]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/dm-bufio.c
block: add a bi_error field to struct bio
[mirror_ubuntu-bionic-kernel.git] / drivers / md / dm-bufio.c
1 /*
2 * Copyright (C) 2009-2011 Red Hat, Inc.
3 *
4 * Author: Mikulas Patocka <mpatocka@redhat.com>
5 *
6 * This file is released under the GPL.
7 */
8
9 #include "dm-bufio.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/jiffies.h>
15 #include <linux/vmalloc.h>
16 #include <linux/shrinker.h>
17 #include <linux/module.h>
18 #include <linux/rbtree.h>
19
20 #define DM_MSG_PREFIX "bufio"
21
22 /*
23 * Memory management policy:
24 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
25 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
26 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
27 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
28 * dirty buffers.
29 */
30 #define DM_BUFIO_MIN_BUFFERS 8
31
32 #define DM_BUFIO_MEMORY_PERCENT 2
33 #define DM_BUFIO_VMALLOC_PERCENT 25
34 #define DM_BUFIO_WRITEBACK_PERCENT 75
35
36 /*
37 * Check buffer ages in this interval (seconds)
38 */
39 #define DM_BUFIO_WORK_TIMER_SECS 30
40
41 /*
42 * Free buffers when they are older than this (seconds)
43 */
44 #define DM_BUFIO_DEFAULT_AGE_SECS 300
45
46 /*
47 * The nr of bytes of cached data to keep around.
48 */
49 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024)
50
51 /*
52 * The number of bvec entries that are embedded directly in the buffer.
53 * If the chunk size is larger, dm-io is used to do the io.
54 */
55 #define DM_BUFIO_INLINE_VECS 16
56
57 /*
58 * Don't try to use kmem_cache_alloc for blocks larger than this.
59 * For explanation, see alloc_buffer_data below.
60 */
61 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT (PAGE_SIZE >> 1)
62 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT (PAGE_SIZE << (MAX_ORDER - 1))
63
64 /*
65 * dm_buffer->list_mode
66 */
67 #define LIST_CLEAN 0
68 #define LIST_DIRTY 1
69 #define LIST_SIZE 2
70
71 /*
72 * Linking of buffers:
73 * All buffers are linked to cache_hash with their hash_list field.
74 *
75 * Clean buffers that are not being written (B_WRITING not set)
76 * are linked to lru[LIST_CLEAN] with their lru_list field.
77 *
78 * Dirty and clean buffers that are being written are linked to
79 * lru[LIST_DIRTY] with their lru_list field. When the write
80 * finishes, the buffer cannot be relinked immediately (because we
81 * are in an interrupt context and relinking requires process
82 * context), so some clean-not-writing buffers can be held on
83 * dirty_lru too. They are later added to lru in the process
84 * context.
85 */
86 struct dm_bufio_client {
87 struct mutex lock;
88
89 struct list_head lru[LIST_SIZE];
90 unsigned long n_buffers[LIST_SIZE];
91
92 struct block_device *bdev;
93 unsigned block_size;
94 unsigned char sectors_per_block_bits;
95 unsigned char pages_per_block_bits;
96 unsigned char blocks_per_page_bits;
97 unsigned aux_size;
98 void (*alloc_callback)(struct dm_buffer *);
99 void (*write_callback)(struct dm_buffer *);
100
101 struct dm_io_client *dm_io;
102
103 struct list_head reserved_buffers;
104 unsigned need_reserved_buffers;
105
106 unsigned minimum_buffers;
107
108 struct rb_root buffer_tree;
109 wait_queue_head_t free_buffer_wait;
110
111 int async_write_error;
112
113 struct list_head client_list;
114 struct shrinker shrinker;
115 };
116
117 /*
118 * Buffer state bits.
119 */
120 #define B_READING 0
121 #define B_WRITING 1
122 #define B_DIRTY 2
123
124 /*
125 * Describes how the block was allocated:
126 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
127 * See the comment at alloc_buffer_data.
128 */
129 enum data_mode {
130 DATA_MODE_SLAB = 0,
131 DATA_MODE_GET_FREE_PAGES = 1,
132 DATA_MODE_VMALLOC = 2,
133 DATA_MODE_LIMIT = 3
134 };
135
136 struct dm_buffer {
137 struct rb_node node;
138 struct list_head lru_list;
139 sector_t block;
140 void *data;
141 enum data_mode data_mode;
142 unsigned char list_mode; /* LIST_* */
143 unsigned hold_count;
144 int read_error;
145 int write_error;
146 unsigned long state;
147 unsigned long last_accessed;
148 struct dm_bufio_client *c;
149 struct list_head write_list;
150 struct bio bio;
151 struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
152 };
153
154 /*----------------------------------------------------------------*/
155
156 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
157 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
158
159 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
160 {
161 unsigned ret = c->blocks_per_page_bits - 1;
162
163 BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
164
165 return ret;
166 }
167
168 #define DM_BUFIO_CACHE(c) (dm_bufio_caches[dm_bufio_cache_index(c)])
169 #define DM_BUFIO_CACHE_NAME(c) (dm_bufio_cache_names[dm_bufio_cache_index(c)])
170
171 #define dm_bufio_in_request() (!!current->bio_list)
172
173 static void dm_bufio_lock(struct dm_bufio_client *c)
174 {
175 mutex_lock_nested(&c->lock, dm_bufio_in_request());
176 }
177
178 static int dm_bufio_trylock(struct dm_bufio_client *c)
179 {
180 return mutex_trylock(&c->lock);
181 }
182
183 static void dm_bufio_unlock(struct dm_bufio_client *c)
184 {
185 mutex_unlock(&c->lock);
186 }
187
188 /*
189 * FIXME Move to sched.h?
190 */
191 #ifdef CONFIG_PREEMPT_VOLUNTARY
192 # define dm_bufio_cond_resched() \
193 do { \
194 if (unlikely(need_resched())) \
195 _cond_resched(); \
196 } while (0)
197 #else
198 # define dm_bufio_cond_resched() do { } while (0)
199 #endif
200
201 /*----------------------------------------------------------------*/
202
203 /*
204 * Default cache size: available memory divided by the ratio.
205 */
206 static unsigned long dm_bufio_default_cache_size;
207
208 /*
209 * Total cache size set by the user.
210 */
211 static unsigned long dm_bufio_cache_size;
212
213 /*
214 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
215 * at any time. If it disagrees, the user has changed cache size.
216 */
217 static unsigned long dm_bufio_cache_size_latch;
218
219 static DEFINE_SPINLOCK(param_spinlock);
220
221 /*
222 * Buffers are freed after this timeout
223 */
224 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
225 static unsigned dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
226
227 static unsigned long dm_bufio_peak_allocated;
228 static unsigned long dm_bufio_allocated_kmem_cache;
229 static unsigned long dm_bufio_allocated_get_free_pages;
230 static unsigned long dm_bufio_allocated_vmalloc;
231 static unsigned long dm_bufio_current_allocated;
232
233 /*----------------------------------------------------------------*/
234
235 /*
236 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
237 */
238 static unsigned long dm_bufio_cache_size_per_client;
239
240 /*
241 * The current number of clients.
