]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/md/dm-cache-target.c
Merge branch 'for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[mirror_ubuntu-zesty-kernel.git] / drivers / md / dm-cache-target.c
1 /*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20
21 #define DM_MSG_PREFIX "cache"
22
23 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
24 "A percentage of time allocated for copying to and/or from cache");
25
26 /*----------------------------------------------------------------*/
27
28 #define IOT_RESOLUTION 4
29
30 struct io_tracker {
31 spinlock_t lock;
32
33 /*
34 * Sectors of in-flight IO.
35 */
36 sector_t in_flight;
37
38 /*
39 * The time, in jiffies, when this device became idle (if it is
40 * indeed idle).
41 */
42 unsigned long idle_time;
43 unsigned long last_update_time;
44 };
45
46 static void iot_init(struct io_tracker *iot)
47 {
48 spin_lock_init(&iot->lock);
49 iot->in_flight = 0ul;
50 iot->idle_time = 0ul;
51 iot->last_update_time = jiffies;
52 }
53
54 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
55 {
56 if (iot->in_flight)
57 return false;
58
59 return time_after(jiffies, iot->idle_time + jifs);
60 }
61
62 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
63 {
64 bool r;
65 unsigned long flags;
66
67 spin_lock_irqsave(&iot->lock, flags);
68 r = __iot_idle_for(iot, jifs);
69 spin_unlock_irqrestore(&iot->lock, flags);
70
71 return r;
72 }
73
74 static void iot_io_begin(struct io_tracker *iot, sector_t len)
75 {
76 unsigned long flags;
77
78 spin_lock_irqsave(&iot->lock, flags);
79 iot->in_flight += len;
80 spin_unlock_irqrestore(&iot->lock, flags);
81 }
82
83 static void __iot_io_end(struct io_tracker *iot, sector_t len)
84 {
85 iot->in_flight -= len;
86 if (!iot->in_flight)
87 iot->idle_time = jiffies;
88 }
89
90 static void iot_io_end(struct io_tracker *iot, sector_t len)
91 {
92 unsigned long flags;
93
94 spin_lock_irqsave(&iot->lock, flags);
95 __iot_io_end(iot, len);
96 spin_unlock_irqrestore(&iot->lock, flags);
97 }
98
99 /*----------------------------------------------------------------*/
100
101 /*
102 * Glossary:
103 *
104 * oblock: index of an origin block
105 * cblock: index of a cache block
106 * promotion: movement of a block from origin to cache
107 * demotion: movement of a block from cache to origin
108 * migration: movement of a block between the origin and cache device,
109 * either direction
110 */
111
112 /*----------------------------------------------------------------*/
113
114 /*
115 * There are a couple of places where we let a bio run, but want to do some
116 * work before calling its endio function. We do this by temporarily
117 * changing the endio fn.
118 */
119 struct dm_hook_info {
120 bio_end_io_t *bi_end_io;
121 };
122
123 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
124 bio_end_io_t *bi_end_io, void *bi_private)
125 {
126 h->bi_end_io = bio->bi_end_io;
127
128 bio->bi_end_io = bi_end_io;
129 bio->bi_private = bi_private;
130 }
131
132 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
133 {
134 bio->bi_end_io = h->bi_end_io;
135 }
136
137 /*----------------------------------------------------------------*/
138
139 #define MIGRATION_POOL_SIZE 128
140 #define COMMIT_PERIOD HZ
141 #define MIGRATION_COUNT_WINDOW 10
142
143 /*
144 * The block size of the device holding cache data must be
145 * between 32KB and 1GB.
146 */
147 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
148 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
149
150 enum cache_metadata_mode {
151 CM_WRITE, /* metadata may be changed */
152 CM_READ_ONLY, /* metadata may not be changed */
153 CM_FAIL
154 };
155
156 enum cache_io_mode {
157 /*
158 * Data is written to cached blocks only. These blocks are marked
159 * dirty. If you lose the cache device you will lose data.
160 * Potential performance increase for both reads and writes.
161 */
162 CM_IO_WRITEBACK,
163
164 /*
165 * Data is written to both cache and origin. Blocks are never
166 * dirty. Potential performance benfit for reads only.
167 */
168 CM_IO_WRITETHROUGH,
169
170 /*
171 * A degraded mode useful for various cache coherency situations
172 * (eg, rolling back snapshots). Reads and writes always go to the
173 * origin. If a write goes to a cached oblock, then the cache
174 * block is invalidated.
175 */
176 CM_IO_PASSTHROUGH
177 };
178
179 struct cache_features {
180 enum cache_metadata_mode mode;
181 enum cache_io_mode io_mode;
182 };
183
184 struct cache_stats {
185 atomic_t read_hit;
186 atomic_t read_miss;
187 atomic_t write_hit;
188 atomic_t write_miss;
189 atomic_t demotion;
190 atomic_t promotion;
191 atomic_t copies_avoided;
192 atomic_t cache_cell_clash;
193 atomic_t commit_count;
194 atomic_t discard_count;
195 };
196
197 /*
198 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
199 * the one-past-the-end value.
