]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/md/dm-bufio.c
Merge branch 'zstd-minimal' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[mirror_ubuntu-focal-kernel.git] / drivers / md / dm-bufio.c
1 /*
2 * Copyright (C) 2009-2011 Red Hat, Inc.
3 *
4 * Author: Mikulas Patocka <mpatocka@redhat.com>
5 *
6 * This file is released under the GPL.
7 */
8
9 #include "dm-bufio.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/sched/mm.h>
15 #include <linux/jiffies.h>
16 #include <linux/vmalloc.h>
17 #include <linux/shrinker.h>
18 #include <linux/module.h>
19 #include <linux/rbtree.h>
20 #include <linux/stacktrace.h>
21
22 #define DM_MSG_PREFIX "bufio"
23
24 /*
25 * Memory management policy:
26 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
27 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
28 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
29 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
30 * dirty buffers.
31 */
32 #define DM_BUFIO_MIN_BUFFERS 8
33
34 #define DM_BUFIO_MEMORY_PERCENT 2
35 #define DM_BUFIO_VMALLOC_PERCENT 25
36 #define DM_BUFIO_WRITEBACK_PERCENT 75
37
38 /*
39 * Check buffer ages in this interval (seconds)
40 */
41 #define DM_BUFIO_WORK_TIMER_SECS 30
42
43 /*
44 * Free buffers when they are older than this (seconds)
45 */
46 #define DM_BUFIO_DEFAULT_AGE_SECS 300
47
48 /*
49 * The nr of bytes of cached data to keep around.
50 */
51 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024)
52
53 /*
54 * The number of bvec entries that are embedded directly in the buffer.
55 * If the chunk size is larger, dm-io is used to do the io.
56 */
57 #define DM_BUFIO_INLINE_VECS 16
58
59 /*
60 * Don't try to use kmem_cache_alloc for blocks larger than this.
61 * For explanation, see alloc_buffer_data below.
62 */
63 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT (PAGE_SIZE >> 1)
64 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT (PAGE_SIZE << (MAX_ORDER - 1))
65
66 /*
67 * Align buffer writes to this boundary.
68 * Tests show that SSDs have the highest IOPS when using 4k writes.
69 */
70 #define DM_BUFIO_WRITE_ALIGN 4096
71
72 /*
73 * dm_buffer->list_mode
74 */
75 #define LIST_CLEAN 0
76 #define LIST_DIRTY 1
77 #define LIST_SIZE 2
78
79 /*
80 * Linking of buffers:
81 * All buffers are linked to cache_hash with their hash_list field.
82 *
83 * Clean buffers that are not being written (B_WRITING not set)
84 * are linked to lru[LIST_CLEAN] with their lru_list field.
85 *
86 * Dirty and clean buffers that are being written are linked to
87 * lru[LIST_DIRTY] with their lru_list field. When the write
88 * finishes, the buffer cannot be relinked immediately (because we
89 * are in an interrupt context and relinking requires process
90 * context), so some clean-not-writing buffers can be held on
91 * dirty_lru too. They are later added to lru in the process
92 * context.
93 */
94 struct dm_bufio_client {
95 struct mutex lock;
96
97 struct list_head lru[LIST_SIZE];
98 unsigned long n_buffers[LIST_SIZE];
99
100 struct block_device *bdev;
101 unsigned block_size;
102 unsigned char sectors_per_block_bits;
103 unsigned char pages_per_block_bits;
104 unsigned char blocks_per_page_bits;
105 unsigned aux_size;
106 void (*alloc_callback)(struct dm_buffer *);
107 void (*write_callback)(struct dm_buffer *);
108
109 struct dm_io_client *dm_io;
110
111 struct list_head reserved_buffers;
112 unsigned need_reserved_buffers;
113
114 unsigned minimum_buffers;
115
116 struct rb_root buffer_tree;
117 wait_queue_head_t free_buffer_wait;
118
119 sector_t start;
120
121 int async_write_error;
122
123 struct list_head client_list;
124 struct shrinker shrinker;
125 };
126
127 /*
128 * Buffer state bits.
129 */
130 #define B_READING 0
131 #define B_WRITING 1
132 #define B_DIRTY 2
133
134 /*
135 * Describes how the block was allocated:
136 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
137 * See the comment at alloc_buffer_data.
138 */
139 enum data_mode {
140 DATA_MODE_SLAB = 0,
141 DATA_MODE_GET_FREE_PAGES = 1,
142 DATA_MODE_VMALLOC = 2,
143 DATA_MODE_LIMIT = 3
144 };
145
146 struct dm_buffer {
147 struct rb_node node;
148 struct list_head lru_list;
149 sector_t block;
150 void *data;
151 enum data_mode data_mode;
152 unsigned char list_mode; /* LIST_* */
153 unsigned hold_count;
154 blk_status_t read_error;
155 blk_status_t write_error;
156 unsigned long state;
157 unsigned long last_accessed;
158 unsigned dirty_start;
159 unsigned dirty_end;
160 unsigned write_start;
161 unsigned write_end;
162 struct dm_bufio_client *c;
163 struct list_head write_list;
164 struct bio bio;
165 struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
166 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
167 #define MAX_STACK 10
168 struct stack_trace stack_trace;
169 unsigned long stack_entries[MAX_STACK];
170 #endif
171 };
172
173 /*----------------------------------------------------------------*/
174
175 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
176 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
177
178 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
179 {
180 unsigned ret = c->blocks_per_page_bits - 1;
181
182 BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
183
184 return ret;
185 }
186
187 #define DM_BUFIO_CACHE(c) (dm_bufio_caches[dm_bufio_cache_index(c)])
188 #define DM_BUFIO_CACHE_NAME(c) (dm_bufio_cache_names[dm_bufio_cache_index(c)])
189
190 #define dm_bufio_in_request() (!!current->bio_list)
191
192 static void dm_bufio_lock(struct dm_bufio_client *c)
193 {
194 mutex_lock_nested(&c->lock, dm_bufio_in_request());
195 }
196
197 static int dm_bufio_trylock(struct dm_bufio_client *c)
198 {
199 return mutex_trylock(&c->lock);
200 }
201
202 static void dm_bufio_unlock(struct dm_bufio_client *c)
203 {
204 mutex_unlock(&c->lock);
205 }
206
207 /*----------------------------------------------------------------*/
208
209 /*
210 * Default cache size: available memory divided by the ratio.
211 */
212 static unsigned long dm_bufio_default_cache_size;
213
214 /*
215 * Total cache size set by the user.
216 */
217 static unsigned long dm_bufio_cache_size;
218
219 /*
220 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
221 * at any time. If it disagrees, the user has changed cache size.
222 */
223 static unsigned long dm_bufio_cache_size_latch;
224
225 static DEFINE_SPINLOCK(param_spinlock);
226
227 /*
228 * Buffers are freed after this timeout
229 */
230 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
231 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
232
233 static unsigned long dm_bufio_peak_allocated;
234 static unsigned long dm_bufio_allocated_kmem_cache;
235 static unsigned long dm_bufio_allocated_get_free_pages;
236 static unsigned long dm_bufio_allocated_vmalloc;
237 static unsigned long dm_bufio_current_allocated;
238
239 /*----------------------------------------------------------------*/
240
241 /*
242 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
243 */
244 static unsigned long dm_bufio_cache_size_per_client;
245
246 /*
247 * The current number of clients.
