
1259 BUG_ON(test_bit(B_READING, &b->state));
1260
1261 if (test_bit(B_WRITING, &b->state)) {
1262 if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1263 dropped_lock = 1;
1264 b->hold_count++;
1265 dm_bufio_unlock(c);
1266 wait_on_bit_io(&b->state, B_WRITING,
1267 TASK_UNINTERRUPTIBLE);
1268 dm_bufio_lock(c);
1269 b->hold_count--;
1270 } else
1271 wait_on_bit_io(&b->state, B_WRITING,
1272 TASK_UNINTERRUPTIBLE);
1273 }
1274
1275 if (!test_bit(B_DIRTY, &b->state) &&
1276 !test_bit(B_WRITING, &b->state))
1277 __relink_lru(b, LIST_CLEAN);
1278
1279 cond_resched();
1280
1281 /*
1282 * If we dropped the lock, the list is no longer consistent,
1283 * so we must restart the search.
1284 *
1285 * In the most common case, the buffer just processed is
1286 * relinked to the clean list, so we won't loop scanning the
1287 * same buffer again and again.
1288 *
1289 * This may livelock if there is another thread simultaneously
1290 * dirtying buffers, so we count the number of buffers walked
1291 * and if it exceeds the total number of buffers, it means that
1292 * someone is doing some writes simultaneously with us. In
1293 * this case, stop, dropping the lock.
1294 */
1295 if (dropped_lock)
1296 goto again;
1297 }
1298 wake_up(&c->free_buffer_wait);
1299 dm_bufio_unlock(c);
1300
1301 a = xchg(&c->async_write_error, 0);
1302 f = dm_bufio_issue_flush(c);
1303 if (a)
1304 return a;
1305
1306 return f;
1307 }
1308 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1309
1310 /*
1311 * Use dm-io to send and empty barrier flush the device.
1312 */
1313 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1314 {
1315 struct dm_io_request io_req = {
1316 .bi_op = REQ_OP_WRITE,
1317 .bi_op_flags = REQ_PREFLUSH,
1318 .mem.type = DM_IO_KMEM,
1319 .mem.ptr.addr = NULL,
1320 .client = c->dm_io,
1321 };
1322 struct dm_io_region io_reg = {
1323 .bdev = c->bdev,
1324 .sector = 0,
1325 .count = 0,
1326 };
1327
1328 BUG_ON(dm_bufio_in_request());
1329
1330 return dm_io(&io_req, 1, &io_reg, NULL);
1331 }
1332 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1333
1334 /*
1335 * We first delete any other buffer that may be at that new location.
1336 *
1337 * Then, we write the buffer to the original location if it was dirty.
1338 *
1339 * Then, if we are the only one who is holding the buffer, relink the buffer
1340 * in the hash queue for the new location.
1341 *
1342 * If there was someone else holding the buffer, we write it to the new
1343 * location but not relink it, because that other user needs to have the buffer
1344 * at the same place.
1345 */
1346 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1347 {
1348 struct dm_bufio_client *c = b->c;
1349 struct dm_buffer *new;
1350
1351 BUG_ON(dm_bufio_in_request());
1352
1353 dm_bufio_lock(c);
1354
1355 retry:
1356 new = __find(c, new_block);
1357 if (new) {
1358 if (new->hold_count) {
1359 __wait_for_free_buffer(c);
1360 goto retry;
1361 }
1362
1363 /*
1364 * FIXME: Is there any point waiting for a write that's going
1365 * to be overwritten in a bit?
1366 */
1367 __make_buffer_clean(new);
1368 __unlink_buffer(new);
1369 __free_buffer_wake(new);
1370 }
1371
1372 BUG_ON(!b->hold_count);
1373 BUG_ON(test_bit(B_READING, &b->state));
1374
1375 __write_dirty_buffer(b, NULL);
1376 if (b->hold_count == 1) {
1377 wait_on_bit_io(&b->state, B_WRITING,
1378 TASK_UNINTERRUPTIBLE);
1379 set_bit(B_DIRTY, &b->state);
1380 __unlink_buffer(b);
1381 __link_buffer(b, new_block, LIST_DIRTY);
1382 } else {
1383 sector_t old_block;
1384 wait_on_bit_lock_io(&b->state, B_WRITING,
1385 TASK_UNINTERRUPTIBLE);
1386 /*
1387 * Relink buffer to "new_block" so that write_callback
1388 * sees "new_block" as a block number.
