]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/dm-cache-target.c
block: add a bi_error field to struct bio
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm-cache-target.c
1 /*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20
21 #define DM_MSG_PREFIX "cache"
22
23 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
24 "A percentage of time allocated for copying to and/or from cache");
25
26 /*----------------------------------------------------------------*/
27
28 #define IOT_RESOLUTION 4
29
30 struct io_tracker {
31 spinlock_t lock;
32
33 /*
34 * Sectors of in-flight IO.
35 */
36 sector_t in_flight;
37
38 /*
39 * The time, in jiffies, when this device became idle (if it is
40 * indeed idle).
41 */
42 unsigned long idle_time;
43 unsigned long last_update_time;
44 };
45
46 static void iot_init(struct io_tracker *iot)
47 {
48 spin_lock_init(&iot->lock);
49 iot->in_flight = 0ul;
50 iot->idle_time = 0ul;
51 iot->last_update_time = jiffies;
52 }
53
54 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
55 {
56 if (iot->in_flight)
57 return false;
58
59 return time_after(jiffies, iot->idle_time + jifs);
60 }
61
62 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
63 {
64 bool r;
65 unsigned long flags;
66
67 spin_lock_irqsave(&iot->lock, flags);
68 r = __iot_idle_for(iot, jifs);
69 spin_unlock_irqrestore(&iot->lock, flags);
70
71 return r;
72 }
73
74 static void iot_io_begin(struct io_tracker *iot, sector_t len)
75 {
76 unsigned long flags;
77
78 spin_lock_irqsave(&iot->lock, flags);
79 iot->in_flight += len;
80 spin_unlock_irqrestore(&iot->lock, flags);
81 }
82
83 static void __iot_io_end(struct io_tracker *iot, sector_t len)
84 {
85 iot->in_flight -= len;
86 if (!iot->in_flight)
87 iot->idle_time = jiffies;
88 }
89
90 static void iot_io_end(struct io_tracker *iot, sector_t len)
91 {
92 unsigned long flags;
93
94 spin_lock_irqsave(&iot->lock, flags);
95 __iot_io_end(iot, len);
96 spin_unlock_irqrestore(&iot->lock, flags);
97 }
98
99 /*----------------------------------------------------------------*/
100
101 /*
102 * Glossary:
103 *
104 * oblock: index of an origin block
105 * cblock: index of a cache block
106 * promotion: movement of a block from origin to cache
107 * demotion: movement of a block from cache to origin
108 * migration: movement of a block between the origin and cache device,
109 * either direction
110 */
111
112 /*----------------------------------------------------------------*/
113
114 /*
115 * There are a couple of places where we let a bio run, but want to do some
116 * work before calling its endio function. We do this by temporarily
117 * changing the endio fn.
118 */
119 struct dm_hook_info {
120 bio_end_io_t *bi_end_io;
121 void *bi_private;
122 };
123
124 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
125 bio_end_io_t *bi_end_io, void *bi_private)
126 {
127 h->bi_end_io = bio->bi_end_io;
128 h->bi_private = bio->bi_private;
129
130 bio->bi_end_io = bi_end_io;
131 bio->bi_private = bi_private;
132 }
133
134 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
135 {
136 bio->bi_end_io = h->bi_end_io;
137 bio->bi_private = h->bi_private;
138 }
139
140 /*----------------------------------------------------------------*/
141
142 #define MIGRATION_POOL_SIZE 128
143 #define COMMIT_PERIOD HZ
144 #define MIGRATION_COUNT_WINDOW 10
145
146 /*
147 * The block size of the device holding cache data must be
148 * between 32KB and 1GB.
149 */
150 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
151 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
152
153 enum cache_metadata_mode {
154 CM_WRITE, /* metadata may be changed */
155 CM_READ_ONLY, /* metadata may not be changed */
156 CM_FAIL
157 };
158
159 enum cache_io_mode {
160 /*
161 * Data is written to cached blocks only. These blocks are marked
162 * dirty. If you lose the cache device you will lose data.
163 * Potential performance increase for both reads and writes.
164 */
165 CM_IO_WRITEBACK,
166
167 /*
168 * Data is written to both cache and origin. Blocks are never
169 * dirty. Potential performance benfit for reads only.
170 */
171 CM_IO_WRITETHROUGH,
172
173 /*
174 * A degraded mode useful for various cache coherency situations
175 * (eg, rolling back snapshots). Reads and writes always go to the
176 * origin. If a write goes to a cached oblock, then the cache
177 * block is invalidated.
178 */
179 CM_IO_PASSTHROUGH
180 };
181
182 struct cache_features {
183 enum cache_metadata_mode mode;
184 enum cache_io_mode io_mode;
185 };
186
187 struct cache_stats {
188 atomic_t read_hit;
189 atomic_t read_miss;
190 atomic_t write_hit;
191 atomic_t write_miss;
192 atomic_t demotion;
193 atomic_t promotion;
194 atomic_t copies_avoided;
195 atomic_t cache_cell_clash;
196 atomic_t commit_count;
197 atomic_t discard_count;
198 };
199
200 /*
201 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
202 * the one-past-the-end value.
203 */
204 struct cblock_range {
205 dm_cblock_t begin;
206 dm_cblock_t end;
207 };
208
209 struct invalidation_request {
210 struct list_head list;
211 struct cblock_range *cblocks;
212
213 atomic_t complete;
214 int err;
215
216 wait_queue_head_t result_wait;
217 };
218
219 struct cache {
220 struct dm_target *ti;
221 struct dm_target_callbacks callbacks;
222
223 struct dm_cache_metadata *cmd;
224
225 /*
226 * Metadata is written to this device.
227 */
228 struct dm_dev *metadata_dev;
229
230 /*
231 * The slower of the two data devices. Typically a spindle.
232 */
233 struct dm_dev *origin_dev;
234
235 /*
236 * The faster of the two data devices. Typically an SSD.
237 */
238 struct dm_dev *cache_dev;
239
240 /*
241 * Size of the origin device in _complete_ blocks and native sectors.
242 */
243 dm_oblock_t origin_blocks;
244 sector_t origin_sectors;
245
246 /*
247 * Size of the cache device in blocks.
248 */
249 dm_cblock_t cache_size;
250
251 /*
252 * Fields for converting from sectors to blocks.
253 */
254 uint32_t sectors_per_block;
255 int sectors_per_block_shift;
256
257 spinlock_t lock;
258 struct list_head deferred_cells;
259 struct bio_list deferred_bios;
260 struct bio_list deferred_flush_bios;
261 struct bio_list deferred_writethrough_bios;
262 struct list_head quiesced_migrations;
263 struct list_head completed_migrations;
264 struct list_head need_commit_migrations;
265 sector_t migration_threshold;
266 wait_queue_head_t migration_wait;
267 atomic_t nr_allocated_migrations;
268
269 /*
270 * The number of in flight migrations that are performing
271 * background io. eg, promotion, writeback.
272 */
273 atomic_t nr_io_migrations;
274
275 wait_queue_head_t quiescing_wait;
276 atomic_t quiescing;
277 atomic_t quiescing_ack;
278
279 /*
280 * cache_size entries, dirty if set
281 */
282 atomic_t nr_dirty;
283 unsigned long *dirty_bitset;
284
285 /*
286 * origin_blocks entries, discarded if set.
287 */
288 dm_dblock_t discard_nr_blocks;
289 unsigned long *discard_bitset;
290 uint32_t discard_block_size; /* a power of 2 times sectors per block */
291
292 /*
293 * Rather than reconstructing the table line for the status we just
294 * save it and regurgitate.
295 */
296 unsigned nr_ctr_args;
297 const char **ctr_args;
298
299 struct dm_kcopyd_client *copier;
300 struct workqueue_struct *wq;
301 struct work_struct worker;
302
303 struct delayed_work waker;
304 unsigned long last_commit_jiffies;
305
306 struct dm_bio_prison *prison;
307 struct dm_deferred_set *all_io_ds;
308
309 mempool_t *migration_pool;
310
311 struct dm_cache_policy *policy;
312 unsigned policy_nr_args;
313
314 bool need_tick_bio:1;
315 bool sized:1;
316 bool invalidate:1;
317 bool commit_requested:1;
318 bool loaded_mappings:1;
319 bool loaded_discards:1;
320
321 /*
322 * Cache features such as write-through.
323 */
324 struct cache_features features;
325
326 struct cache_stats stats;
327
328 /*
329 * Invalidation fields.
330 */
331 spinlock_t invalidation_lock;
332 struct list_head invalidation_requests;
333
334 struct io_tracker origin_tracker;
335 };
336
337 struct per_bio_data {
338 bool tick:1;
339 unsigned req_nr:2;
340 struct dm_deferred_entry *all_io_entry;
341 struct dm_hook_info hook_info;
342 sector_t len;
343
344 /*
345 * writethrough fields. These MUST remain at the end of this
346 * structure and the 'cache' member must be the first as it
347 * is used to determine the offset of the writethrough fields.
348 */
349 struct cache *cache;
350 dm_cblock_t cblock;
351 struct dm_bio_details bio_details;
352 };
353
354 struct dm_cache_migration {
355 struct list_head list;
356 struct cache *cache;
357
358 unsigned long start_jiffies;
359 dm_oblock_t old_oblock;
360 dm_oblock_t new_oblock;
361 dm_cblock_t cblock;
362
363 bool err:1;
364 bool discard:1;
365 bool writeback:1;
366 bool demote:1;
367 bool promote:1;
368 bool requeue_holder:1;
369 bool invalidate:1;
370
371 struct dm_bio_prison_cell *old_ocell;
372 struct dm_bio_prison_cell *new_ocell;
373 };
374
375 /*
376 * Processing a bio in the worker thread may require these memory
377 * allocations. We prealloc to avoid deadlocks (the same worker thread
378 * frees them back to the mempool).
379 */
380 struct prealloc {
381 struct dm_cache_migration *mg;
382 struct dm_bio_prison_cell *cell1;
383 struct dm_bio_prison_cell *cell2;
384 };
385
386 static enum cache_metadata_mode get_cache_mode(struct cache *cache);
387
388 static void wake_worker(struct cache *cache)
389 {
390 queue_work(cache->wq, &cache->worker);
391 }
392
393 /*----------------------------------------------------------------*/
394
395 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
396 {
397 /* FIXME: change to use a local slab. */
398 return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
399 }
400
401 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
402 {
403 dm_bio_prison_free_cell(cache->prison, cell);
404 }
405
406 static struct dm_cache_migration *alloc_migration(struct cache *cache)
407 {
408 struct dm_cache_migration *mg;
409
410 mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
411 if (mg) {
412 mg->cache = cache;
413 atomic_inc(&mg->cache->nr_allocated_migrations);
414 }
415
416 return mg;
417 }
418
419 static void free_migration(struct dm_cache_migration *mg)
420 {
421 struct cache *cache = mg->cache;
422
423 if (atomic_dec_and_test(&cache->nr_allocated_migrations))
424 wake_up(&cache->migration_wait);
425
426 mempool_free(mg, cache->migration_pool);
427 wake_worker(cache);
428 }
429
430 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
431 {
432 if (!p->mg) {
433 p->mg = alloc_migration(cache);
434 if (!p->mg)
435 return -ENOMEM;
436 }
437
438 if (!p->cell1) {
439 p->cell1 = alloc_prison_cell(cache);
440 if (!p->cell1)
441 return -ENOMEM;
442 }
443
444 if (!p->cell2) {
445 p->cell2 = alloc_prison_cell(cache);
446 if (!p->cell2)
447 return -ENOMEM;
448 }
449
450 return 0;
451 }
452
453 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
454 {
455 if (p->cell2)
456 free_prison_cell(cache, p->cell2);
457
458 if (p->cell1)
459 free_prison_cell(cache, p->cell1);
460
461 if (p->mg)
462 free_migration(p->mg);
463 }
464
465 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
466 {
467 struct dm_cache_migration *mg = p->mg;
468
469 BUG_ON(!mg);
470 p->mg = NULL;
471
472 return mg;
473 }
474
475 /*
476 * You must have a cell within the prealloc struct to return. If not this
477 * function will BUG() rather than returning NULL.
478 */
479 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
480 {
481 struct dm_bio_prison_cell *r = NULL;
482
483 if (p->cell1) {
484 r = p->cell1;
485 p->cell1 = NULL;
486
487 } else if (p->cell2) {
488 r = p->cell2;
489 p->cell2 = NULL;
490 } else
491 BUG();
492
493 return r;
494 }
495
496 /*
497 * You can't have more than two cells in a prealloc struct. BUG() will be
498 * called if you try and overfill.
499 */
500 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
501 {
502 if (!p->cell2)
503 p->cell2 = cell;
504
505 else if (!p->cell1)
506 p->cell1 = cell;
507
508 else
509 BUG();
510 }
511
512 /*----------------------------------------------------------------*/
513
514 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key *key)
515 {
516 key->virtual = 0;
517 key->dev = 0;
518 key->block_begin = from_oblock(begin);
519 key->block_end = from_oblock(end);
520 }
521
522 /*
523 * The caller hands in a preallocated cell, and a free function for it.
524 * The cell will be freed if there's an error, or if it wasn't used because
525 * a cell with that key already exists.