242 */
243 static int dm_bufio_client_count;
244
245 /*
246 * The list of all clients.
247 */
248 static LIST_HEAD(dm_bufio_all_clients);
249
250 /*
251 * This mutex protects dm_bufio_cache_size_latch,
252 * dm_bufio_cache_size_per_client and dm_bufio_client_count
253 */
254 static DEFINE_MUTEX(dm_bufio_clients_lock);
255
256 /*----------------------------------------------------------------
257 * A red/black tree acts as an index for all the buffers.
258 *--------------------------------------------------------------*/
259 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
260 {
261 struct rb_node *n = c->buffer_tree.rb_node;
262 struct dm_buffer *b;
263
264 while (n) {
265 b = container_of(n, struct dm_buffer, node);
266
267 if (b->block == block)
268 return b;
269
270 n = (b->block < block) ? n->rb_left : n->rb_right;
271 }
272
273 return NULL;
274 }
275
276 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
277 {
278 struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
279 struct dm_buffer *found;
280
281 while (*new) {
282 found = container_of(*new, struct dm_buffer, node);
283
284 if (found->block == b->block) {
285 BUG_ON(found != b);
286 return;
287 }
288
289 parent = *new;
290 new = (found->block < b->block) ?
291 &((*new)->rb_left) : &((*new)->rb_right);
292 }
293
294 rb_link_node(&b->node, parent, new);
295 rb_insert_color(&b->node, &c->buffer_tree);
296 }
297
298 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
299 {
300 rb_erase(&b->node, &c->buffer_tree);
301 }
302
303 /*----------------------------------------------------------------*/
304
305 static void adjust_total_allocated(enum data_mode data_mode, long diff)
306 {
307 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
308 &dm_bufio_allocated_kmem_cache,
309 &dm_bufio_allocated_get_free_pages,
310 &dm_bufio_allocated_vmalloc,
311 };
312
313 spin_lock(&param_spinlock);
314
315 *class_ptr[data_mode] += diff;
316
317 dm_bufio_current_allocated += diff;
318
319 if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
320 dm_bufio_peak_allocated = dm_bufio_current_allocated;
321
322 spin_unlock(&param_spinlock);
323 }
324
325 /*
326 * Change the number of clients and recalculate per-client limit.
327 */
328 static void __cache_size_refresh(void)
329 {
330 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
331 BUG_ON(dm_bufio_client_count < 0);
332
333 dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
334
335 /*
336 * Use default if set to 0 and report the actual cache size used.
337 */
338 if (!dm_bufio_cache_size_latch) {
339 (void)cmpxchg(&dm_bufio_cache_size, 0,
340 dm_bufio_default_cache_size);
341 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
342 }
343
344 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
345 (dm_bufio_client_count ? : 1);
346 }
347
348 /*
349 * Allocating buffer data.
350 *
351 * Small buffers are allocated with kmem_cache, to use space optimally.
352 *
353 * For large buffers, we choose between get_free_pages and vmalloc.
354 * Each has advantages and disadvantages.
355 *
356 * __get_free_pages can randomly fail if the memory is fragmented.
357 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
358 * as low as 128M) so using it for caching is not appropriate.
359 *
360 * If the allocation may fail we use __get_free_pages. Memory fragmentation
361 * won't have a fatal effect here, but it just causes flushes of some other
362 * buffers and more I/O will be performed. Don't use __get_free_pages if it
363 * always fails (i.e. order >= MAX_ORDER).
364 *
365 * If the allocation shouldn't fail we use __vmalloc. This is only for the
366 * initial reserve allocation, so there's no risk of wasting all vmalloc
367 * space.
368 */
369 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
370 enum data_mode *data_mode)
371 {
372 unsigned noio_flag;
373 void *ptr;
374
375 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
376 *data_mode = DATA_MODE_SLAB;
377 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
378 }
379
380 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
381 gfp_mask & __GFP_NORETRY) {
382 *data_mode = DATA_MODE_GET_FREE_PAGES;
383 return (void *)__get_free_pages(gfp_mask,
384 c->pages_per_block_bits);
385 }
386
387 *data_mode = DATA_MODE_VMALLOC;
388
389 /*
390 * __vmalloc allocates the data pages and auxiliary structures with
391 * gfp_flags that were specified, but pagetables are always allocated
392 * with GFP_KERNEL, no matter what was specified as gfp_mask.
393 *
394 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
395 * all allocations done by this process (including pagetables) are done
396 * as if GFP_NOIO was specified.
397 */
398
399 if (gfp_mask & __GFP_NORETRY)
400 noio_flag = memalloc_noio_save();
401
402 ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
403
404 if (gfp_mask & __GFP_NORETRY)
405 memalloc_noio_restore(noio_flag);
406
407 return ptr;
408 }
409
410 /*
411 * Free buffer's data.
412 */
413 static void free_buffer_data(struct dm_bufio_client *c,
414 void *data, enum data_mode data_mode)
415 {
416 switch (data_mode) {
417 case DATA_MODE_SLAB:
418 kmem_cache_free(DM_BUFIO_CACHE(c), data);
419 break;
420
421 case DATA_MODE_GET_FREE_PAGES:
422 free_pages((unsigned long)data, c->pages_per_block_bits);
423 break;
424
425 case DATA_MODE_VMALLOC:
426 vfree(data);
427 break;
428
429 default:
430 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
431 data_mode);
432 BUG();
433 }
434 }
435
436 /*
437 * Allocate buffer and its data.
438 */
439 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
440 {
441 struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
442 gfp_mask);
443
444 if (!b)
445 return NULL;
446
447 b->c = c;
448
449 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
450 if (!b->data) {
451 kfree(b);
452 return NULL;
453 }
454
455 adjust_total_allocated(b->data_mode, (long)c->block_size);
456
457 return b;
458 }
459
460 /*
461 * Free buffer and its data.
462 */
463 static void free_buffer(struct dm_buffer *b)
464 {
465 struct dm_bufio_client *c = b->c;
466
467 adjust_total_allocated(b->data_mode, -(long)c->block_size);
468
469 free_buffer_data(c, b->data, b->data_mode);
470 kfree(b);
471 }
472
473 /*
474 * Link buffer to the hash list and clean or dirty queue.
475 */
476 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
477 {
478 struct dm_bufio_client *c = b->c;
479
480 c->n_buffers[dirty]++;
481 b->block = block;
482 b->list_mode = dirty;
483 list_add(&b->lru_list, &c->lru[dirty]);
484 __insert(b->c, b);
485 b->last_accessed = jiffies;
486 }
487
488 /*
489 * Unlink buffer from the hash list and dirty or clean queue.