248 */
249 static int dm_bufio_client_count;
250
251 /*
252 * The list of all clients.
253 */
254 static LIST_HEAD(dm_bufio_all_clients);
255
256 /*
257 * This mutex protects dm_bufio_cache_size_latch,
258 * dm_bufio_cache_size_per_client and dm_bufio_client_count
259 */
260 static DEFINE_MUTEX(dm_bufio_clients_lock);
261
262 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
263 static void buffer_record_stack(struct dm_buffer *b)
264 {
265 b->stack_trace.nr_entries = 0;
266 b->stack_trace.max_entries = MAX_STACK;
267 b->stack_trace.entries = b->stack_entries;
268 b->stack_trace.skip = 2;
269 save_stack_trace(&b->stack_trace);
270 }
271 #endif
272
273 /*----------------------------------------------------------------
274 * A red/black tree acts as an index for all the buffers.
275 *--------------------------------------------------------------*/
276 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
277 {
278 struct rb_node *n = c->buffer_tree.rb_node;
279 struct dm_buffer *b;
280
281 while (n) {
282 b = container_of(n, struct dm_buffer, node);
283
284 if (b->block == block)
285 return b;
286
287 n = (b->block < block) ? n->rb_left : n->rb_right;
288 }
289
290 return NULL;
291 }
292
293 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
294 {
295 struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
296 struct dm_buffer *found;
297
298 while (*new) {
299 found = container_of(*new, struct dm_buffer, node);
300
301 if (found->block == b->block) {
302 BUG_ON(found != b);
303 return;
304 }
305
306 parent = *new;
307 new = (found->block < b->block) ?
308 &((*new)->rb_left) : &((*new)->rb_right);
309 }
310
311 rb_link_node(&b->node, parent, new);
312 rb_insert_color(&b->node, &c->buffer_tree);
313 }
314
315 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
316 {
317 rb_erase(&b->node, &c->buffer_tree);
318 }
319
320 /*----------------------------------------------------------------*/
321
322 static void adjust_total_allocated(enum data_mode data_mode, long diff)
323 {
324 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
325 &dm_bufio_allocated_kmem_cache,
326 &dm_bufio_allocated_get_free_pages,
327 &dm_bufio_allocated_vmalloc,
328 };
329
330 spin_lock(&param_spinlock);
331
332 *class_ptr[data_mode] += diff;
333
334 dm_bufio_current_allocated += diff;
335
336 if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
337 dm_bufio_peak_allocated = dm_bufio_current_allocated;
338
339 spin_unlock(&param_spinlock);
340 }
341
342 /*
343 * Change the number of clients and recalculate per-client limit.
344 */
345 static void __cache_size_refresh(void)
346 {
347 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
348 BUG_ON(dm_bufio_client_count < 0);
349
350 dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
351
352 /*
353 * Use default if set to 0 and report the actual cache size used.
354 */
355 if (!dm_bufio_cache_size_latch) {
356 (void)cmpxchg(&dm_bufio_cache_size, 0,
357 dm_bufio_default_cache_size);
358 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
359 }
360
361 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
362 (dm_bufio_client_count ? : 1);
363 }
364
365 /*
366 * Allocating buffer data.
367 *
368 * Small buffers are allocated with kmem_cache, to use space optimally.
369 *
370 * For large buffers, we choose between get_free_pages and vmalloc.
371 * Each has advantages and disadvantages.
372 *
373 * __get_free_pages can randomly fail if the memory is fragmented.
374 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
375 * as low as 128M) so using it for caching is not appropriate.
376 *
377 * If the allocation may fail we use __get_free_pages. Memory fragmentation
378 * won't have a fatal effect here, but it just causes flushes of some other
379 * buffers and more I/O will be performed. Don't use __get_free_pages if it
380 * always fails (i.e. order >= MAX_ORDER).
381 *
382 * If the allocation shouldn't fail we use __vmalloc. This is only for the
383 * initial reserve allocation, so there's no risk of wasting all vmalloc
384 * space.
385 */
386 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
387 enum data_mode *data_mode)
388 {
389 unsigned noio_flag;
390 void *ptr;
391
392 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
393 *data_mode = DATA_MODE_SLAB;
394 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
395 }
396
397 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
398 gfp_mask & __GFP_NORETRY) {
399 *data_mode = DATA_MODE_GET_FREE_PAGES;
400 return (void *)__get_free_pages(gfp_mask,
401 c->pages_per_block_bits);
402 }
403
404 *data_mode = DATA_MODE_VMALLOC;
405
406 /*
407 * __vmalloc allocates the data pages and auxiliary structures with
408 * gfp_flags that were specified, but pagetables are always allocated
409 * with GFP_KERNEL, no matter what was specified as gfp_mask.
410 *
411 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
412 * all allocations done by this process (including pagetables) are done
413 * as if GFP_NOIO was specified.
414 */
415
416 if (gfp_mask & __GFP_NORETRY)
417 noio_flag = memalloc_noio_save();
418
419 ptr = __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
420
421 if (gfp_mask & __GFP_NORETRY)
422 memalloc_noio_restore(noio_flag);
423
424 return ptr;
425 }
426
427 /*
428 * Free buffer's data.
429 */
430 static void free_buffer_data(struct dm_bufio_client *c,
431 void *data, enum data_mode data_mode)
432 {
433 switch (data_mode) {
434 case DATA_MODE_SLAB:
435 kmem_cache_free(DM_BUFIO_CACHE(c), data);
436 break;
437
438 case DATA_MODE_GET_FREE_PAGES:
439 free_pages((unsigned long)data, c->pages_per_block_bits);
440 break;
441
442 case DATA_MODE_VMALLOC:
443 vfree(data);
444 break;
445
446 default:
447 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
448 data_mode);
449 BUG();
450 }
451 }
452
453 /*
454 * Allocate buffer and its data.
455 */
456 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
457 {
458 struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
459 gfp_mask);
460
461 if (!b)
462 return NULL;
463
464 b->c = c;
465
466 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
467 if (!b->data) {
468 kfree(b);
469 return NULL;
470 }
471
472 adjust_total_allocated(b->data_mode, (long)c->block_size);
473
474 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
475 memset(&b->stack_trace, 0, sizeof(b->stack_trace));
476 #endif
477 return b;
478 }
479
480 /*
481 * Free buffer and its data.
482 */
483 static void free_buffer(struct dm_buffer *b)
484 {
485 struct dm_bufio_client *c = b->c;
486
487 adjust_total_allocated(b->data_mode, -(long)c->block_size);
488
489 free_buffer_data(c, b->data, b->data_mode);
490 kfree(b);
491 }
492
493 /*
494 * Link buffer to the hash list and clean or dirty queue.
495 */
496 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
497 {
498 struct dm_bufio_client *c = b->c;
499
500 c->n_buffers[dirty]++;
501 b->block = block;
502 b->list_mode = dirty;
503 list_add(&b->lru_list, &c->lru[dirty]);
504 __insert(b->c, b);
505 b->last_accessed = jiffies;
506 }
507
508 /*
509 * Unlink buffer from the hash list and dirty or clean queue.
510 */
511 static void __unlink_buffer(struct dm_buffer *b)
512 {
513 struct dm_bufio_client *c = b->c;
514
515 BUG_ON(!c->n_buffers[b->list_mode]);
516
517 c->n_buffers[b->list_mode]--;
518 __remove(b->c, b);
519 list_del(&b->lru_list);
520 }
521
522 /*
523 * Place the buffer to the head of dirty or clean LRU queue.