526 */
527 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
528
529 static int bio_detain_range(struct cache *cache, dm_oblock_t oblock_begin, dm_oblock_t oblock_end,
530 struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
531 cell_free_fn free_fn, void *free_context,
532 struct dm_bio_prison_cell **cell_result)
533 {
534 int r;
535 struct dm_cell_key key;
536
537 build_key(oblock_begin, oblock_end, &key);
538 r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
539 if (r)
540 free_fn(free_context, cell_prealloc);
541
542 return r;
543 }
544
545 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
546 struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
547 cell_free_fn free_fn, void *free_context,
548 struct dm_bio_prison_cell **cell_result)
549 {
550 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
551 return bio_detain_range(cache, oblock, end, bio,
552 cell_prealloc, free_fn, free_context, cell_result);
553 }
554
555 static int get_cell(struct cache *cache,
556 dm_oblock_t oblock,
557 struct prealloc *structs,
558 struct dm_bio_prison_cell **cell_result)
559 {
560 int r;
561 struct dm_cell_key key;
562 struct dm_bio_prison_cell *cell_prealloc;
563
564 cell_prealloc = prealloc_get_cell(structs);
565
566 build_key(oblock, to_oblock(from_oblock(oblock) + 1ULL), &key);
567 r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
568 if (r)
569 prealloc_put_cell(structs, cell_prealloc);
570
571 return r;
572 }
573
574 /*----------------------------------------------------------------*/
575
576 static bool is_dirty(struct cache *cache, dm_cblock_t b)
577 {
578 return test_bit(from_cblock(b), cache->dirty_bitset);
579 }
580
581 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
582 {
583 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
584 atomic_inc(&cache->nr_dirty);
585 policy_set_dirty(cache->policy, oblock);
586 }
587 }
588
589 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
590 {
591 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
592 policy_clear_dirty(cache->policy, oblock);
593 if (atomic_dec_return(&cache->nr_dirty) == 0)
594 dm_table_event(cache->ti->table);
595 }
596 }
597
598 /*----------------------------------------------------------------*/
599
600 static bool block_size_is_power_of_two(struct cache *cache)
601 {
602 return cache->sectors_per_block_shift >= 0;
603 }
604
605 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
606 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
607 __always_inline
608 #endif
609 static dm_block_t block_div(dm_block_t b, uint32_t n)
610 {
611 do_div(b, n);
612
613 return b;
614 }
615
616 static dm_block_t oblocks_per_dblock(struct cache *cache)
617 {
618 dm_block_t oblocks = cache->discard_block_size;
619
620 if (block_size_is_power_of_two(cache))
621 oblocks >>= cache->sectors_per_block_shift;
622 else
623 oblocks = block_div(oblocks, cache->sectors_per_block);
624
625 return oblocks;
626 }
627
628 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
629 {
630 return to_dblock(block_div(from_oblock(oblock),
631 oblocks_per_dblock(cache)));
632 }
633
634 static dm_oblock_t dblock_to_oblock(struct cache *cache, dm_dblock_t dblock)
635 {
636 return to_oblock(from_dblock(dblock) * oblocks_per_dblock(cache));
637 }
638
639 static void set_discard(struct cache *cache, dm_dblock_t b)
640 {
641 unsigned long flags;
642
643 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
644 atomic_inc(&cache->stats.discard_count);
645
646 spin_lock_irqsave(&cache->lock, flags);
647 set_bit(from_dblock(b), cache->discard_bitset);
648 spin_unlock_irqrestore(&cache->lock, flags);
649 }
650
651 static void clear_discard(struct cache *cache, dm_dblock_t b)
652 {
653 unsigned long flags;
654
655 spin_lock_irqsave(&cache->lock, flags);
656 clear_bit(from_dblock(b), cache->discard_bitset);
657 spin_unlock_irqrestore(&cache->lock, flags);
658 }
659
660 static bool is_discarded(struct cache *cache, dm_dblock_t b)
661 {
662 int r;
663 unsigned long flags;
664
665 spin_lock_irqsave(&cache->lock, flags);
666 r = test_bit(from_dblock(b), cache->discard_bitset);
667 spin_unlock_irqrestore(&cache->lock, flags);
668
669 return r;
670 }
671
672 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
673 {
674 int r;
675 unsigned long flags;
676
677 spin_lock_irqsave(&cache->lock, flags);
678 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
679 cache->discard_bitset);
680 spin_unlock_irqrestore(&cache->lock, flags);
681
682 return r;
683 }
684
685 /*----------------------------------------------------------------*/
686
687 static void load_stats(struct cache *cache)
688 {
689 struct dm_cache_statistics stats;
690
691 dm_cache_metadata_get_stats(cache->cmd, &stats);
692 atomic_set(&cache->stats.read_hit, stats.read_hits);
693 atomic_set(&cache->stats.read_miss, stats.read_misses);
694 atomic_set(&cache->stats.write_hit, stats.write_hits);
695 atomic_set(&cache->stats.write_miss, stats.write_misses);
696 }
697
698 static void save_stats(struct cache *cache)
699 {
700 struct dm_cache_statistics stats;
701
702 if (get_cache_mode(cache) >= CM_READ_ONLY)
703 return;
704
705 stats.read_hits = atomic_read(&cache->stats.read_hit);
706 stats.read_misses = atomic_read(&cache->stats.read_miss);
707 stats.write_hits = atomic_read(&cache->stats.write_hit);
708 stats.write_misses = atomic_read(&cache->stats.write_miss);
709
710 dm_cache_metadata_set_stats(cache->cmd, &stats);
711 }
712
713 /*----------------------------------------------------------------
714 * Per bio data
715 *--------------------------------------------------------------*/
716
717 /*
718 * If using writeback, leave out struct per_bio_data's writethrough fields.
719 */
720 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
721 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
722
723 static bool writethrough_mode(struct cache_features *f)
724 {
725 return f->io_mode == CM_IO_WRITETHROUGH;
726 }
727
728 static bool writeback_mode(struct cache_features *f)
729 {
730 return f->io_mode == CM_IO_WRITEBACK;
731 }
732
733 static bool passthrough_mode(struct cache_features *f)
734 {
735 return f->io_mode == CM_IO_PASSTHROUGH;
736 }
737
738 static size_t get_per_bio_data_size(struct cache *cache)
739 {
740 return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
741 }
742
743 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
744 {
745 struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
746 BUG_ON(!pb);
747 return pb;
748 }
749
750 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
751 {
752 struct per_bio_data *pb = get_per_bio_data(bio, data_size);
753
754 pb->tick = false;
755 pb->req_nr = dm_bio_get_target_bio_nr(bio);
756 pb->all_io_entry = NULL;
757 pb->len = 0;
758
759 return pb;
760 }
761
762 /*----------------------------------------------------------------
763 * Remapping
764 *--------------------------------------------------------------*/
765 static void remap_to_origin(struct cache *cache, struct bio *bio)
766 {
767 bio->bi_bdev = cache->origin_dev->bdev;
768 }
769
770 static void remap_to_cache(struct cache *cache, struct bio *bio,
771 dm_cblock_t cblock)
772 {
773 sector_t bi_sector = bio->bi_iter.bi_sector;
774 sector_t block = from_cblock(cblock);
775
776 bio->bi_bdev = cache->cache_dev->bdev;
777 if (!block_size_is_power_of_two(cache))
778 bio->bi_iter.bi_sector =
779 (block * cache->sectors_per_block) +
780 sector_div(bi_sector, cache->sectors_per_block);
781 else
782 bio->bi_iter.bi_sector =
783 (block << cache->sectors_per_block_shift) |
784 (bi_sector & (cache->sectors_per_block - 1));
785 }
786
787 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
788 {
789 unsigned long flags;
790 size_t pb_data_size = get_per_bio_data_size(cache);
791 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
792
793 spin_lock_irqsave(&cache->lock, flags);
794 if (cache->need_tick_bio &&
795 !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
796 pb->tick = true;
797 cache->need_tick_bio = false;
798 }
799 spin_unlock_irqrestore(&cache->lock, flags);
800 }
801
802 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
803 dm_oblock_t oblock)
804 {
805 check_if_tick_bio_needed(cache, bio);
806 remap_to_origin(cache, bio);
807 if (bio_data_dir(bio) == WRITE)
808 clear_discard(cache, oblock_to_dblock(cache, oblock));
809 }
810
811 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
812 dm_oblock_t oblock, dm_cblock_t cblock)
813 {
814 check_if_tick_bio_needed(cache, bio);
815 remap_to_cache(cache, bio, cblock);
816 if (bio_data_dir(bio) == WRITE) {
817 set_dirty(cache, oblock, cblock);
818 clear_discard(cache, oblock_to_dblock(cache, oblock));
819 }
820 }
821
822 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
823 {
824 sector_t block_nr = bio->bi_iter.bi_sector;
825
826 if (!block_size_is_power_of_two(cache))
827 (void) sector_div(block_nr, cache->sectors_per_block);
828 else
829 block_nr >>= cache->sectors_per_block_shift;
830
831 return to_oblock(block_nr);
832 }
833
834 static int bio_triggers_commit(struct cache *cache, struct bio *bio)
835 {
836 return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
837 }
838
839 /*
840 * You must increment the deferred set whilst the prison cell is held. To
841 * encourage this, we ask for 'cell' to be passed in.
842 */
843 static void inc_ds(struct cache *cache, struct bio *bio,
844 struct dm_bio_prison_cell *cell)
845 {
846 size_t pb_data_size = get_per_bio_data_size(cache);
847 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
848
849 BUG_ON(!cell);
850 BUG_ON(pb->all_io_entry);
851
852 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
853 }
854
855 static bool accountable_bio(struct cache *cache, struct bio *bio)
856 {
857 return ((bio->bi_bdev == cache->origin_dev->bdev) &&
858 !(bio->bi_rw & REQ_DISCARD));
859 }
860
861 static void accounted_begin(struct cache *cache, struct bio *bio)
862 {
863 size_t pb_data_size = get_per_bio_data_size(cache);
864 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
865
866 if (accountable_bio(cache, bio)) {
867 pb->len = bio_sectors(bio);
868 iot_io_begin(&cache->origin_tracker, pb->len);
869 }
870 }
871
872 static void accounted_complete(struct cache *cache, struct bio *bio)
873 {
874 size_t pb_data_size = get_per_bio_data_size(cache);
875 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
876
877 iot_io_end(&cache->origin_tracker, pb->len);
878 }
879
880 static void accounted_request(struct cache *cache, struct bio *bio)
881 {
882 accounted_begin(cache, bio);
883 generic_make_request(bio);
884 }
885
886 static void issue(struct cache *cache, struct bio *bio)
887 {
888 unsigned long flags;
889
890 if (!bio_triggers_commit(cache, bio)) {
891 accounted_request(cache, bio);
892 return;
893 }
894
895 /*
896 * Batch together any bios that trigger commits and then issue a
897 * single commit for them in do_worker().
898 */
899 spin_lock_irqsave(&cache->lock, flags);
900 cache->commit_requested = true;
901 bio_list_add(&cache->deferred_flush_bios, bio);
902 spin_unlock_irqrestore(&cache->lock, flags);
903 }
904
905 static void inc_and_issue(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell *cell)
906 {
907 inc_ds(cache, bio, cell);
908 issue(cache, bio);
909 }
910
911 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
912 {
913 unsigned long flags;
914
915 spin_lock_irqsave(&cache->lock, flags);
916 bio_list_add(&cache->deferred_writethrough_bios, bio);
917 spin_unlock_irqrestore(&cache->lock, flags);
918
919 wake_worker(cache);
920 }
921
922 static void writethrough_endio(struct bio *bio)
923 {
924 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
925
926 dm_unhook_bio(&pb->hook_info, bio);
927
928 if (bio->bi_error) {
929 bio_endio(bio);
930 return;
931 }
932
933 dm_bio_restore(&pb->bio_details, bio);
934 remap_to_cache(pb->cache, bio, pb->cblock);
935
936 /*
937 * We can't issue this bio directly, since we're in interrupt
938 * context. So it gets put on a bio list for processing by the
939 * worker thread.
940 */
941 defer_writethrough_bio(pb->cache, bio);
942 }
943
944 /*
945 * When running in writethrough mode we need to send writes to clean blocks
946 * to both the cache and origin devices. In future we'd like to clone the
947 * bio and send them in parallel, but for now we're doing them in
948 * series as this is easier.
949 */
950 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
951 dm_oblock_t oblock, dm_cblock_t cblock)
952 {
953 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
954
955 pb->cache = cache;
956 pb->cblock = cblock;
957 dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
958 dm_bio_record(&pb->bio_details, bio);
959
960 remap_to_origin_clear_discard(pb->cache, bio, oblock);
961 }
962
963 /*----------------------------------------------------------------
964 * Failure modes
965 *--------------------------------------------------------------*/
966 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
967 {
968 return cache->features.mode;
969 }
970
971 static const char *cache_device_name(struct cache *cache)
972 {
973 return dm_device_name(dm_table_get_md(cache->ti->table));
974 }
975
976 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
977 {
978 const char *descs[] = {
979 "write",
980 "read-only",
981 "fail"
982 };
983
984 dm_table_event(cache->ti->table);
985 DMINFO("%s: switching cache to %s mode",
986 cache_device_name(cache), descs[(int)mode]);
987 }
988
989 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
990 {
991 bool needs_check = dm_cache_metadata_needs_check(cache->cmd);
992 enum cache_metadata_mode old_mode = get_cache_mode(cache);
993
994 if (new_mode == CM_WRITE && needs_check) {
995 DMERR("%s: unable to switch cache to write mode until repaired.",
996 cache_device_name(cache));
997 if (old_mode != new_mode)
998 new_mode = old_mode;
999 else
1000 new_mode = CM_READ_ONLY;
1001 }
1002
1003 /* Never move out of fail mode */
1004 if (old_mode == CM_FAIL)
1005 new_mode = CM_FAIL;
1006
1007 switch (new_mode) {
1008 case CM_FAIL:
1009 case CM_READ_ONLY:
1010 dm_cache_metadata_set_read_only(cache->cmd);
1011 break;
1012
1013 case CM_WRITE:
1014 dm_cache_metadata_set_read_write(cache->cmd);
1015 break;
1016 }
1017
1018 cache->features.mode = new_mode;
1019
1020 if (new_mode != old_mode)
1021 notify_mode_switch(cache, new_mode);
1022 }
1023
1024 static void abort_transaction(struct cache *cache)
1025 {
1026 const char *dev_name = cache_device_name(cache);
1027
1028 if (get_cache_mode(cache) >= CM_READ_ONLY)
1029 return;
1030
1031 if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1032 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1033 set_cache_mode(cache, CM_FAIL);
1034 }
1035
1036 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1037 if (dm_cache_metadata_abort(cache->cmd)) {
1038 DMERR("%s: failed to abort metadata transaction", dev_name);
1039 set_cache_mode(cache, CM_FAIL);
1040 }
1041 }
1042
1043 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1044 {
1045 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1046 cache_device_name(cache), op, r);
1047 abort_transaction(cache);
1048 set_cache_mode(cache, CM_READ_ONLY);
1049 }
1050
1051 /*----------------------------------------------------------------
1052 * Migration processing
1053 *
1054 * Migration covers moving data from the origin device to the cache, or
1055 * vice versa.