490 */
491 static void __unlink_buffer(struct dm_buffer *b)
492 {
493 struct dm_bufio_client *c = b->c;
494
495 BUG_ON(!c->n_buffers[b->list_mode]);
496
497 c->n_buffers[b->list_mode]--;
498 __remove(b->c, b);
499 list_del(&b->lru_list);
500 }
501
502 /*
503 * Place the buffer to the head of dirty or clean LRU queue.
504 */
505 static void __relink_lru(struct dm_buffer *b, int dirty)
506 {
507 struct dm_bufio_client *c = b->c;
508
509 BUG_ON(!c->n_buffers[b->list_mode]);
510
511 c->n_buffers[b->list_mode]--;
512 c->n_buffers[dirty]++;
513 b->list_mode = dirty;
514 list_move(&b->lru_list, &c->lru[dirty]);
515 b->last_accessed = jiffies;
516 }
517
518 /*----------------------------------------------------------------
519 * Submit I/O on the buffer.
520 *
521 * Bio interface is faster but it has some problems:
522 * the vector list is limited (increasing this limit increases
523 * memory-consumption per buffer, so it is not viable);
524 *
525 * the memory must be direct-mapped, not vmalloced;
526 *
527 * the I/O driver can reject requests spuriously if it thinks that
528 * the requests are too big for the device or if they cross a
529 * controller-defined memory boundary.
530 *
531 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
532 * it is not vmalloced, try using the bio interface.
533 *
534 * If the buffer is big, if it is vmalloced or if the underlying device
535 * rejects the bio because it is too large, use dm-io layer to do the I/O.
536 * The dm-io layer splits the I/O into multiple requests, avoiding the above
537 * shortcomings.
538 *--------------------------------------------------------------*/
539
540 /*
541 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
542 * that the request was handled directly with bio interface.
543 */
544 static void dmio_complete(unsigned long error, void *context)
545 {
546 struct dm_buffer *b = context;
547
548 b->bio.bi_error = error ? -EIO : 0;
549 b->bio.bi_end_io(&b->bio);
550 }
551
552 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
553 bio_end_io_t *end_io)
554 {
555 int r;
556 struct dm_io_request io_req = {
557 .bi_rw = rw,
558 .notify.fn = dmio_complete,
559 .notify.context = b,
560 .client = b->c->dm_io,
561 };
562 struct dm_io_region region = {
563 .bdev = b->c->bdev,
564 .sector = block << b->c->sectors_per_block_bits,
565 .count = b->c->block_size >> SECTOR_SHIFT,
566 };
567
568 if (b->data_mode != DATA_MODE_VMALLOC) {
569 io_req.mem.type = DM_IO_KMEM;
570 io_req.mem.ptr.addr = b->data;
571 } else {
572 io_req.mem.type = DM_IO_VMA;
573 io_req.mem.ptr.vma = b->data;
574 }
575
576 b->bio.bi_end_io = end_io;
577
578 r = dm_io(&io_req, 1, &region, NULL);
579 if (r) {
580 b->bio.bi_error = r;
581 end_io(&b->bio);
582 }
583 }
584
585 static void inline_endio(struct bio *bio)
586 {
587 bio_end_io_t *end_fn = bio->bi_private;
588 int error = bio->bi_error;
589
590 /*
591 * Reset the bio to free any attached resources
592 * (e.g. bio integrity profiles).
593 */
594 bio_reset(bio);
595
596 bio->bi_error = error;
597 end_fn(bio);
598 }
599
600 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
601 bio_end_io_t *end_io)
602 {
603 char *ptr;
604 int len;
605
606 bio_init(&b->bio);
607 b->bio.bi_io_vec = b->bio_vec;
608 b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
609 b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits;
610 b->bio.bi_bdev = b->c->bdev;
611 b->bio.bi_end_io = inline_endio;
612 /*
613 * Use of .bi_private isn't a problem here because
614 * the dm_buffer's inline bio is local to bufio.
615 */
616 b->bio.bi_private = end_io;
617
618 /*
619 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
620 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
621 */
622 ptr = b->data;
623 len = b->c->block_size;
624
625 if (len >= PAGE_SIZE)
626 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
627 else
628 BUG_ON((unsigned long)ptr & (len - 1));
629
630 do {
631 if (!bio_add_page(&b->bio, virt_to_page(ptr),
632 len < PAGE_SIZE ? len : PAGE_SIZE,
633 virt_to_phys(ptr) & (PAGE_SIZE - 1))) {
634 BUG_ON(b->c->block_size <= PAGE_SIZE);
635 use_dmio(b, rw, block, end_io);
636 return;
637 }
638
639 len -= PAGE_SIZE;
640 ptr += PAGE_SIZE;
641 } while (len > 0);
642
643 submit_bio(rw, &b->bio);
644 }
645
646 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
647 bio_end_io_t *end_io)
648 {
649 if (rw == WRITE && b->c->write_callback)
650 b->c->write_callback(b);
651
652 if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
653 b->data_mode != DATA_MODE_VMALLOC)
654 use_inline_bio(b, rw, block, end_io);
655 else
656 use_dmio(b, rw, block, end_io);
657 }
658
659 /*----------------------------------------------------------------
660 * Writing dirty buffers
661 *--------------------------------------------------------------*/
662
663 /*
664 * The endio routine for write.
665 *
666 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
667 * it.
668 */
669 static void write_endio(struct bio *bio)
670 {
671 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
672
673 b->write_error = bio->bi_error;
674 if (unlikely(bio->bi_error)) {
675 struct dm_bufio_client *c = b->c;
676 int error = bio->bi_error;
677 (void)cmpxchg(&c->async_write_error, 0, error);
678 }
679
680 BUG_ON(!test_bit(B_WRITING, &b->state));
681
682 smp_mb__before_atomic();
683 clear_bit(B_WRITING, &b->state);
684 smp_mb__after_atomic();
685
686 wake_up_bit(&b->state, B_WRITING);
687 }
688
689 /*
690 * Initiate a write on a dirty buffer, but don't wait for it.
691 *
692 * - If the buffer is not dirty, exit.
693 * - If there some previous write going on, wait for it to finish (we can't
694 * have two writes on the same buffer simultaneously).
695 * - Submit our write and don't wait on it. We set B_WRITING indicating
696 * that there is a write in progress.
697 */
698 static void __write_dirty_buffer(struct dm_buffer *b,
699 struct list_head *write_list)
700 {
701 if (!test_bit(B_DIRTY, &b->state))
702 return;
703
704 clear_bit(B_DIRTY, &b->state);
705 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
706
707 if (!write_list)
708 submit_io(b, WRITE, b->block, write_endio);
709 else
710 list_add_tail(&b->write_list, write_list);
711 }
712
713 static void __flush_write_list(struct list_head *write_list)
714 {
715 struct blk_plug plug;
716 blk_start_plug(&plug);
717 while (!list_empty(write_list)) {
718 struct dm_buffer *b =
719 list_entry(write_list->next, struct dm_buffer, write_list);
720 list_del(&b->write_list);
721 submit_io(b, WRITE, b->block, write_endio);
722 dm_bufio_cond_resched();
723 }
724 blk_finish_plug(&plug);
725 }
726
727 /*
728 * Wait until any activity on the buffer finishes. Possibly write the
729 * buffer if it is dirty. When this function finishes, there is no I/O
730 * running on the buffer and the buffer is not dirty.
