]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/md/dm-bufio.c
ACPI / PCI: fix acpi_pci_irq_enable() memory leak
[mirror_ubuntu-focal-kernel.git] / drivers / md / dm-bufio.c
1 /*
2 * Copyright (C) 2009-2011 Red Hat, Inc.
3 *
4 * Author: Mikulas Patocka <mpatocka@redhat.com>
5 *
6 * This file is released under the GPL.
7 */
8
9 #include <linux/dm-bufio.h>
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/sched/mm.h>
15 #include <linux/jiffies.h>
16 #include <linux/vmalloc.h>
17 #include <linux/shrinker.h>
18 #include <linux/module.h>
19 #include <linux/rbtree.h>
20 #include <linux/stacktrace.h>
21
22 #define DM_MSG_PREFIX "bufio"
23
24 /*
25 * Memory management policy:
26 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
27 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
28 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
29 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
30 * dirty buffers.
31 */
32 #define DM_BUFIO_MIN_BUFFERS 8
33
34 #define DM_BUFIO_MEMORY_PERCENT 2
35 #define DM_BUFIO_VMALLOC_PERCENT 25
36 #define DM_BUFIO_WRITEBACK_PERCENT 75
37
38 /*
39 * Check buffer ages in this interval (seconds)
40 */
41 #define DM_BUFIO_WORK_TIMER_SECS 30
42
43 /*
44 * Free buffers when they are older than this (seconds)
45 */
46 #define DM_BUFIO_DEFAULT_AGE_SECS 300
47
48 /*
49 * The nr of bytes of cached data to keep around.
50 */
51 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024)
52
53 /*
54 * Align buffer writes to this boundary.
55 * Tests show that SSDs have the highest IOPS when using 4k writes.
56 */
57 #define DM_BUFIO_WRITE_ALIGN 4096
58
59 /*
60 * dm_buffer->list_mode
61 */
62 #define LIST_CLEAN 0
63 #define LIST_DIRTY 1
64 #define LIST_SIZE 2
65
66 /*
67 * Linking of buffers:
68 * All buffers are linked to buffer_tree with their node field.
69 *
70 * Clean buffers that are not being written (B_WRITING not set)
71 * are linked to lru[LIST_CLEAN] with their lru_list field.
72 *
73 * Dirty and clean buffers that are being written are linked to
74 * lru[LIST_DIRTY] with their lru_list field. When the write
75 * finishes, the buffer cannot be relinked immediately (because we
76 * are in an interrupt context and relinking requires process
77 * context), so some clean-not-writing buffers can be held on
78 * dirty_lru too. They are later added to lru in the process
79 * context.
80 */
81 struct dm_bufio_client {
82 struct mutex lock;
83
84 struct list_head lru[LIST_SIZE];
85 unsigned long n_buffers[LIST_SIZE];
86
87 struct block_device *bdev;
88 unsigned block_size;
89 s8 sectors_per_block_bits;
90 void (*alloc_callback)(struct dm_buffer *);
91 void (*write_callback)(struct dm_buffer *);
92
93 struct kmem_cache *slab_buffer;
94 struct kmem_cache *slab_cache;
95 struct dm_io_client *dm_io;
96
97 struct list_head reserved_buffers;
98 unsigned need_reserved_buffers;
99
100 unsigned minimum_buffers;
101
102 struct rb_root buffer_tree;
103 wait_queue_head_t free_buffer_wait;
104
105 sector_t start;
106
107 int async_write_error;
108
109 struct list_head client_list;
110 struct shrinker shrinker;
111 };
112
113 /*
114 * Buffer state bits.
115 */
116 #define B_READING 0
117 #define B_WRITING 1
118 #define B_DIRTY 2
119
120 /*
121 * Describes how the block was allocated:
122 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
123 * See the comment at alloc_buffer_data.
124 */
125 enum data_mode {
126 DATA_MODE_SLAB = 0,
127 DATA_MODE_GET_FREE_PAGES = 1,
128 DATA_MODE_VMALLOC = 2,
129 DATA_MODE_LIMIT = 3
130 };
131
132 struct dm_buffer {
133 struct rb_node node;
134 struct list_head lru_list;
135 sector_t block;
136 void *data;
137 unsigned char data_mode; /* DATA_MODE_* */
138 unsigned char list_mode; /* LIST_* */
139 blk_status_t read_error;
140 blk_status_t write_error;
141 unsigned hold_count;
142 unsigned long state;
143 unsigned long last_accessed;
144 unsigned dirty_start;
145 unsigned dirty_end;
146 unsigned write_start;
147 unsigned write_end;
148 struct dm_bufio_client *c;
149 struct list_head write_list;
150 void (*end_io)(struct dm_buffer *, blk_status_t);
151 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
152 #define MAX_STACK 10
153 unsigned int stack_len;
154 unsigned long stack_entries[MAX_STACK];
155 #endif
156 };
157
158 /*----------------------------------------------------------------*/
159
160 #define dm_bufio_in_request() (!!current->bio_list)
161
162 static void dm_bufio_lock(struct dm_bufio_client *c)
163 {
164 mutex_lock_nested(&c->lock, dm_bufio_in_request());
165 }
166
167 static int dm_bufio_trylock(struct dm_bufio_client *c)
168 {
169 return mutex_trylock(&c->lock);
170 }
171
172 static void dm_bufio_unlock(struct dm_bufio_client *c)
173 {
174 mutex_unlock(&c->lock);
175 }
176
177 /*----------------------------------------------------------------*/
178
179 /*
180 * Default cache size: available memory divided by the ratio.
181 */
182 static unsigned long dm_bufio_default_cache_size;
183
184 /*
185 * Total cache size set by the user.
186 */
187 static unsigned long dm_bufio_cache_size;
188
189 /*
190 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
191 * at any time. If it disagrees, the user has changed cache size.
192 */
193 static unsigned long dm_bufio_cache_size_latch;
194
195 static DEFINE_SPINLOCK(param_spinlock);
196
197 /*
198 * Buffers are freed after this timeout
199 */
200 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
201 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
202
203 static unsigned long dm_bufio_peak_allocated;
204 static unsigned long dm_bufio_allocated_kmem_cache;
205 static unsigned long dm_bufio_allocated_get_free_pages;
206 static unsigned long dm_bufio_allocated_vmalloc;
207 static unsigned long dm_bufio_current_allocated;
208
209 /*----------------------------------------------------------------*/
210
211 /*
212 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
213 */
214 static unsigned long dm_bufio_cache_size_per_client;
215
216 /*
217 * The current number of clients.
218 */
219 static int dm_bufio_client_count;
220
221 /*
222 * The list of all clients.
223 */
224 static LIST_HEAD(dm_bufio_all_clients);
225
226 /*
227 * This mutex protects dm_bufio_cache_size_latch,
228 * dm_bufio_cache_size_per_client and dm_bufio_client_count
229 */
230 static DEFINE_MUTEX(dm_bufio_clients_lock);
231
232 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
233 static void buffer_record_stack(struct dm_buffer *b)
234 {
235 b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
236 }
237 #endif
238
239 /*----------------------------------------------------------------
240 * A red/black tree acts as an index for all the buffers.