1056 *--------------------------------------------------------------*/
1057 static void inc_io_migrations(struct cache *cache)
1058 {
1059 atomic_inc(&cache->nr_io_migrations);
1060 }
1061
1062 static void dec_io_migrations(struct cache *cache)
1063 {
1064 atomic_dec(&cache->nr_io_migrations);
1065 }
1066
1067 static void __cell_release(struct cache *cache, struct dm_bio_prison_cell *cell,
1068 bool holder, struct bio_list *bios)
1069 {
1070 (holder ? dm_cell_release : dm_cell_release_no_holder)
1071 (cache->prison, cell, bios);
1072 free_prison_cell(cache, cell);
1073 }
1074
1075 static bool discard_or_flush(struct bio *bio)
1076 {
1077 return bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD);
1078 }
1079
1080 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell)
1081 {
1082 if (discard_or_flush(cell->holder))
1083 /*
1084 * We have to handle these bios
1085 * individually.
1086 */
1087 __cell_release(cache, cell, true, &cache->deferred_bios);
1088
1089 else
1090 list_add_tail(&cell->user_list, &cache->deferred_cells);
1091 }
1092
1093 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell, bool holder)
1094 {
1095 unsigned long flags;
1096
1097 if (!holder && dm_cell_promote_or_release(cache->prison, cell)) {
1098 /*
1099 * There was no prisoner to promote to holder, the
1100 * cell has been released.
1101 */
1102 free_prison_cell(cache, cell);
1103 return;
1104 }
1105
1106 spin_lock_irqsave(&cache->lock, flags);
1107 __cell_defer(cache, cell);
1108 spin_unlock_irqrestore(&cache->lock, flags);
1109
1110 wake_worker(cache);
1111 }
1112
1113 static void cell_error_with_code(struct cache *cache, struct dm_bio_prison_cell *cell, int err)
1114 {
1115 dm_cell_error(cache->prison, cell, err);
1116 dm_bio_prison_free_cell(cache->prison, cell);
1117 }
1118
1119 static void cell_requeue(struct cache *cache, struct dm_bio_prison_cell *cell)
1120 {
1121 cell_error_with_code(cache, cell, DM_ENDIO_REQUEUE);
1122 }
1123
1124 static void free_io_migration(struct dm_cache_migration *mg)
1125 {
1126 dec_io_migrations(mg->cache);
1127 free_migration(mg);
1128 }
1129
1130 static void migration_failure(struct dm_cache_migration *mg)
1131 {
1132 struct cache *cache = mg->cache;
1133 const char *dev_name = cache_device_name(cache);
1134
1135 if (mg->writeback) {
1136 DMERR_LIMIT("%s: writeback failed; couldn't copy block", dev_name);
1137 set_dirty(cache, mg->old_oblock, mg->cblock);
1138 cell_defer(cache, mg->old_ocell, false);
1139
1140 } else if (mg->demote) {
1141 DMERR_LIMIT("%s: demotion failed; couldn't copy block", dev_name);
1142 policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
1143
1144 cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1145 if (mg->promote)
1146 cell_defer(cache, mg->new_ocell, true);
1147 } else {
1148 DMERR_LIMIT("%s: promotion failed; couldn't copy block", dev_name);
1149 policy_remove_mapping(cache->policy, mg->new_oblock);
1150 cell_defer(cache, mg->new_ocell, true);
1151 }
1152
1153 free_io_migration(mg);
1154 }
1155
1156 static void migration_success_pre_commit(struct dm_cache_migration *mg)
1157 {
1158 int r;
1159 unsigned long flags;
1160 struct cache *cache = mg->cache;
1161
1162 if (mg->writeback) {
1163 clear_dirty(cache, mg->old_oblock, mg->cblock);
1164 cell_defer(cache, mg->old_ocell, false);
1165 free_io_migration(mg);
1166 return;
1167
1168 } else if (mg->demote) {
1169 r = dm_cache_remove_mapping(cache->cmd, mg->cblock);
1170 if (r) {
1171 DMERR_LIMIT("%s: demotion failed; couldn't update on disk metadata",
1172 cache_device_name(cache));
1173 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1174 policy_force_mapping(cache->policy, mg->new_oblock,
1175 mg->old_oblock);
1176 if (mg->promote)
1177 cell_defer(cache, mg->new_ocell, true);
1178 free_io_migration(mg);
1179 return;
1180 }
1181 } else {
1182 r = dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock);
1183 if (r) {
1184 DMERR_LIMIT("%s: promotion failed; couldn't update on disk metadata",
1185 cache_device_name(cache));
1186 metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1187 policy_remove_mapping(cache->policy, mg->new_oblock);
1188 free_io_migration(mg);
1189 return;
1190 }
1191 }
1192
1193 spin_lock_irqsave(&cache->lock, flags);
1194 list_add_tail(&mg->list, &cache->need_commit_migrations);
1195 cache->commit_requested = true;
1196 spin_unlock_irqrestore(&cache->lock, flags);
1197 }
1198
1199 static void migration_success_post_commit(struct dm_cache_migration *mg)
1200 {
1201 unsigned long flags;
1202 struct cache *cache = mg->cache;
1203
1204 if (mg->writeback) {
1205 DMWARN_LIMIT("%s: writeback unexpectedly triggered commit",
1206 cache_device_name(cache));
1207 return;
1208
1209 } else if (mg->demote) {
1210 cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1211
1212 if (mg->promote) {
1213 mg->demote = false;
1214
1215 spin_lock_irqsave(&cache->lock, flags);
1216 list_add_tail(&mg->list, &cache->quiesced_migrations);
1217 spin_unlock_irqrestore(&cache->lock, flags);
1218
1219 } else {
1220 if (mg->invalidate)
1221 policy_remove_mapping(cache->policy, mg->old_oblock);
1222 free_io_migration(mg);
1223 }
1224
1225 } else {
1226 if (mg->requeue_holder) {
1227 clear_dirty(cache, mg->new_oblock, mg->cblock);
1228 cell_defer(cache, mg->new_ocell, true);
1229 } else {
1230 /*
1231 * The block was promoted via an overwrite, so it's dirty.
1232 */
1233 set_dirty(cache, mg->new_oblock, mg->cblock);
1234 bio_endio(mg->new_ocell->holder);
1235 cell_defer(cache, mg->new_ocell, false);
1236 }
1237 free_io_migration(mg);
1238 }
1239 }
1240
1241 static void copy_complete(int read_err, unsigned long write_err, void *context)
1242 {
1243 unsigned long flags;
1244 struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
1245 struct cache *cache = mg->cache;
1246
1247 if (read_err || write_err)
1248 mg->err = true;
1249
1250 spin_lock_irqsave(&cache->lock, flags);
1251 list_add_tail(&mg->list, &cache->completed_migrations);
1252 spin_unlock_irqrestore(&cache->lock, flags);
1253
1254 wake_worker(cache);
1255 }
1256
1257 static void issue_copy(struct dm_cache_migration *mg)
1258 {
1259 int r;
1260 struct dm_io_region o_region, c_region;
1261 struct cache *cache = mg->cache;
1262 sector_t cblock = from_cblock(mg->cblock);
1263
1264 o_region.bdev = cache->origin_dev->bdev;
1265 o_region.count = cache->sectors_per_block;
1266
1267 c_region.bdev = cache->cache_dev->bdev;
1268 c_region.sector = cblock * cache->sectors_per_block;
1269 c_region.count = cache->sectors_per_block;
1270
1271 if (mg->writeback || mg->demote) {
1272 /* demote */
1273 o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
1274 r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
1275 } else {
1276 /* promote */
1277 o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
1278 r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
1279 }
1280
1281 if (r < 0) {
1282 DMERR_LIMIT("%s: issuing migration failed", cache_device_name(cache));
1283 migration_failure(mg);
1284 }
1285 }
1286
1287 static void overwrite_endio(struct bio *bio)
1288 {
1289 struct dm_cache_migration *mg = bio->bi_private;
1290 struct cache *cache = mg->cache;
1291 size_t pb_data_size = get_per_bio_data_size(cache);
1292 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1293 unsigned long flags;
1294
1295 dm_unhook_bio(&pb->hook_info, bio);
1296
1297 if (bio->bi_error)
1298 mg->err = true;
1299
1300 mg->requeue_holder = false;
1301
1302 spin_lock_irqsave(&cache->lock, flags);
1303 list_add_tail(&mg->list, &cache->completed_migrations);
1304 spin_unlock_irqrestore(&cache->lock, flags);
1305
1306 wake_worker(cache);
1307 }
1308
1309 static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
1310 {
1311 size_t pb_data_size = get_per_bio_data_size(mg->cache);
1312 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1313
1314 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1315 remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1316
1317 /*
1318 * No need to inc_ds() here, since the cell will be held for the
1319 * duration of the io.
1320 */
1321 accounted_request(mg->cache, bio);
1322 }
1323
1324 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1325 {
1326 return (bio_data_dir(bio) == WRITE) &&
1327 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1328 }
1329
1330 static void avoid_copy(struct dm_cache_migration *mg)
1331 {
1332 atomic_inc(&mg->cache->stats.copies_avoided);
1333 migration_success_pre_commit(mg);
1334 }
1335
1336 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1337 dm_dblock_t *b, dm_dblock_t *e)
1338 {
1339 sector_t sb = bio->bi_iter.bi_sector;
1340 sector_t se = bio_end_sector(bio);
1341
1342 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1343
1344 if (se - sb < cache->discard_block_size)
1345 *e = *b;
1346 else
1347 *e = to_dblock(block_div(se, cache->discard_block_size));
1348 }
1349
1350 static void issue_discard(struct dm_cache_migration *mg)
1351 {
1352 dm_dblock_t b, e;
1353 struct bio *bio = mg->new_ocell->holder;
1354
1355 calc_discard_block_range(mg->cache, bio, &b, &e);
1356 while (b != e) {
1357 set_discard(mg->cache, b);
1358 b = to_dblock(from_dblock(b) + 1);
1359 }
1360
1361 bio_endio(bio);
1362 cell_defer(mg->cache, mg->new_ocell, false);
1363 free_migration(mg);
1364 }
1365
1366 static void issue_copy_or_discard(struct dm_cache_migration *mg)
1367 {
1368 bool avoid;
1369 struct cache *cache = mg->cache;
1370
1371 if (mg->discard) {
1372 issue_discard(mg);
1373 return;
1374 }
1375
1376 if (mg->writeback || mg->demote)
1377 avoid = !is_dirty(cache, mg->cblock) ||
1378 is_discarded_oblock(cache, mg->old_oblock);
1379 else {
1380 struct bio *bio = mg->new_ocell->holder;
1381
1382 avoid = is_discarded_oblock(cache, mg->new_oblock);
1383
1384 if (writeback_mode(&cache->features) &&
1385 !avoid && bio_writes_complete_block(cache, bio)) {
1386 issue_overwrite(mg, bio);
1387 return;
1388 }
1389 }
1390
1391 avoid ? avoid_copy(mg) : issue_copy(mg);
1392 }
1393
1394 static void complete_migration(struct dm_cache_migration *mg)
1395 {
1396 if (mg->err)
1397 migration_failure(mg);
1398 else
1399 migration_success_pre_commit(mg);
1400 }
1401
1402 static void process_migrations(struct cache *cache, struct list_head *head,
1403 void (*fn)(struct dm_cache_migration *))
1404 {
1405 unsigned long flags;
1406 struct list_head list;
1407 struct dm_cache_migration *mg, *tmp;
1408
1409 INIT_LIST_HEAD(&list);
1410 spin_lock_irqsave(&cache->lock, flags);
1411 list_splice_init(head, &list);
1412 spin_unlock_irqrestore(&cache->lock, flags);
1413
1414 list_for_each_entry_safe(mg, tmp, &list, list)
1415 fn(mg);
1416 }
1417
1418 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1419 {
1420 list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
1421 }
1422
1423 static void queue_quiesced_migration(struct dm_cache_migration *mg)
1424 {
1425 unsigned long flags;
1426 struct cache *cache = mg->cache;
1427
1428 spin_lock_irqsave(&cache->lock, flags);
1429 __queue_quiesced_migration(mg);
1430 spin_unlock_irqrestore(&cache->lock, flags);
1431
1432 wake_worker(cache);
1433 }
1434
1435 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1436 {
1437 unsigned long flags;
1438 struct dm_cache_migration *mg, *tmp;
1439
1440 spin_lock_irqsave(&cache->lock, flags);
1441 list_for_each_entry_safe(mg, tmp, work, list)
1442 __queue_quiesced_migration(mg);
1443 spin_unlock_irqrestore(&cache->lock, flags);
1444
1445 wake_worker(cache);
1446 }
1447
1448 static void check_for_quiesced_migrations(struct cache *cache,
1449 struct per_bio_data *pb)
1450 {
1451 struct list_head work;
1452
1453 if (!pb->all_io_entry)
1454 return;
1455
1456 INIT_LIST_HEAD(&work);
1457 dm_deferred_entry_dec(pb->all_io_entry, &work);
1458
1459 if (!list_empty(&work))
1460 queue_quiesced_migrations(cache, &work);
1461 }
1462
1463 static void quiesce_migration(struct dm_cache_migration *mg)
1464 {
1465 if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1466 queue_quiesced_migration(mg);
1467 }
1468
1469 static void promote(struct cache *cache, struct prealloc *structs,
1470 dm_oblock_t oblock, dm_cblock_t cblock,
1471 struct dm_bio_prison_cell *cell)
1472 {
1473 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1474
1475 mg->err = false;
1476 mg->discard = false;
1477 mg->writeback = false;
1478 mg->demote = false;
1479 mg->promote = true;
1480 mg->requeue_holder = true;
1481 mg->invalidate = false;
1482 mg->cache = cache;
1483 mg->new_oblock = oblock;
1484 mg->cblock = cblock;
1485 mg->old_ocell = NULL;
1486 mg->new_ocell = cell;
1487 mg->start_jiffies = jiffies;
1488
1489 inc_io_migrations(cache);
1490 quiesce_migration(mg);
1491 }
1492
1493 static void writeback(struct cache *cache, struct prealloc *structs,
1494 dm_oblock_t oblock, dm_cblock_t cblock,
1495 struct dm_bio_prison_cell *cell)
1496 {
1497 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1498
1499 mg->err = false;
1500 mg->discard = false;
1501 mg->writeback = true;
1502 mg->demote = false;
1503 mg->promote = false;
1504 mg->requeue_holder = true;
1505 mg->invalidate = false;
1506 mg->cache = cache;
1507 mg->old_oblock = oblock;
1508 mg->cblock = cblock;
1509 mg->old_ocell = cell;
1510 mg->new_ocell = NULL;
1511 mg->start_jiffies = jiffies;
1512
1513 inc_io_migrations(cache);
1514 quiesce_migration(mg);
1515 }
1516
1517 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1518 dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1519 dm_cblock_t cblock,
1520 struct dm_bio_prison_cell *old_ocell,
1521 struct dm_bio_prison_cell *new_ocell)
1522 {
1523 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1524
1525 mg->err = false;
1526 mg->discard = false;
1527 mg->writeback = false;
1528 mg->demote = true;
1529 mg->promote = true;
1530 mg->requeue_holder = true;
1531 mg->invalidate = false;
1532 mg->cache = cache;
1533 mg->old_oblock = old_oblock;
1534 mg->new_oblock = new_oblock;
1535 mg->cblock = cblock;
1536 mg->old_ocell = old_ocell;
1537 mg->new_ocell = new_ocell;
1538 mg->start_jiffies = jiffies;
1539
1540 inc_io_migrations(cache);
1541 quiesce_migration(mg);
1542 }
1543
1544 /*
1545 * Invalidate a cache entry. No writeback occurs; any changes in the cache
1546 * block are thrown away.