1389 * After the write, link the buffer back to old_block.
1390 * All this must be done in bufio lock, so that block number
1391 * change isn't visible to other threads.
1392 */
1393 old_block = b->block;
1394 __unlink_buffer(b);
1395 __link_buffer(b, new_block, b->list_mode);
1396 submit_io(b, WRITE, new_block, write_endio);
1397 wait_on_bit_io(&b->state, B_WRITING,
1398 TASK_UNINTERRUPTIBLE);
1399 __unlink_buffer(b);
1400 __link_buffer(b, old_block, b->list_mode);
1401 }
1402
1403 dm_bufio_unlock(c);
1404 dm_bufio_release(b);
1405 }
1406 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1407
1408 /*
1409 * Free the given buffer.
1410 *
1411 * This is just a hint, if the buffer is in use or dirty, this function
1412 * does nothing.
1413 */
1414 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1415 {
1416 struct dm_buffer *b;
1417
1418 dm_bufio_lock(c);
1419
1420 b = __find(c, block);
1421 if (b && likely(!b->hold_count) && likely(!b->state)) {
1422 __unlink_buffer(b);
1423 __free_buffer_wake(b);
1424 }
1425
1426 dm_bufio_unlock(c);
1427 }
1428 EXPORT_SYMBOL(dm_bufio_forget);
1429
1430 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1431 {
1432 c->minimum_buffers = n;
1433 }
1434 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1435
1436 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1437 {
1438 return c->block_size;
1439 }
1440 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1441
1442 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1443 {
1444 return i_size_read(c->bdev->bd_inode) >>
1445 (SECTOR_SHIFT + c->sectors_per_block_bits);
1446 }
1447 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1448
1449 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1450 {
1451 return b->block;
1452 }
1453 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1454
1455 void *dm_bufio_get_block_data(struct dm_buffer *b)
1456 {
1457 return b->data;
1458 }
1459 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1460
1461 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1462 {
1463 return b + 1;
1464 }
1465 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1466
1467 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1468 {
1469 return b->c;
1470 }
1471 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1472
1473 static void drop_buffers(struct dm_bufio_client *c)
1474 {
1475 struct dm_buffer *b;
1476 int i;
1477 bool warned = false;
1478
1479 BUG_ON(dm_bufio_in_request());
1480
1481 /*
1482 * An optimization so that the buffers are not written one-by-one.
1483 */
1484 dm_bufio_write_dirty_buffers_async(c);
1485
1486 dm_bufio_lock(c);
1487
1488 while ((b = __get_unclaimed_buffer(c)))
1489 __free_buffer_wake(b);
1490
1491 for (i = 0; i < LIST_SIZE; i++)
1492 list_for_each_entry(b, &c->lru[i], lru_list) {
1493 WARN_ON(!warned);
1494 warned = true;
1495 DMERR("leaked buffer %llx, hold count %u, list %d",
1496 (unsigned long long)b->block, b->hold_count, i);
1497 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1498 print_stack_trace(&b->stack_trace, 1);
1499 b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */
1500 #endif
1501 }
1502
1503 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1504 while ((b = __get_unclaimed_buffer(c)))
1505 __free_buffer_wake(b);
1506 #endif
1507
1508 for (i = 0; i < LIST_SIZE; i++)
1509 BUG_ON(!list_empty(&c->lru[i]));
1510
1511 dm_bufio_unlock(c);
1512 }
1513
1514 /*
1515 * We may not be able to evict this buffer if IO pending or the client
1516 * is still using it. Caller is expected to know buffer is too old.
1517 *
1518 * And if GFP_NOFS is used, we must not do any I/O because we hold
1519 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1520 * rerouted to different bufio client.