200 */
201 struct cblock_range {
202 dm_cblock_t begin;
203 dm_cblock_t end;
204 };
205
206 struct invalidation_request {
207 struct list_head list;
208 struct cblock_range *cblocks;
209
210 atomic_t complete;
211 int err;
212
213 wait_queue_head_t result_wait;
214 };
215
216 struct cache {
217 struct dm_target *ti;
218 struct dm_target_callbacks callbacks;
219
220 struct dm_cache_metadata *cmd;
221
222 /*
223 * Metadata is written to this device.
224 */
225 struct dm_dev *metadata_dev;
226
227 /*
228 * The slower of the two data devices. Typically a spindle.
229 */
230 struct dm_dev *origin_dev;
231
232 /*
233 * The faster of the two data devices. Typically an SSD.
234 */
235 struct dm_dev *cache_dev;
236
237 /*
238 * Size of the origin device in _complete_ blocks and native sectors.
239 */
240 dm_oblock_t origin_blocks;
241 sector_t origin_sectors;
242
243 /*
244 * Size of the cache device in blocks.
245 */
246 dm_cblock_t cache_size;
247
248 /*
249 * Fields for converting from sectors to blocks.
250 */
251 uint32_t sectors_per_block;
252 int sectors_per_block_shift;
253
254 spinlock_t lock;
255 struct list_head deferred_cells;
256 struct bio_list deferred_bios;
257 struct bio_list deferred_flush_bios;
258 struct bio_list deferred_writethrough_bios;
259 struct list_head quiesced_migrations;
260 struct list_head completed_migrations;
261 struct list_head need_commit_migrations;
262 sector_t migration_threshold;
263 wait_queue_head_t migration_wait;
264 atomic_t nr_allocated_migrations;
265
266 /*
267 * The number of in flight migrations that are performing
268 * background io. eg, promotion, writeback.
269 */
270 atomic_t nr_io_migrations;
271
272 wait_queue_head_t quiescing_wait;
273 atomic_t quiescing;
274 atomic_t quiescing_ack;
275
276 /*
277 * cache_size entries, dirty if set
278 */
279 atomic_t nr_dirty;
280 unsigned long *dirty_bitset;
281
282 /*
283 * origin_blocks entries, discarded if set.
284 */
285 dm_dblock_t discard_nr_blocks;
286 unsigned long *discard_bitset;
287 uint32_t discard_block_size; /* a power of 2 times sectors per block */
288
289 /*
290 * Rather than reconstructing the table line for the status we just
291 * save it and regurgitate.
292 */
293 unsigned nr_ctr_args;
294 const char **ctr_args;
295
296 struct dm_kcopyd_client *copier;
297 struct workqueue_struct *wq;
298 struct work_struct worker;
299
300 struct delayed_work waker;
301 unsigned long last_commit_jiffies;
302
303 struct dm_bio_prison *prison;
304 struct dm_deferred_set *all_io_ds;
305
306 mempool_t *migration_pool;
307
308 struct dm_cache_policy *policy;
309 unsigned policy_nr_args;
310
311 bool need_tick_bio:1;
312 bool sized:1;
313 bool invalidate:1;
314 bool commit_requested:1;
315 bool loaded_mappings:1;
316 bool loaded_discards:1;
317
318 /*
319 * Cache features such as write-through.
320 */
321 struct cache_features features;
322
323 struct cache_stats stats;
324
325 /*
326 * Invalidation fields.
327 */
328 spinlock_t invalidation_lock;
329 struct list_head invalidation_requests;
330
331 struct io_tracker origin_tracker;
332 };
333
334 struct per_bio_data {
335 bool tick:1;
336 unsigned req_nr:2;
337 struct dm_deferred_entry *all_io_entry;
338 struct dm_hook_info hook_info;
339 sector_t len;
340
341 /*
342 * writethrough fields. These MUST remain at the end of this
343 * structure and the 'cache' member must be the first as it
344 * is used to determine the offset of the writethrough fields.
345 */
346 struct cache *cache;
347 dm_cblock_t cblock;
348 struct dm_bio_details bio_details;
349 };
350
351 struct dm_cache_migration {
352 struct list_head list;
353 struct cache *cache;
354
355 unsigned long start_jiffies;
356 dm_oblock_t old_oblock;
357 dm_oblock_t new_oblock;
358 dm_cblock_t cblock;
359
360 bool err:1;
361 bool discard:1;
362 bool writeback:1;
363 bool demote:1;
364 bool promote:1;
365 bool requeue_holder:1;
366 bool invalidate:1;
367
368 struct dm_bio_prison_cell *old_ocell;
369 struct dm_bio_prison_cell *new_ocell;
370 };
371
372 /*
373 * Processing a bio in the worker thread may require these memory
374 * allocations. We prealloc to avoid deadlocks (the same worker thread
375 * frees them back to the mempool).