1547 */
1548 static void invalidate(struct cache *cache, struct prealloc *structs,
1549 dm_oblock_t oblock, dm_cblock_t cblock,
1550 struct dm_bio_prison_cell *cell)
1551 {
1552 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1553
1554 mg->err = false;
1555 mg->discard = false;
1556 mg->writeback = false;
1557 mg->demote = true;
1558 mg->promote = false;
1559 mg->requeue_holder = true;
1560 mg->invalidate = true;
1561 mg->cache = cache;
1562 mg->old_oblock = oblock;
1563 mg->cblock = cblock;
1564 mg->old_ocell = cell;
1565 mg->new_ocell = NULL;
1566 mg->start_jiffies = jiffies;
1567
1568 inc_io_migrations(cache);
1569 quiesce_migration(mg);
1570 }
1571
1572 static void discard(struct cache *cache, struct prealloc *structs,
1573 struct dm_bio_prison_cell *cell)
1574 {
1575 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1576
1577 mg->err = false;
1578 mg->discard = true;
1579 mg->writeback = false;
1580 mg->demote = false;
1581 mg->promote = false;
1582 mg->requeue_holder = false;
1583 mg->invalidate = false;
1584 mg->cache = cache;
1585 mg->old_ocell = NULL;
1586 mg->new_ocell = cell;
1587 mg->start_jiffies = jiffies;
1588
1589 quiesce_migration(mg);
1590 }
1591
1592 /*----------------------------------------------------------------
1593 * bio processing
1594 *--------------------------------------------------------------*/
1595 static void defer_bio(struct cache *cache, struct bio *bio)
1596 {
1597 unsigned long flags;
1598
1599 spin_lock_irqsave(&cache->lock, flags);
1600 bio_list_add(&cache->deferred_bios, bio);
1601 spin_unlock_irqrestore(&cache->lock, flags);
1602
1603 wake_worker(cache);
1604 }
1605
1606 static void process_flush_bio(struct cache *cache, struct bio *bio)
1607 {
1608 size_t pb_data_size = get_per_bio_data_size(cache);
1609 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1610
1611 BUG_ON(bio->bi_iter.bi_size);
1612 if (!pb->req_nr)
1613 remap_to_origin(cache, bio);
1614 else
1615 remap_to_cache(cache, bio, 0);
1616
1617 /*
1618 * REQ_FLUSH is not directed at any particular block so we don't
1619 * need to inc_ds(). REQ_FUA's are split into a write + REQ_FLUSH
1620 * by dm-core.
1621 */
1622 issue(cache, bio);
1623 }
1624
1625 static void process_discard_bio(struct cache *cache, struct prealloc *structs,
1626 struct bio *bio)
1627 {
1628 int r;
1629 dm_dblock_t b, e;
1630 struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1631
1632 calc_discard_block_range(cache, bio, &b, &e);
1633 if (b == e) {
1634 bio_endio(bio);
1635 return;
1636 }
1637
1638 cell_prealloc = prealloc_get_cell(structs);
1639 r = bio_detain_range(cache, dblock_to_oblock(cache, b), dblock_to_oblock(cache, e), bio, cell_prealloc,
1640 (cell_free_fn) prealloc_put_cell,
1641 structs, &new_ocell);
1642 if (r > 0)
1643 return;
1644
1645 discard(cache, structs, new_ocell);
1646 }
1647
1648 static bool spare_migration_bandwidth(struct cache *cache)
1649 {
1650 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1651 cache->sectors_per_block;
1652 return current_volume < cache->migration_threshold;
1653 }
1654
1655 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1656 {
1657 atomic_inc(bio_data_dir(bio) == READ ?
1658 &cache->stats.read_hit : &cache->stats.write_hit);
1659 }
1660
1661 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1662 {
1663 atomic_inc(bio_data_dir(bio) == READ ?
1664 &cache->stats.read_miss : &cache->stats.write_miss);
1665 }
1666
1667 /*----------------------------------------------------------------*/
1668
1669 struct inc_detail {
1670 struct cache *cache;
1671 struct bio_list bios_for_issue;
1672 struct bio_list unhandled_bios;
1673 bool any_writes;
1674 };
1675
1676 static void inc_fn(void *context, struct dm_bio_prison_cell *cell)
1677 {
1678 struct bio *bio;
1679 struct inc_detail *detail = context;
1680 struct cache *cache = detail->cache;
1681
1682 inc_ds(cache, cell->holder, cell);
1683 if (bio_data_dir(cell->holder) == WRITE)
1684 detail->any_writes = true;
1685
1686 while ((bio = bio_list_pop(&cell->bios))) {
1687 if (discard_or_flush(bio)) {
1688 bio_list_add(&detail->unhandled_bios, bio);
1689 continue;
1690 }
1691
1692 if (bio_data_dir(bio) == WRITE)
1693 detail->any_writes = true;
1694
1695 bio_list_add(&detail->bios_for_issue, bio);
1696 inc_ds(cache, bio, cell);
1697 }
1698 }
1699
1700 // FIXME: refactor these two
1701 static void remap_cell_to_origin_clear_discard(struct cache *cache,
1702 struct dm_bio_prison_cell *cell,
1703 dm_oblock_t oblock, bool issue_holder)
1704 {
1705 struct bio *bio;
1706 unsigned long flags;
1707 struct inc_detail detail;
1708
1709 detail.cache = cache;
1710 bio_list_init(&detail.bios_for_issue);
1711 bio_list_init(&detail.unhandled_bios);
1712 detail.any_writes = false;
1713
1714 spin_lock_irqsave(&cache->lock, flags);
1715 dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1716 bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1717 spin_unlock_irqrestore(&cache->lock, flags);
1718
1719 remap_to_origin(cache, cell->holder);
1720 if (issue_holder)
1721 issue(cache, cell->holder);
1722 else
1723 accounted_begin(cache, cell->holder);
1724
1725 if (detail.any_writes)
1726 clear_discard(cache, oblock_to_dblock(cache, oblock));
1727
1728 while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1729 remap_to_origin(cache, bio);
1730 issue(cache, bio);
1731 }
1732 }
1733
1734 static void remap_cell_to_cache_dirty(struct cache *cache, struct dm_bio_prison_cell *cell,
1735 dm_oblock_t oblock, dm_cblock_t cblock, bool issue_holder)
1736 {
1737 struct bio *bio;
1738 unsigned long flags;
1739 struct inc_detail detail;
1740
1741 detail.cache = cache;
1742 bio_list_init(&detail.bios_for_issue);
1743 bio_list_init(&detail.unhandled_bios);
1744 detail.any_writes = false;
1745
1746 spin_lock_irqsave(&cache->lock, flags);
1747 dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1748 bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1749 spin_unlock_irqrestore(&cache->lock, flags);
1750
1751 remap_to_cache(cache, cell->holder, cblock);
1752 if (issue_holder)
1753 issue(cache, cell->holder);
1754 else
1755 accounted_begin(cache, cell->holder);
1756
1757 if (detail.any_writes) {
1758 set_dirty(cache, oblock, cblock);
1759 clear_discard(cache, oblock_to_dblock(cache, oblock));
1760 }
1761
1762 while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1763 remap_to_cache(cache, bio, cblock);
1764 issue(cache, bio);
1765 }
1766 }
1767
1768 /*----------------------------------------------------------------*/
1769
1770 struct old_oblock_lock {
1771 struct policy_locker locker;
1772 struct cache *cache;
1773 struct prealloc *structs;
1774 struct dm_bio_prison_cell *cell;
1775 };
1776
1777 static int null_locker(struct policy_locker *locker, dm_oblock_t b)
1778 {
1779 /* This should never be called */
1780 BUG();
1781 return 0;
1782 }
1783
1784 static int cell_locker(struct policy_locker *locker, dm_oblock_t b)
1785 {
1786 struct old_oblock_lock *l = container_of(locker, struct old_oblock_lock, locker);
1787 struct dm_bio_prison_cell *cell_prealloc = prealloc_get_cell(l->structs);
1788
1789 return bio_detain(l->cache, b, NULL, cell_prealloc,
1790 (cell_free_fn) prealloc_put_cell,
1791 l->structs, &l->cell);
1792 }
1793
1794 static void process_cell(struct cache *cache, struct prealloc *structs,
1795 struct dm_bio_prison_cell *new_ocell)
1796 {
1797 int r;
1798 bool release_cell = true;
1799 struct bio *bio = new_ocell->holder;
1800 dm_oblock_t block = get_bio_block(cache, bio);
1801 struct policy_result lookup_result;
1802 bool passthrough = passthrough_mode(&cache->features);
1803 bool fast_promotion, can_migrate;
1804 struct old_oblock_lock ool;
1805
1806 fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
1807 can_migrate = !passthrough && (fast_promotion || spare_migration_bandwidth(cache));
1808
1809 ool.locker.fn = cell_locker;
1810 ool.cache = cache;
1811 ool.structs = structs;
1812 ool.cell = NULL;
1813 r = policy_map(cache->policy, block, true, can_migrate, fast_promotion,
1814 bio, &ool.locker, &lookup_result);
1815
1816 if (r == -EWOULDBLOCK)
1817 /* migration has been denied */
1818 lookup_result.op = POLICY_MISS;
1819
1820 switch (lookup_result.op) {
1821 case POLICY_HIT:
1822 if (passthrough) {
1823 inc_miss_counter(cache, bio);
1824
1825 /*
1826 * Passthrough always maps to the origin,
1827 * invalidating any cache blocks that are written
1828 * to.
1829 */
1830
1831 if (bio_data_dir(bio) == WRITE) {
1832 atomic_inc(&cache->stats.demotion);
1833 invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1834 release_cell = false;
1835
1836 } else {
1837 /* FIXME: factor out issue_origin() */
1838 remap_to_origin_clear_discard(cache, bio, block);
1839 inc_and_issue(cache, bio, new_ocell);
1840 }
1841 } else {
1842 inc_hit_counter(cache, bio);
1843
1844 if (bio_data_dir(bio) == WRITE &&
1845 writethrough_mode(&cache->features) &&
1846 !is_dirty(cache, lookup_result.cblock)) {
1847 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1848 inc_and_issue(cache, bio, new_ocell);
1849
1850 } else {
1851 remap_cell_to_cache_dirty(cache, new_ocell, block, lookup_result.cblock, true);
1852 release_cell = false;
1853 }
1854 }
1855
1856 break;
1857
1858 case POLICY_MISS:
1859 inc_miss_counter(cache, bio);
1860 remap_cell_to_origin_clear_discard(cache, new_ocell, block, true);
1861 release_cell = false;
1862 break;
1863
1864 case POLICY_NEW:
1865 atomic_inc(&cache->stats.promotion);
1866 promote(cache, structs, block, lookup_result.cblock, new_ocell);
1867 release_cell = false;
1868 break;
1869
1870 case POLICY_REPLACE:
1871 atomic_inc(&cache->stats.demotion);
1872 atomic_inc(&cache->stats.promotion);
1873 demote_then_promote(cache, structs, lookup_result.old_oblock,
1874 block, lookup_result.cblock,
1875 ool.cell, new_ocell);
1876 release_cell = false;
1877 break;
1878
1879 default:
1880 DMERR_LIMIT("%s: %s: erroring bio, unknown policy op: %u",
1881 cache_device_name(cache), __func__,
1882 (unsigned) lookup_result.op);
1883 bio_io_error(bio);
1884 }
1885
1886 if (release_cell)
1887 cell_defer(cache, new_ocell, false);
1888 }
1889
1890 static void process_bio(struct cache *cache, struct prealloc *structs,
1891 struct bio *bio)
1892 {
1893 int r;
1894 dm_oblock_t block = get_bio_block(cache, bio);
1895 struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1896
1897 /*
1898 * Check to see if that block is currently migrating.
1899 */
1900 cell_prealloc = prealloc_get_cell(structs);
1901 r = bio_detain(cache, block, bio, cell_prealloc,
1902 (cell_free_fn) prealloc_put_cell,
1903 structs, &new_ocell);
1904 if (r > 0)
1905 return;
1906
1907 process_cell(cache, structs, new_ocell);
1908 }
1909
1910 static int need_commit_due_to_time(struct cache *cache)
1911 {
1912 return jiffies < cache->last_commit_jiffies ||
1913 jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1914 }
1915
1916 /*
1917 * A non-zero return indicates read_only or fail_io mode.