731 */
732 static void __make_buffer_clean(struct dm_buffer *b)
733 {
734 BUG_ON(b->hold_count);
735
736 if (!b->state) /* fast case */
737 return;
738
739 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
740 __write_dirty_buffer(b, NULL);
741 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
742 }
743
744 /*
745 * Find some buffer that is not held by anybody, clean it, unlink it and
746 * return it.
747 */
748 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
749 {
750 struct dm_buffer *b;
751
752 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
753 BUG_ON(test_bit(B_WRITING, &b->state));
754 BUG_ON(test_bit(B_DIRTY, &b->state));
755
756 if (!b->hold_count) {
757 __make_buffer_clean(b);
758 __unlink_buffer(b);
759 return b;
760 }
761 dm_bufio_cond_resched();
762 }
763
764 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
765 BUG_ON(test_bit(B_READING, &b->state));
766
767 if (!b->hold_count) {
768 __make_buffer_clean(b);
769 __unlink_buffer(b);
770 return b;
771 }
772 dm_bufio_cond_resched();
773 }
774
775 return NULL;
776 }
777
778 /*
779 * Wait until some other threads free some buffer or release hold count on
780 * some buffer.
781 *
782 * This function is entered with c->lock held, drops it and regains it
783 * before exiting.
784 */
785 static void __wait_for_free_buffer(struct dm_bufio_client *c)
786 {
787 DECLARE_WAITQUEUE(wait, current);
788
789 add_wait_queue(&c->free_buffer_wait, &wait);
790 set_task_state(current, TASK_UNINTERRUPTIBLE);
791 dm_bufio_unlock(c);
792
793 io_schedule();
794
795 remove_wait_queue(&c->free_buffer_wait, &wait);
796
797 dm_bufio_lock(c);
798 }
799
800 enum new_flag {
801 NF_FRESH = 0,
802 NF_READ = 1,
803 NF_GET = 2,
804 NF_PREFETCH = 3
805 };
806
807 /*
808 * Allocate a new buffer. If the allocation is not possible, wait until
809 * some other thread frees a buffer.
810 *
811 * May drop the lock and regain it.
812 */
813 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
814 {
815 struct dm_buffer *b;
816
817 /*
818 * dm-bufio is resistant to allocation failures (it just keeps
819 * one buffer reserved in cases all the allocations fail).
820 * So set flags to not try too hard:
821 * GFP_NOIO: don't recurse into the I/O layer
822 * __GFP_NORETRY: don't retry and rather return failure
823 * __GFP_NOMEMALLOC: don't use emergency reserves
824 * __GFP_NOWARN: don't print a warning in case of failure
825 *
826 * For debugging, if we set the cache size to 1, no new buffers will
827 * be allocated.
828 */
829 while (1) {
830 if (dm_bufio_cache_size_latch != 1) {
831 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
832 if (b)
833 return b;
834 }
835
836 if (nf == NF_PREFETCH)
837 return NULL;
838
839 if (!list_empty(&c->reserved_buffers)) {
840 b = list_entry(c->reserved_buffers.next,
841 struct dm_buffer, lru_list);
842 list_del(&b->lru_list);
843 c->need_reserved_buffers++;
844
845 return b;
846 }
847
848 b = __get_unclaimed_buffer(c);
849 if (b)
850 return b;
851
852 __wait_for_free_buffer(c);
853 }
854 }
855
856 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
857 {
858 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
859
860 if (!b)
861 return NULL;
862
863 if (c->alloc_callback)
864 c->alloc_callback(b);
865
866 return b;
867 }
868
869 /*
870 * Free a buffer and wake other threads waiting for free buffers.
871 */
872 static void __free_buffer_wake(struct dm_buffer *b)
873 {
874 struct dm_bufio_client *c = b->c;
875
876 if (!c->need_reserved_buffers)
877 free_buffer(b);
878 else {
879 list_add(&b->lru_list, &c->reserved_buffers);
880 c->need_reserved_buffers--;
881 }
882
883 wake_up(&c->free_buffer_wait);
884 }
885
886 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
887 struct list_head *write_list)
888 {
889 struct dm_buffer *b, *tmp;
890
891 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
892 BUG_ON(test_bit(B_READING, &b->state));
893
894 if (!test_bit(B_DIRTY, &b->state) &&
895 !test_bit(B_WRITING, &b->state)) {
896 __relink_lru(b, LIST_CLEAN);
897 continue;
898 }
899
900 if (no_wait && test_bit(B_WRITING, &b->state))
901 return;
902
903 __write_dirty_buffer(b, write_list);
904 dm_bufio_cond_resched();
905 }
906 }
907
908 /*
909 * Get writeback threshold and buffer limit for a given client.
910 */
911 static void __get_memory_limit(struct dm_bufio_client *c,
912 unsigned long *threshold_buffers,
913 unsigned long *limit_buffers)
914 {
915 unsigned long buffers;
916
917 if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
918 mutex_lock(&dm_bufio_clients_lock);
919 __cache_size_refresh();
920 mutex_unlock(&dm_bufio_clients_lock);
921 }
922
923 buffers = dm_bufio_cache_size_per_client >>
924 (c->sectors_per_block_bits + SECTOR_SHIFT);
925
926 if (buffers < c->minimum_buffers)
927 buffers = c->minimum_buffers;
928
929 *limit_buffers = buffers;
930 *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
931 }
932
933 /*
934 * Check if we're over watermark.
935 * If we are over threshold_buffers, start freeing buffers.
936 * If we're over "limit_buffers", block until we get under the limit.
937 */
938 static void __check_watermark(struct dm_bufio_client *c,
939 struct list_head *write_list)
940 {
941 unsigned long threshold_buffers, limit_buffers;
942
943 __get_memory_limit(c, &threshold_buffers, &limit_buffers);
944
945 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
946 limit_buffers) {
947
948 struct dm_buffer *b = __get_unclaimed_buffer(c);
949
950 if (!b)
951 return;
952
953 __free_buffer_wake(b);
954 dm_bufio_cond_resched();
955 }
956
957 if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
958 __write_dirty_buffers_async(c, 1, write_list);
959 }
960
961 /*----------------------------------------------------------------
962 * Getting a buffer
963 *--------------------------------------------------------------*/
964
965 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
966 enum new_flag nf, int *need_submit,
967 struct list_head *write_list)
968 {
969 struct dm_buffer *b, *new_b = NULL;
970
971 *need_submit = 0;
972
973 b = __find(c, block);
974 if (b)
975 goto found_buffer;
976
977 if (nf == NF_GET)
978 return NULL;
979
980 new_b = __alloc_buffer_wait(c, nf);
981 if (!new_b)
982 return NULL;
983
984 /*
985 * We've had a period where the mutex was unlocked, so need to
986 * recheck the hash table.