524 */
525 static void __relink_lru(struct dm_buffer *b, int dirty)
526 {
527 struct dm_bufio_client *c = b->c;
528
529 BUG_ON(!c->n_buffers[b->list_mode]);
530
531 c->n_buffers[b->list_mode]--;
532 c->n_buffers[dirty]++;
533 b->list_mode = dirty;
534 list_move(&b->lru_list, &c->lru[dirty]);
535 b->last_accessed = jiffies;
536 }
537
538 /*----------------------------------------------------------------
539 * Submit I/O on the buffer.
540 *
541 * Bio interface is faster but it has some problems:
542 * the vector list is limited (increasing this limit increases
543 * memory-consumption per buffer, so it is not viable);
544 *
545 * the memory must be direct-mapped, not vmalloced;
546 *
547 * the I/O driver can reject requests spuriously if it thinks that
548 * the requests are too big for the device or if they cross a
549 * controller-defined memory boundary.
550 *
551 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
552 * it is not vmalloced, try using the bio interface.
553 *
554 * If the buffer is big, if it is vmalloced or if the underlying device
555 * rejects the bio because it is too large, use dm-io layer to do the I/O.
556 * The dm-io layer splits the I/O into multiple requests, avoiding the above
557 * shortcomings.
558 *--------------------------------------------------------------*/
559
560 /*
561 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
562 * that the request was handled directly with bio interface.
563 */
564 static void dmio_complete(unsigned long error, void *context)
565 {
566 struct dm_buffer *b = context;
567
568 b->bio.bi_status = error ? BLK_STS_IOERR : 0;
569 b->bio.bi_end_io(&b->bio);
570 }
571
572 static void use_dmio(struct dm_buffer *b, int rw, sector_t sector,
573 unsigned n_sectors, unsigned offset, bio_end_io_t *end_io)
574 {
575 int r;
576 struct dm_io_request io_req = {
577 .bi_op = rw,
578 .bi_op_flags = 0,
579 .notify.fn = dmio_complete,
580 .notify.context = b,
581 .client = b->c->dm_io,
582 };
583 struct dm_io_region region = {
584 .bdev = b->c->bdev,
585 .sector = sector,
586 .count = n_sectors,
587 };
588
589 if (b->data_mode != DATA_MODE_VMALLOC) {
590 io_req.mem.type = DM_IO_KMEM;
591 io_req.mem.ptr.addr = (char *)b->data + offset;
592 } else {
593 io_req.mem.type = DM_IO_VMA;
594 io_req.mem.ptr.vma = (char *)b->data + offset;
595 }
596
597 b->bio.bi_end_io = end_io;
598
599 r = dm_io(&io_req, 1, &region, NULL);
600 if (r) {
601 b->bio.bi_status = errno_to_blk_status(r);
602 end_io(&b->bio);
603 }
604 }
605
606 static void inline_endio(struct bio *bio)
607 {
608 bio_end_io_t *end_fn = bio->bi_private;
609 blk_status_t status = bio->bi_status;
610
611 /*
612 * Reset the bio to free any attached resources
613 * (e.g. bio integrity profiles).
614 */
615 bio_reset(bio);
616
617 bio->bi_status = status;
618 end_fn(bio);
619 }
620
621 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t sector,
622 unsigned n_sectors, unsigned offset, bio_end_io_t *end_io)
623 {
624 char *ptr;
625 unsigned len;
626
627 bio_init(&b->bio, b->bio_vec, DM_BUFIO_INLINE_VECS);
628 b->bio.bi_iter.bi_sector = sector;
629 bio_set_dev(&b->bio, b->c->bdev);
630 b->bio.bi_end_io = inline_endio;
631 /*
632 * Use of .bi_private isn't a problem here because
633 * the dm_buffer's inline bio is local to bufio.
634 */
635 b->bio.bi_private = end_io;
636 bio_set_op_attrs(&b->bio, rw, 0);
637
638 ptr = (char *)b->data + offset;
639 len = n_sectors << SECTOR_SHIFT;
640
641 do {
642 unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len);
643 if (!bio_add_page(&b->bio, virt_to_page(ptr), this_step,
644 offset_in_page(ptr))) {
645 BUG_ON(b->c->block_size <= PAGE_SIZE);
646 use_dmio(b, rw, sector, n_sectors, offset, end_io);
647 return;
648 }
649
650 len -= this_step;
651 ptr += this_step;
652 } while (len > 0);
653
654 submit_bio(&b->bio);
655 }
656
657 static void submit_io(struct dm_buffer *b, int rw, bio_end_io_t *end_io)
658 {
659 unsigned n_sectors;
660 sector_t sector;
661 unsigned offset, end;
662
663 sector = (b->block << b->c->sectors_per_block_bits) + b->c->start;
664
665 if (rw != WRITE) {
666 n_sectors = 1 << b->c->sectors_per_block_bits;
667 offset = 0;
668 } else {
669 if (b->c->write_callback)
670 b->c->write_callback(b);
671 offset = b->write_start;
672 end = b->write_end;
673 offset &= -DM_BUFIO_WRITE_ALIGN;
674 end += DM_BUFIO_WRITE_ALIGN - 1;
675 end &= -DM_BUFIO_WRITE_ALIGN;
676 if (unlikely(end > b->c->block_size))
677 end = b->c->block_size;
678
679 sector += offset >> SECTOR_SHIFT;
680 n_sectors = (end - offset) >> SECTOR_SHIFT;
681 }
682
683 if (n_sectors <= ((DM_BUFIO_INLINE_VECS * PAGE_SIZE) >> SECTOR_SHIFT) &&
684 b->data_mode != DATA_MODE_VMALLOC)
685 use_inline_bio(b, rw, sector, n_sectors, offset, end_io);
686 else
687 use_dmio(b, rw, sector, n_sectors, offset, end_io);
688 }
689
690 /*----------------------------------------------------------------
691 * Writing dirty buffers
692 *--------------------------------------------------------------*/
693
694 /*
695 * The endio routine for write.
696 *
697 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
698 * it.
699 */
700 static void write_endio(struct bio *bio)
701 {
702 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
703
704 b->write_error = bio->bi_status;
705 if (unlikely(bio->bi_status)) {
706 struct dm_bufio_client *c = b->c;
707
708 (void)cmpxchg(&c->async_write_error, 0,
709 blk_status_to_errno(bio->bi_status));
710 }
711
712 BUG_ON(!test_bit(B_WRITING, &b->state));
713
714 smp_mb__before_atomic();
715 clear_bit(B_WRITING, &b->state);
716 smp_mb__after_atomic();
717
718 wake_up_bit(&b->state, B_WRITING);
719 }
720
721 /*
722 * Initiate a write on a dirty buffer, but don't wait for it.
723 *
724 * - If the buffer is not dirty, exit.
725 * - If there some previous write going on, wait for it to finish (we can't
726 * have two writes on the same buffer simultaneously).
727 * - Submit our write and don't wait on it. We set B_WRITING indicating
728 * that there is a write in progress.