1918 */
1919 static int commit(struct cache *cache, bool clean_shutdown)
1920 {
1921 int r;
1922
1923 if (get_cache_mode(cache) >= CM_READ_ONLY)
1924 return -EINVAL;
1925
1926 atomic_inc(&cache->stats.commit_count);
1927 r = dm_cache_commit(cache->cmd, clean_shutdown);
1928 if (r)
1929 metadata_operation_failed(cache, "dm_cache_commit", r);
1930
1931 return r;
1932 }
1933
1934 static int commit_if_needed(struct cache *cache)
1935 {
1936 int r = 0;
1937
1938 if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1939 dm_cache_changed_this_transaction(cache->cmd)) {
1940 r = commit(cache, false);
1941 cache->commit_requested = false;
1942 cache->last_commit_jiffies = jiffies;
1943 }
1944
1945 return r;
1946 }
1947
1948 static void process_deferred_bios(struct cache *cache)
1949 {
1950 unsigned long flags;
1951 struct bio_list bios;
1952 struct bio *bio;
1953 struct prealloc structs;
1954
1955 memset(&structs, 0, sizeof(structs));
1956 bio_list_init(&bios);
1957
1958 spin_lock_irqsave(&cache->lock, flags);
1959 bio_list_merge(&bios, &cache->deferred_bios);
1960 bio_list_init(&cache->deferred_bios);
1961 spin_unlock_irqrestore(&cache->lock, flags);
1962
1963 while (!bio_list_empty(&bios)) {
1964 /*
1965 * If we've got no free migration structs, and processing
1966 * this bio might require one, we pause until there are some
1967 * prepared mappings to process.
1968 */
1969 if (prealloc_data_structs(cache, &structs)) {
1970 spin_lock_irqsave(&cache->lock, flags);
1971 bio_list_merge(&cache->deferred_bios, &bios);
1972 spin_unlock_irqrestore(&cache->lock, flags);
1973 break;
1974 }
1975
1976 bio = bio_list_pop(&bios);
1977
1978 if (bio->bi_rw & REQ_FLUSH)
1979 process_flush_bio(cache, bio);
1980 else if (bio->bi_rw & REQ_DISCARD)
1981 process_discard_bio(cache, &structs, bio);
1982 else
1983 process_bio(cache, &structs, bio);
1984 }
1985
1986 prealloc_free_structs(cache, &structs);
1987 }
1988
1989 static void process_deferred_cells(struct cache *cache)
1990 {
1991 unsigned long flags;
1992 struct dm_bio_prison_cell *cell, *tmp;
1993 struct list_head cells;
1994 struct prealloc structs;
1995
1996 memset(&structs, 0, sizeof(structs));
1997
1998 INIT_LIST_HEAD(&cells);
1999
2000 spin_lock_irqsave(&cache->lock, flags);
2001 list_splice_init(&cache->deferred_cells, &cells);
2002 spin_unlock_irqrestore(&cache->lock, flags);
2003
2004 list_for_each_entry_safe(cell, tmp, &cells, user_list) {
2005 /*
2006 * If we've got no free migration structs, and processing
2007 * this bio might require one, we pause until there are some
2008 * prepared mappings to process.
2009 */
2010 if (prealloc_data_structs(cache, &structs)) {
2011 spin_lock_irqsave(&cache->lock, flags);
2012 list_splice(&cells, &cache->deferred_cells);
2013 spin_unlock_irqrestore(&cache->lock, flags);
2014 break;
2015 }
2016
2017 process_cell(cache, &structs, cell);
2018 }
2019
2020 prealloc_free_structs(cache, &structs);
2021 }
2022
2023 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
2024 {
2025 unsigned long flags;
2026 struct bio_list bios;
2027 struct bio *bio;
2028
2029 bio_list_init(&bios);
2030
2031 spin_lock_irqsave(&cache->lock, flags);
2032 bio_list_merge(&bios, &cache->deferred_flush_bios);
2033 bio_list_init(&cache->deferred_flush_bios);
2034 spin_unlock_irqrestore(&cache->lock, flags);
2035
2036 /*
2037 * These bios have already been through inc_ds()
2038 */
2039 while ((bio = bio_list_pop(&bios)))
2040 submit_bios ? accounted_request(cache, bio) : bio_io_error(bio);
2041 }
2042
2043 static void process_deferred_writethrough_bios(struct cache *cache)
2044 {
2045 unsigned long flags;
2046 struct bio_list bios;
2047 struct bio *bio;
2048
2049 bio_list_init(&bios);
2050
2051 spin_lock_irqsave(&cache->lock, flags);
2052 bio_list_merge(&bios, &cache->deferred_writethrough_bios);
2053 bio_list_init(&cache->deferred_writethrough_bios);
2054 spin_unlock_irqrestore(&cache->lock, flags);
2055
2056 /*
2057 * These bios have already been through inc_ds()
2058 */
2059 while ((bio = bio_list_pop(&bios)))
2060 accounted_request(cache, bio);
2061 }
2062
2063 static void writeback_some_dirty_blocks(struct cache *cache)
2064 {
2065 int r = 0;
2066 dm_oblock_t oblock;
2067 dm_cblock_t cblock;
2068 struct prealloc structs;
2069 struct dm_bio_prison_cell *old_ocell;
2070 bool busy = !iot_idle_for(&cache->origin_tracker, HZ);
2071
2072 memset(&structs, 0, sizeof(structs));
2073
2074 while (spare_migration_bandwidth(cache)) {
2075 if (prealloc_data_structs(cache, &structs))
2076 break;
2077
2078 r = policy_writeback_work(cache->policy, &oblock, &cblock, busy);
2079 if (r)
2080 break;
2081
2082 r = get_cell(cache, oblock, &structs, &old_ocell);
2083 if (r) {
2084 policy_set_dirty(cache->policy, oblock);
2085 break;
2086 }
2087
2088 writeback(cache, &structs, oblock, cblock, old_ocell);
2089 }
2090
2091 prealloc_free_structs(cache, &structs);
2092 }
2093
2094 /*----------------------------------------------------------------
2095 * Invalidations.
2096 * Dropping something from the cache *without* writing back.
2097 *--------------------------------------------------------------*/
2098
2099 static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
2100 {
2101 int r = 0;
2102 uint64_t begin = from_cblock(req->cblocks->begin);
2103 uint64_t end = from_cblock(req->cblocks->end);
2104
2105 while (begin != end) {
2106 r = policy_remove_cblock(cache->policy, to_cblock(begin));
2107 if (!r) {
2108 r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
2109 if (r) {
2110 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
2111 break;
2112 }
2113
2114 } else if (r == -ENODATA) {
2115 /* harmless, already unmapped */
2116 r = 0;
2117
2118 } else {
2119 DMERR("%s: policy_remove_cblock failed", cache_device_name(cache));
2120 break;
2121 }
2122
2123 begin++;
2124 }
2125
2126 cache->commit_requested = true;
2127
2128 req->err = r;
2129 atomic_set(&req->complete, 1);
2130
2131 wake_up(&req->result_wait);
2132 }
2133
2134 static void process_invalidation_requests(struct cache *cache)
2135 {
2136 struct list_head list;
2137 struct invalidation_request *req, *tmp;
2138
2139 INIT_LIST_HEAD(&list);
2140 spin_lock(&cache->invalidation_lock);
2141 list_splice_init(&cache->invalidation_requests, &list);
2142 spin_unlock(&cache->invalidation_lock);
2143
2144 list_for_each_entry_safe (req, tmp, &list, list)
2145 process_invalidation_request(cache, req);
2146 }
2147
2148 /*----------------------------------------------------------------
2149 * Main worker loop
2150 *--------------------------------------------------------------*/
2151 static bool is_quiescing(struct cache *cache)
2152 {
2153 return atomic_read(&cache->quiescing);
2154 }
2155
2156 static void ack_quiescing(struct cache *cache)
2157 {
2158 if (is_quiescing(cache)) {
2159 atomic_inc(&cache->quiescing_ack);
2160 wake_up(&cache->quiescing_wait);
2161 }
2162 }
2163
2164 static void wait_for_quiescing_ack(struct cache *cache)
2165 {
2166 wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
2167 }
2168
2169 static void start_quiescing(struct cache *cache)
2170 {
2171 atomic_inc(&cache->quiescing);
2172 wait_for_quiescing_ack(cache);
2173 }
2174
2175 static void stop_quiescing(struct cache *cache)
2176 {
2177 atomic_set(&cache->quiescing, 0);
2178 atomic_set(&cache->quiescing_ack, 0);
2179 }
2180
2181 static void wait_for_migrations(struct cache *cache)
2182 {
2183 wait_event(cache->migration_wait, !atomic_read(&cache->nr_allocated_migrations));
2184 }
2185
2186 static void stop_worker(struct cache *cache)
2187 {
2188 cancel_delayed_work(&cache->waker);
2189 flush_workqueue(cache->wq);
2190 }
2191
2192 static void requeue_deferred_cells(struct cache *cache)
2193 {
2194 unsigned long flags;
2195 struct list_head cells;
2196 struct dm_bio_prison_cell *cell, *tmp;
2197
2198 INIT_LIST_HEAD(&cells);
2199 spin_lock_irqsave(&cache->lock, flags);
2200 list_splice_init(&cache->deferred_cells, &cells);
2201 spin_unlock_irqrestore(&cache->lock, flags);
2202
2203 list_for_each_entry_safe(cell, tmp, &cells, user_list)
2204 cell_requeue(cache, cell);
2205 }
2206
2207 static void requeue_deferred_bios(struct cache *cache)
2208 {
2209 struct bio *bio;
2210 struct bio_list bios;
2211
2212 bio_list_init(&bios);
2213 bio_list_merge(&bios, &cache->deferred_bios);
2214 bio_list_init(&cache->deferred_bios);
2215
2216 while ((bio = bio_list_pop(&bios))) {
2217 bio->bi_error = DM_ENDIO_REQUEUE;
2218 bio_endio(bio);
2219 }
2220 }
2221
2222 static int more_work(struct cache *cache)
2223 {
2224 if (is_quiescing(cache))
2225 return !list_empty(&cache->quiesced_migrations) ||
2226 !list_empty(&cache->completed_migrations) ||
2227 !list_empty(&cache->need_commit_migrations);
2228 else
2229 return !bio_list_empty(&cache->deferred_bios) ||
2230 !list_empty(&cache->deferred_cells) ||
2231 !bio_list_empty(&cache->deferred_flush_bios) ||
2232 !bio_list_empty(&cache->deferred_writethrough_bios) ||
2233 !list_empty(&cache->quiesced_migrations) ||
2234 !list_empty(&cache->completed_migrations) ||
2235 !list_empty(&cache->need_commit_migrations) ||
2236 cache->invalidate;
2237 }
2238
2239 static void do_worker(struct work_struct *ws)
2240 {
2241 struct cache *cache = container_of(ws, struct cache, worker);
2242
2243 do {
2244 if (!is_quiescing(cache)) {
2245 writeback_some_dirty_blocks(cache);
2246 process_deferred_writethrough_bios(cache);
2247 process_deferred_bios(cache);
2248 process_deferred_cells(cache);
2249 process_invalidation_requests(cache);
2250 }
2251
2252 process_migrations(cache, &cache->quiesced_migrations, issue_copy_or_discard);
2253 process_migrations(cache, &cache->completed_migrations, complete_migration);
2254
2255 if (commit_if_needed(cache)) {
2256 process_deferred_flush_bios(cache, false);
2257 process_migrations(cache, &cache->need_commit_migrations, migration_failure);
2258 } else {
2259 process_deferred_flush_bios(cache, true);
2260 process_migrations(cache, &cache->need_commit_migrations,
2261 migration_success_post_commit);
2262 }
2263
2264 ack_quiescing(cache);
2265
2266 } while (more_work(cache));
2267 }
2268
2269 /*
2270 * We want to commit periodically so that not too much
2271 * unwritten metadata builds up.
2272 */
2273 static void do_waker(struct work_struct *ws)
2274 {
2275 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
2276 policy_tick(cache->policy, true);
2277 wake_worker(cache);
2278 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
2279 }
2280
2281 /*----------------------------------------------------------------*/
2282
2283 static int is_congested(struct dm_dev *dev, int bdi_bits)
2284 {
2285 struct request_queue *q = bdev_get_queue(dev->bdev);
2286 return bdi_congested(&q->backing_dev_info, bdi_bits);
2287 }
2288
2289 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2290 {
2291 struct cache *cache = container_of(cb, struct cache, callbacks);
2292
2293 return is_congested(cache->origin_dev, bdi_bits) ||
2294 is_congested(cache->cache_dev, bdi_bits);
2295 }
2296
2297 /*----------------------------------------------------------------
2298 * Target methods
2299 *--------------------------------------------------------------*/
2300
2301 /*
2302 * This function gets called on the error paths of the constructor, so we
2303 * have to cope with a partially initialised struct.
2304 */
2305 static void destroy(struct cache *cache)
2306 {
2307 unsigned i;
2308
2309 if (cache->migration_pool)
2310 mempool_destroy(cache->migration_pool);
2311
2312 if (cache->all_io_ds)
2313 dm_deferred_set_destroy(cache->all_io_ds);
2314
2315 if (cache->prison)
2316 dm_bio_prison_destroy(cache->prison);
2317
2318 if (cache->wq)
2319 destroy_workqueue(cache->wq);
2320
2321 if (cache->dirty_bitset)
2322 free_bitset(cache->dirty_bitset);
2323
2324 if (cache->discard_bitset)
2325 free_bitset(cache->discard_bitset);
2326
2327 if (cache->copier)
2328 dm_kcopyd_client_destroy(cache->copier);
2329
2330 if (cache->cmd)
2331 dm_cache_metadata_close(cache->cmd);
2332
2333 if (cache->metadata_dev)
2334 dm_put_device(cache->ti, cache->metadata_dev);
2335
2336 if (cache->origin_dev)
2337 dm_put_device(cache->ti, cache->origin_dev);
2338
2339 if (cache->cache_dev)
2340 dm_put_device(cache->ti, cache->cache_dev);
2341
2342 if (cache->policy)
2343 dm_cache_policy_destroy(cache->policy);
2344
2345 for (i = 0; i < cache->nr_ctr_args ; i++)
2346 kfree(cache->ctr_args[i]);
2347 kfree(cache->ctr_args);
2348
2349 kfree(cache);
2350 }
2351
2352 static void cache_dtr(struct dm_target *ti)
2353 {
2354 struct cache *cache = ti->private;
2355
2356 destroy(cache);
2357 }
2358
2359 static sector_t get_dev_size(struct dm_dev *dev)
2360 {
2361 return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2362 }
2363
2364 /*----------------------------------------------------------------*/
2365
2366 /*
2367 * Construct a cache device mapping.