987 */
988 b = __find(c, block);
989 if (b) {
990 __free_buffer_wake(new_b);
991 goto found_buffer;
992 }
993
994 __check_watermark(c, write_list);
995
996 b = new_b;
997 b->hold_count = 1;
998 b->read_error = 0;
999 b->write_error = 0;
1000 __link_buffer(b, block, LIST_CLEAN);
1001
1002 if (nf == NF_FRESH) {
1003 b->state = 0;
1004 return b;
1005 }
1006
1007 b->state = 1 << B_READING;
1008 *need_submit = 1;
1009
1010 return b;
1011
1012 found_buffer:
1013 if (nf == NF_PREFETCH)
1014 return NULL;
1015 /*
1016 * Note: it is essential that we don't wait for the buffer to be
1017 * read if dm_bufio_get function is used. Both dm_bufio_get and
1018 * dm_bufio_prefetch can be used in the driver request routine.
1019 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1020 * the same buffer, it would deadlock if we waited.
1021 */
1022 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1023 return NULL;
1024
1025 b->hold_count++;
1026 __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1027 test_bit(B_WRITING, &b->state));
1028 return b;
1029 }
1030
1031 /*
1032 * The endio routine for reading: set the error, clear the bit and wake up
1033 * anyone waiting on the buffer.
1034 */
1035 static void read_endio(struct bio *bio)
1036 {
1037 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1038
1039 b->read_error = bio->bi_error;
1040
1041 BUG_ON(!test_bit(B_READING, &b->state));
1042
1043 smp_mb__before_atomic();
1044 clear_bit(B_READING, &b->state);
1045 smp_mb__after_atomic();
1046
1047 wake_up_bit(&b->state, B_READING);
1048 }
1049
1050 /*
1051 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these
1052 * functions is similar except that dm_bufio_new doesn't read the
1053 * buffer from the disk (assuming that the caller overwrites all the data
1054 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1055 */
1056 static void *new_read(struct dm_bufio_client *c, sector_t block,
1057 enum new_flag nf, struct dm_buffer **bp)
1058 {
1059 int need_submit;
1060 struct dm_buffer *b;
1061
1062 LIST_HEAD(write_list);
1063
1064 dm_bufio_lock(c);
1065 b = __bufio_new(c, block, nf, &need_submit, &write_list);
1066 dm_bufio_unlock(c);
1067
1068 __flush_write_list(&write_list);
1069
1070 if (!b)
1071 return b;
1072
1073 if (need_submit)
1074 submit_io(b, READ, b->block, read_endio);
1075
1076 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1077
1078 if (b->read_error) {
1079 int error = b->read_error;
1080
1081 dm_bufio_release(b);
1082
1083 return ERR_PTR(error);
1084 }
1085
1086 *bp = b;
1087
1088 return b->data;
1089 }
1090
1091 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1092 struct dm_buffer **bp)
1093 {
1094 return new_read(c, block, NF_GET, bp);
1095 }
1096 EXPORT_SYMBOL_GPL(dm_bufio_get);
1097
1098 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1099 struct dm_buffer **bp)
1100 {
1101 BUG_ON(dm_bufio_in_request());
1102
1103 return new_read(c, block, NF_READ, bp);
1104 }
1105 EXPORT_SYMBOL_GPL(dm_bufio_read);
1106
1107 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1108 struct dm_buffer **bp)
1109 {
1110 BUG_ON(dm_bufio_in_request());
1111
1112 return new_read(c, block, NF_FRESH, bp);
1113 }
1114 EXPORT_SYMBOL_GPL(dm_bufio_new);
1115
1116 void dm_bufio_prefetch(struct dm_bufio_client *c,
1117 sector_t block, unsigned n_blocks)
1118 {
1119 struct blk_plug plug;
1120
1121 LIST_HEAD(write_list);
1122
1123 BUG_ON(dm_bufio_in_request());
1124
1125 blk_start_plug(&plug);
1126 dm_bufio_lock(c);
1127
1128 for (; n_blocks--; block++) {
1129 int need_submit;
1130 struct dm_buffer *b;
1131 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1132 &write_list);
1133 if (unlikely(!list_empty(&write_list))) {
1134 dm_bufio_unlock(c);
1135 blk_finish_plug(&plug);
1136 __flush_write_list(&write_list);
1137 blk_start_plug(&plug);
1138 dm_bufio_lock(c);
1139 }
1140 if (unlikely(b != NULL)) {
1141 dm_bufio_unlock(c);
1142
1143 if (need_submit)
1144 submit_io(b, READ, b->block, read_endio);
1145 dm_bufio_release(b);
1146
1147 dm_bufio_cond_resched();
1148
1149 if (!n_blocks)
1150 goto flush_plug;
1151 dm_bufio_lock(c);
1152 }
1153 }
1154
1155 dm_bufio_unlock(c);
1156
1157 flush_plug:
1158 blk_finish_plug(&plug);
1159 }
1160 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1161
1162 void dm_bufio_release(struct dm_buffer *b)
1163 {
1164 struct dm_bufio_client *c = b->c;
1165
1166 dm_bufio_lock(c);
1167
1168 BUG_ON(!b->hold_count);
1169
1170 b->hold_count--;
1171 if (!b->hold_count) {
1172 wake_up(&c->free_buffer_wait);
1173
1174 /*
1175 * If there were errors on the buffer, and the buffer is not
1176 * to be written, free the buffer. There is no point in caching
1177 * invalid buffer.
1178 */
1179 if ((b->read_error || b->write_error) &&
1180 !test_bit(B_READING, &b->state) &&
1181 !test_bit(B_WRITING, &b->state) &&
1182 !test_bit(B_DIRTY, &b->state)) {
1183 __unlink_buffer(b);
1184 __free_buffer_wake(b);
1185 }
1186 }
1187
1188 dm_bufio_unlock(c);
1189 }
1190 EXPORT_SYMBOL_GPL(dm_bufio_release);
1191
1192 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1193 {
1194 struct dm_bufio_client *c = b->c;
1195
1196 dm_bufio_lock(c);
1197
1198 BUG_ON(test_bit(B_READING, &b->state));
1199
1200 if (!test_and_set_bit(B_DIRTY, &b->state))
1201 __relink_lru(b, LIST_DIRTY);
1202
1203 dm_bufio_unlock(c);
1204 }
1205 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1206
1207 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1208 {
1209 LIST_HEAD(write_list);
1210
1211 BUG_ON(dm_bufio_in_request());
1212
1213 dm_bufio_lock(c);
1214 __write_dirty_buffers_async(c, 0, &write_list);
1215 dm_bufio_unlock(c);
1216 __flush_write_list(&write_list);
1217 }
1218 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1219
1220 /*
1221 * For performance, it is essential that the buffers are written asynchronously
1222 * and simultaneously (so that the block layer can merge the writes) and then
1223 * waited upon.