729 */
730 static void __write_dirty_buffer(struct dm_buffer *b,
731 struct list_head *write_list)
732 {
733 if (!test_bit(B_DIRTY, &b->state))
734 return;
735
736 clear_bit(B_DIRTY, &b->state);
737 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
738
739 b->write_start = b->dirty_start;
740 b->write_end = b->dirty_end;
741
742 if (!write_list)
743 submit_io(b, WRITE, write_endio);
744 else
745 list_add_tail(&b->write_list, write_list);
746 }
747
748 static void __flush_write_list(struct list_head *write_list)
749 {
750 struct blk_plug plug;
751 blk_start_plug(&plug);
752 while (!list_empty(write_list)) {
753 struct dm_buffer *b =
754 list_entry(write_list->next, struct dm_buffer, write_list);
755 list_del(&b->write_list);
756 submit_io(b, WRITE, write_endio);
757 cond_resched();
758 }
759 blk_finish_plug(&plug);
760 }
761
762 /*
763 * Wait until any activity on the buffer finishes. Possibly write the
764 * buffer if it is dirty. When this function finishes, there is no I/O
765 * running on the buffer and the buffer is not dirty.
766 */
767 static void __make_buffer_clean(struct dm_buffer *b)
768 {
769 BUG_ON(b->hold_count);
770
771 if (!b->state) /* fast case */
772 return;
773
774 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
775 __write_dirty_buffer(b, NULL);
776 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
777 }
778
779 /*
780 * Find some buffer that is not held by anybody, clean it, unlink it and
781 * return it.
782 */
783 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
784 {
785 struct dm_buffer *b;
786
787 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
788 BUG_ON(test_bit(B_WRITING, &b->state));
789 BUG_ON(test_bit(B_DIRTY, &b->state));
790
791 if (!b->hold_count) {
792 __make_buffer_clean(b);
793 __unlink_buffer(b);
794 return b;
795 }
796 cond_resched();
797 }
798
799 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
800 BUG_ON(test_bit(B_READING, &b->state));
801
802 if (!b->hold_count) {
803 __make_buffer_clean(b);
804 __unlink_buffer(b);
805 return b;
806 }
807 cond_resched();
808 }
809
810 return NULL;
811 }
812
813 /*
814 * Wait until some other threads free some buffer or release hold count on
815 * some buffer.
816 *
817 * This function is entered with c->lock held, drops it and regains it
818 * before exiting.
819 */
820 static void __wait_for_free_buffer(struct dm_bufio_client *c)
821 {
822 DECLARE_WAITQUEUE(wait, current);
823
824 add_wait_queue(&c->free_buffer_wait, &wait);
825 set_current_state(TASK_UNINTERRUPTIBLE);
826 dm_bufio_unlock(c);
827
828 io_schedule();
829
830 remove_wait_queue(&c->free_buffer_wait, &wait);
831
832 dm_bufio_lock(c);
833 }
834
835 enum new_flag {
836 NF_FRESH = 0,
837 NF_READ = 1,
838 NF_GET = 2,
839 NF_PREFETCH = 3
840 };
841
842 /*
843 * Allocate a new buffer. If the allocation is not possible, wait until
844 * some other thread frees a buffer.
845 *
846 * May drop the lock and regain it.
847 */
848 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
849 {
850 struct dm_buffer *b;
851 bool tried_noio_alloc = false;
852
853 /*
854 * dm-bufio is resistant to allocation failures (it just keeps
855 * one buffer reserved in cases all the allocations fail).
856 * So set flags to not try too hard:
857 * GFP_NOWAIT: don't wait; if we need to sleep we'll release our
858 * mutex and wait ourselves.
859 * __GFP_NORETRY: don't retry and rather return failure
860 * __GFP_NOMEMALLOC: don't use emergency reserves
861 * __GFP_NOWARN: don't print a warning in case of failure
862 *
863 * For debugging, if we set the cache size to 1, no new buffers will
864 * be allocated.
865 */
866 while (1) {
867 if (dm_bufio_cache_size_latch != 1) {
868 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
869 if (b)
870 return b;
871 }
872
873 if (nf == NF_PREFETCH)
874 return NULL;
875
876 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
877 dm_bufio_unlock(c);
878 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
879 dm_bufio_lock(c);
880 if (b)
881 return b;
882 tried_noio_alloc = true;
883 }
884
885 if (!list_empty(&c->reserved_buffers)) {
886 b = list_entry(c->reserved_buffers.next,
887 struct dm_buffer, lru_list);
888 list_del(&b->lru_list);
889 c->need_reserved_buffers++;
890
891 return b;
892 }
893
894 b = __get_unclaimed_buffer(c);
895 if (b)
896 return b;
897
898 __wait_for_free_buffer(c);
899 }
900 }
901
902 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
903 {
904 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
905
906 if (!b)
907 return NULL;
908
909 if (c->alloc_callback)
910 c->alloc_callback(b);
911
912 return b;
913 }
914
915 /*
916 * Free a buffer and wake other threads waiting for free buffers.
917 */
918 static void __free_buffer_wake(struct dm_buffer *b)
919 {
920 struct dm_bufio_client *c = b->c;
921
922 if (!c->need_reserved_buffers)
923 free_buffer(b);
924 else {
925 list_add(&b->lru_list, &c->reserved_buffers);
926 c->need_reserved_buffers--;
927 }
928
929 wake_up(&c->free_buffer_wait);
930 }
931
932 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
933 struct list_head *write_list)
934 {
935 struct dm_buffer *b, *tmp;
936
937 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
938 BUG_ON(test_bit(B_READING, &b->state));
939
940 if (!test_bit(B_DIRTY, &b->state) &&
941 !test_bit(B_WRITING, &b->state)) {
942 __relink_lru(b, LIST_CLEAN);
943 continue;
944 }
945
946 if (no_wait && test_bit(B_WRITING, &b->state))
947 return;
948
949 __write_dirty_buffer(b, write_list);
950 cond_resched();
951 }
952 }
953
954 /*
955 * Get writeback threshold and buffer limit for a given client.
956 */
957 static void __get_memory_limit(struct dm_bufio_client *c,
958 unsigned long *threshold_buffers,
959 unsigned long *limit_buffers)
960 {
961 unsigned long buffers;
962
963 if (unlikely(ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch)) {
964 if (mutex_trylock(&dm_bufio_clients_lock)) {
965 __cache_size_refresh();
966 mutex_unlock(&dm_bufio_clients_lock);
967 }
968 }
969
970 buffers = dm_bufio_cache_size_per_client >>
971 (c->sectors_per_block_bits + SECTOR_SHIFT);
972
973 if (buffers < c->minimum_buffers)
974 buffers = c->minimum_buffers;
975
976 *limit_buffers = buffers;
977 *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
978 }
979
980 /*
981 * Check if we're over watermark.
982 * If we are over threshold_buffers, start freeing buffers.
983 * If we're over "limit_buffers", block until we get under the limit.