376 */
377 struct prealloc {
378 struct dm_cache_migration *mg;
379 struct dm_bio_prison_cell *cell1;
380 struct dm_bio_prison_cell *cell2;
381 };
382
383 static enum cache_metadata_mode get_cache_mode(struct cache *cache);
384
385 static void wake_worker(struct cache *cache)
386 {
387 queue_work(cache->wq, &cache->worker);
388 }
389
390 /*----------------------------------------------------------------*/
391
392 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
393 {
394 /* FIXME: change to use a local slab. */
395 return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
396 }
397
398 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
399 {
400 dm_bio_prison_free_cell(cache->prison, cell);
401 }
402
403 static struct dm_cache_migration *alloc_migration(struct cache *cache)
404 {
405 struct dm_cache_migration *mg;
406
407 mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
408 if (mg) {
409 mg->cache = cache;
410 atomic_inc(&mg->cache->nr_allocated_migrations);
411 }
412
413 return mg;
414 }
415
416 static void free_migration(struct dm_cache_migration *mg)
417 {
418 struct cache *cache = mg->cache;
419
420 if (atomic_dec_and_test(&cache->nr_allocated_migrations))
421 wake_up(&cache->migration_wait);
422
423 mempool_free(mg, cache->migration_pool);
424 }
425
426 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
427 {
428 if (!p->mg) {
429 p->mg = alloc_migration(cache);
430 if (!p->mg)
431 return -ENOMEM;
432 }
433
434 if (!p->cell1) {
435 p->cell1 = alloc_prison_cell(cache);
436 if (!p->cell1)
437 return -ENOMEM;
438 }
439
440 if (!p->cell2) {
441 p->cell2 = alloc_prison_cell(cache);
442 if (!p->cell2)
443 return -ENOMEM;
444 }
445
446 return 0;
447 }
448
449 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
450 {
451 if (p->cell2)
452 free_prison_cell(cache, p->cell2);
453
454 if (p->cell1)
455 free_prison_cell(cache, p->cell1);
456
457 if (p->mg)
458 free_migration(p->mg);
459 }
460
461 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
462 {
463 struct dm_cache_migration *mg = p->mg;
464
465 BUG_ON(!mg);
466 p->mg = NULL;
467
468 return mg;
469 }
470
471 /*
472 * You must have a cell within the prealloc struct to return. If not this
473 * function will BUG() rather than returning NULL.
474 */
475 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
476 {
477 struct dm_bio_prison_cell *r = NULL;
478
479 if (p->cell1) {
480 r = p->cell1;
481 p->cell1 = NULL;
482
483 } else if (p->cell2) {
484 r = p->cell2;
485 p->cell2 = NULL;
486 } else
487 BUG();
488
489 return r;
490 }
491
492 /*
493 * You can't have more than two cells in a prealloc struct. BUG() will be
494 * called if you try and overfill.
495 */
496 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
497 {
498 if (!p->cell2)
499 p->cell2 = cell;
500
501 else if (!p->cell1)
502 p->cell1 = cell;
503
504 else
505 BUG();
506 }
507
508 /*----------------------------------------------------------------*/
509
510 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key *key)
511 {
512 key->virtual = 0;
513 key->dev = 0;
514 key->block_begin = from_oblock(begin);
515 key->block_end = from_oblock(end);
516 }
517
518 /*
519 * The caller hands in a preallocated cell, and a free function for it.
520 * The cell will be freed if there's an error, or if it wasn't used because
521 * a cell with that key already exists.
522 */
523 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
524
525 static int bio_detain_range(struct cache *cache, dm_oblock_t oblock_begin, dm_oblock_t oblock_end,
526 struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
527 cell_free_fn free_fn, void *free_context,
528 struct dm_bio_prison_cell **cell_result)
529 {
530 int r;
531 struct dm_cell_key key;
532
533 build_key(oblock_begin, oblock_end, &key);
534 r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
535 if (r)
536 free_fn(free_context, cell_prealloc);
537
538 return r;
539 }
540
541 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
542 struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
543 cell_free_fn free_fn, void *free_context,
544 struct dm_bio_prison_cell **cell_result)
545 {
546 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
547 return bio_detain_range(cache, oblock, end, bio,
548 cell_prealloc, free_fn, free_context, cell_result);
549 }
550
551 static int get_cell(struct cache *cache,
552 dm_oblock_t oblock,
553 struct prealloc *structs,
554 struct dm_bio_prison_cell **cell_result)
555 {
556 int r;
557 struct dm_cell_key key;