1224 *
1225 * Finally, we flush hardware disk cache.
1226 */
1227 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1228 {
1229 int a, f;
1230 unsigned long buffers_processed = 0;
1231 struct dm_buffer *b, *tmp;
1232
1233 LIST_HEAD(write_list);
1234
1235 dm_bufio_lock(c);
1236 __write_dirty_buffers_async(c, 0, &write_list);
1237 dm_bufio_unlock(c);
1238 __flush_write_list(&write_list);
1239 dm_bufio_lock(c);
1240
1241 again:
1242 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1243 int dropped_lock = 0;
1244
1245 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1246 buffers_processed++;
1247
1248 BUG_ON(test_bit(B_READING, &b->state));
1249
1250 if (test_bit(B_WRITING, &b->state)) {
1251 if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1252 dropped_lock = 1;
1253 b->hold_count++;
1254 dm_bufio_unlock(c);
1255 wait_on_bit_io(&b->state, B_WRITING,
1256 TASK_UNINTERRUPTIBLE);
1257 dm_bufio_lock(c);
1258 b->hold_count--;
1259 } else
1260 wait_on_bit_io(&b->state, B_WRITING,
1261 TASK_UNINTERRUPTIBLE);
1262 }
1263
1264 if (!test_bit(B_DIRTY, &b->state) &&
1265 !test_bit(B_WRITING, &b->state))
1266 __relink_lru(b, LIST_CLEAN);
1267
1268 dm_bufio_cond_resched();
1269
1270 /*
1271 * If we dropped the lock, the list is no longer consistent,
1272 * so we must restart the search.
1273 *
1274 * In the most common case, the buffer just processed is
1275 * relinked to the clean list, so we won't loop scanning the
1276 * same buffer again and again.
1277 *
1278 * This may livelock if there is another thread simultaneously
1279 * dirtying buffers, so we count the number of buffers walked
1280 * and if it exceeds the total number of buffers, it means that
1281 * someone is doing some writes simultaneously with us. In
1282 * this case, stop, dropping the lock.
1283 */
1284 if (dropped_lock)
1285 goto again;
1286 }
1287 wake_up(&c->free_buffer_wait);
1288 dm_bufio_unlock(c);
1289
1290 a = xchg(&c->async_write_error, 0);
1291 f = dm_bufio_issue_flush(c);
1292 if (a)
1293 return a;
1294
1295 return f;
1296 }
1297 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1298
1299 /*
1300 * Use dm-io to send and empty barrier flush the device.
1301 */
1302 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1303 {
1304 struct dm_io_request io_req = {
1305 .bi_rw = WRITE_FLUSH,
1306 .mem.type = DM_IO_KMEM,
1307 .mem.ptr.addr = NULL,
1308 .client = c->dm_io,
1309 };
1310 struct dm_io_region io_reg = {
1311 .bdev = c->bdev,
1312 .sector = 0,
1313 .count = 0,
1314 };
1315
1316 BUG_ON(dm_bufio_in_request());
1317
1318 return dm_io(&io_req, 1, &io_reg, NULL);
1319 }
1320 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1321
1322 /*
1323 * We first delete any other buffer that may be at that new location.
1324 *
1325 * Then, we write the buffer to the original location if it was dirty.
1326 *
1327 * Then, if we are the only one who is holding the buffer, relink the buffer
1328 * in the hash queue for the new location.
1329 *
1330 * If there was someone else holding the buffer, we write it to the new
1331 * location but not relink it, because that other user needs to have the buffer
1332 * at the same place.
1333 */
1334 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1335 {
1336 struct dm_bufio_client *c = b->c;
1337 struct dm_buffer *new;
1338
1339 BUG_ON(dm_bufio_in_request());
1340
1341 dm_bufio_lock(c);
1342
1343 retry:
1344 new = __find(c, new_block);
1345 if (new) {
1346 if (new->hold_count) {
1347 __wait_for_free_buffer(c);
1348 goto retry;
1349 }
1350
1351 /*
1352 * FIXME: Is there any point waiting for a write that's going
1353 * to be overwritten in a bit?
1354 */
1355 __make_buffer_clean(new);
1356 __unlink_buffer(new);
1357 __free_buffer_wake(new);
1358 }
1359
1360 BUG_ON(!b->hold_count);
1361 BUG_ON(test_bit(B_READING, &b->state));
1362
1363 __write_dirty_buffer(b, NULL);
1364 if (b->hold_count == 1) {
1365 wait_on_bit_io(&b->state, B_WRITING,
1366 TASK_UNINTERRUPTIBLE);
1367 set_bit(B_DIRTY, &b->state);
1368 __unlink_buffer(b);
1369 __link_buffer(b, new_block, LIST_DIRTY);
1370 } else {
1371 sector_t old_block;
1372 wait_on_bit_lock_io(&b->state, B_WRITING,
1373 TASK_UNINTERRUPTIBLE);
1374 /*
1375 * Relink buffer to "new_block" so that write_callback
1376 * sees "new_block" as a block number.
1377 * After the write, link the buffer back to old_block.
1378 * All this must be done in bufio lock, so that block number
1379 * change isn't visible to other threads.
1380 */
1381 old_block = b->block;
1382 __unlink_buffer(b);
1383 __link_buffer(b, new_block, b->list_mode);
1384 submit_io(b, WRITE, new_block, write_endio);
1385 wait_on_bit_io(&b->state, B_WRITING,
1386 TASK_UNINTERRUPTIBLE);
1387 __unlink_buffer(b);
1388 __link_buffer(b, old_block, b->list_mode);
1389 }
1390
1391 dm_bufio_unlock(c);
1392 dm_bufio_release(b);
1393 }
1394 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1395
1396 /*
1397 * Free the given buffer.
1398 *
1399 * This is just a hint, if the buffer is in use or dirty, this function
1400 * does nothing.
1401 */
1402 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1403 {
1404 struct dm_buffer *b;
1405
1406 dm_bufio_lock(c);
1407
1408 b = __find(c, block);
1409 if (b && likely(!b->hold_count) && likely(!b->state)) {
1410 __unlink_buffer(b);
1411 __free_buffer_wake(b);
1412 }
1413
1414 dm_bufio_unlock(c);
1415 }
1416 EXPORT_SYMBOL(dm_bufio_forget);
1417
1418 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1419 {
1420 c->minimum_buffers = n;
1421 }
1422 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1423
1424 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1425 {
1426 return c->block_size;
1427 }
1428 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1429
1430 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1431 {
1432 return i_size_read(c->bdev->bd_inode) >>
1433 (SECTOR_SHIFT + c->sectors_per_block_bits);
1434 }
1435 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1436
1437 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1438 {
1439 return b->block;
1440 }
1441 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1442
1443 void *dm_bufio_get_block_data(struct dm_buffer *b)
1444 {
1445 return b->data;
1446 }
1447 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1448
1449 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1450 {
1451 return b + 1;
1452 }
1453 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1454
1455 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1456 {
1457 return b->c;
1458 }
1459 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1460
1461 static void drop_buffers(struct dm_bufio_client *c)
1462 {
1463 struct dm_buffer *b;
1464 int i;
1465
1466 BUG_ON(dm_bufio_in_request());
1467
1468 /*
1469 * An optimization so that the buffers are not written one-by-one.