1521 */
1522 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1523 {
1524 if (!(gfp & __GFP_FS)) {
1525 if (test_bit(B_READING, &b->state) ||
1526 test_bit(B_WRITING, &b->state) ||
1527 test_bit(B_DIRTY, &b->state))
1528 return false;
1529 }
1530
1531 if (b->hold_count)
1532 return false;
1533
1534 __make_buffer_clean(b);
1535 __unlink_buffer(b);
1536 __free_buffer_wake(b);
1537
1538 return true;
1539 }
1540
1541 static unsigned get_retain_buffers(struct dm_bufio_client *c)
1542 {
1543 unsigned retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes);
1544 return retain_bytes / c->block_size;
1545 }
1546
1547 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1548 gfp_t gfp_mask)
1549 {
1550 int l;
1551 struct dm_buffer *b, *tmp;
1552 unsigned long freed = 0;
1553 unsigned long count = nr_to_scan;
1554 unsigned retain_target = get_retain_buffers(c);
1555
1556 for (l = 0; l < LIST_SIZE; l++) {
1557 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1558 if (__try_evict_buffer(b, gfp_mask))
1559 freed++;
1560 if (!--nr_to_scan || ((count - freed) <= retain_target))
1561 return freed;
1562 cond_resched();
1563 }
1564 }
1565 return freed;
1566 }
1567
1568 static unsigned long
1569 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1570 {
1571 struct dm_bufio_client *c;
1572 unsigned long freed;
1573
1574 c = container_of(shrink, struct dm_bufio_client, shrinker);
1575 if (sc->gfp_mask & __GFP_FS)
1576 dm_bufio_lock(c);
1577 else if (!dm_bufio_trylock(c))
1578 return SHRINK_STOP;
1579
1580 freed = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1581 dm_bufio_unlock(c);
1582 return freed;
1583 }
1584
1585 static unsigned long
1586 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1587 {
1588 struct dm_bufio_client *c;
1589 unsigned long count;
1590
1591 c = container_of(shrink, struct dm_bufio_client, shrinker);
1592 if (sc->gfp_mask & __GFP_FS)
1593 dm_bufio_lock(c);
1594 else if (!dm_bufio_trylock(c))
1595 return 0;
1596
1597 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1598 dm_bufio_unlock(c);
1599 return count;
1600 }
1601
1602 /*
1603 * Create the buffering interface
1604 */
1605 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1606 unsigned reserved_buffers, unsigned aux_size,
1607 void (*alloc_callback)(struct dm_buffer *),
1608 void (*write_callback)(struct dm_buffer *))
1609 {
1610 int r;
1611 struct dm_bufio_client *c;
1612 unsigned i;
1613
1614 BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1615 (block_size & (block_size - 1)));
1616
1617 c = kzalloc(sizeof(*c), GFP_KERNEL);
1618 if (!c) {
1619 r = -ENOMEM;
1620 goto bad_client;
1621 }
1622 c->buffer_tree = RB_ROOT;
1623
1624 c->bdev = bdev;
1625 c->block_size = block_size;
1626 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1627 c->pages_per_block_bits = (__ffs(block_size) >= PAGE_SHIFT) ?
1628 __ffs(block_size) - PAGE_SHIFT : 0;
1629 c->blocks_per_page_bits = (__ffs(block_size) < PAGE_SHIFT ?