241 *--------------------------------------------------------------*/
242 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
243 {
244 struct rb_node *n = c->buffer_tree.rb_node;
245 struct dm_buffer *b;
246
247 while (n) {
248 b = container_of(n, struct dm_buffer, node);
249
250 if (b->block == block)
251 return b;
252
253 n = (b->block < block) ? n->rb_left : n->rb_right;
254 }
255
256 return NULL;
257 }
258
259 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
260 {
261 struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
262 struct dm_buffer *found;
263
264 while (*new) {
265 found = container_of(*new, struct dm_buffer, node);
266
267 if (found->block == b->block) {
268 BUG_ON(found != b);
269 return;
270 }
271
272 parent = *new;
273 new = (found->block < b->block) ?
274 &((*new)->rb_left) : &((*new)->rb_right);
275 }
276
277 rb_link_node(&b->node, parent, new);
278 rb_insert_color(&b->node, &c->buffer_tree);
279 }
280
281 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
282 {
283 rb_erase(&b->node, &c->buffer_tree);
284 }
285
286 /*----------------------------------------------------------------*/
287
288 static void adjust_total_allocated(unsigned char data_mode, long diff)
289 {
290 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
291 &dm_bufio_allocated_kmem_cache,
292 &dm_bufio_allocated_get_free_pages,
293 &dm_bufio_allocated_vmalloc,
294 };
295
296 spin_lock(&param_spinlock);
297
298 *class_ptr[data_mode] += diff;
299
300 dm_bufio_current_allocated += diff;
301
302 if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
303 dm_bufio_peak_allocated = dm_bufio_current_allocated;
304
305 spin_unlock(&param_spinlock);
306 }
307
308 /*
309 * Change the number of clients and recalculate per-client limit.
310 */
311 static void __cache_size_refresh(void)
312 {
313 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
314 BUG_ON(dm_bufio_client_count < 0);
315
316 dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
317
318 /*
319 * Use default if set to 0 and report the actual cache size used.
320 */
321 if (!dm_bufio_cache_size_latch) {
322 (void)cmpxchg(&dm_bufio_cache_size, 0,
323 dm_bufio_default_cache_size);
324 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
325 }
326
327 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
328 (dm_bufio_client_count ? : 1);
329 }
330
331 /*
332 * Allocating buffer data.
333 *
334 * Small buffers are allocated with kmem_cache, to use space optimally.
335 *
336 * For large buffers, we choose between get_free_pages and vmalloc.
337 * Each has advantages and disadvantages.
338 *
339 * __get_free_pages can randomly fail if the memory is fragmented.
340 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
341 * as low as 128M) so using it for caching is not appropriate.
342 *
343 * If the allocation may fail we use __get_free_pages. Memory fragmentation
344 * won't have a fatal effect here, but it just causes flushes of some other
345 * buffers and more I/O will be performed. Don't use __get_free_pages if it
346 * always fails (i.e. order >= MAX_ORDER).
347 *
348 * If the allocation shouldn't fail we use __vmalloc. This is only for the
349 * initial reserve allocation, so there's no risk of wasting all vmalloc
350 * space.
351 */
352 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
353 unsigned char *data_mode)
354 {
355 if (unlikely(c->slab_cache != NULL)) {
356 *data_mode = DATA_MODE_SLAB;
357 return kmem_cache_alloc(c->slab_cache, gfp_mask);
358 }
359
360 if (c->block_size <= KMALLOC_MAX_SIZE &&
361 gfp_mask & __GFP_NORETRY) {
362 *data_mode = DATA_MODE_GET_FREE_PAGES;
363 return (void *)__get_free_pages(gfp_mask,
364 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
365 }
366
367 *data_mode = DATA_MODE_VMALLOC;
368
369 /*
370 * __vmalloc allocates the data pages and auxiliary structures with
371 * gfp_flags that were specified, but pagetables are always allocated
372 * with GFP_KERNEL, no matter what was specified as gfp_mask.
373 *
374 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
375 * all allocations done by this process (including pagetables) are done
376 * as if GFP_NOIO was specified.
377 */
378 if (gfp_mask & __GFP_NORETRY) {
379 unsigned noio_flag = memalloc_noio_save();
380 void *ptr = __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
381
382 memalloc_noio_restore(noio_flag);
383 return ptr;
384 }
385
386 return __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
387 }
388
389 /*
390 * Free buffer's data.
391 */
392 static void free_buffer_data(struct dm_bufio_client *c,
393 void *data, unsigned char data_mode)
394 {
395 switch (data_mode) {
396 case DATA_MODE_SLAB:
397 kmem_cache_free(c->slab_cache, data);
398 break;
399
400 case DATA_MODE_GET_FREE_PAGES:
401 free_pages((unsigned long)data,
402 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
403 break;
404
405 case DATA_MODE_VMALLOC:
406 vfree(data);
407 break;
408
409 default:
410 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
411 data_mode);
412 BUG();
413 }
414 }
415
416 /*
417 * Allocate buffer and its data.
418 */
419 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
420 {
421 struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
422
423 if (!b)
424 return NULL;
425
426 b->c = c;
427
428 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
429 if (!b->data) {
430 kmem_cache_free(c->slab_buffer, b);
431 return NULL;
432 }
433
434 adjust_total_allocated(b->data_mode, (long)c->block_size);
435
436 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
437 b->stack_len = 0;
438 #endif
439 return b;
440 }
441
442 /*
443 * Free buffer and its data.
444 */
445 static void free_buffer(struct dm_buffer *b)
446 {
447 struct dm_bufio_client *c = b->c;
448
449 adjust_total_allocated(b->data_mode, -(long)c->block_size);
450
451 free_buffer_data(c, b->data, b->data_mode);
452 kmem_cache_free(c->slab_buffer, b);
453 }
454
455 /*
456 * Link buffer to the buffer tree and clean or dirty queue.
457 */
458 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
459 {
460 struct dm_bufio_client *c = b->c;
461
462 c->n_buffers[dirty]++;
463 b->block = block;
464 b->list_mode = dirty;
465 list_add(&b->lru_list, &c->lru[dirty]);
466 __insert(b->c, b);
467 b->last_accessed = jiffies;
468 }
469
470 /*
471 * Unlink buffer from the buffer tree and dirty or clean queue.
472 */
473 static void __unlink_buffer(struct dm_buffer *b)
474 {
475 struct dm_bufio_client *c = b->c;
476
477 BUG_ON(!c->n_buffers[b->list_mode]);
478
479 c->n_buffers[b->list_mode]--;
480 __remove(b->c, b);
481 list_del(&b->lru_list);
482 }
483
484 /*
485 * Place the buffer to the head of dirty or clean LRU queue.
486 */
487 static void __relink_lru(struct dm_buffer *b, int dirty)
488 {
489 struct dm_bufio_client *c = b->c;
490
491 BUG_ON(!c->n_buffers[b->list_mode]);
492
493 c->n_buffers[b->list_mode]--;
494 c->n_buffers[dirty]++;
495 b->list_mode = dirty;
496 list_move(&b->lru_list, &c->lru[dirty]);
497 b->last_accessed = jiffies;
498 }
499
500 /*----------------------------------------------------------------
501 * Submit I/O on the buffer.