1470 */
1471 dm_bufio_write_dirty_buffers_async(c);
1472
1473 dm_bufio_lock(c);
1474
1475 while ((b = __get_unclaimed_buffer(c)))
1476 __free_buffer_wake(b);
1477
1478 for (i = 0; i < LIST_SIZE; i++)
1479 list_for_each_entry(b, &c->lru[i], lru_list)
1480 DMERR("leaked buffer %llx, hold count %u, list %d",
1481 (unsigned long long)b->block, b->hold_count, i);
1482
1483 for (i = 0; i < LIST_SIZE; i++)
1484 BUG_ON(!list_empty(&c->lru[i]));
1485
1486 dm_bufio_unlock(c);
1487 }
1488
1489 /*
1490 * We may not be able to evict this buffer if IO pending or the client
1491 * is still using it. Caller is expected to know buffer is too old.
1492 *
1493 * And if GFP_NOFS is used, we must not do any I/O because we hold
1494 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1495 * rerouted to different bufio client.
1496 */
1497 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1498 {
1499 if (!(gfp & __GFP_FS)) {
1500 if (test_bit(B_READING, &b->state) ||
1501 test_bit(B_WRITING, &b->state) ||
1502 test_bit(B_DIRTY, &b->state))
1503 return false;
1504 }
1505
1506 if (b->hold_count)
1507 return false;
1508
1509 __make_buffer_clean(b);
1510 __unlink_buffer(b);
1511 __free_buffer_wake(b);
1512
1513 return true;
1514 }
1515
1516 static unsigned get_retain_buffers(struct dm_bufio_client *c)
1517 {
1518 unsigned retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes);
1519 return retain_bytes / c->block_size;
1520 }
1521
1522 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1523 gfp_t gfp_mask)
1524 {
1525 int l;
1526 struct dm_buffer *b, *tmp;
1527 unsigned long freed = 0;
1528 unsigned long count = nr_to_scan;
1529 unsigned retain_target = get_retain_buffers(c);
1530
1531 for (l = 0; l < LIST_SIZE; l++) {
1532 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1533 if (__try_evict_buffer(b, gfp_mask))
1534 freed++;
1535 if (!--nr_to_scan || ((count - freed) <= retain_target))
1536 return freed;
1537 dm_bufio_cond_resched();
1538 }
1539 }
1540 return freed;
1541 }
1542
1543 static unsigned long
1544 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1545 {
1546 struct dm_bufio_client *c;
1547 unsigned long freed;
1548
1549 c = container_of(shrink, struct dm_bufio_client, shrinker);
1550 if (sc->gfp_mask & __GFP_FS)
1551 dm_bufio_lock(c);
1552 else if (!dm_bufio_trylock(c))
1553 return SHRINK_STOP;
1554
1555 freed = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1556 dm_bufio_unlock(c);
1557 return freed;
1558 }
1559
1560 static unsigned long
1561 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1562 {
1563 struct dm_bufio_client *c;
1564 unsigned long count;
1565
1566 c = container_of(shrink, struct dm_bufio_client, shrinker);
1567 if (sc->gfp_mask & __GFP_FS)
1568 dm_bufio_lock(c);
1569 else if (!dm_bufio_trylock(c))
1570 return 0;
1571
1572 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1573 dm_bufio_unlock(c);
1574 return count;
1575 }
1576
1577 /*
1578 * Create the buffering interface
1579 */
1580 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1581 unsigned reserved_buffers, unsigned aux_size,
1582 void (*alloc_callback)(struct dm_buffer *),
1583 void (*write_callback)(struct dm_buffer *))
1584 {
1585 int r;
1586 struct dm_bufio_client *c;
1587 unsigned i;
1588
1589 BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1590 (block_size & (block_size - 1)));
1591
1592 c = kzalloc(sizeof(*c), GFP_KERNEL);
1593 if (!c) {
1594 r = -ENOMEM;
1595 goto bad_client;
1596 }
1597 c->buffer_tree = RB_ROOT;
1598
1599 c->bdev = bdev;
1600 c->block_size = block_size;
1601 c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT;
1602 c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ?
1603 ffs(block_size) - 1 - PAGE_SHIFT : 0;
1604 c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ?
1605 PAGE_SHIFT - (ffs(block_size) - 1) : 0);
1606
1607 c->aux_size = aux_size;
1608 c->alloc_callback = alloc_callback;
1609 c->write_callback = write_callback;
1610
1611 for (i = 0; i < LIST_SIZE; i++) {
1612 INIT_LIST_HEAD(&c->lru[i]);
1613 c->n_buffers[i] = 0;
1614 }
1615
1616 mutex_init(&c->lock);
1617 INIT_LIST_HEAD(&c->reserved_buffers);
1618 c->need_reserved_buffers = reserved_buffers;
1619
1620 c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1621
1622 init_waitqueue_head(&c->free_buffer_wait);
1623 c->async_write_error = 0;
1624
1625 c->dm_io = dm_io_client_create();
1626 if (IS_ERR(c->dm_io)) {
1627 r = PTR_ERR(c->dm_io);
1628 goto bad_dm_io;
1629 }
1630
1631 mutex_lock(&dm_bufio_clients_lock);
1632 if (c->blocks_per_page_bits) {
1633 if (!DM_BUFIO_CACHE_NAME(c)) {
1634 DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1635 if (!DM_BUFIO_CACHE_NAME(c)) {
1636 r = -ENOMEM;
1637 mutex_unlock(&dm_bufio_clients_lock);
1638 goto bad_cache;
1639 }
1640 }
1641
1642 if (!DM_BUFIO_CACHE(c)) {
1643 DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1644 c->block_size,
1645 c->block_size, 0, NULL);
1646 if (!DM_BUFIO_CACHE(c)) {
1647 r = -ENOMEM;
1648 mutex_unlock(&dm_bufio_clients_lock);
1649 goto bad_cache;
1650 }
1651 }
1652 }
1653 mutex_unlock(&dm_bufio_clients_lock);
1654
1655 while (c->need_reserved_buffers) {
1656 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1657
1658 if (!b) {
1659 r = -ENOMEM;
1660 goto bad_buffer;
1661 }
1662 __free_buffer_wake(b);
1663 }
1664
1665 mutex_lock(&dm_bufio_clients_lock);
1666 dm_bufio_client_count++;
1667 list_add(&c->client_list, &dm_bufio_all_clients);
1668 __cache_size_refresh();
1669 mutex_unlock(&dm_bufio_clients_lock);
1670
1671 c->shrinker.count_objects = dm_bufio_shrink_count;
1672 c->shrinker.scan_objects = dm_bufio_shrink_scan;
1673 c->shrinker.seeks = 1;
1674 c->shrinker.batch = 0;
1675 register_shrinker(&c->shrinker);
1676
1677 return c;
1678
1679 bad_buffer:
1680 bad_cache:
1681 while (!list_empty(&c->reserved_buffers)) {
1682 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1683 struct dm_buffer, lru_list);
1684 list_del(&b->lru_list);
1685 free_buffer(b);
1686 }
1687 dm_io_client_destroy(c->dm_io);
1688 bad_dm_io:
1689 kfree(c);
1690 bad_client:
1691 return ERR_PTR(r);
1692 }
1693 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1694
1695 /*
1696 * Free the buffering interface.