558 struct dm_bio_prison_cell *cell_prealloc;
559
560 cell_prealloc = prealloc_get_cell(structs);
561
562 build_key(oblock, to_oblock(from_oblock(oblock) + 1ULL), &key);
563 r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
564 if (r)
565 prealloc_put_cell(structs, cell_prealloc);
566
567 return r;
568 }
569
570 /*----------------------------------------------------------------*/
571
572 static bool is_dirty(struct cache *cache, dm_cblock_t b)
573 {
574 return test_bit(from_cblock(b), cache->dirty_bitset);
575 }
576
577 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
578 {
579 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
580 atomic_inc(&cache->nr_dirty);
581 policy_set_dirty(cache->policy, oblock);
582 }
583 }
584
585 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
586 {
587 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
588 policy_clear_dirty(cache->policy, oblock);
589 if (atomic_dec_return(&cache->nr_dirty) == 0)
590 dm_table_event(cache->ti->table);
591 }
592 }
593
594 /*----------------------------------------------------------------*/
595
596 static bool block_size_is_power_of_two(struct cache *cache)
597 {
598 return cache->sectors_per_block_shift >= 0;
599 }
600
601 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
602 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
603 __always_inline
604 #endif
605 static dm_block_t block_div(dm_block_t b, uint32_t n)
606 {
607 do_div(b, n);
608
609 return b;
610 }
611
612 static dm_block_t oblocks_per_dblock(struct cache *cache)
613 {
614 dm_block_t oblocks = cache->discard_block_size;
615
616 if (block_size_is_power_of_two(cache))
617 oblocks >>= cache->sectors_per_block_shift;
618 else
619 oblocks = block_div(oblocks, cache->sectors_per_block);
620
621 return oblocks;
622 }
623
624 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
625 {
626 return to_dblock(block_div(from_oblock(oblock),
627 oblocks_per_dblock(cache)));
628 }
629
630 static dm_oblock_t dblock_to_oblock(struct cache *cache, dm_dblock_t dblock)
631 {
632 return to_oblock(from_dblock(dblock) * oblocks_per_dblock(cache));
633 }
634
635 static void set_discard(struct cache *cache, dm_dblock_t b)
636 {
637 unsigned long flags;
638
639 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
640 atomic_inc(&cache->stats.discard_count);
641
642 spin_lock_irqsave(&cache->lock, flags);
643 set_bit(from_dblock(b), cache->discard_bitset);
644 spin_unlock_irqrestore(&cache->lock, flags);
645 }
646
647 static void clear_discard(struct cache *cache, dm_dblock_t b)
648 {
649 unsigned long flags;
650
651 spin_lock_irqsave(&cache->lock, flags);
652 clear_bit(from_dblock(b), cache->discard_bitset);
653 spin_unlock_irqrestore(&cache->lock, flags);
654 }
655
656 static bool is_discarded(struct cache *cache, dm_dblock_t b)
657 {
658 int r;
659 unsigned long flags;
660
661 spin_lock_irqsave(&cache->lock, flags);
662 r = test_bit(from_dblock(b), cache->discard_bitset);
663 spin_unlock_irqrestore(&cache->lock, flags);
664
665 return r;
666 }
667
668 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
669 {
670 int r;
671 unsigned long flags;
672
673 spin_lock_irqsave(&cache->lock, flags);
674 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
675 cache->discard_bitset);
676 spin_unlock_irqrestore(&cache->lock, flags);
677
678 return r;
679 }
680
681 /*----------------------------------------------------------------*/
682
683 static void load_stats(struct cache *cache)
684 {
685 struct dm_cache_statistics stats;
686
687 dm_cache_metadata_get_stats(cache->cmd, &stats);
688 atomic_set(&cache->stats.read_hit, stats.read_hits);
689 atomic_set(&cache->stats.read_miss, stats.read_misses);
690 atomic_set(&cache->stats.write_hit, stats.write_hits);
691 atomic_set(&cache->stats.write_miss, stats.write_misses);
692 }
693
694 static void save_stats(struct cache *cache)
695 {
696 struct dm_cache_statistics stats;
697
698 if (get_cache_mode(cache) >= CM_READ_ONLY)
699 return;
700
701 stats.read_hits = atomic_read(&cache->stats.read_hit);
702 stats.read_misses = atomic_read(&cache->stats.read_miss);
703 stats.write_hits = atomic_read(&cache->stats.write_hit);
704 stats.write_misses = atomic_read(&cache->stats.write_miss);
705
706 dm_cache_metadata_set_stats(cache->cmd, &stats);
707 }
708
709 /*----------------------------------------------------------------
710 * Per bio data
711 *--------------------------------------------------------------*/
712
713 /*
714 * If using writeback, leave out struct per_bio_data's writethrough fields.