2368 *
2369 * cache <metadata dev> <cache dev> <origin dev> <block size>
2370 * <#feature args> [<feature arg>]*
2371 * <policy> <#policy args> [<policy arg>]*
2372 *
2373 * metadata dev : fast device holding the persistent metadata
2374 * cache dev : fast device holding cached data blocks
2375 * origin dev : slow device holding original data blocks
2376 * block size : cache unit size in sectors
2377 *
2378 * #feature args : number of feature arguments passed
2379 * feature args : writethrough. (The default is writeback.)
2380 *
2381 * policy : the replacement policy to use
2382 * #policy args : an even number of policy arguments corresponding
2383 * to key/value pairs passed to the policy
2384 * policy args : key/value pairs passed to the policy
2385 * E.g. 'sequential_threshold 1024'
2386 * See cache-policies.txt for details.
2387 *
2388 * Optional feature arguments are:
2389 * writethrough : write through caching that prohibits cache block
2390 * content from being different from origin block content.
2391 * Without this argument, the default behaviour is to write
2392 * back cache block contents later for performance reasons,
2393 * so they may differ from the corresponding origin blocks.
2394 */
2395 struct cache_args {
2396 struct dm_target *ti;
2397
2398 struct dm_dev *metadata_dev;
2399
2400 struct dm_dev *cache_dev;
2401 sector_t cache_sectors;
2402
2403 struct dm_dev *origin_dev;
2404 sector_t origin_sectors;
2405
2406 uint32_t block_size;
2407
2408 const char *policy_name;
2409 int policy_argc;
2410 const char **policy_argv;
2411
2412 struct cache_features features;
2413 };
2414
2415 static void destroy_cache_args(struct cache_args *ca)
2416 {
2417 if (ca->metadata_dev)
2418 dm_put_device(ca->ti, ca->metadata_dev);
2419
2420 if (ca->cache_dev)
2421 dm_put_device(ca->ti, ca->cache_dev);
2422
2423 if (ca->origin_dev)
2424 dm_put_device(ca->ti, ca->origin_dev);
2425
2426 kfree(ca);
2427 }
2428
2429 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2430 {
2431 if (!as->argc) {
2432 *error = "Insufficient args";
2433 return false;
2434 }
2435
2436 return true;
2437 }
2438
2439 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2440 char **error)
2441 {
2442 int r;
2443 sector_t metadata_dev_size;
2444 char b[BDEVNAME_SIZE];
2445
2446 if (!at_least_one_arg(as, error))
2447 return -EINVAL;
2448
2449 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2450 &ca->metadata_dev);
2451 if (r) {
2452 *error = "Error opening metadata device";
2453 return r;
2454 }
2455
2456 metadata_dev_size = get_dev_size(ca->metadata_dev);
2457 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2458 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2459 bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2460
2461 return 0;
2462 }
2463
2464 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2465 char **error)
2466 {
2467 int r;
2468
2469 if (!at_least_one_arg(as, error))
2470 return -EINVAL;
2471
2472 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2473 &ca->cache_dev);
2474 if (r) {
2475 *error = "Error opening cache device";
2476 return r;
2477 }
2478 ca->cache_sectors = get_dev_size(ca->cache_dev);
2479
2480 return 0;
2481 }
2482
2483 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2484 char **error)
2485 {
2486 int r;
2487
2488 if (!at_least_one_arg(as, error))
2489 return -EINVAL;
2490
2491 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2492 &ca->origin_dev);
2493 if (r) {
2494 *error = "Error opening origin device";
2495 return r;
2496 }
2497
2498 ca->origin_sectors = get_dev_size(ca->origin_dev);
2499 if (ca->ti->len > ca->origin_sectors) {
2500 *error = "Device size larger than cached device";
2501 return -EINVAL;
2502 }
2503
2504 return 0;
2505 }
2506
2507 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2508 char **error)
2509 {
2510 unsigned long block_size;
2511
2512 if (!at_least_one_arg(as, error))
2513 return -EINVAL;
2514
2515 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2516 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2517 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2518 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2519 *error = "Invalid data block size";
2520 return -EINVAL;
2521 }
2522
2523 if (block_size > ca->cache_sectors) {
2524 *error = "Data block size is larger than the cache device";
2525 return -EINVAL;
2526 }
2527
2528 ca->block_size = block_size;
2529
2530 return 0;
2531 }
2532
2533 static void init_features(struct cache_features *cf)
2534 {
2535 cf->mode = CM_WRITE;
2536 cf->io_mode = CM_IO_WRITEBACK;
2537 }
2538
2539 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2540 char **error)
2541 {
2542 static struct dm_arg _args[] = {
2543 {0, 1, "Invalid number of cache feature arguments"},
2544 };
2545
2546 int r;
2547 unsigned argc;
2548 const char *arg;
2549 struct cache_features *cf = &ca->features;
2550
2551 init_features(cf);
2552
2553 r = dm_read_arg_group(_args, as, &argc, error);
2554 if (r)
2555 return -EINVAL;
2556
2557 while (argc--) {
2558 arg = dm_shift_arg(as);
2559
2560 if (!strcasecmp(arg, "writeback"))
2561 cf->io_mode = CM_IO_WRITEBACK;
2562
2563 else if (!strcasecmp(arg, "writethrough"))
2564 cf->io_mode = CM_IO_WRITETHROUGH;
2565
2566 else if (!strcasecmp(arg, "passthrough"))
2567 cf->io_mode = CM_IO_PASSTHROUGH;
2568
2569 else {
2570 *error = "Unrecognised cache feature requested";
2571 return -EINVAL;
2572 }
2573 }
2574
2575 return 0;
2576 }
2577
2578 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2579 char **error)
2580 {
2581 static struct dm_arg _args[] = {
2582 {0, 1024, "Invalid number of policy arguments"},
2583 };
2584
2585 int r;
2586
2587 if (!at_least_one_arg(as, error))
2588 return -EINVAL;
2589
2590 ca->policy_name = dm_shift_arg(as);
2591
2592 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2593 if (r)
2594 return -EINVAL;
2595
2596 ca->policy_argv = (const char **)as->argv;
2597 dm_consume_args(as, ca->policy_argc);
2598
2599 return 0;
2600 }
2601
2602 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2603 char **error)
2604 {
2605 int r;
2606 struct dm_arg_set as;
2607
2608 as.argc = argc;
2609 as.argv = argv;
2610
2611 r = parse_metadata_dev(ca, &as, error);
2612 if (r)
2613 return r;
2614
2615 r = parse_cache_dev(ca, &as, error);
2616 if (r)
2617 return r;
2618
2619 r = parse_origin_dev(ca, &as, error);
2620 if (r)
2621 return r;
2622
2623 r = parse_block_size(ca, &as, error);
2624 if (r)
2625 return r;
2626
2627 r = parse_features(ca, &as, error);
2628 if (r)
2629 return r;
2630
2631 r = parse_policy(ca, &as, error);
2632 if (r)
2633 return r;
2634
2635 return 0;
2636 }
2637
2638 /*----------------------------------------------------------------*/
2639
2640 static struct kmem_cache *migration_cache;
2641
2642 #define NOT_CORE_OPTION 1
2643
2644 static int process_config_option(struct cache *cache, const char *key, const char *value)
2645 {
2646 unsigned long tmp;
2647
2648 if (!strcasecmp(key, "migration_threshold")) {
2649 if (kstrtoul(value, 10, &tmp))
2650 return -EINVAL;
2651
2652 cache->migration_threshold = tmp;
2653 return 0;
2654 }
2655
2656 return NOT_CORE_OPTION;
2657 }
2658
2659 static int set_config_value(struct cache *cache, const char *key, const char *value)
2660 {
2661 int r = process_config_option(cache, key, value);
2662
2663 if (r == NOT_CORE_OPTION)
2664 r = policy_set_config_value(cache->policy, key, value);
2665
2666 if (r)
2667 DMWARN("bad config value for %s: %s", key, value);
2668
2669 return r;
2670 }
2671
2672 static int set_config_values(struct cache *cache, int argc, const char **argv)
2673 {
2674 int r = 0;
2675
2676 if (argc & 1) {
2677 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2678 return -EINVAL;
2679 }
2680
2681 while (argc) {
2682 r = set_config_value(cache, argv[0], argv[1]);
2683 if (r)
2684 break;
2685
2686 argc -= 2;
2687 argv += 2;
2688 }
2689
2690 return r;
2691 }
2692
2693 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2694 char **error)
2695 {
2696 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2697 cache->cache_size,
2698 cache->origin_sectors,
2699 cache->sectors_per_block);
2700 if (IS_ERR(p)) {
2701 *error = "Error creating cache's policy";
2702 return PTR_ERR(p);
2703 }
2704 cache->policy = p;
2705
2706 return 0;
2707 }
2708
2709 /*
2710 * We want the discard block size to be at least the size of the cache
2711 * block size and have no more than 2^14 discard blocks across the origin.
2712 */
2713 #define MAX_DISCARD_BLOCKS (1 << 14)
2714
2715 static bool too_many_discard_blocks(sector_t discard_block_size,
2716 sector_t origin_size)
2717 {
2718 (void) sector_div(origin_size, discard_block_size);
2719
2720 return origin_size > MAX_DISCARD_BLOCKS;
2721 }
2722
2723 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2724 sector_t origin_size)
2725 {
2726 sector_t discard_block_size = cache_block_size;
2727
2728 if (origin_size)
2729 while (too_many_discard_blocks(discard_block_size, origin_size))
2730 discard_block_size *= 2;
2731
2732 return discard_block_size;
2733 }
2734
2735 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2736 {
2737 dm_block_t nr_blocks = from_cblock(size);
2738
2739 if (nr_blocks > (1 << 20) && cache->cache_size != size)
2740 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2741 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2742 "Please consider increasing the cache block size to reduce the overall cache block count.",
2743 (unsigned long long) nr_blocks);
2744
2745 cache->cache_size = size;
2746 }
2747
2748 #define DEFAULT_MIGRATION_THRESHOLD 2048
2749
2750 static int cache_create(struct cache_args *ca, struct cache **result)
2751 {
2752 int r = 0;
2753 char **error = &ca->ti->error;
2754 struct cache *cache;
2755 struct dm_target *ti = ca->ti;
2756 dm_block_t origin_blocks;
2757 struct dm_cache_metadata *cmd;
2758 bool may_format = ca->features.mode == CM_WRITE;
2759
2760 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2761 if (!cache)
2762 return -ENOMEM;
2763
2764 cache->ti = ca->ti;
2765 ti->private = cache;
2766 ti->num_flush_bios = 2;
2767 ti->flush_supported = true;
2768
2769 ti->num_discard_bios = 1;
2770 ti->discards_supported = true;
2771 ti->discard_zeroes_data_unsupported = true;
2772 ti->split_discard_bios = false;
2773
2774 cache->features = ca->features;
2775 ti->per_bio_data_size = get_per_bio_data_size(cache);
2776
2777 cache->callbacks.congested_fn = cache_is_congested;
2778 dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2779
2780 cache->metadata_dev = ca->metadata_dev;
2781 cache->origin_dev = ca->origin_dev;
2782 cache->cache_dev = ca->cache_dev;
2783
2784 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2785
2786 /* FIXME: factor out this whole section */
2787 origin_blocks = cache->origin_sectors = ca->origin_sectors;
2788 origin_blocks = block_div(origin_blocks, ca->block_size);
2789 cache->origin_blocks = to_oblock(origin_blocks);
2790
2791 cache->sectors_per_block = ca->block_size;
2792 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2793 r = -EINVAL;
2794 goto bad;
2795 }
2796
2797 if (ca->block_size & (ca->block_size - 1)) {
2798 dm_block_t cache_size = ca->cache_sectors;
2799
2800 cache->sectors_per_block_shift = -1;
2801 cache_size = block_div(cache_size, ca->block_size);
2802 set_cache_size(cache, to_cblock(cache_size));
2803 } else {
2804 cache->sectors_per_block_shift = __ffs(ca->block_size);
2805 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2806 }
2807
2808 r = create_cache_policy(cache, ca, error);
2809 if (r)
2810 goto bad;
2811
2812 cache->policy_nr_args = ca->policy_argc;
2813 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2814
2815 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2816 if (r) {
2817 *error = "Error setting cache policy's config values";
2818 goto bad;
2819 }
2820
2821 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2822 ca->block_size, may_format,
2823 dm_cache_policy_get_hint_size(cache->policy));
2824 if (IS_ERR(cmd)) {
2825 *error = "Error creating metadata object";
2826 r = PTR_ERR(cmd);
2827 goto bad;
2828 }
2829 cache->cmd = cmd;
2830 set_cache_mode(cache, CM_WRITE);
2831 if (get_cache_mode(cache) != CM_WRITE) {
2832 *error = "Unable to get write access to metadata, please check/repair metadata.";
2833 r = -EINVAL;
2834 goto bad;
2835 }
2836
2837 if (passthrough_mode(&cache->features)) {
2838 bool all_clean;
2839
2840 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2841 if (r) {
2842 *error = "dm_cache_metadata_all_clean() failed";
2843 goto bad;
2844 }
2845
2846 if (!all_clean) {
2847 *error = "Cannot enter passthrough mode unless all blocks are clean";
2848 r = -EINVAL;
2849 goto bad;
2850 }
2851 }
2852
2853 spin_lock_init(&cache->lock);
2854 INIT_LIST_HEAD(&cache->deferred_cells);
2855 bio_list_init(&cache->deferred_bios);
2856 bio_list_init(&cache->deferred_flush_bios);
2857 bio_list_init(&cache->deferred_writethrough_bios);
2858 INIT_LIST_HEAD(&cache->quiesced_migrations);
2859 INIT_LIST_HEAD(&cache->completed_migrations);
2860 INIT_LIST_HEAD(&cache->need_commit_migrations);
2861 atomic_set(&cache->nr_allocated_migrations, 0);
2862 atomic_set(&cache->nr_io_migrations, 0);
2863 init_waitqueue_head(&cache->migration_wait);
2864
2865 init_waitqueue_head(&cache->quiescing_wait);