502 *
503 * Bio interface is faster but it has some problems:
504 * the vector list is limited (increasing this limit increases
505 * memory-consumption per buffer, so it is not viable);
506 *
507 * the memory must be direct-mapped, not vmalloced;
508 *
509 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
510 * it is not vmalloced, try using the bio interface.
511 *
512 * If the buffer is big, if it is vmalloced or if the underlying device
513 * rejects the bio because it is too large, use dm-io layer to do the I/O.
514 * The dm-io layer splits the I/O into multiple requests, avoiding the above
515 * shortcomings.
516 *--------------------------------------------------------------*/
517
518 /*
519 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
520 * that the request was handled directly with bio interface.
521 */
522 static void dmio_complete(unsigned long error, void *context)
523 {
524 struct dm_buffer *b = context;
525
526 b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
527 }
528
529 static void use_dmio(struct dm_buffer *b, int rw, sector_t sector,
530 unsigned n_sectors, unsigned offset)
531 {
532 int r;
533 struct dm_io_request io_req = {
534 .bi_op = rw,
535 .bi_op_flags = 0,
536 .notify.fn = dmio_complete,
537 .notify.context = b,
538 .client = b->c->dm_io,
539 };
540 struct dm_io_region region = {
541 .bdev = b->c->bdev,
542 .sector = sector,
543 .count = n_sectors,
544 };
545
546 if (b->data_mode != DATA_MODE_VMALLOC) {
547 io_req.mem.type = DM_IO_KMEM;
548 io_req.mem.ptr.addr = (char *)b->data + offset;
549 } else {
550 io_req.mem.type = DM_IO_VMA;
551 io_req.mem.ptr.vma = (char *)b->data + offset;
552 }
553
554 r = dm_io(&io_req, 1, &region, NULL);
555 if (unlikely(r))
556 b->end_io(b, errno_to_blk_status(r));
557 }
558
559 static void bio_complete(struct bio *bio)
560 {
561 struct dm_buffer *b = bio->bi_private;
562 blk_status_t status = bio->bi_status;
563 bio_put(bio);
564 b->end_io(b, status);
565 }
566
567 static void use_bio(struct dm_buffer *b, int rw, sector_t sector,
568 unsigned n_sectors, unsigned offset)
569 {
570 struct bio *bio;
571 char *ptr;
572 unsigned vec_size, len;
573
574 vec_size = b->c->block_size >> PAGE_SHIFT;
575 if (unlikely(b->c->sectors_per_block_bits < PAGE_SHIFT - SECTOR_SHIFT))
576 vec_size += 2;
577
578 bio = bio_kmalloc(GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN, vec_size);
579 if (!bio) {
580 dmio:
581 use_dmio(b, rw, sector, n_sectors, offset);
582 return;
583 }
584
585 bio->bi_iter.bi_sector = sector;
586 bio_set_dev(bio, b->c->bdev);
587 bio_set_op_attrs(bio, rw, 0);
588 bio->bi_end_io = bio_complete;
589 bio->bi_private = b;
590
591 ptr = (char *)b->data + offset;
592 len = n_sectors << SECTOR_SHIFT;
593
594 do {
595 unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len);
596 if (!bio_add_page(bio, virt_to_page(ptr), this_step,
597 offset_in_page(ptr))) {
598 bio_put(bio);
599 goto dmio;
600 }
601
602 len -= this_step;
603 ptr += this_step;
604 } while (len > 0);
605
606 submit_bio(bio);
607 }
608
609 static void submit_io(struct dm_buffer *b, int rw, void (*end_io)(struct dm_buffer *, blk_status_t))
610 {
611 unsigned n_sectors;
612 sector_t sector;
613 unsigned offset, end;
614
615 b->end_io = end_io;
616
617 if (likely(b->c->sectors_per_block_bits >= 0))
618 sector = b->block << b->c->sectors_per_block_bits;
619 else
620 sector = b->block * (b->c->block_size >> SECTOR_SHIFT);
621 sector += b->c->start;
622
623 if (rw != REQ_OP_WRITE) {
624 n_sectors = b->c->block_size >> SECTOR_SHIFT;
625 offset = 0;
626 } else {
627 if (b->c->write_callback)
628 b->c->write_callback(b);
629 offset = b->write_start;
630 end = b->write_end;
631 offset &= -DM_BUFIO_WRITE_ALIGN;
632 end += DM_BUFIO_WRITE_ALIGN - 1;
633 end &= -DM_BUFIO_WRITE_ALIGN;
634 if (unlikely(end > b->c->block_size))
635 end = b->c->block_size;
636
637 sector += offset >> SECTOR_SHIFT;
638 n_sectors = (end - offset) >> SECTOR_SHIFT;
639 }
640
641 if (b->data_mode != DATA_MODE_VMALLOC)
642 use_bio(b, rw, sector, n_sectors, offset);
643 else
644 use_dmio(b, rw, sector, n_sectors, offset);
645 }
646
647 /*----------------------------------------------------------------
648 * Writing dirty buffers
649 *--------------------------------------------------------------*/
650
651 /*
652 * The endio routine for write.
653 *
654 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
655 * it.
656 */
657 static void write_endio(struct dm_buffer *b, blk_status_t status)
658 {
659 b->write_error = status;
660 if (unlikely(status)) {
661 struct dm_bufio_client *c = b->c;
662
663 (void)cmpxchg(&c->async_write_error, 0,
664 blk_status_to_errno(status));
665 }
666
667 BUG_ON(!test_bit(B_WRITING, &b->state));
668
669 smp_mb__before_atomic();
670 clear_bit(B_WRITING, &b->state);
671 smp_mb__after_atomic();
672
673 wake_up_bit(&b->state, B_WRITING);
674 }
675
676 /*
677 * Initiate a write on a dirty buffer, but don't wait for it.
678 *
679 * - If the buffer is not dirty, exit.
680 * - If there some previous write going on, wait for it to finish (we can't
681 * have two writes on the same buffer simultaneously).
682 * - Submit our write and don't wait on it. We set B_WRITING indicating
683 * that there is a write in progress.
684 */
685 static void __write_dirty_buffer(struct dm_buffer *b,
686 struct list_head *write_list)
687 {
688 if (!test_bit(B_DIRTY, &b->state))
689 return;
690
691 clear_bit(B_DIRTY, &b->state);
692 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
693
694 b->write_start = b->dirty_start;
695 b->write_end = b->dirty_end;
696
697 if (!write_list)
698 submit_io(b, REQ_OP_WRITE, write_endio);
699 else
700 list_add_tail(&b->write_list, write_list);
701 }
702
703 static void __flush_write_list(struct list_head *write_list)
704 {
705 struct blk_plug plug;
706 blk_start_plug(&plug);
707 while (!list_empty(write_list)) {
708 struct dm_buffer *b =
709 list_entry(write_list->next, struct dm_buffer, write_list);
710 list_del(&b->write_list);
711 submit_io(b, REQ_OP_WRITE, write_endio);
712 cond_resched();
713 }
714 blk_finish_plug(&plug);
715 }
716
717 /*
718 * Wait until any activity on the buffer finishes. Possibly write the
719 * buffer if it is dirty. When this function finishes, there is no I/O
720 * running on the buffer and the buffer is not dirty.