1630 PAGE_SHIFT - __ffs(block_size) : 0);
1631
1632 c->aux_size = aux_size;
1633 c->alloc_callback = alloc_callback;
1634 c->write_callback = write_callback;
1635
1636 for (i = 0; i < LIST_SIZE; i++) {
1637 INIT_LIST_HEAD(&c->lru[i]);
1638 c->n_buffers[i] = 0;
1639 }
1640
1641 mutex_init(&c->lock);
1642 INIT_LIST_HEAD(&c->reserved_buffers);
1643 c->need_reserved_buffers = reserved_buffers;
1644
1645 c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1646
1647 init_waitqueue_head(&c->free_buffer_wait);
1648 c->async_write_error = 0;
1649
1650 c->dm_io = dm_io_client_create();
1651 if (IS_ERR(c->dm_io)) {
1652 r = PTR_ERR(c->dm_io);
1653 goto bad_dm_io;
1654 }
1655
1656 mutex_lock(&dm_bufio_clients_lock);
1657 if (c->blocks_per_page_bits) {
1658 if (!DM_BUFIO_CACHE_NAME(c)) {
1659 DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1660 if (!DM_BUFIO_CACHE_NAME(c)) {
1661 r = -ENOMEM;
1662 mutex_unlock(&dm_bufio_clients_lock);
1663 goto bad_cache;
1664 }
1665 }
1666
1667 if (!DM_BUFIO_CACHE(c)) {
1668 DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1669 c->block_size,
1670 c->block_size, 0, NULL);
1671 if (!DM_BUFIO_CACHE(c)) {
1672 r = -ENOMEM;
1673 mutex_unlock(&dm_bufio_clients_lock);
1674 goto bad_cache;
1675 }
1676 }
1677 }
1678 mutex_unlock(&dm_bufio_clients_lock);
1679
1680 while (c->need_reserved_buffers) {
1681 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1682
1683 if (!b) {
1684 r = -ENOMEM;
1685 goto bad_buffer;
1686 }
1687 __free_buffer_wake(b);
1688 }
1689
1690 mutex_lock(&dm_bufio_clients_lock);
1691 dm_bufio_client_count++;
1692 list_add(&c->client_list, &dm_bufio_all_clients);
1693 __cache_size_refresh();
1694 mutex_unlock(&dm_bufio_clients_lock);
1695
1696 c->shrinker.count_objects = dm_bufio_shrink_count;
1697 c->shrinker.scan_objects = dm_bufio_shrink_scan;
1698 c->shrinker.seeks = 1;
1699 c->shrinker.batch = 0;
1700 register_shrinker(&c->shrinker);
1701
1702 return c;
1703
1704 bad_buffer:
1705 bad_cache:
1706 while (!list_empty(&c->reserved_buffers)) {
1707 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1708 struct dm_buffer, lru_list);
1709 list_del(&b->lru_list);
1710 free_buffer(b);
1711 }
1712 dm_io_client_destroy(c->dm_io);
1713 bad_dm_io:
1714 kfree(c);
1715 bad_client:
1716 return ERR_PTR(r);
1717 }
1718 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1719
1720 /*
1721 * Free the buffering interface.
1722 * It is required that there are no references on any buffers.
1723 */
1724 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1725 {
1726 unsigned i;
1727
1728 drop_buffers(c);
1729
1730 unregister_shrinker(&c->shrinker);
1731
1732 mutex_lock(&dm_bufio_clients_lock);
1733
1734 list_del(&c->client_list);
1735 dm_bufio_client_count--;
1736 __cache_size_refresh();
1737
1738 mutex_unlock(&dm_bufio_clients_lock);
1739
1740 BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1741 BUG_ON(c->need_reserved_buffers);
1742
1743 while (!list_empty(&c->reserved_buffers)) {
1744 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1745 struct dm_buffer, lru_list);
1746 list_del(&b->lru_list);
1747 free_buffer(b);
1748 }
1749
1750 for (i = 0; i < LIST_SIZE; i++)
1751 if (c->n_buffers[i])
1752 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1753
1754 for (i = 0; i < LIST_SIZE; i++)
1755 BUG_ON(c->n_buffers[i]);
1756
1757 dm_io_client_destroy(c->dm_io);
1758 kfree(c);
1759 }
1760 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1761
1762 static unsigned get_max_age_hz(void)
1763 {
1764 unsigned max_age = ACCESS_ONCE(dm_bufio_max_age);
1765
1766 if (max_age > UINT_MAX / HZ)
1767 max_age = UINT_MAX / HZ;
1768
1769 return max_age * HZ;
1770 }
1771
1772 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1773 {
1774 return time_after_eq(jiffies, b->last_accessed + age_hz);
1775 }
1776
1777 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1778 {
1779 struct dm_buffer *b, *tmp;
1780 unsigned retain_target = get_retain_buffers(c);
1781 unsigned count;
1782
1783 dm_bufio_lock(c);
1784
1785 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1786 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1787 if (count <= retain_target)
1788 break;
1789
1790 if (!older_than(b, age_hz))
1791 break;
1792
1793 if (__try_evict_buffer(b, 0))
1794 count--;
1795
1796 cond_resched();
1797 }
1798
1799 dm_bufio_unlock(c);
1800 }
1801
1802 static void cleanup_old_buffers(void)
1803 {
1804 unsigned long max_age_hz = get_max_age_hz();
1805 struct dm_bufio_client *c;
1806
1807 mutex_lock(&dm_bufio_clients_lock);
1808
1809 list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1810 __evict_old_buffers(c, max_age_hz);
1811
1812 mutex_unlock(&dm_bufio_clients_lock);
1813 }
1814
1815 static struct workqueue_struct *dm_bufio_wq;
1816 static struct delayed_work dm_bufio_work;
1817
1818 static void work_fn(struct work_struct *w)
1819 {
1820 cleanup_old_buffers();
1821
1822 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1823 DM_BUFIO_WORK_TIMER_SECS * HZ);
1824 }
1825
1826 /*----------------------------------------------------------------
1827 * Module setup
1828 *--------------------------------------------------------------*/
1829
1830 /*
1831 * This is called only once for the whole dm_bufio module.