984 */
985 static void __check_watermark(struct dm_bufio_client *c,
986 struct list_head *write_list)
987 {
988 unsigned long threshold_buffers, limit_buffers;
989
990 __get_memory_limit(c, &threshold_buffers, &limit_buffers);
991
992 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
993 limit_buffers) {
994
995 struct dm_buffer *b = __get_unclaimed_buffer(c);
996
997 if (!b)
998 return;
999
1000 __free_buffer_wake(b);
1001 cond_resched();
1002 }
1003
1004 if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
1005 __write_dirty_buffers_async(c, 1, write_list);
1006 }
1007
1008 /*----------------------------------------------------------------
1009 * Getting a buffer
1010 *--------------------------------------------------------------*/
1011
1012 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
1013 enum new_flag nf, int *need_submit,
1014 struct list_head *write_list)
1015 {
1016 struct dm_buffer *b, *new_b = NULL;
1017
1018 *need_submit = 0;
1019
1020 b = __find(c, block);
1021 if (b)
1022 goto found_buffer;
1023
1024 if (nf == NF_GET)
1025 return NULL;
1026
1027 new_b = __alloc_buffer_wait(c, nf);
1028 if (!new_b)
1029 return NULL;
1030
1031 /*
1032 * We've had a period where the mutex was unlocked, so need to
1033 * recheck the hash table.
1034 */
1035 b = __find(c, block);
1036 if (b) {
1037 __free_buffer_wake(new_b);
1038 goto found_buffer;
1039 }
1040
1041 __check_watermark(c, write_list);
1042
1043 b = new_b;
1044 b->hold_count = 1;
1045 b->read_error = 0;
1046 b->write_error = 0;
1047 __link_buffer(b, block, LIST_CLEAN);
1048
1049 if (nf == NF_FRESH) {
1050 b->state = 0;
1051 return b;
1052 }
1053
1054 b->state = 1 << B_READING;
1055 *need_submit = 1;
1056
1057 return b;
1058
1059 found_buffer:
1060 if (nf == NF_PREFETCH)
1061 return NULL;
1062 /*
1063 * Note: it is essential that we don't wait for the buffer to be
1064 * read if dm_bufio_get function is used. Both dm_bufio_get and
1065 * dm_bufio_prefetch can be used in the driver request routine.
1066 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1067 * the same buffer, it would deadlock if we waited.
1068 */
1069 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1070 return NULL;
1071
1072 b->hold_count++;
1073 __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1074 test_bit(B_WRITING, &b->state));
1075 return b;
1076 }
1077
1078 /*
1079 * The endio routine for reading: set the error, clear the bit and wake up
1080 * anyone waiting on the buffer.
1081 */
1082 static void read_endio(struct bio *bio)
1083 {
1084 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1085
1086 b->read_error = bio->bi_status;
1087
1088 BUG_ON(!test_bit(B_READING, &b->state));
1089
1090 smp_mb__before_atomic();
1091 clear_bit(B_READING, &b->state);
1092 smp_mb__after_atomic();
1093
1094 wake_up_bit(&b->state, B_READING);
1095 }
1096
1097 /*
1098 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these
1099 * functions is similar except that dm_bufio_new doesn't read the
1100 * buffer from the disk (assuming that the caller overwrites all the data
1101 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1102 */
1103 static void *new_read(struct dm_bufio_client *c, sector_t block,
1104 enum new_flag nf, struct dm_buffer **bp)
1105 {
1106 int need_submit;
1107 struct dm_buffer *b;
1108
1109 LIST_HEAD(write_list);
1110
1111 dm_bufio_lock(c);
1112 b = __bufio_new(c, block, nf, &need_submit, &write_list);
1113 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1114 if (b && b->hold_count == 1)
1115 buffer_record_stack(b);
1116 #endif
1117 dm_bufio_unlock(c);
1118
1119 __flush_write_list(&write_list);
1120
1121 if (!b)
1122 return NULL;
1123
1124 if (need_submit)
1125 submit_io(b, READ, read_endio);
1126
1127 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1128
1129 if (b->read_error) {
1130 int error = blk_status_to_errno(b->read_error);
1131
1132 dm_bufio_release(b);
1133
1134 return ERR_PTR(error);
1135 }
1136
1137 *bp = b;
1138
1139 return b->data;
1140 }
1141
1142 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1143 struct dm_buffer **bp)
1144 {
1145 return new_read(c, block, NF_GET, bp);
1146 }
1147 EXPORT_SYMBOL_GPL(dm_bufio_get);
1148
1149 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1150 struct dm_buffer **bp)
1151 {
1152 BUG_ON(dm_bufio_in_request());
1153
1154 return new_read(c, block, NF_READ, bp);
1155 }
1156 EXPORT_SYMBOL_GPL(dm_bufio_read);
1157
1158 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1159 struct dm_buffer **bp)
1160 {
1161 BUG_ON(dm_bufio_in_request());
1162
1163 return new_read(c, block, NF_FRESH, bp);
1164 }
1165 EXPORT_SYMBOL_GPL(dm_bufio_new);
1166
1167 void dm_bufio_prefetch(struct dm_bufio_client *c,
1168 sector_t block, unsigned n_blocks)
1169 {
1170 struct blk_plug plug;
1171
1172 LIST_HEAD(write_list);
1173
1174 BUG_ON(dm_bufio_in_request());
1175
1176 blk_start_plug(&plug);
1177 dm_bufio_lock(c);
1178
1179 for (; n_blocks--; block++) {
1180 int need_submit;
1181 struct dm_buffer *b;
1182 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1183 &write_list);
1184 if (unlikely(!list_empty(&write_list))) {
1185 dm_bufio_unlock(c);
1186 blk_finish_plug(&plug);
1187 __flush_write_list(&write_list);
1188 blk_start_plug(&plug);
1189 dm_bufio_lock(c);
1190 }
1191 if (unlikely(b != NULL)) {
1192 dm_bufio_unlock(c);
1193
1194 if (need_submit)
1195 submit_io(b, READ, read_endio);
1196 dm_bufio_release(b);
1197
1198 cond_resched();
1199
1200 if (!n_blocks)
1201 goto flush_plug;
1202 dm_bufio_lock(c);
1203 }
1204 }
1205
1206 dm_bufio_unlock(c);
1207
1208 flush_plug:
1209 blk_finish_plug(&plug);
1210 }
1211 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1212
1213 void dm_bufio_release(struct dm_buffer *b)
1214 {
1215 struct dm_bufio_client *c = b->c;
1216
1217 dm_bufio_lock(c);
1218
1219 BUG_ON(!b->hold_count);
1220
1221 b->hold_count--;
1222 if (!b->hold_count) {
1223 wake_up(&c->free_buffer_wait);
1224
1225 /*
1226 * If there were errors on the buffer, and the buffer is not
1227 * to be written, free the buffer. There is no point in caching
1228 * invalid buffer.
1229 */
1230 if ((b->read_error || b->write_error) &&
1231 !test_bit(B_READING, &b->state) &&
1232 !test_bit(B_WRITING, &b->state) &&
1233 !test_bit(B_DIRTY, &b->state)) {
1234 __unlink_buffer(b);
1235 __free_buffer_wake(b);
1236 }
1237 }
1238
1239 dm_bufio_unlock(c);
1240 }
1241 EXPORT_SYMBOL_GPL(dm_bufio_release);
1242
1243 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
1244 unsigned start, unsigned end)
1245 {
1246 struct dm_bufio_client *c = b->c;
1247
1248 BUG_ON(start >= end);
1249 BUG_ON(end > b->c->block_size);
1250
1251 dm_bufio_lock(c);
1252
1253 BUG_ON(test_bit(B_READING, &b->state));
1254
1255 if (!test_and_set_bit(B_DIRTY, &b->state)) {
1256 b->dirty_start = start;
1257 b->dirty_end = end;
1258 __relink_lru(b, LIST_DIRTY);
1259 } else {
1260 if (start < b->dirty_start)
1261 b->dirty_start = start;
1262 if (end > b->dirty_end)
1263 b->dirty_end = end;
1264 }
1265
1266 dm_bufio_unlock(c);
1267 }
1268 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
1269
1270 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1271 {
1272 dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
1273 }
1274 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1275
1276 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1277 {
1278 LIST_HEAD(write_list);
1279
1280 BUG_ON(dm_bufio_in_request());
1281
1282 dm_bufio_lock(c);
1283 __write_dirty_buffers_async(c, 0, &write_list);
1284 dm_bufio_unlock(c);
1285 __flush_write_list(&write_list);
1286 }
1287 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1288
1289 /*
1290 * For performance, it is essential that the buffers are written asynchronously
1291 * and simultaneously (so that the block layer can merge the writes) and then
1292 * waited upon.