721 */
722 static void __make_buffer_clean(struct dm_buffer *b)
723 {
724 BUG_ON(b->hold_count);
725
726 if (!b->state) /* fast case */
727 return;
728
729 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
730 __write_dirty_buffer(b, NULL);
731 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
732 }
733
734 /*
735 * Find some buffer that is not held by anybody, clean it, unlink it and
736 * return it.
737 */
738 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
739 {
740 struct dm_buffer *b;
741
742 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
743 BUG_ON(test_bit(B_WRITING, &b->state));
744 BUG_ON(test_bit(B_DIRTY, &b->state));
745
746 if (!b->hold_count) {
747 __make_buffer_clean(b);
748 __unlink_buffer(b);
749 return b;
750 }
751 cond_resched();
752 }
753
754 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
755 BUG_ON(test_bit(B_READING, &b->state));
756
757 if (!b->hold_count) {
758 __make_buffer_clean(b);
759 __unlink_buffer(b);
760 return b;
761 }
762 cond_resched();
763 }
764
765 return NULL;
766 }
767
768 /*
769 * Wait until some other threads free some buffer or release hold count on
770 * some buffer.
771 *
772 * This function is entered with c->lock held, drops it and regains it
773 * before exiting.
774 */
775 static void __wait_for_free_buffer(struct dm_bufio_client *c)
776 {
777 DECLARE_WAITQUEUE(wait, current);
778
779 add_wait_queue(&c->free_buffer_wait, &wait);
780 set_current_state(TASK_UNINTERRUPTIBLE);
781 dm_bufio_unlock(c);
782
783 io_schedule();
784
785 remove_wait_queue(&c->free_buffer_wait, &wait);
786
787 dm_bufio_lock(c);
788 }
789
790 enum new_flag {
791 NF_FRESH = 0,
792 NF_READ = 1,
793 NF_GET = 2,
794 NF_PREFETCH = 3
795 };
796
797 /*
798 * Allocate a new buffer. If the allocation is not possible, wait until
799 * some other thread frees a buffer.
800 *
801 * May drop the lock and regain it.
802 */
803 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
804 {
805 struct dm_buffer *b;
806 bool tried_noio_alloc = false;
807
808 /*
809 * dm-bufio is resistant to allocation failures (it just keeps
810 * one buffer reserved in cases all the allocations fail).
811 * So set flags to not try too hard:
812 * GFP_NOWAIT: don't wait; if we need to sleep we'll release our
813 * mutex and wait ourselves.
814 * __GFP_NORETRY: don't retry and rather return failure
815 * __GFP_NOMEMALLOC: don't use emergency reserves
816 * __GFP_NOWARN: don't print a warning in case of failure
817 *
818 * For debugging, if we set the cache size to 1, no new buffers will
819 * be allocated.
820 */
821 while (1) {
822 if (dm_bufio_cache_size_latch != 1) {
823 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
824 if (b)
825 return b;
826 }
827
828 if (nf == NF_PREFETCH)
829 return NULL;
830
831 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
832 dm_bufio_unlock(c);
833 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
834 dm_bufio_lock(c);
835 if (b)
836 return b;
837 tried_noio_alloc = true;
838 }
839
840 if (!list_empty(&c->reserved_buffers)) {
841 b = list_entry(c->reserved_buffers.next,
842 struct dm_buffer, lru_list);
843 list_del(&b->lru_list);
844 c->need_reserved_buffers++;
845
846 return b;
847 }
848
849 b = __get_unclaimed_buffer(c);
850 if (b)
851 return b;
852
853 __wait_for_free_buffer(c);
854 }
855 }
856
857 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
858 {
859 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
860
861 if (!b)
862 return NULL;
863
864 if (c->alloc_callback)
865 c->alloc_callback(b);
866
867 return b;
868 }
869
870 /*
871 * Free a buffer and wake other threads waiting for free buffers.
872 */
873 static void __free_buffer_wake(struct dm_buffer *b)
874 {
875 struct dm_bufio_client *c = b->c;
876
877 if (!c->need_reserved_buffers)
878 free_buffer(b);
879 else {
880 list_add(&b->lru_list, &c->reserved_buffers);
881 c->need_reserved_buffers--;
882 }
883
884 wake_up(&c->free_buffer_wait);
885 }
886
887 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
888 struct list_head *write_list)
889 {
890 struct dm_buffer *b, *tmp;
891
892 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
893 BUG_ON(test_bit(B_READING, &b->state));
894
895 if (!test_bit(B_DIRTY, &b->state) &&
896 !test_bit(B_WRITING, &b->state)) {
897 __relink_lru(b, LIST_CLEAN);
898 continue;
899 }
900
901 if (no_wait && test_bit(B_WRITING, &b->state))
902 return;
903
904 __write_dirty_buffer(b, write_list);
905 cond_resched();
906 }
907 }
908
909 /*
910 * Get writeback threshold and buffer limit for a given client.
911 */
912 static void __get_memory_limit(struct dm_bufio_client *c,
913 unsigned long *threshold_buffers,
914 unsigned long *limit_buffers)
915 {
916 unsigned long buffers;
917
918 if (unlikely(READ_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch)) {
919 if (mutex_trylock(&dm_bufio_clients_lock)) {
920 __cache_size_refresh();
921 mutex_unlock(&dm_bufio_clients_lock);
922 }
923 }
924
925 buffers = dm_bufio_cache_size_per_client;
926 if (likely(c->sectors_per_block_bits >= 0))
927 buffers >>= c->sectors_per_block_bits + SECTOR_SHIFT;
928 else
929 buffers /= c->block_size;
930
931 if (buffers < c->minimum_buffers)
932 buffers = c->minimum_buffers;
933
934 *limit_buffers = buffers;
935 *threshold_buffers = mult_frac(buffers,
936 DM_BUFIO_WRITEBACK_PERCENT, 100);
937 }
938
939 /*
940 * Check if we're over watermark.
941 * If we are over threshold_buffers, start freeing buffers.
942 * If we're over "limit_buffers", block until we get under the limit.
943 */
944 static void __check_watermark(struct dm_bufio_client *c,
945 struct list_head *write_list)
946 {
947 unsigned long threshold_buffers, limit_buffers;
948
949 __get_memory_limit(c, &threshold_buffers, &limit_buffers);
950
951 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
952 limit_buffers) {
953
954 struct dm_buffer *b = __get_unclaimed_buffer(c);
955
956 if (!b)
957 return;
958
959 __free_buffer_wake(b);
960 cond_resched();
961 }
962
963 if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
964 __write_dirty_buffers_async(c, 1, write_list);
965 }
966
967 /*----------------------------------------------------------------
968 * Getting a buffer
969 *--------------------------------------------------------------*/
970
971 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
972 enum new_flag nf, int *need_submit,
973 struct list_head *write_list)
974 {
975 struct dm_buffer *b, *new_b = NULL;
976
977 *need_submit = 0;
978
979 b = __find(c, block);
980 if (b)
981 goto found_buffer;
982
983 if (nf == NF_GET)
984 return NULL;
985
986 new_b = __alloc_buffer_wait(c, nf);
987 if (!new_b)
988 return NULL;
989
990 /*
991 * We've had a period where the mutex was unlocked, so need to
992 * recheck the buffer tree.