2866 atomic_set(&cache->quiescing, 0);
2867 atomic_set(&cache->quiescing_ack, 0);
2868
2869 r = -ENOMEM;
2870 atomic_set(&cache->nr_dirty, 0);
2871 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2872 if (!cache->dirty_bitset) {
2873 *error = "could not allocate dirty bitset";
2874 goto bad;
2875 }
2876 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2877
2878 cache->discard_block_size =
2879 calculate_discard_block_size(cache->sectors_per_block,
2880 cache->origin_sectors);
2881 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2882 cache->discard_block_size));
2883 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2884 if (!cache->discard_bitset) {
2885 *error = "could not allocate discard bitset";
2886 goto bad;
2887 }
2888 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2889
2890 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2891 if (IS_ERR(cache->copier)) {
2892 *error = "could not create kcopyd client";
2893 r = PTR_ERR(cache->copier);
2894 goto bad;
2895 }
2896
2897 cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2898 if (!cache->wq) {
2899 *error = "could not create workqueue for metadata object";
2900 goto bad;
2901 }
2902 INIT_WORK(&cache->worker, do_worker);
2903 INIT_DELAYED_WORK(&cache->waker, do_waker);
2904 cache->last_commit_jiffies = jiffies;
2905
2906 cache->prison = dm_bio_prison_create();
2907 if (!cache->prison) {
2908 *error = "could not create bio prison";
2909 goto bad;
2910 }
2911
2912 cache->all_io_ds = dm_deferred_set_create();
2913 if (!cache->all_io_ds) {
2914 *error = "could not create all_io deferred set";
2915 goto bad;
2916 }
2917
2918 cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2919 migration_cache);
2920 if (!cache->migration_pool) {
2921 *error = "Error creating cache's migration mempool";
2922 goto bad;
2923 }
2924
2925 cache->need_tick_bio = true;
2926 cache->sized = false;
2927 cache->invalidate = false;
2928 cache->commit_requested = false;
2929 cache->loaded_mappings = false;
2930 cache->loaded_discards = false;
2931
2932 load_stats(cache);
2933
2934 atomic_set(&cache->stats.demotion, 0);
2935 atomic_set(&cache->stats.promotion, 0);
2936 atomic_set(&cache->stats.copies_avoided, 0);
2937 atomic_set(&cache->stats.cache_cell_clash, 0);
2938 atomic_set(&cache->stats.commit_count, 0);
2939 atomic_set(&cache->stats.discard_count, 0);
2940
2941 spin_lock_init(&cache->invalidation_lock);
2942 INIT_LIST_HEAD(&cache->invalidation_requests);
2943
2944 iot_init(&cache->origin_tracker);
2945
2946 *result = cache;
2947 return 0;
2948
2949 bad:
2950 destroy(cache);
2951 return r;
2952 }
2953
2954 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2955 {
2956 unsigned i;
2957 const char **copy;
2958
2959 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2960 if (!copy)
2961 return -ENOMEM;
2962 for (i = 0; i < argc; i++) {
2963 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2964 if (!copy[i]) {
2965 while (i--)
2966 kfree(copy[i]);
2967 kfree(copy);
2968 return -ENOMEM;
2969 }
2970 }
2971
2972 cache->nr_ctr_args = argc;
2973 cache->ctr_args = copy;
2974
2975 return 0;
2976 }
2977
2978 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2979 {
2980 int r = -EINVAL;
2981 struct cache_args *ca;
2982 struct cache *cache = NULL;
2983
2984 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2985 if (!ca) {
2986 ti->error = "Error allocating memory for cache";
2987 return -ENOMEM;
2988 }
2989 ca->ti = ti;
2990
2991 r = parse_cache_args(ca, argc, argv, &ti->error);
2992 if (r)
2993 goto out;
2994
2995 r = cache_create(ca, &cache);
2996 if (r)
2997 goto out;
2998
2999 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
3000 if (r) {
3001 destroy(cache);
3002 goto out;
3003 }
3004
3005 ti->private = cache;
3006
3007 out:
3008 destroy_cache_args(ca);
3009 return r;
3010 }
3011
3012 /*----------------------------------------------------------------*/
3013
3014 static int cache_map(struct dm_target *ti, struct bio *bio)
3015 {
3016 struct cache *cache = ti->private;
3017
3018 int r;
3019 struct dm_bio_prison_cell *cell = NULL;
3020 dm_oblock_t block = get_bio_block(cache, bio);
3021 size_t pb_data_size = get_per_bio_data_size(cache);
3022 bool can_migrate = false;
3023 bool fast_promotion;
3024 struct policy_result lookup_result;
3025 struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
3026 struct old_oblock_lock ool;
3027
3028 ool.locker.fn = null_locker;
3029
3030 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
3031 /*
3032 * This can only occur if the io goes to a partial block at
3033 * the end of the origin device. We don't cache these.
3034 * Just remap to the origin and carry on.
3035 */
3036 remap_to_origin(cache, bio);
3037 accounted_begin(cache, bio);
3038 return DM_MAPIO_REMAPPED;
3039 }
3040
3041 if (discard_or_flush(bio)) {
3042 defer_bio(cache, bio);
3043 return DM_MAPIO_SUBMITTED;
3044 }
3045
3046 /*
3047 * Check to see if that block is currently migrating.
3048 */
3049 cell = alloc_prison_cell(cache);
3050 if (!cell) {
3051 defer_bio(cache, bio);
3052 return DM_MAPIO_SUBMITTED;
3053 }
3054
3055 r = bio_detain(cache, block, bio, cell,
3056 (cell_free_fn) free_prison_cell,
3057 cache, &cell);
3058 if (r) {
3059 if (r < 0)
3060 defer_bio(cache, bio);
3061
3062 return DM_MAPIO_SUBMITTED;
3063 }
3064
3065 fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
3066
3067 r = policy_map(cache->policy, block, false, can_migrate, fast_promotion,
3068 bio, &ool.locker, &lookup_result);
3069 if (r == -EWOULDBLOCK) {
3070 cell_defer(cache, cell, true);
3071 return DM_MAPIO_SUBMITTED;
3072
3073 } else if (r) {
3074 DMERR_LIMIT("%s: Unexpected return from cache replacement policy: %d",
3075 cache_device_name(cache), r);
3076 cell_defer(cache, cell, false);
3077 bio_io_error(bio);
3078 return DM_MAPIO_SUBMITTED;
3079 }
3080
3081 r = DM_MAPIO_REMAPPED;
3082 switch (lookup_result.op) {
3083 case POLICY_HIT:
3084 if (passthrough_mode(&cache->features)) {
3085 if (bio_data_dir(bio) == WRITE) {
3086 /*
3087 * We need to invalidate this block, so
3088 * defer for the worker thread.
3089 */
3090 cell_defer(cache, cell, true);
3091 r = DM_MAPIO_SUBMITTED;
3092
3093 } else {
3094 inc_miss_counter(cache, bio);
3095 remap_to_origin_clear_discard(cache, bio, block);
3096 accounted_begin(cache, bio);
3097 inc_ds(cache, bio, cell);
3098 // FIXME: we want to remap hits or misses straight
3099 // away rather than passing over to the worker.
3100 cell_defer(cache, cell, false);
3101 }
3102
3103 } else {
3104 inc_hit_counter(cache, bio);
3105 if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
3106 !is_dirty(cache, lookup_result.cblock)) {
3107 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
3108 accounted_begin(cache, bio);
3109 inc_ds(cache, bio, cell);
3110 cell_defer(cache, cell, false);
3111
3112 } else
3113 remap_cell_to_cache_dirty(cache, cell, block, lookup_result.cblock, false);
3114 }
3115 break;
3116
3117 case POLICY_MISS:
3118 inc_miss_counter(cache, bio);
3119 if (pb->req_nr != 0) {
3120 /*
3121 * This is a duplicate writethrough io that is no
3122 * longer needed because the block has been demoted.
3123 */
3124 bio_endio(bio);
3125 // FIXME: remap everything as a miss
3126 cell_defer(cache, cell, false);
3127 r = DM_MAPIO_SUBMITTED;
3128
3129 } else
3130 remap_cell_to_origin_clear_discard(cache, cell, block, false);
3131 break;
3132
3133 default:
3134 DMERR_LIMIT("%s: %s: erroring bio: unknown policy op: %u",
3135 cache_device_name(cache), __func__,
3136 (unsigned) lookup_result.op);
3137 cell_defer(cache, cell, false);
3138 bio_io_error(bio);
3139 r = DM_MAPIO_SUBMITTED;
3140 }
3141
3142 return r;
3143 }
3144
3145 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
3146 {
3147 struct cache *cache = ti->private;
3148 unsigned long flags;
3149 size_t pb_data_size = get_per_bio_data_size(cache);
3150 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
3151
3152 if (pb->tick) {
3153 policy_tick(cache->policy, false);
3154
3155 spin_lock_irqsave(&cache->lock, flags);
3156 cache->need_tick_bio = true;
3157 spin_unlock_irqrestore(&cache->lock, flags);
3158 }
3159
3160 check_for_quiesced_migrations(cache, pb);
3161 accounted_complete(cache, bio);
3162
3163 return 0;
3164 }
3165
3166 static int write_dirty_bitset(struct cache *cache)
3167 {
3168 unsigned i, r;
3169
3170 if (get_cache_mode(cache) >= CM_READ_ONLY)
3171 return -EINVAL;
3172
3173 for (i = 0; i < from_cblock(cache->cache_size); i++) {
3174 r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
3175 is_dirty(cache, to_cblock(i)));
3176 if (r) {
3177 metadata_operation_failed(cache, "dm_cache_set_dirty", r);
3178 return r;
3179 }
3180 }
3181
3182 return 0;
3183 }
3184
3185 static int write_discard_bitset(struct cache *cache)
3186 {
3187 unsigned i, r;
3188
3189 if (get_cache_mode(cache) >= CM_READ_ONLY)
3190 return -EINVAL;
3191
3192 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
3193 cache->discard_nr_blocks);
3194 if (r) {
3195 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
3196 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
3197 return r;
3198 }
3199
3200 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
3201 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
3202 is_discarded(cache, to_dblock(i)));
3203 if (r) {
3204 metadata_operation_failed(cache, "dm_cache_set_discard", r);
3205 return r;
3206 }
3207 }
3208
3209 return 0;
3210 }
3211
3212 static int write_hints(struct cache *cache)
3213 {
3214 int r;
3215
3216 if (get_cache_mode(cache) >= CM_READ_ONLY)
3217 return -EINVAL;
3218
3219 r = dm_cache_write_hints(cache->cmd, cache->policy);
3220 if (r) {
3221 metadata_operation_failed(cache, "dm_cache_write_hints", r);
3222 return r;
3223 }
3224
3225 return 0;
3226 }
3227
3228 /*
3229 * returns true on success
3230 */
3231 static bool sync_metadata(struct cache *cache)
3232 {
3233 int r1, r2, r3, r4;
3234
3235 r1 = write_dirty_bitset(cache);
3236 if (r1)
3237 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
3238
3239 r2 = write_discard_bitset(cache);
3240 if (r2)
3241 DMERR("%s: could not write discard bitset", cache_device_name(cache));
3242
3243 save_stats(cache);
3244
3245 r3 = write_hints(cache);
3246 if (r3)
3247 DMERR("%s: could not write hints", cache_device_name(cache));
3248
3249 /*
3250 * If writing the above metadata failed, we still commit, but don't
3251 * set the clean shutdown flag. This will effectively force every
3252 * dirty bit to be set on reload.
3253 */
3254 r4 = commit(cache, !r1 && !r2 && !r3);
3255 if (r4)
3256 DMERR("%s: could not write cache metadata", cache_device_name(cache));
3257
3258 return !r1 && !r2 && !r3 && !r4;
3259 }
3260
3261 static void cache_postsuspend(struct dm_target *ti)
3262 {
3263 struct cache *cache = ti->private;
3264
3265 start_quiescing(cache);
3266 wait_for_migrations(cache);
3267 stop_worker(cache);
3268 requeue_deferred_bios(cache);
3269 requeue_deferred_cells(cache);
3270 stop_quiescing(cache);
3271
3272 if (get_cache_mode(cache) == CM_WRITE)
3273 (void) sync_metadata(cache);
3274 }
3275
3276 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
3277 bool dirty, uint32_t hint, bool hint_valid)
3278 {
3279 int r;
3280 struct cache *cache = context;
3281
3282 r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
3283 if (r)
3284 return r;
3285
3286 if (dirty)
3287 set_dirty(cache, oblock, cblock);
3288 else
3289 clear_dirty(cache, oblock, cblock);
3290
3291 return 0;
3292 }
3293
3294 /*
3295 * The discard block size in the on disk metadata is not
3296 * neccessarily the same as we're currently using. So we have to
3297 * be careful to only set the discarded attribute if we know it
3298 * covers a complete block of the new size.
3299 */
3300 struct discard_load_info {
3301 struct cache *cache;
3302
3303 /*
3304 * These blocks are sized using the on disk dblock size, rather
3305 * than the current one.
3306 */
3307 dm_block_t block_size;
3308 dm_block_t discard_begin, discard_end;
3309 };
3310
3311 static void discard_load_info_init(struct cache *cache,
3312 struct discard_load_info *li)
3313 {
3314 li->cache = cache;
3315 li->discard_begin = li->discard_end = 0;
3316 }
3317
3318 static void set_discard_range(struct discard_load_info *li)
3319 {
3320 sector_t b, e;
3321
3322 if (li->discard_begin == li->discard_end)
3323 return;
3324
3325 /*
3326 * Convert to sectors.
3327 */
3328 b = li->discard_begin * li->block_size;
3329 e = li->discard_end * li->block_size;
3330
3331 /*
3332 * Then convert back to the current dblock size.
3333 */
3334 b = dm_sector_div_up(b, li->cache->discard_block_size);
3335 sector_div(e, li->cache->discard_block_size);
3336
3337 /*
3338 * The origin may have shrunk, so we need to check we're still in
3339 * bounds.
3340 */
3341 if (e > from_dblock(li->cache->discard_nr_blocks))
3342 e = from_dblock(li->cache->discard_nr_blocks);
3343
3344 for (; b < e; b++)
3345 set_discard(li->cache, to_dblock(b));
3346 }
3347
3348 static int load_discard(void *context, sector_t discard_block_size,
3349 dm_dblock_t dblock, bool discard)
3350 {
3351 struct discard_load_info *li = context;
3352
3353 li->block_size = discard_block_size;
3354
3355 if (discard) {
3356 if (from_dblock(dblock) == li->discard_end)
3357 /*
3358 * We're already in a discard range, just extend it.