1293 *
1294 * Finally, we flush hardware disk cache.
1295 */
1296 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1297 {
1298 int a, f;
1299 unsigned long buffers_processed = 0;
1300 struct dm_buffer *b, *tmp;
1301
1302 LIST_HEAD(write_list);
1303
1304 dm_bufio_lock(c);
1305 __write_dirty_buffers_async(c, 0, &write_list);
1306 dm_bufio_unlock(c);
1307 __flush_write_list(&write_list);
1308 dm_bufio_lock(c);
1309
1310 again:
1311 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1312 int dropped_lock = 0;
1313
1314 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1315 buffers_processed++;
1316
1317 BUG_ON(test_bit(B_READING, &b->state));
1318
1319 if (test_bit(B_WRITING, &b->state)) {
1320 if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1321 dropped_lock = 1;
1322 b->hold_count++;
1323 dm_bufio_unlock(c);
1324 wait_on_bit_io(&b->state, B_WRITING,
1325 TASK_UNINTERRUPTIBLE);
1326 dm_bufio_lock(c);
1327 b->hold_count--;
1328 } else
1329 wait_on_bit_io(&b->state, B_WRITING,
1330 TASK_UNINTERRUPTIBLE);
1331 }
1332
1333 if (!test_bit(B_DIRTY, &b->state) &&
1334 !test_bit(B_WRITING, &b->state))
1335 __relink_lru(b, LIST_CLEAN);
1336
1337 cond_resched();
1338
1339 /*
1340 * If we dropped the lock, the list is no longer consistent,
1341 * so we must restart the search.
1342 *
1343 * In the most common case, the buffer just processed is
1344 * relinked to the clean list, so we won't loop scanning the
1345 * same buffer again and again.
1346 *
1347 * This may livelock if there is another thread simultaneously
1348 * dirtying buffers, so we count the number of buffers walked
1349 * and if it exceeds the total number of buffers, it means that
1350 * someone is doing some writes simultaneously with us. In
1351 * this case, stop, dropping the lock.
1352 */
1353 if (dropped_lock)
1354 goto again;
1355 }
1356 wake_up(&c->free_buffer_wait);
1357 dm_bufio_unlock(c);
1358
1359 a = xchg(&c->async_write_error, 0);
1360 f = dm_bufio_issue_flush(c);
1361 if (a)
1362 return a;
1363
1364 return f;
1365 }
1366 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1367
1368 /*
1369 * Use dm-io to send and empty barrier flush the device.
1370 */
1371 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1372 {
1373 struct dm_io_request io_req = {
1374 .bi_op = REQ_OP_WRITE,
1375 .bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1376 .mem.type = DM_IO_KMEM,
1377 .mem.ptr.addr = NULL,
1378 .client = c->dm_io,
1379 };
1380 struct dm_io_region io_reg = {
1381 .bdev = c->bdev,
1382 .sector = 0,
1383 .count = 0,
1384 };
1385
1386 BUG_ON(dm_bufio_in_request());
1387
1388 return dm_io(&io_req, 1, &io_reg, NULL);
1389 }
1390 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1391
1392 /*
1393 * We first delete any other buffer that may be at that new location.
1394 *
1395 * Then, we write the buffer to the original location if it was dirty.
1396 *
1397 * Then, if we are the only one who is holding the buffer, relink the buffer
1398 * in the hash queue for the new location.
1399 *
1400 * If there was someone else holding the buffer, we write it to the new
1401 * location but not relink it, because that other user needs to have the buffer
1402 * at the same place.
1403 */
1404 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1405 {
1406 struct dm_bufio_client *c = b->c;
1407 struct dm_buffer *new;
1408
1409 BUG_ON(dm_bufio_in_request());
1410
1411 dm_bufio_lock(c);
1412
1413 retry:
1414 new = __find(c, new_block);
1415 if (new) {
1416 if (new->hold_count) {
1417 __wait_for_free_buffer(c);
1418 goto retry;
1419 }
1420
1421 /*
1422 * FIXME: Is there any point waiting for a write that's going
1423 * to be overwritten in a bit?
1424 */
1425 __make_buffer_clean(new);
1426 __unlink_buffer(new);
1427 __free_buffer_wake(new);
1428 }
1429
1430 BUG_ON(!b->hold_count);
1431 BUG_ON(test_bit(B_READING, &b->state));
1432
1433 __write_dirty_buffer(b, NULL);
1434 if (b->hold_count == 1) {
1435 wait_on_bit_io(&b->state, B_WRITING,
1436 TASK_UNINTERRUPTIBLE);
1437 set_bit(B_DIRTY, &b->state);
1438 b->dirty_start = 0;
1439 b->dirty_end = c->block_size;
1440 __unlink_buffer(b);
1441 __link_buffer(b, new_block, LIST_DIRTY);
1442 } else {
1443 sector_t old_block;
1444 wait_on_bit_lock_io(&b->state, B_WRITING,
1445 TASK_UNINTERRUPTIBLE);
1446 /*
1447 * Relink buffer to "new_block" so that write_callback
1448 * sees "new_block" as a block number.
1449 * After the write, link the buffer back to old_block.
1450 * All this must be done in bufio lock, so that block number
1451 * change isn't visible to other threads.
1452 */
1453 old_block = b->block;
1454 __unlink_buffer(b);
1455 __link_buffer(b, new_block, b->list_mode);
1456 submit_io(b, WRITE, write_endio);
1457 wait_on_bit_io(&b->state, B_WRITING,
1458 TASK_UNINTERRUPTIBLE);
1459 __unlink_buffer(b);
1460 __link_buffer(b, old_block, b->list_mode);
1461 }
1462
1463 dm_bufio_unlock(c);
1464 dm_bufio_release(b);
1465 }
1466 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1467
1468 /*
1469 * Free the given buffer.
1470 *
1471 * This is just a hint, if the buffer is in use or dirty, this function
1472 * does nothing.