993 */
994 b = __find(c, block);
995 if (b) {
996 __free_buffer_wake(new_b);
997 goto found_buffer;
998 }
999
1000 __check_watermark(c, write_list);
1001
1002 b = new_b;
1003 b->hold_count = 1;
1004 b->read_error = 0;
1005 b->write_error = 0;
1006 __link_buffer(b, block, LIST_CLEAN);
1007
1008 if (nf == NF_FRESH) {
1009 b->state = 0;
1010 return b;
1011 }
1012
1013 b->state = 1 << B_READING;
1014 *need_submit = 1;
1015
1016 return b;
1017
1018 found_buffer:
1019 if (nf == NF_PREFETCH)
1020 return NULL;
1021 /*
1022 * Note: it is essential that we don't wait for the buffer to be
1023 * read if dm_bufio_get function is used. Both dm_bufio_get and
1024 * dm_bufio_prefetch can be used in the driver request routine.
1025 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1026 * the same buffer, it would deadlock if we waited.
1027 */
1028 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1029 return NULL;
1030
1031 b->hold_count++;
1032 __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1033 test_bit(B_WRITING, &b->state));
1034 return b;
1035 }
1036
1037 /*
1038 * The endio routine for reading: set the error, clear the bit and wake up
1039 * anyone waiting on the buffer.
1040 */
1041 static void read_endio(struct dm_buffer *b, blk_status_t status)
1042 {
1043 b->read_error = status;
1044
1045 BUG_ON(!test_bit(B_READING, &b->state));
1046
1047 smp_mb__before_atomic();
1048 clear_bit(B_READING, &b->state);
1049 smp_mb__after_atomic();
1050
1051 wake_up_bit(&b->state, B_READING);
1052 }
1053
1054 /*
1055 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these
1056 * functions is similar except that dm_bufio_new doesn't read the
1057 * buffer from the disk (assuming that the caller overwrites all the data
1058 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1059 */
1060 static void *new_read(struct dm_bufio_client *c, sector_t block,
1061 enum new_flag nf, struct dm_buffer **bp)
1062 {
1063 int need_submit;
1064 struct dm_buffer *b;
1065
1066 LIST_HEAD(write_list);
1067
1068 dm_bufio_lock(c);
1069 b = __bufio_new(c, block, nf, &need_submit, &write_list);
1070 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1071 if (b && b->hold_count == 1)
1072 buffer_record_stack(b);
1073 #endif
1074 dm_bufio_unlock(c);
1075
1076 __flush_write_list(&write_list);
1077
1078 if (!b)
1079 return NULL;
1080
1081 if (need_submit)
1082 submit_io(b, REQ_OP_READ, read_endio);
1083
1084 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1085
1086 if (b->read_error) {
1087 int error = blk_status_to_errno(b->read_error);
1088
1089 dm_bufio_release(b);
1090
1091 return ERR_PTR(error);
1092 }
1093
1094 *bp = b;
1095
1096 return b->data;
1097 }
1098
1099 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1100 struct dm_buffer **bp)
1101 {
1102 return new_read(c, block, NF_GET, bp);
1103 }
1104 EXPORT_SYMBOL_GPL(dm_bufio_get);
1105
1106 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1107 struct dm_buffer **bp)
1108 {
1109 BUG_ON(dm_bufio_in_request());
1110
1111 return new_read(c, block, NF_READ, bp);
1112 }
1113 EXPORT_SYMBOL_GPL(dm_bufio_read);
1114
1115 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1116 struct dm_buffer **bp)
1117 {
1118 BUG_ON(dm_bufio_in_request());
1119
1120 return new_read(c, block, NF_FRESH, bp);
1121 }
1122 EXPORT_SYMBOL_GPL(dm_bufio_new);
1123
1124 void dm_bufio_prefetch(struct dm_bufio_client *c,
1125 sector_t block, unsigned n_blocks)
1126 {
1127 struct blk_plug plug;
1128
1129 LIST_HEAD(write_list);
1130
1131 BUG_ON(dm_bufio_in_request());
1132
1133 blk_start_plug(&plug);
1134 dm_bufio_lock(c);
1135
1136 for (; n_blocks--; block++) {
1137 int need_submit;
1138 struct dm_buffer *b;
1139 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1140 &write_list);
1141 if (unlikely(!list_empty(&write_list))) {
1142 dm_bufio_unlock(c);
1143 blk_finish_plug(&plug);
1144 __flush_write_list(&write_list);
1145 blk_start_plug(&plug);
1146 dm_bufio_lock(c);
1147 }
1148 if (unlikely(b != NULL)) {
1149 dm_bufio_unlock(c);
1150
1151 if (need_submit)
1152 submit_io(b, REQ_OP_READ, read_endio);
1153 dm_bufio_release(b);
1154
1155 cond_resched();
1156
1157 if (!n_blocks)
1158 goto flush_plug;
1159 dm_bufio_lock(c);
1160 }
1161 }
1162
1163 dm_bufio_unlock(c);
1164
1165 flush_plug:
1166 blk_finish_plug(&plug);
1167 }
1168 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1169
1170 void dm_bufio_release(struct dm_buffer *b)
1171 {
1172 struct dm_bufio_client *c = b->c;
1173
1174 dm_bufio_lock(c);
1175
1176 BUG_ON(!b->hold_count);
1177
1178 b->hold_count--;
1179 if (!b->hold_count) {
1180 wake_up(&c->free_buffer_wait);
1181
1182 /*
1183 * If there were errors on the buffer, and the buffer is not
1184 * to be written, free the buffer. There is no point in caching
1185 * invalid buffer.
1186 */
1187 if ((b->read_error || b->write_error) &&
1188 !test_bit(B_READING, &b->state) &&
1189 !test_bit(B_WRITING, &b->state) &&
1190 !test_bit(B_DIRTY, &b->state)) {
1191 __unlink_buffer(b);
1192 __free_buffer_wake(b);
1193 }
1194 }
1195
1196 dm_bufio_unlock(c);
1197 }
1198 EXPORT_SYMBOL_GPL(dm_bufio_release);
1199
1200 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
1201 unsigned start, unsigned end)
1202 {
1203 struct dm_bufio_client *c = b->c;
1204
1205 BUG_ON(start >= end);
1206 BUG_ON(end > b->c->block_size);
1207
1208 dm_bufio_lock(c);
1209
1210 BUG_ON(test_bit(B_READING, &b->state));
1211
1212 if (!test_and_set_bit(B_DIRTY, &b->state)) {
1213 b->dirty_start = start;
1214 b->dirty_end = end;
1215 __relink_lru(b, LIST_DIRTY);
1216 } else {
1217 if (start < b->dirty_start)
1218 b->dirty_start = start;
1219 if (end > b->dirty_end)
1220 b->dirty_end = end;
1221 }
1222
1223 dm_bufio_unlock(c);
1224 }
1225 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
1226
1227 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1228 {
1229 dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
1230 }
1231 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1232
1233 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1234 {
1235 LIST_HEAD(write_list);
1236
1237 BUG_ON(dm_bufio_in_request());
1238
1239 dm_bufio_lock(c);
1240 __write_dirty_buffers_async(c, 0, &write_list);
1241 dm_bufio_unlock(c);
1242 __flush_write_list(&write_list);
1243 }
1244 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1245
1246 /*
1247 * For performance, it is essential that the buffers are written asynchronously
1248 * and simultaneously (so that the block layer can merge the writes) and then
1249 * waited upon.