715 */
716 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
717 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
718
719 static bool writethrough_mode(struct cache_features *f)
720 {
721 return f->io_mode == CM_IO_WRITETHROUGH;
722 }
723
724 static bool writeback_mode(struct cache_features *f)
725 {
726 return f->io_mode == CM_IO_WRITEBACK;
727 }
728
729 static bool passthrough_mode(struct cache_features *f)
730 {
731 return f->io_mode == CM_IO_PASSTHROUGH;
732 }
733
734 static size_t get_per_bio_data_size(struct cache *cache)
735 {
736 return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
737 }
738
739 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
740 {
741 struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
742 BUG_ON(!pb);
743 return pb;
744 }
745
746 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
747 {
748 struct per_bio_data *pb = get_per_bio_data(bio, data_size);
749
750 pb->tick = false;
751 pb->req_nr = dm_bio_get_target_bio_nr(bio);
752 pb->all_io_entry = NULL;
753 pb->len = 0;
754
755 return pb;
756 }
757
758 /*----------------------------------------------------------------
759 * Remapping
760 *--------------------------------------------------------------*/
761 static void remap_to_origin(struct cache *cache, struct bio *bio)
762 {
763 bio->bi_bdev = cache->origin_dev->bdev;
764 }
765
766 static void remap_to_cache(struct cache *cache, struct bio *bio,
767 dm_cblock_t cblock)
768 {
769 sector_t bi_sector = bio->bi_iter.bi_sector;
770 sector_t block = from_cblock(cblock);
771
772 bio->bi_bdev = cache->cache_dev->bdev;
773 if (!block_size_is_power_of_two(cache))
774 bio->bi_iter.bi_sector =
775 (block * cache->sectors_per_block) +
776 sector_div(bi_sector, cache->sectors_per_block);
777 else
778 bio->bi_iter.bi_sector =
779 (block << cache->sectors_per_block_shift) |
780 (bi_sector & (cache->sectors_per_block - 1));
781 }
782
783 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
784 {
785 unsigned long flags;
786 size_t pb_data_size = get_per_bio_data_size(cache);
787 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
788
789 spin_lock_irqsave(&cache->lock, flags);
790 if (cache->need_tick_bio &&
791 !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
792 pb->tick = true;
793 cache->need_tick_bio = false;
794 }
795 spin_unlock_irqrestore(&cache->lock, flags);
796 }
797
798 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
799 dm_oblock_t oblock)
800 {
801 check_if_tick_bio_needed(cache, bio);
802 remap_to_origin(cache, bio);
803 if (bio_data_dir(bio) == WRITE)
804 clear_discard(cache, oblock_to_dblock(cache, oblock));
805 }
806
807 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
808 dm_oblock_t oblock, dm_cblock_t cblock)
809 {
810 check_if_tick_bio_needed(cache, bio);
811 remap_to_cache(cache, bio, cblock);
812 if (bio_data_dir(bio) == WRITE) {
813 set_dirty(cache, oblock, cblock);
814 clear_discard(cache, oblock_to_dblock(cache, oblock));
815 }
816 }
817
818 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
819 {
820 sector_t block_nr = bio->bi_iter.bi_sector;
821
822 if (!block_size_is_power_of_two(cache))
823 (void) sector_div(block_nr, cache->sectors_per_block);
824 else
825 block_nr >>= cache->sectors_per_block_shift;
826
827 return to_oblock(block_nr);
828 }
829
830 static int bio_triggers_commit(struct cache *cache, struct bio *bio)
831 {
832 return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
833 }
834
835 /*
836 * You must increment the deferred set whilst the prison cell is held. To
837 * encourage this, we ask for 'cell' to be passed in.
838 */
839 static void inc_ds(struct cache *cache, struct bio *bio,
840 struct dm_bio_prison_cell *cell)
841 {
842 size_t pb_data_size = get_per_bio_data_size(cache);
843 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
844
845 BUG_ON(!cell);
846 BUG_ON(pb->all_io_entry);
847
848 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
849 }
850
851 static bool accountable_bio(struct cache *cache, struct bio *bio)
852 {
853 return ((bio->bi_bdev == cache->origin_dev->bdev) &&
854 !(bio->bi_rw & REQ_DISCARD));
855 }
856
857 static void accounted_begin(struct cache *cache, struct bio *bio)
858 {
859 size_t pb_data_size = get_per_bio_data_size(cache);
860 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
861
862 if (accountable_bio(cache, bio)) {
863 pb->len = bio_sectors(bio);
864 iot_io_begin(&cache->origin_tracker, pb->len);
865 }
866 }
867
868 static void accounted_complete(struct cache *cache, struct bio *bio)
869 {
870 size_t pb_data_size = get_per_bio_data_size(cache);
871 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
872
873 iot_io_end(&cache->origin_tracker, pb->len);
874 }
875
876 static void accounted_request(struct cache *cache, struct bio *bio)
877 {
878 accounted_begin(cache, bio);
879 generic_make_request(bio);
880 }
881
882 static void issue(struct cache *cache, struct bio *bio)
883 {
884 unsigned long flags;
885
886 if (!bio_triggers_commit(cache, bio)) {
887 accounted_request(cache, bio);
888 return;
889 }
890
891 /*
892 * Batch together any bios that trigger commits and then issue a
893 * single commit for them in do_worker().