3359 */
3360 li->discard_end = li->discard_end + 1ULL;
3361
3362 else {
3363 /*
3364 * Emit the old range and start a new one.
3365 */
3366 set_discard_range(li);
3367 li->discard_begin = from_dblock(dblock);
3368 li->discard_end = li->discard_begin + 1ULL;
3369 }
3370 } else {
3371 set_discard_range(li);
3372 li->discard_begin = li->discard_end = 0;
3373 }
3374
3375 return 0;
3376 }
3377
3378 static dm_cblock_t get_cache_dev_size(struct cache *cache)
3379 {
3380 sector_t size = get_dev_size(cache->cache_dev);
3381 (void) sector_div(size, cache->sectors_per_block);
3382 return to_cblock(size);
3383 }
3384
3385 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3386 {
3387 if (from_cblock(new_size) > from_cblock(cache->cache_size))
3388 return true;
3389
3390 /*
3391 * We can't drop a dirty block when shrinking the cache.
3392 */
3393 while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3394 new_size = to_cblock(from_cblock(new_size) + 1);
3395 if (is_dirty(cache, new_size)) {
3396 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3397 cache_device_name(cache),
3398 (unsigned long long) from_cblock(new_size));
3399 return false;
3400 }
3401 }
3402
3403 return true;
3404 }
3405
3406 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3407 {
3408 int r;
3409
3410 r = dm_cache_resize(cache->cmd, new_size);
3411 if (r) {
3412 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3413 metadata_operation_failed(cache, "dm_cache_resize", r);
3414 return r;
3415 }
3416
3417 set_cache_size(cache, new_size);
3418
3419 return 0;
3420 }
3421
3422 static int cache_preresume(struct dm_target *ti)
3423 {
3424 int r = 0;
3425 struct cache *cache = ti->private;
3426 dm_cblock_t csize = get_cache_dev_size(cache);
3427
3428 /*
3429 * Check to see if the cache has resized.
3430 */
3431 if (!cache->sized) {
3432 r = resize_cache_dev(cache, csize);
3433 if (r)
3434 return r;
3435
3436 cache->sized = true;
3437
3438 } else if (csize != cache->cache_size) {
3439 if (!can_resize(cache, csize))
3440 return -EINVAL;
3441
3442 r = resize_cache_dev(cache, csize);
3443 if (r)
3444 return r;
3445 }
3446
3447 if (!cache->loaded_mappings) {
3448 r = dm_cache_load_mappings(cache->cmd, cache->policy,
3449 load_mapping, cache);
3450 if (r) {
3451 DMERR("%s: could not load cache mappings", cache_device_name(cache));
3452 metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3453 return r;
3454 }
3455
3456 cache->loaded_mappings = true;
3457 }
3458
3459 if (!cache->loaded_discards) {
3460 struct discard_load_info li;
3461
3462 /*
3463 * The discard bitset could have been resized, or the
3464 * discard block size changed. To be safe we start by
3465 * setting every dblock to not discarded.
3466 */
3467 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3468
3469 discard_load_info_init(cache, &li);
3470 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3471 if (r) {
3472 DMERR("%s: could not load origin discards", cache_device_name(cache));
3473 metadata_operation_failed(cache, "dm_cache_load_discards", r);
3474 return r;
3475 }
3476 set_discard_range(&li);
3477
3478 cache->loaded_discards = true;
3479 }
3480
3481 return r;
3482 }
3483
3484 static void cache_resume(struct dm_target *ti)
3485 {
3486 struct cache *cache = ti->private;
3487
3488 cache->need_tick_bio = true;
3489 do_waker(&cache->waker.work);
3490 }
3491
3492 /*
3493 * Status format:
3494 *
3495 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3496 * <cache block size> <#used cache blocks>/<#total cache blocks>
3497 * <#read hits> <#read misses> <#write hits> <#write misses>
3498 * <#demotions> <#promotions> <#dirty>
3499 * <#features> <features>*
3500 * <#core args> <core args>
3501 * <policy name> <#policy args> <policy args>* <cache metadata mode>
3502 */
3503 static void cache_status(struct dm_target *ti, status_type_t type,
3504 unsigned status_flags, char *result, unsigned maxlen)
3505 {
3506 int r = 0;
3507 unsigned i;
3508 ssize_t sz = 0;
3509 dm_block_t nr_free_blocks_metadata = 0;
3510 dm_block_t nr_blocks_metadata = 0;
3511 char buf[BDEVNAME_SIZE];
3512 struct cache *cache = ti->private;
3513 dm_cblock_t residency;
3514
3515 switch (type) {
3516 case STATUSTYPE_INFO:
3517 if (get_cache_mode(cache) == CM_FAIL) {
3518 DMEMIT("Fail");
3519 break;
3520 }
3521
3522 /* Commit to ensure statistics aren't out-of-date */
3523 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3524 (void) commit(cache, false);
3525
3526 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3527 if (r) {
3528 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3529 cache_device_name(cache), r);
3530 goto err;
3531 }
3532
3533 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3534 if (r) {
3535 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3536 cache_device_name(cache), r);
3537 goto err;
3538 }
3539
3540 residency = policy_residency(cache->policy);
3541
3542 DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %lu ",
3543 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3544 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3545 (unsigned long long)nr_blocks_metadata,
3546 cache->sectors_per_block,
3547 (unsigned long long) from_cblock(residency),
3548 (unsigned long long) from_cblock(cache->cache_size),
3549 (unsigned) atomic_read(&cache->stats.read_hit),
3550 (unsigned) atomic_read(&cache->stats.read_miss),
3551 (unsigned) atomic_read(&cache->stats.write_hit),
3552 (unsigned) atomic_read(&cache->stats.write_miss),
3553 (unsigned) atomic_read(&cache->stats.demotion),
3554 (unsigned) atomic_read(&cache->stats.promotion),
3555 (unsigned long) atomic_read(&cache->nr_dirty));
3556
3557 if (writethrough_mode(&cache->features))
3558 DMEMIT("1 writethrough ");
3559
3560 else if (passthrough_mode(&cache->features))
3561 DMEMIT("1 passthrough ");
3562
3563 else if (writeback_mode(&cache->features))
3564 DMEMIT("1 writeback ");
3565
3566 else {
3567 DMERR("%s: internal error: unknown io mode: %d",
3568 cache_device_name(cache), (int) cache->features.io_mode);
3569 goto err;
3570 }
3571
3572 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3573
3574 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3575 if (sz < maxlen) {
3576 r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3577 if (r)
3578 DMERR("%s: policy_emit_config_values returned %d",
3579 cache_device_name(cache), r);
3580 }
3581
3582 if (get_cache_mode(cache) == CM_READ_ONLY)
3583 DMEMIT("ro ");
3584 else
3585 DMEMIT("rw ");
3586
3587 break;
3588
3589 case STATUSTYPE_TABLE:
3590 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3591 DMEMIT("%s ", buf);
3592 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3593 DMEMIT("%s ", buf);
3594 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3595 DMEMIT("%s", buf);
3596
3597 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3598 DMEMIT(" %s", cache->ctr_args[i]);
3599 if (cache->nr_ctr_args)
3600 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3601 }
3602
3603 return;
3604
3605 err:
3606 DMEMIT("Error");
3607 }
3608
3609 /*
3610 * A cache block range can take two forms:
3611 *
3612 * i) A single cblock, eg. '3456'
3613 * ii) A begin and end cblock with dots between, eg. 123-234
3614 */
3615 static int parse_cblock_range(struct cache *cache, const char *str,
3616 struct cblock_range *result)
3617 {
3618 char dummy;
3619 uint64_t b, e;
3620 int r;
3621
3622 /*
3623 * Try and parse form (ii) first.
3624 */
3625 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3626 if (r < 0)
3627 return r;
3628
3629 if (r == 2) {
3630 result->begin = to_cblock(b);
3631 result->end = to_cblock(e);
3632 return 0;
3633 }
3634
3635 /*
3636 * That didn't work, try form (i).
3637 */
3638 r = sscanf(str, "%llu%c", &b, &dummy);
3639 if (r < 0)
3640 return r;
3641
3642 if (r == 1) {
3643 result->begin = to_cblock(b);
3644 result->end = to_cblock(from_cblock(result->begin) + 1u);
3645 return 0;
3646 }
3647
3648 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3649 return -EINVAL;
3650 }
3651
3652 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3653 {
3654 uint64_t b = from_cblock(range->begin);
3655 uint64_t e = from_cblock(range->end);
3656 uint64_t n = from_cblock(cache->cache_size);
3657
3658 if (b >= n) {
3659 DMERR("%s: begin cblock out of range: %llu >= %llu",
3660 cache_device_name(cache), b, n);
3661 return -EINVAL;
3662 }
3663
3664 if (e > n) {
3665 DMERR("%s: end cblock out of range: %llu > %llu",
3666 cache_device_name(cache), e, n);
3667 return -EINVAL;
3668 }
3669
3670 if (b >= e) {
3671 DMERR("%s: invalid cblock range: %llu >= %llu",
3672 cache_device_name(cache), b, e);
3673 return -EINVAL;
3674 }
3675
3676 return 0;
3677 }
3678
3679 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3680 {
3681 struct invalidation_request req;
3682
3683 INIT_LIST_HEAD(&req.list);
3684 req.cblocks = range;
3685 atomic_set(&req.complete, 0);
3686 req.err = 0;
3687 init_waitqueue_head(&req.result_wait);
3688
3689 spin_lock(&cache->invalidation_lock);
3690 list_add(&req.list, &cache->invalidation_requests);
3691 spin_unlock(&cache->invalidation_lock);
3692 wake_worker(cache);
3693
3694 wait_event(req.result_wait, atomic_read(&req.complete));
3695 return req.err;
3696 }
3697
3698 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3699 const char **cblock_ranges)
3700 {
3701 int r = 0;
3702 unsigned i;
3703 struct cblock_range range;
3704
3705 if (!passthrough_mode(&cache->features)) {
3706 DMERR("%s: cache has to be in passthrough mode for invalidation",
3707 cache_device_name(cache));
3708 return -EPERM;
3709 }
3710
3711 for (i = 0; i < count; i++) {
3712 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3713 if (r)
3714 break;
3715
3716 r = validate_cblock_range(cache, &range);
3717 if (r)
3718 break;
3719
3720 /*
3721 * Pass begin and end origin blocks to the worker and wake it.
3722 */
3723 r = request_invalidation(cache, &range);
3724 if (r)
3725 break;
3726 }
3727
3728 return r;
3729 }
3730
3731 /*
3732 * Supports
3733 * "<key> <value>"
3734 * and
3735 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3736 *
3737 * The key migration_threshold is supported by the cache target core.
3738 */
3739 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3740 {
3741 struct cache *cache = ti->private;
3742
3743 if (!argc)
3744 return -EINVAL;
3745
3746 if (get_cache_mode(cache) >= CM_READ_ONLY) {
3747 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3748 cache_device_name(cache));
3749 return -EOPNOTSUPP;
3750 }
3751
3752 if (!strcasecmp(argv[0], "invalidate_cblocks"))
3753 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3754
3755 if (argc != 2)
3756 return -EINVAL;
3757
3758 return set_config_value(cache, argv[0], argv[1]);
3759 }
3760
3761 static int cache_iterate_devices(struct dm_target *ti,
3762 iterate_devices_callout_fn fn, void *data)
3763 {
3764 int r = 0;
3765 struct cache *cache = ti->private;
3766
3767 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3768 if (!r)
3769 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3770
3771 return r;
3772 }
3773
3774 /*
3775 * We assume I/O is going to the origin (which is the volume
3776 * more likely to have restrictions e.g. by being striped).
3777 * (Looking up the exact location of the data would be expensive
3778 * and could always be out of date by the time the bio is submitted.)
3779 */
3780 static int cache_bvec_merge(struct dm_target *ti,
3781 struct bvec_merge_data *bvm,
3782 struct bio_vec *biovec, int max_size)
3783 {
3784 struct cache *cache = ti->private;
3785 struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev);
3786
3787 if (!q->merge_bvec_fn)
3788 return max_size;
3789
3790 bvm->bi_bdev = cache->origin_dev->bdev;
3791 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3792 }
3793
3794 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3795 {
3796 /*
3797 * FIXME: these limits may be incompatible with the cache device
3798 */
3799 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3800 cache->origin_sectors);
3801 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3802 }
3803
3804 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3805 {
3806 struct cache *cache = ti->private;
3807 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3808
3809 /*
3810 * If the system-determined stacked limits are compatible with the
3811 * cache's blocksize (io_opt is a factor) do not override them.
3812 */
3813 if (io_opt_sectors < cache->sectors_per_block ||
3814 do_div(io_opt_sectors, cache->sectors_per_block)) {
3815 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3816 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3817 }
3818 set_discard_limits(cache, limits);
3819 }
3820
3821 /*----------------------------------------------------------------*/
3822
3823 static struct target_type cache_target = {
3824 .name = "cache",
3825 .version = {1, 7, 0},
3826 .module = THIS_MODULE,
3827 .ctr = cache_ctr,
3828 .dtr = cache_dtr,
3829 .map = cache_map,
3830 .end_io = cache_end_io,
3831 .postsuspend = cache_postsuspend,
3832 .preresume = cache_preresume,
3833 .resume = cache_resume,
3834 .status = cache_status,
3835 .message = cache_message,
3836 .iterate_devices = cache_iterate_devices,
3837 .merge = cache_bvec_merge,
3838 .io_hints = cache_io_hints,
3839 };
3840
3841 static int __init dm_cache_init(void)
3842 {
3843 int r;
3844
3845 r = dm_register_target(&cache_target);
3846 if (r) {
3847 DMERR("cache target registration failed: %d", r);
3848 return r;
3849 }
3850
3851 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3852 if (!migration_cache) {
3853 dm_unregister_target(&cache_target);
3854 return -ENOMEM;
3855 }
3856
3857 return 0;
3858 }
3859
3860 static void __exit dm_cache_exit(void)
3861 {
3862 dm_unregister_target(&cache_target);
3863 kmem_cache_destroy(migration_cache);
3864 }
3865
3866 module_init(dm_cache_init);
3867 module_exit(dm_cache_exit);
3868
3869 MODULE_DESCRIPTION(DM_NAME " cache target");
3870 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3871 MODULE_LICENSE("GPL");