1250 *
1251 * Finally, we flush hardware disk cache.
1252 */
1253 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1254 {
1255 int a, f;
1256 unsigned long buffers_processed = 0;
1257 struct dm_buffer *b, *tmp;
1258
1259 LIST_HEAD(write_list);
1260
1261 dm_bufio_lock(c);
1262 __write_dirty_buffers_async(c, 0, &write_list);
1263 dm_bufio_unlock(c);
1264 __flush_write_list(&write_list);
1265 dm_bufio_lock(c);
1266
1267 again:
1268 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1269 int dropped_lock = 0;
1270
1271 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1272 buffers_processed++;
1273
1274 BUG_ON(test_bit(B_READING, &b->state));
1275
1276 if (test_bit(B_WRITING, &b->state)) {
1277 if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1278 dropped_lock = 1;
1279 b->hold_count++;
1280 dm_bufio_unlock(c);
1281 wait_on_bit_io(&b->state, B_WRITING,
1282 TASK_UNINTERRUPTIBLE);
1283 dm_bufio_lock(c);
1284 b->hold_count--;
1285 } else
1286 wait_on_bit_io(&b->state, B_WRITING,
1287 TASK_UNINTERRUPTIBLE);
1288 }
1289
1290 if (!test_bit(B_DIRTY, &b->state) &&
1291 !test_bit(B_WRITING, &b->state))
1292 __relink_lru(b, LIST_CLEAN);
1293
1294 cond_resched();
1295
1296 /*
1297 * If we dropped the lock, the list is no longer consistent,
1298 * so we must restart the search.
1299 *
1300 * In the most common case, the buffer just processed is
1301 * relinked to the clean list, so we won't loop scanning the
1302 * same buffer again and again.
1303 *
1304 * This may livelock if there is another thread simultaneously
1305 * dirtying buffers, so we count the number of buffers walked
1306 * and if it exceeds the total number of buffers, it means that
1307 * someone is doing some writes simultaneously with us. In
1308 * this case, stop, dropping the lock.
1309 */
1310 if (dropped_lock)
1311 goto again;
1312 }
1313 wake_up(&c->free_buffer_wait);
1314 dm_bufio_unlock(c);
1315
1316 a = xchg(&c->async_write_error, 0);
1317 f = dm_bufio_issue_flush(c);
1318 if (a)
1319 return a;
1320
1321 return f;
1322 }
1323 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1324
1325 /*
1326 * Use dm-io to send an empty barrier to flush the device.
1327 */
1328 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1329 {
1330 struct dm_io_request io_req = {
1331 .bi_op = REQ_OP_WRITE,
1332 .bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1333 .mem.type = DM_IO_KMEM,
1334 .mem.ptr.addr = NULL,
1335 .client = c->dm_io,
1336 };
1337 struct dm_io_region io_reg = {
1338 .bdev = c->bdev,
1339 .sector = 0,
1340 .count = 0,
1341 };
1342
1343 BUG_ON(dm_bufio_in_request());
1344
1345 return dm_io(&io_req, 1, &io_reg, NULL);
1346 }
1347 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1348
1349 /*
1350 * We first delete any other buffer that may be at that new location.
1351 *
1352 * Then, we write the buffer to the original location if it was dirty.
1353 *
1354 * Then, if we are the only one who is holding the buffer, relink the buffer
1355 * in the buffer tree for the new location.
1356 *
1357 * If there was someone else holding the buffer, we write it to the new
1358 * location but not relink it, because that other user needs to have the buffer
1359 * at the same place.
1360 */
1361 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1362 {
1363 struct dm_bufio_client *c = b->c;
1364 struct dm_buffer *new;
1365
1366 BUG_ON(dm_bufio_in_request());
1367
1368 dm_bufio_lock(c);
1369
1370 retry:
1371 new = __find(c, new_block);
1372 if (new) {
1373 if (new->hold_count) {
1374 __wait_for_free_buffer(c);
1375 goto retry;
1376 }
1377
1378 /*
1379 * FIXME: Is there any point waiting for a write that's going
1380 * to be overwritten in a bit?
1381 */
1382 __make_buffer_clean(new);
1383 __unlink_buffer(new);
1384 __free_buffer_wake(new);
1385 }
1386
1387 BUG_ON(!b->hold_count);
1388 BUG_ON(test_bit(B_READING, &b->state));
1389
1390 __write_dirty_buffer(b, NULL);
1391 if (b->hold_count == 1) {
1392 wait_on_bit_io(&b->state, B_WRITING,
1393 TASK_UNINTERRUPTIBLE);
1394 set_bit(B_DIRTY, &b->state);
1395 b->dirty_start = 0;
1396 b->dirty_end = c->block_size;
1397 __unlink_buffer(b);
1398 __link_buffer(b, new_block, LIST_DIRTY);
1399 } else {
1400 sector_t old_block;
1401 wait_on_bit_lock_io(&b->state, B_WRITING,
1402 TASK_UNINTERRUPTIBLE);
1403 /*
1404 * Relink buffer to "new_block" so that write_callback
1405 * sees "new_block" as a block number.
1406 * After the write, link the buffer back to old_block.
1407 * All this must be done in bufio lock, so that block number
1408 * change isn't visible to other threads.
1409 */
1410 old_block = b->block;
1411 __unlink_buffer(b);
1412 __link_buffer(b, new_block, b->list_mode);
1413 submit_io(b, REQ_OP_WRITE, write_endio);
1414 wait_on_bit_io(&b->state, B_WRITING,
1415 TASK_UNINTERRUPTIBLE);
1416 __unlink_buffer(b);
1417 __link_buffer(b, old_block, b->list_mode);
1418 }
1419
1420 dm_bufio_unlock(c);
1421 dm_bufio_release(b);
1422 }
1423 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1424
1425 /*
1426 * Free the given buffer.
1427 *
1428 * This is just a hint, if the buffer is in use or dirty, this function
1429 * does nothing.
1430 */
1431 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1432 {
1433 struct dm_buffer *b;
1434
1435 dm_bufio_lock(c);
1436
1437 b = __find(c, block);
1438 if (b && likely(!b->hold_count) && likely(!b->state)) {
1439 __unlink_buffer(b);
1440 __free_buffer_wake(b);
1441 }
1442
1443 dm_bufio_unlock(c);
1444 }
1445 EXPORT_SYMBOL_GPL(dm_bufio_forget);
1446
1447 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1448 {
1449 c->minimum_buffers = n;
1450 }
1451 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
1452
1453 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1454 {
1455 return c->block_size;
1456 }
1457 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1458
1459 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1460 {
1461 sector_t s = i_size_read(c->bdev->bd_inode) >> SECTOR_SHIFT;
1462 if (likely(c->sectors_per_block_bits >= 0))
1463 s >>= c->sectors_per_block_bits;
1464 else
1465 sector_div(s, c->block_size >> SECTOR_SHIFT);
1466 return s;
1467 }
1468 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1469
1470 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1471 {
1472 return b->block;
1473 }
1474 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1475
1476 void *dm_bufio_get_block_data(struct dm_buffer *b)
1477 {
1478 return b->data;
1479 }
1480 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1481
1482 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1483 {
1484 return b + 1;
1485 }
1486 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1487
1488 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1489 {
1490 return b->c;
1491 }
1492 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1493
1494 static void drop_buffers(struct dm_bufio_client *c)
1495 {
1496 struct dm_buffer *b;
1497 int i;
1498 bool warned = false;
1499
1500 BUG_ON(dm_bufio_in_request());
1501
1502 /*
1503 * An optimization so that the buffers are not written one-by-one.