894 */
895 spin_lock_irqsave(&cache->lock, flags);
896 cache->commit_requested = true;
897 bio_list_add(&cache->deferred_flush_bios, bio);
898 spin_unlock_irqrestore(&cache->lock, flags);
899 }
900
901 static void inc_and_issue(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell *cell)
902 {
903 inc_ds(cache, bio, cell);
904 issue(cache, bio);
905 }
906
907 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
908 {
909 unsigned long flags;
910
911 spin_lock_irqsave(&cache->lock, flags);
912 bio_list_add(&cache->deferred_writethrough_bios, bio);
913 spin_unlock_irqrestore(&cache->lock, flags);
914
915 wake_worker(cache);
916 }
917
918 static void writethrough_endio(struct bio *bio)
919 {
920 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
921
922 dm_unhook_bio(&pb->hook_info, bio);
923
924 if (bio->bi_error) {
925 bio_endio(bio);
926 return;
927 }
928
929 dm_bio_restore(&pb->bio_details, bio);
930 remap_to_cache(pb->cache, bio, pb->cblock);
931
932 /*
933 * We can't issue this bio directly, since we're in interrupt
934 * context. So it gets put on a bio list for processing by the
935 * worker thread.
936 */
937 defer_writethrough_bio(pb->cache, bio);
938 }
939
940 /*
941 * When running in writethrough mode we need to send writes to clean blocks
942 * to both the cache and origin devices. In future we'd like to clone the
943 * bio and send them in parallel, but for now we're doing them in
944 * series as this is easier.
945 */
946 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
947 dm_oblock_t oblock, dm_cblock_t cblock)
948 {
949 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
950
951 pb->cache = cache;
952 pb->cblock = cblock;
953 dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
954 dm_bio_record(&pb->bio_details, bio);
955
956 remap_to_origin_clear_discard(pb->cache, bio, oblock);
957 }
958
959 /*----------------------------------------------------------------
960 * Failure modes
961 *--------------------------------------------------------------*/
962 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
963 {
964 return cache->features.mode;
965 }
966
967 static const char *cache_device_name(struct cache *cache)
968 {
969 return dm_device_name(dm_table_get_md(cache->ti->table));
970 }
971
972 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
973 {
974 const char *descs[] = {
975 "write",
976 "read-only",
977 "fail"
978 };
979
980 dm_table_event(cache->ti->table);
981 DMINFO("%s: switching cache to %s mode",
982 cache_device_name(cache), descs[(int)mode]);
983 }
984
985 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
986 {
987 bool needs_check = dm_cache_metadata_needs_check(cache->cmd);
988 enum cache_metadata_mode old_mode = get_cache_mode(cache);
989
990 if (new_mode == CM_WRITE && needs_check) {
991 DMERR("%s: unable to switch cache to write mode until repaired.",
992 cache_device_name(cache));
993 if (old_mode != new_mode)
994 new_mode = old_mode;
995 else
996 new_mode = CM_READ_ONLY;
997 }
998
999 /* Never move out of fail mode */
1000 if (old_mode == CM_FAIL)
1001 new_mode = CM_FAIL;
1002
1003 switch (new_mode) {
1004 case CM_FAIL:
1005 case CM_READ_ONLY:
1006 dm_cache_metadata_set_read_only(cache->cmd);
1007 break;
1008
1009 case CM_WRITE:
1010 dm_cache_metadata_set_read_write(cache->cmd);
1011 break;
1012 }
1013
1014 cache->features.mode = new_mode;
1015
1016 if (new_mode != old_mode)
1017 notify_mode_switch(cache, new_mode);
1018 }
1019
1020 static void abort_transaction(struct cache *cache)
1021 {
1022 const char *dev_name = cache_device_name(cache);
1023
1024 if (get_cache_mode(cache) >= CM_READ_ONLY)
1025 return;
1026
1027 if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1028 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1029 set_cache_mode(cache, CM_FAIL);
1030 }
1031
1032 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1033 if (dm_cache_metadata_abort(cache->cmd)) {
1034 DMERR("%s: failed to abort metadata transaction", dev_name);
1035 set_cache_mode(cache, CM_FAIL);
1036 }
1037 }
1038
1039 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1040 {
1041 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1042 cache_device_name(cache), op, r);
1043 abort_transaction(cache);
1044 set_cache_mode(cache, CM_READ_ONLY);
1045 }
1046
1047 /*----------------------------------------------------------------
1048 * Migration processing
1049 *
1050 * Migration covers moving data from the origin device to the cache, or
1051 * vice versa.
1052 *--------------------------------------------------------------*/
1053 static void inc_io_migrations(struct cache *cache)
1054 {
1055 atomic_inc(&cache->nr_io_migrations);
1056 }
1057
1058 static void dec_io_migrations(struct cache *cache)
1059 {
1060 atomic_dec(&cache->nr_io_migrations);
1061 }
1062
1063 static bool discard_or_flush(struct bio *bio)
1064 {
1065 return bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD);
1066 }
1067
1068 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell)
1069 {
1070 if (discard_or_flush(cell->holder)) {
1071 /*
1072 * We have to handle these bios individually.