1697 * It is required that there are no references on any buffers.
1698 */
1699 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1700 {
1701 unsigned i;
1702
1703 drop_buffers(c);
1704
1705 unregister_shrinker(&c->shrinker);
1706
1707 mutex_lock(&dm_bufio_clients_lock);
1708
1709 list_del(&c->client_list);
1710 dm_bufio_client_count--;
1711 __cache_size_refresh();
1712
1713 mutex_unlock(&dm_bufio_clients_lock);
1714
1715 BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1716 BUG_ON(c->need_reserved_buffers);
1717
1718 while (!list_empty(&c->reserved_buffers)) {
1719 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1720 struct dm_buffer, lru_list);
1721 list_del(&b->lru_list);
1722 free_buffer(b);
1723 }
1724
1725 for (i = 0; i < LIST_SIZE; i++)
1726 if (c->n_buffers[i])
1727 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1728
1729 for (i = 0; i < LIST_SIZE; i++)
1730 BUG_ON(c->n_buffers[i]);
1731
1732 dm_io_client_destroy(c->dm_io);
1733 kfree(c);
1734 }
1735 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1736
1737 static unsigned get_max_age_hz(void)
1738 {
1739 unsigned max_age = ACCESS_ONCE(dm_bufio_max_age);
1740
1741 if (max_age > UINT_MAX / HZ)
1742 max_age = UINT_MAX / HZ;
1743
1744 return max_age * HZ;
1745 }
1746
1747 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1748 {
1749 return time_after_eq(jiffies, b->last_accessed + age_hz);
1750 }
1751
1752 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1753 {
1754 struct dm_buffer *b, *tmp;
1755 unsigned retain_target = get_retain_buffers(c);
1756 unsigned count;
1757
1758 dm_bufio_lock(c);
1759
1760 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1761 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1762 if (count <= retain_target)
1763 break;
1764
1765 if (!older_than(b, age_hz))
1766 break;
1767
1768 if (__try_evict_buffer(b, 0))
1769 count--;
1770
1771 dm_bufio_cond_resched();
1772 }
1773
1774 dm_bufio_unlock(c);
1775 }
1776
1777 static void cleanup_old_buffers(void)
1778 {
1779 unsigned long max_age_hz = get_max_age_hz();
1780 struct dm_bufio_client *c;
1781
1782 mutex_lock(&dm_bufio_clients_lock);
1783
1784 list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1785 __evict_old_buffers(c, max_age_hz);
1786
1787 mutex_unlock(&dm_bufio_clients_lock);
1788 }
1789
1790 static struct workqueue_struct *dm_bufio_wq;
1791 static struct delayed_work dm_bufio_work;
1792
1793 static void work_fn(struct work_struct *w)
1794 {
1795 cleanup_old_buffers();
1796
1797 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1798 DM_BUFIO_WORK_TIMER_SECS * HZ);
1799 }
1800
1801 /*----------------------------------------------------------------
1802 * Module setup
1803 *--------------------------------------------------------------*/
1804
1805 /*
1806 * This is called only once for the whole dm_bufio module.
1807 * It initializes memory limit.
1808 */
1809 static int __init dm_bufio_init(void)
1810 {
1811 __u64 mem;
1812
1813 dm_bufio_allocated_kmem_cache = 0;
1814 dm_bufio_allocated_get_free_pages = 0;
1815 dm_bufio_allocated_vmalloc = 0;
1816 dm_bufio_current_allocated = 0;
1817
1818 memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1819 memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1820
1821 mem = (__u64)((totalram_pages - totalhigh_pages) *
1822 DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1823
1824 if (mem > ULONG_MAX)
1825 mem = ULONG_MAX;
1826
1827 #ifdef CONFIG_MMU
1828 /*
1829 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1830 * in fs/proc/internal.h
1831 */
1832 if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1833 mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1834 #endif
1835
1836 dm_bufio_default_cache_size = mem;
1837
1838 mutex_lock(&dm_bufio_clients_lock);
1839 __cache_size_refresh();
1840 mutex_unlock(&dm_bufio_clients_lock);
1841
1842 dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1843 if (!dm_bufio_wq)
1844 return -ENOMEM;
1845
1846 INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1847 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1848 DM_BUFIO_WORK_TIMER_SECS * HZ);
1849
1850 return 0;
1851 }
1852
1853 /*
1854 * This is called once when unloading the dm_bufio module.
1855 */
1856 static void __exit dm_bufio_exit(void)
1857 {
1858 int bug = 0;
1859 int i;
1860
1861 cancel_delayed_work_sync(&dm_bufio_work);
1862 destroy_workqueue(dm_bufio_wq);
1863
1864 for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) {
1865 struct kmem_cache *kc = dm_bufio_caches[i];
1866
1867 if (kc)
1868 kmem_cache_destroy(kc);
1869 }
1870
1871 for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1872 kfree(dm_bufio_cache_names[i]);
1873
1874 if (dm_bufio_client_count) {
1875 DMCRIT("%s: dm_bufio_client_count leaked: %d",
1876 __func__, dm_bufio_client_count);
1877 bug = 1;
1878 }
1879
1880 if (dm_bufio_current_allocated) {
1881 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1882 __func__, dm_bufio_current_allocated);
1883 bug = 1;
1884 }
1885
1886 if (dm_bufio_allocated_get_free_pages) {
1887 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1888 __func__, dm_bufio_allocated_get_free_pages);
1889 bug = 1;
1890 }
1891
1892 if (dm_bufio_allocated_vmalloc) {
1893 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1894 __func__, dm_bufio_allocated_vmalloc);
1895 bug = 1;
1896 }
1897
1898 if (bug)
1899 BUG();
1900 }
1901
1902 module_init(dm_bufio_init)
1903 module_exit(dm_bufio_exit)
1904
1905 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1906 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1907
1908 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1909 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1910
1911 module_param_named(retain_bytes, dm_bufio_retain_bytes, uint, S_IRUGO | S_IWUSR);
1912 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1913
1914 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1915 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1916
1917 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1918 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1919
1920 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1921 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1922
1923 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1924 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1925
1926 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1927 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1928
1929 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1930 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1931 MODULE_LICENSE("GPL");