1504 */
1505 dm_bufio_write_dirty_buffers_async(c);
1506
1507 dm_bufio_lock(c);
1508
1509 while ((b = __get_unclaimed_buffer(c)))
1510 __free_buffer_wake(b);
1511
1512 for (i = 0; i < LIST_SIZE; i++)
1513 list_for_each_entry(b, &c->lru[i], lru_list) {
1514 WARN_ON(!warned);
1515 warned = true;
1516 DMERR("leaked buffer %llx, hold count %u, list %d",
1517 (unsigned long long)b->block, b->hold_count, i);
1518 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1519 stack_trace_print(b->stack_entries, b->stack_len, 1);
1520 /* mark unclaimed to avoid BUG_ON below */
1521 b->hold_count = 0;
1522 #endif
1523 }
1524
1525 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1526 while ((b = __get_unclaimed_buffer(c)))
1527 __free_buffer_wake(b);
1528 #endif
1529
1530 for (i = 0; i < LIST_SIZE; i++)
1531 BUG_ON(!list_empty(&c->lru[i]));
1532
1533 dm_bufio_unlock(c);
1534 }
1535
1536 /*
1537 * We may not be able to evict this buffer if IO pending or the client
1538 * is still using it. Caller is expected to know buffer is too old.
1539 *
1540 * And if GFP_NOFS is used, we must not do any I/O because we hold
1541 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1542 * rerouted to different bufio client.
1543 */
1544 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1545 {
1546 if (!(gfp & __GFP_FS)) {
1547 if (test_bit(B_READING, &b->state) ||
1548 test_bit(B_WRITING, &b->state) ||
1549 test_bit(B_DIRTY, &b->state))
1550 return false;
1551 }
1552
1553 if (b->hold_count)
1554 return false;
1555
1556 __make_buffer_clean(b);
1557 __unlink_buffer(b);
1558 __free_buffer_wake(b);
1559
1560 return true;
1561 }
1562
1563 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1564 {
1565 unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
1566 if (likely(c->sectors_per_block_bits >= 0))
1567 retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
1568 else
1569 retain_bytes /= c->block_size;
1570 return retain_bytes;
1571 }
1572
1573 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1574 gfp_t gfp_mask)
1575 {
1576 int l;
1577 struct dm_buffer *b, *tmp;
1578 unsigned long freed = 0;
1579 unsigned long count = c->n_buffers[LIST_CLEAN] +
1580 c->n_buffers[LIST_DIRTY];
1581 unsigned long retain_target = get_retain_buffers(c);
1582
1583 for (l = 0; l < LIST_SIZE; l++) {
1584 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1585 if (__try_evict_buffer(b, gfp_mask))
1586 freed++;
1587 if (!--nr_to_scan || ((count - freed) <= retain_target))
1588 return freed;
1589 cond_resched();
1590 }
1591 }
1592 return freed;
1593 }
1594
1595 static unsigned long
1596 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1597 {
1598 struct dm_bufio_client *c;
1599 unsigned long freed;
1600
1601 c = container_of(shrink, struct dm_bufio_client, shrinker);
1602 if (!dm_bufio_trylock(c))
1603 return SHRINK_STOP;
1604
1605 freed = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1606 dm_bufio_unlock(c);
1607 return freed;
1608 }
1609
1610 static unsigned long
1611 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1612 {
1613 struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1614 unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
1615 READ_ONCE(c->n_buffers[LIST_DIRTY]);
1616 unsigned long retain_target = get_retain_buffers(c);
1617
1618 return (count < retain_target) ? 0 : (count - retain_target);
1619 }
1620
1621 /*
1622 * Create the buffering interface
1623 */
1624 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1625 unsigned reserved_buffers, unsigned aux_size,
1626 void (*alloc_callback)(struct dm_buffer *),
1627 void (*write_callback)(struct dm_buffer *))
1628 {
1629 int r;
1630 struct dm_bufio_client *c;
1631 unsigned i;
1632 char slab_name[27];
1633
1634 if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
1635 DMERR("%s: block size not specified or is not multiple of 512b", __func__);
1636 r = -EINVAL;
1637 goto bad_client;
1638 }
1639
1640 c = kzalloc(sizeof(*c), GFP_KERNEL);
1641 if (!c) {
1642 r = -ENOMEM;
1643 goto bad_client;
1644 }
1645 c->buffer_tree = RB_ROOT;
1646
1647 c->bdev = bdev;
1648 c->block_size = block_size;
1649 if (is_power_of_2(block_size))
1650 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1651 else
1652 c->sectors_per_block_bits = -1;
1653
1654 c->alloc_callback = alloc_callback;
1655 c->write_callback = write_callback;
1656
1657 for (i = 0; i < LIST_SIZE; i++) {
1658 INIT_LIST_HEAD(&c->lru[i]);
1659 c->n_buffers[i] = 0;
1660 }
1661
1662 mutex_init(&c->lock);
1663 INIT_LIST_HEAD(&c->reserved_buffers);
1664 c->need_reserved_buffers = reserved_buffers;
1665
1666 dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
1667
1668 init_waitqueue_head(&c->free_buffer_wait);
1669 c->async_write_error = 0;
1670
1671 c->dm_io = dm_io_client_create();
1672 if (IS_ERR(c->dm_io)) {
1673 r = PTR_ERR(c->dm_io);
1674 goto bad_dm_io;
1675 }
1676
1677 if (block_size <= KMALLOC_MAX_SIZE &&
1678 (block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
1679 unsigned align = min(1U << __ffs(block_size), (unsigned)PAGE_SIZE);
1680 snprintf(slab_name, sizeof slab_name, "dm_bufio_cache-%u", block_size);
1681 c->slab_cache = kmem_cache_create(slab_name, block_size, align,
1682 SLAB_RECLAIM_ACCOUNT, NULL);
1683 if (!c->slab_cache) {
1684 r = -ENOMEM;
1685 goto bad;
1686 }
1687 }
1688 if (aux_size)
1689 snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer-%u", aux_size);
1690 else
1691 snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer");
1692 c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
1693 0, SLAB_RECLAIM_ACCOUNT, NULL);
1694 if (!c->slab_buffer) {
1695 r = -ENOMEM;
1696 goto bad;
1697 }
1698
1699 while (c->need_reserved_buffers) {
1700 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1701
1702 if (!b) {
1703 r = -ENOMEM;
1704 goto bad;
1705 }
1706 __free_buffer_wake(b);
1707 }
1708
1709 c->shrinker.count_objects = dm_bufio_shrink_count;
1710 c->shrinker.scan_objects = dm_bufio_shrink_scan;
1711 c->shrinker.seeks = 1;
1712 c->shrinker.batch = 0;
1713 r = register_shrinker(&c->shrinker);
1714 if (r)
1715 goto bad;
1716
1717 mutex_lock(&dm_bufio_clients_lock);
1718 dm_bufio_client_count++;
1719 list_add(&c->client_list, &dm_bufio_all_clients);
1720 __cache_size_refresh();
1721 mutex_unlock(&dm_bufio_clients_lock);
1722
1723 return c;
1724
1725 bad:
1726 while (!list_empty(&c->reserved_buffers)) {
1727 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1728 struct dm_buffer, lru_list);
1729 list_del(&b->lru_list);
1730 free_buffer(b);
1731 }
1732 kmem_cache_destroy(c->slab_cache);
1733 kmem_cache_destroy(c->slab_buffer);
1734 dm_io_client_destroy(c->dm_io);
1735 bad_dm_io:
1736 mutex_destroy(&c->lock);
1737 kfree(c);
1738 bad_client:
1739 return ERR_PTR(r);
1740 }
1741 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1742
1743 /*
1744 * Free the buffering interface.