1073 */
1074 dm_cell_release(cache->prison, cell, &cache->deferred_bios);
1075 free_prison_cell(cache, cell);
1076 } else
1077 list_add_tail(&cell->user_list, &cache->deferred_cells);
1078 }
1079
1080 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell, bool holder)
1081 {
1082 unsigned long flags;
1083
1084 if (!holder && dm_cell_promote_or_release(cache->prison, cell)) {
1085 /*
1086 * There was no prisoner to promote to holder, the
1087 * cell has been released.
1088 */
1089 free_prison_cell(cache, cell);
1090 return;
1091 }
1092
1093 spin_lock_irqsave(&cache->lock, flags);
1094 __cell_defer(cache, cell);
1095 spin_unlock_irqrestore(&cache->lock, flags);
1096
1097 wake_worker(cache);
1098 }
1099
1100 static void cell_error_with_code(struct cache *cache, struct dm_bio_prison_cell *cell, int err)
1101 {
1102 dm_cell_error(cache->prison, cell, err);
1103 free_prison_cell(cache, cell);
1104 }
1105
1106 static void cell_requeue(struct cache *cache, struct dm_bio_prison_cell *cell)
1107 {
1108 cell_error_with_code(cache, cell, DM_ENDIO_REQUEUE);
1109 }
1110
1111 static void free_io_migration(struct dm_cache_migration *mg)
1112 {
1113 struct cache *cache = mg->cache;
1114
1115 dec_io_migrations(cache);
1116 free_migration(mg);
1117 wake_worker(cache);
1118 }
1119
1120 static void migration_failure(struct dm_cache_migration *mg)
1121 {
1122 struct cache *cache = mg->cache;
1123 const char *dev_name = cache_device_name(cache);
1124
1125 if (mg->writeback) {
1126 DMERR_LIMIT("%s: writeback failed; couldn't copy block", dev_name);
1127 set_dirty(cache, mg->old_oblock, mg->cblock);
1128 cell_defer(cache, mg->old_ocell, false);
1129
1130 } else if (mg->demote) {
1131 DMERR_LIMIT("%s: demotion failed; couldn't copy block", dev_name);
1132 policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
1133
1134 cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1135 if (mg->promote)
1136 cell_defer(cache, mg->new_ocell, true);
1137 } else {
1138 DMERR_LIMIT("%s: promotion failed; couldn't copy block", dev_name);
1139 policy_remove_mapping(cache->policy, mg->new_oblock);
1140 cell_defer(cache, mg->new_ocell, true);
1141 }
1142
1143 free_io_migration(mg);
1144 }
1145
1146 static void migration_success_pre_commit(struct dm_cache_migration *mg)
1147 {
1148 int r;
1149 unsigned long flags;
1150 struct cache *cache = mg->cache;
1151
1152 if (mg->writeback) {
1153 clear_dirty(cache, mg->old_oblock, mg->cblock);
1154 cell_defer(cache, mg->old_ocell, false);
1155 free_io_migration(mg);
1156 return;
1157
1158 } else if (mg->demote) {
1159 r = dm_cache_remove_mapping(cache->cmd, mg->cblock);
1160 if (r) {
1161 DMERR_LIMIT("%s: demotion failed; couldn't update on disk metadata",
1162 cache_device_name(cache));
1163 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1164 policy_force_mapping(cache->policy, mg->new_oblock,
1165 mg->old_oblock);
1166 if (mg->promote)
1167 cell_defer(cache, mg->new_ocell, true);
1168 free_io_migration(mg);
1169 return;
1170 }
1171 } else {
1172 r = dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock);
1173 if (r) {
1174 DMERR_LIMIT("%s: promotion failed; couldn't update on disk metadata",
1175 cache_device_name(cache));
1176 metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1177 policy_remove_mapping(cache->policy, mg->new_oblock);
1178 free_io_migration(mg);
1179 return;
1180 }
1181 }
1182
1183 spin_lock_irqsave(&cache->lock, flags);
1184 list_add_tail(&mg->list, &cache->need_commit_migrations);
1185 cache->commit_requested = true;
1186 spin_unlock_irqrestore(&cache->lock, flags);
1187 }
1188
1189 static void migration_success_post_commit(struct dm_cache_migration *mg)
1190 {
1191 unsigned long flags;
1192 struct cache *cache = mg->cache;
1193
1194 if (mg->writeback) {
1195 DMWARN_LIMIT("%s: writeback unexpectedly triggered commit",
1196 cache_device_name(cache));
1197 return;
1198
1199 } else if (mg->demote) {
1200 cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1201
1202 if (mg->promote) {
1203 mg->demote = false;
1204
1205 spin_lock_irqsave(&cache->lock, flags);
1206 list_add_tail(&mg->list, &cache->quiesced_migrations);
1207 spin_unlock_irqrestore(&cache->lock, flags);
1208
1209 } else {
1210 if (mg->invalidate)
1211 policy_remove_mapping(cache->policy, mg->old_oblock);
1212 free_io_migration(mg);
1213 }
1214
1215 } else {
1216 if (mg->requeue_holder) {
1217 clear_dirty(cache, mg->new_oblock, mg->cblock);
1218 cell_defer(cache, mg->new_ocell, true);
1219 } else {
1220 /*
1221 * The block was promoted via an overwrite, so it's dirty.