1473 */
1474 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1475 {
1476 struct dm_buffer *b;
1477
1478 dm_bufio_lock(c);
1479
1480 b = __find(c, block);
1481 if (b && likely(!b->hold_count) && likely(!b->state)) {
1482 __unlink_buffer(b);
1483 __free_buffer_wake(b);
1484 }
1485
1486 dm_bufio_unlock(c);
1487 }
1488 EXPORT_SYMBOL(dm_bufio_forget);
1489
1490 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1491 {
1492 c->minimum_buffers = n;
1493 }
1494 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1495
1496 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1497 {
1498 return c->block_size;
1499 }
1500 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1501
1502 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1503 {
1504 return i_size_read(c->bdev->bd_inode) >>
1505 (SECTOR_SHIFT + c->sectors_per_block_bits);
1506 }
1507 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1508
1509 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1510 {
1511 return b->block;
1512 }
1513 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1514
1515 void *dm_bufio_get_block_data(struct dm_buffer *b)
1516 {
1517 return b->data;
1518 }
1519 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1520
1521 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1522 {
1523 return b + 1;
1524 }
1525 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1526
1527 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1528 {
1529 return b->c;
1530 }
1531 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1532
1533 static void drop_buffers(struct dm_bufio_client *c)
1534 {
1535 struct dm_buffer *b;
1536 int i;
1537 bool warned = false;
1538
1539 BUG_ON(dm_bufio_in_request());
1540
1541 /*
1542 * An optimization so that the buffers are not written one-by-one.
1543 */
1544 dm_bufio_write_dirty_buffers_async(c);
1545
1546 dm_bufio_lock(c);
1547
1548 while ((b = __get_unclaimed_buffer(c)))
1549 __free_buffer_wake(b);
1550
1551 for (i = 0; i < LIST_SIZE; i++)
1552 list_for_each_entry(b, &c->lru[i], lru_list) {
1553 WARN_ON(!warned);
1554 warned = true;
1555 DMERR("leaked buffer %llx, hold count %u, list %d",
1556 (unsigned long long)b->block, b->hold_count, i);
1557 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1558 print_stack_trace(&b->stack_trace, 1);
1559 b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */
1560 #endif
1561 }
1562
1563 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1564 while ((b = __get_unclaimed_buffer(c)))
1565 __free_buffer_wake(b);
1566 #endif
1567
1568 for (i = 0; i < LIST_SIZE; i++)
1569 BUG_ON(!list_empty(&c->lru[i]));
1570
1571 dm_bufio_unlock(c);
1572 }
1573
1574 /*
1575 * We may not be able to evict this buffer if IO pending or the client
1576 * is still using it. Caller is expected to know buffer is too old.
1577 *
1578 * And if GFP_NOFS is used, we must not do any I/O because we hold
1579 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1580 * rerouted to different bufio client.
1581 */
1582 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1583 {
1584 if (!(gfp & __GFP_FS)) {
1585 if (test_bit(B_READING, &b->state) ||
1586 test_bit(B_WRITING, &b->state) ||
1587 test_bit(B_DIRTY, &b->state))
1588 return false;
1589 }
1590
1591 if (b->hold_count)
1592 return false;
1593
1594 __make_buffer_clean(b);
1595 __unlink_buffer(b);
1596 __free_buffer_wake(b);
1597
1598 return true;
1599 }
1600
1601 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1602 {
1603 unsigned long retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes);
1604 return retain_bytes >> (c->sectors_per_block_bits + SECTOR_SHIFT);
1605 }
1606
1607 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1608 gfp_t gfp_mask)
1609 {
1610 int l;
1611 struct dm_buffer *b, *tmp;
1612 unsigned long freed = 0;
1613 unsigned long count = nr_to_scan;
1614 unsigned long retain_target = get_retain_buffers(c);
1615
1616 for (l = 0; l < LIST_SIZE; l++) {
1617 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1618 if (__try_evict_buffer(b, gfp_mask))
1619 freed++;
1620 if (!--nr_to_scan || ((count - freed) <= retain_target))
1621 return freed;
1622 cond_resched();
1623 }
1624 }
1625 return freed;
1626 }
1627
1628 static unsigned long
1629 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1630 {
1631 struct dm_bufio_client *c;
1632 unsigned long freed;
1633
1634 c = container_of(shrink, struct dm_bufio_client, shrinker);
1635 if (sc->gfp_mask & __GFP_FS)
1636 dm_bufio_lock(c);
1637 else if (!dm_bufio_trylock(c))
1638 return SHRINK_STOP;
1639
1640 freed = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1641 dm_bufio_unlock(c);
1642 return freed;
1643 }
1644
1645 static unsigned long
1646 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1647 {
1648 struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1649
1650 return ACCESS_ONCE(c->n_buffers[LIST_CLEAN]) + ACCESS_ONCE(c->n_buffers[LIST_DIRTY]);
1651 }
1652
1653 /*
1654 * Create the buffering interface
1655 */
1656 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1657 unsigned reserved_buffers, unsigned aux_size,
1658 void (*alloc_callback)(struct dm_buffer *),
1659 void (*write_callback)(struct dm_buffer *))
1660 {
1661 int r;
1662 struct dm_bufio_client *c;
1663 unsigned i;
1664
1665 BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1666 (block_size & (block_size - 1)));
1667
1668 c = kzalloc(sizeof(*c), GFP_KERNEL);
1669 if (!c) {
1670 r = -ENOMEM;
1671 goto bad_client;
1672 }
1673 c->buffer_tree = RB_ROOT;
1674
1675 c->bdev = bdev;
1676 c->block_size = block_size;
1677 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1678 c->pages_per_block_bits = (__ffs(block_size) >= PAGE_SHIFT) ?
1679 __ffs(block_size) - PAGE_SHIFT : 0;
1680 c->blocks_per_page_bits = (__ffs(block_size) < PAGE_SHIFT ?
1681 PAGE_SHIFT - __ffs(block_size) : 0);
1682
1683 c->aux_size = aux_size;
1684 c->alloc_callback = alloc_callback;
1685 c->write_callback = write_callback;
1686
1687 for (i = 0; i < LIST_SIZE; i++) {
1688 INIT_LIST_HEAD(&c->lru[i]);
1689 c->n_buffers[i] = 0;
1690 }
1691
1692 mutex_init(&c->lock);
1693 INIT_LIST_HEAD(&c->reserved_buffers);
1694 c->need_reserved_buffers = reserved_buffers;
1695
1696 c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1697
1698 init_waitqueue_head(&c->free_buffer_wait);
1699 c->async_write_error = 0;
1700
1701 c->dm_io = dm_io_client_create();
1702 if (IS_ERR(c->dm_io)) {
1703 r = PTR_ERR(c->dm_io);
1704 goto bad_dm_io;
1705 }
1706
1707 mutex_lock(&dm_bufio_clients_lock);
1708 if (c->blocks_per_page_bits) {
1709 if (!DM_BUFIO_CACHE_NAME(c)) {
1710 DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1711 if (!DM_BUFIO_CACHE_NAME(c)) {
1712 r = -ENOMEM;
1713 mutex_unlock(&dm_bufio_clients_lock);
1714 goto bad_cache;
1715 }
1716 }
1717
1718 if (!DM_BUFIO_CACHE(c)) {
1719 DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1720 c->block_size,
1721 c->block_size, 0, NULL);
1722 if (!DM_BUFIO_CACHE(c)) {
1723 r = -ENOMEM;
1724 mutex_unlock(&dm_bufio_clients_lock);
1725 goto bad_cache;
1726 }
1727 }
1728 }
1729 mutex_unlock(&dm_bufio_clients_lock);
1730
1731 while (c->need_reserved_buffers) {
1732 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1733
1734 if (!b) {
1735 r = -ENOMEM;
1736 goto bad_buffer;
1737 }
1738 __free_buffer_wake(b);
1739 }
1740
1741 mutex_lock(&dm_bufio_clients_lock);
1742 dm_bufio_client_count++;
1743 list_add(&c->client_list, &dm_bufio_all_clients);
1744 __cache_size_refresh();
1745 mutex_unlock(&dm_bufio_clients_lock);
1746
1747 c->shrinker.count_objects = dm_bufio_shrink_count;
1748 c->shrinker.scan_objects = dm_bufio_shrink_scan;
1749 c->shrinker.seeks = 1;
1750 c->shrinker.batch = 0;
1751 register_shrinker(&c->shrinker);
1752
1753 return c;
1754
1755 bad_buffer:
1756 bad_cache:
1757 while (!list_empty(&c->reserved_buffers)) {
1758 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1759 struct dm_buffer, lru_list);
1760 list_del(&b->lru_list);
1761 free_buffer(b);
1762 }
1763 dm_io_client_destroy(c->dm_io);
1764 bad_dm_io:
1765 kfree(c);
1766 bad_client:
1767 return ERR_PTR(r);
1768 }
1769 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1770
1771 /*
1772 * Free the buffering interface.