1832 * It initializes memory limit.
1833 */
1834 static int __init dm_bufio_init(void)
1835 {
1836 __u64 mem;
1837
1838 dm_bufio_allocated_kmem_cache = 0;
1839 dm_bufio_allocated_get_free_pages = 0;
1840 dm_bufio_allocated_vmalloc = 0;
1841 dm_bufio_current_allocated = 0;
1842
1843 memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1844 memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1845
1846 mem = (__u64)((totalram_pages - totalhigh_pages) *
1847 DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1848
1849 if (mem > ULONG_MAX)
1850 mem = ULONG_MAX;
1851
1852 #ifdef CONFIG_MMU
1853 /*
1854 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1855 * in fs/proc/internal.h
1856 */
1857 if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1858 mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1859 #endif
1860
1861 dm_bufio_default_cache_size = mem;
1862
1863 mutex_lock(&dm_bufio_clients_lock);
1864 __cache_size_refresh();
1865 mutex_unlock(&dm_bufio_clients_lock);
1866
1867 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
1868 if (!dm_bufio_wq)
1869 return -ENOMEM;
1870
1871 INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1872 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1873 DM_BUFIO_WORK_TIMER_SECS * HZ);
1874
1875 return 0;
1876 }
1877
1878 /*
1879 * This is called once when unloading the dm_bufio module.
1880 */
1881 static void __exit dm_bufio_exit(void)
1882 {
1883 int bug = 0;
1884 int i;
1885
1886 cancel_delayed_work_sync(&dm_bufio_work);
1887 destroy_workqueue(dm_bufio_wq);
1888
1889 for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++)
1890 kmem_cache_destroy(dm_bufio_caches[i]);
1891
1892 for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1893 kfree(dm_bufio_cache_names[i]);
1894
1895 if (dm_bufio_client_count) {
1896 DMCRIT("%s: dm_bufio_client_count leaked: %d",
1897 __func__, dm_bufio_client_count);
1898 bug = 1;
1899 }
1900
1901 if (dm_bufio_current_allocated) {
1902 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1903 __func__, dm_bufio_current_allocated);
1904 bug = 1;
1905 }
1906
1907 if (dm_bufio_allocated_get_free_pages) {
1908 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1909 __func__, dm_bufio_allocated_get_free_pages);
1910 bug = 1;
1911 }
1912
1913 if (dm_bufio_allocated_vmalloc) {
1914 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1915 __func__, dm_bufio_allocated_vmalloc);
1916 bug = 1;
1917 }
1918
1919 BUG_ON(bug);
1920 }
1921
1922 module_init(dm_bufio_init)
1923 module_exit(dm_bufio_exit)
1924
1925 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1926 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1927
1928 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1929 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1930
1931 module_param_named(retain_bytes, dm_bufio_retain_bytes, uint, S_IRUGO | S_IWUSR);
1932 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1933
1934 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1935 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1936
1937 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1938 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1939
1940 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1941 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1942
1943 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1944 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1945
1946 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1947 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1948
1949 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1950 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1951 MODULE_LICENSE("GPL");