1745 * It is required that there are no references on any buffers.
1746 */
1747 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1748 {
1749 unsigned i;
1750
1751 drop_buffers(c);
1752
1753 unregister_shrinker(&c->shrinker);
1754
1755 mutex_lock(&dm_bufio_clients_lock);
1756
1757 list_del(&c->client_list);
1758 dm_bufio_client_count--;
1759 __cache_size_refresh();
1760
1761 mutex_unlock(&dm_bufio_clients_lock);
1762
1763 BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1764 BUG_ON(c->need_reserved_buffers);
1765
1766 while (!list_empty(&c->reserved_buffers)) {
1767 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1768 struct dm_buffer, lru_list);
1769 list_del(&b->lru_list);
1770 free_buffer(b);
1771 }
1772
1773 for (i = 0; i < LIST_SIZE; i++)
1774 if (c->n_buffers[i])
1775 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1776
1777 for (i = 0; i < LIST_SIZE; i++)
1778 BUG_ON(c->n_buffers[i]);
1779
1780 kmem_cache_destroy(c->slab_cache);
1781 kmem_cache_destroy(c->slab_buffer);
1782 dm_io_client_destroy(c->dm_io);
1783 mutex_destroy(&c->lock);
1784 kfree(c);
1785 }
1786 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1787
1788 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
1789 {
1790 c->start = start;
1791 }
1792 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
1793
1794 static unsigned get_max_age_hz(void)
1795 {
1796 unsigned max_age = READ_ONCE(dm_bufio_max_age);
1797
1798 if (max_age > UINT_MAX / HZ)
1799 max_age = UINT_MAX / HZ;
1800
1801 return max_age * HZ;
1802 }
1803
1804 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1805 {
1806 return time_after_eq(jiffies, b->last_accessed + age_hz);
1807 }
1808
1809 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1810 {
1811 struct dm_buffer *b, *tmp;
1812 unsigned long retain_target = get_retain_buffers(c);
1813 unsigned long count;
1814 LIST_HEAD(write_list);
1815
1816 dm_bufio_lock(c);
1817
1818 __check_watermark(c, &write_list);
1819 if (unlikely(!list_empty(&write_list))) {
1820 dm_bufio_unlock(c);
1821 __flush_write_list(&write_list);
1822 dm_bufio_lock(c);
1823 }
1824
1825 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1826 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1827 if (count <= retain_target)
1828 break;
1829
1830 if (!older_than(b, age_hz))
1831 break;
1832
1833 if (__try_evict_buffer(b, 0))
1834 count--;
1835
1836 cond_resched();
1837 }
1838
1839 dm_bufio_unlock(c);
1840 }
1841
1842 static void cleanup_old_buffers(void)
1843 {
1844 unsigned long max_age_hz = get_max_age_hz();
1845 struct dm_bufio_client *c;
1846
1847 mutex_lock(&dm_bufio_clients_lock);
1848
1849 __cache_size_refresh();
1850
1851 list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1852 __evict_old_buffers(c, max_age_hz);
1853
1854 mutex_unlock(&dm_bufio_clients_lock);
1855 }
1856
1857 static struct workqueue_struct *dm_bufio_wq;
1858 static struct delayed_work dm_bufio_work;
1859
1860 static void work_fn(struct work_struct *w)
1861 {
1862 cleanup_old_buffers();
1863
1864 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1865 DM_BUFIO_WORK_TIMER_SECS * HZ);
1866 }
1867
1868 /*----------------------------------------------------------------
1869 * Module setup
1870 *--------------------------------------------------------------*/
1871
1872 /*
1873 * This is called only once for the whole dm_bufio module.
1874 * It initializes memory limit.
1875 */
1876 static int __init dm_bufio_init(void)
1877 {
1878 __u64 mem;
1879
1880 dm_bufio_allocated_kmem_cache = 0;
1881 dm_bufio_allocated_get_free_pages = 0;
1882 dm_bufio_allocated_vmalloc = 0;
1883 dm_bufio_current_allocated = 0;
1884
1885 mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
1886 DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
1887
1888 if (mem > ULONG_MAX)
1889 mem = ULONG_MAX;
1890
1891 #ifdef CONFIG_MMU
1892 if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
1893 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
1894 #endif
1895
1896 dm_bufio_default_cache_size = mem;
1897
1898 mutex_lock(&dm_bufio_clients_lock);
1899 __cache_size_refresh();
1900 mutex_unlock(&dm_bufio_clients_lock);
1901
1902 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
1903 if (!dm_bufio_wq)
1904 return -ENOMEM;
1905
1906 INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1907 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1908 DM_BUFIO_WORK_TIMER_SECS * HZ);
1909
1910 return 0;
1911 }
1912
1913 /*
1914 * This is called once when unloading the dm_bufio module.
1915 */
1916 static void __exit dm_bufio_exit(void)
1917 {
1918 int bug = 0;
1919
1920 cancel_delayed_work_sync(&dm_bufio_work);
1921 destroy_workqueue(dm_bufio_wq);
1922
1923 if (dm_bufio_client_count) {
1924 DMCRIT("%s: dm_bufio_client_count leaked: %d",
1925 __func__, dm_bufio_client_count);
1926 bug = 1;
1927 }
1928
1929 if (dm_bufio_current_allocated) {
1930 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1931 __func__, dm_bufio_current_allocated);
1932 bug = 1;
1933 }
1934
1935 if (dm_bufio_allocated_get_free_pages) {
1936 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1937 __func__, dm_bufio_allocated_get_free_pages);
1938 bug = 1;
1939 }
1940
1941 if (dm_bufio_allocated_vmalloc) {
1942 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1943 __func__, dm_bufio_allocated_vmalloc);
1944 bug = 1;
1945 }
1946
1947 BUG_ON(bug);
1948 }
1949
1950 module_init(dm_bufio_init)
1951 module_exit(dm_bufio_exit)
1952
1953 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1954 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1955
1956 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1957 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1958
1959 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
1960 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1961
1962 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1963 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1964
1965 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1966 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1967
1968 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1969 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1970
1971 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1972 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1973
1974 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1975 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1976
1977 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1978 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1979 MODULE_LICENSE("GPL");