1773 * It is required that there are no references on any buffers.
1774 */
1775 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1776 {
1777 unsigned i;
1778
1779 drop_buffers(c);
1780
1781 unregister_shrinker(&c->shrinker);
1782
1783 mutex_lock(&dm_bufio_clients_lock);
1784
1785 list_del(&c->client_list);
1786 dm_bufio_client_count--;
1787 __cache_size_refresh();
1788
1789 mutex_unlock(&dm_bufio_clients_lock);
1790
1791 BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1792 BUG_ON(c->need_reserved_buffers);
1793
1794 while (!list_empty(&c->reserved_buffers)) {
1795 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1796 struct dm_buffer, lru_list);
1797 list_del(&b->lru_list);
1798 free_buffer(b);
1799 }
1800
1801 for (i = 0; i < LIST_SIZE; i++)
1802 if (c->n_buffers[i])
1803 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1804
1805 for (i = 0; i < LIST_SIZE; i++)
1806 BUG_ON(c->n_buffers[i]);
1807
1808 dm_io_client_destroy(c->dm_io);
1809 kfree(c);
1810 }
1811 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1812
1813 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
1814 {
1815 c->start = start;
1816 }
1817 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
1818
1819 static unsigned get_max_age_hz(void)
1820 {
1821 unsigned max_age = ACCESS_ONCE(dm_bufio_max_age);
1822
1823 if (max_age > UINT_MAX / HZ)
1824 max_age = UINT_MAX / HZ;
1825
1826 return max_age * HZ;
1827 }
1828
1829 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1830 {
1831 return time_after_eq(jiffies, b->last_accessed + age_hz);
1832 }
1833
1834 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1835 {
1836 struct dm_buffer *b, *tmp;
1837 unsigned long retain_target = get_retain_buffers(c);
1838 unsigned long count;
1839 LIST_HEAD(write_list);
1840
1841 dm_bufio_lock(c);
1842
1843 __check_watermark(c, &write_list);
1844 if (unlikely(!list_empty(&write_list))) {
1845 dm_bufio_unlock(c);
1846 __flush_write_list(&write_list);
1847 dm_bufio_lock(c);
1848 }
1849
1850 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1851 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1852 if (count <= retain_target)
1853 break;
1854
1855 if (!older_than(b, age_hz))
1856 break;
1857
1858 if (__try_evict_buffer(b, 0))
1859 count--;
1860
1861 cond_resched();
1862 }
1863
1864 dm_bufio_unlock(c);
1865 }
1866
1867 static void cleanup_old_buffers(void)
1868 {
1869 unsigned long max_age_hz = get_max_age_hz();
1870 struct dm_bufio_client *c;
1871
1872 mutex_lock(&dm_bufio_clients_lock);
1873
1874 __cache_size_refresh();
1875
1876 list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1877 __evict_old_buffers(c, max_age_hz);
1878
1879 mutex_unlock(&dm_bufio_clients_lock);
1880 }
1881
1882 static struct workqueue_struct *dm_bufio_wq;
1883 static struct delayed_work dm_bufio_work;
1884
1885 static void work_fn(struct work_struct *w)
1886 {
1887 cleanup_old_buffers();
1888
1889 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1890 DM_BUFIO_WORK_TIMER_SECS * HZ);
1891 }
1892
1893 /*----------------------------------------------------------------
1894 * Module setup
1895 *--------------------------------------------------------------*/
1896
1897 /*
1898 * This is called only once for the whole dm_bufio module.
1899 * It initializes memory limit.
1900 */
1901 static int __init dm_bufio_init(void)
1902 {
1903 __u64 mem;
1904
1905 dm_bufio_allocated_kmem_cache = 0;
1906 dm_bufio_allocated_get_free_pages = 0;
1907 dm_bufio_allocated_vmalloc = 0;
1908 dm_bufio_current_allocated = 0;
1909
1910 memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1911 memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1912
1913 mem = (__u64)((totalram_pages - totalhigh_pages) *
1914 DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1915
1916 if (mem > ULONG_MAX)
1917 mem = ULONG_MAX;
1918
1919 #ifdef CONFIG_MMU
1920 /*
1921 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1922 * in fs/proc/internal.h
1923 */
1924 if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1925 mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1926 #endif
1927
1928 dm_bufio_default_cache_size = mem;
1929
1930 mutex_lock(&dm_bufio_clients_lock);
1931 __cache_size_refresh();
1932 mutex_unlock(&dm_bufio_clients_lock);
1933
1934 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
1935 if (!dm_bufio_wq)
1936 return -ENOMEM;
1937
1938 INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1939 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1940 DM_BUFIO_WORK_TIMER_SECS * HZ);
1941
1942 return 0;
1943 }
1944
1945 /*
1946 * This is called once when unloading the dm_bufio module.
1947 */
1948 static void __exit dm_bufio_exit(void)
1949 {
1950 int bug = 0;
1951 int i;
1952
1953 cancel_delayed_work_sync(&dm_bufio_work);
1954 destroy_workqueue(dm_bufio_wq);
1955
1956 for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++)
1957 kmem_cache_destroy(dm_bufio_caches[i]);
1958
1959 for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1960 kfree(dm_bufio_cache_names[i]);
1961
1962 if (dm_bufio_client_count) {
1963 DMCRIT("%s: dm_bufio_client_count leaked: %d",
1964 __func__, dm_bufio_client_count);
1965 bug = 1;
1966 }
1967
1968 if (dm_bufio_current_allocated) {
1969 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1970 __func__, dm_bufio_current_allocated);
1971 bug = 1;
1972 }
1973
1974 if (dm_bufio_allocated_get_free_pages) {
1975 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1976 __func__, dm_bufio_allocated_get_free_pages);
1977 bug = 1;
1978 }
1979
1980 if (dm_bufio_allocated_vmalloc) {
1981 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1982 __func__, dm_bufio_allocated_vmalloc);
1983 bug = 1;
1984 }
1985
1986 BUG_ON(bug);
1987 }
1988
1989 module_init(dm_bufio_init)
1990 module_exit(dm_bufio_exit)
1991
1992 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1993 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1994
1995 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1996 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1997
1998 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
1999 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2000
2001 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
2002 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2003
2004 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
2005 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
2006
2007 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
2008 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
2009
2010 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
2011 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
2012
2013 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
2014 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
2015
2016 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2017 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
2018 MODULE_LICENSE("GPL");