1222 */
1223 set_dirty(cache, mg->new_oblock, mg->cblock);
1224 bio_endio(mg->new_ocell->holder);
1225 cell_defer(cache, mg->new_ocell, false);
1226 }
1227 free_io_migration(mg);
1228 }
1229 }
1230
1231 static void copy_complete(int read_err, unsigned long write_err, void *context)
1232 {
1233 unsigned long flags;
1234 struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
1235 struct cache *cache = mg->cache;
1236
1237 if (read_err || write_err)
1238 mg->err = true;
1239
1240 spin_lock_irqsave(&cache->lock, flags);
1241 list_add_tail(&mg->list, &cache->completed_migrations);
1242 spin_unlock_irqrestore(&cache->lock, flags);
1243
1244 wake_worker(cache);
1245 }
1246
1247 static void issue_copy(struct dm_cache_migration *mg)
1248 {
1249 int r;
1250 struct dm_io_region o_region, c_region;
1251 struct cache *cache = mg->cache;
1252 sector_t cblock = from_cblock(mg->cblock);
1253
1254 o_region.bdev = cache->origin_dev->bdev;
1255 o_region.count = cache->sectors_per_block;
1256
1257 c_region.bdev = cache->cache_dev->bdev;
1258 c_region.sector = cblock * cache->sectors_per_block;
1259 c_region.count = cache->sectors_per_block;
1260
1261 if (mg->writeback || mg->demote) {
1262 /* demote */
1263 o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
1264 r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
1265 } else {
1266 /* promote */
1267 o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
1268 r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
1269 }
1270
1271 if (r < 0) {
1272 DMERR_LIMIT("%s: issuing migration failed", cache_device_name(cache));
1273 migration_failure(mg);
1274 }
1275 }
1276
1277 static void overwrite_endio(struct bio *bio)
1278 {
1279 struct dm_cache_migration *mg = bio->bi_private;
1280 struct cache *cache = mg->cache;
1281 size_t pb_data_size = get_per_bio_data_size(cache);
1282 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1283 unsigned long flags;
1284
1285 dm_unhook_bio(&pb->hook_info, bio);
1286
1287 if (bio->bi_error)
1288 mg->err = true;
1289
1290 mg->requeue_holder = false;
1291
1292 spin_lock_irqsave(&cache->lock, flags);
1293 list_add_tail(&mg->list, &cache->completed_migrations);
1294 spin_unlock_irqrestore(&cache->lock, flags);
1295
1296 wake_worker(cache);
1297 }
1298
1299 static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
1300 {
1301 size_t pb_data_size = get_per_bio_data_size(mg->cache);
1302 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1303
1304 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1305 remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1306
1307 /*
1308 * No need to inc_ds() here, since the cell will be held for the
1309 * duration of the io.
1310 */
1311 accounted_request(mg->cache, bio);
1312 }
1313
1314 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1315 {
1316 return (bio_data_dir(bio) == WRITE) &&
1317 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1318 }
1319
1320 static void avoid_copy(struct dm_cache_migration *mg)
1321 {
1322 atomic_inc(&mg->cache->stats.copies_avoided);
1323 migration_success_pre_commit(mg);
1324 }
1325
1326 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1327 dm_dblock_t *b, dm_dblock_t *e)
1328 {
1329 sector_t sb = bio->bi_iter.bi_sector;
1330 sector_t se = bio_end_sector(bio);
1331
1332 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1333
1334 if (se - sb < cache->discard_block_size)
1335 *e = *b;
1336 else
1337 *e = to_dblock(block_div(se, cache->discard_block_size));
1338 }
1339
1340 static void issue_discard(struct dm_cache_migration *mg)
1341 {
1342 dm_dblock_t b, e;
1343 struct bio *bio = mg->new_ocell->holder;
1344 struct cache *cache = mg->cache;
1345
1346 calc_discard_block_range(cache, bio, &b, &e);
1347 while (b != e) {
1348 set_discard(cache, b);
1349 b = to_dblock(from_dblock(b) + 1);
1350 }
1351
1352 bio_endio(bio);
1353 cell_defer(cache, mg->new_ocell, false);
1354 free_migration(mg);
1355 wake_worker(cache);
1356 }
1357
1358 static void issue_copy_or_discard(struct dm_cache_migration *mg)
1359 {
1360 bool avoid;
1361 struct cache *cache = mg->cache;
1362
1363 if (mg->discard) {
1364 issue_discard(mg);
1365 return;
1366 }
1367
1368 if (mg->writeback || mg->demote)
1369 avoid = !is_dirty(cache, mg->cblock) ||
1370 is_discarded_oblock(cache, mg->old_oblock);
1371 else {
1372 struct bio *bio = mg->new_ocell->holder;
1373
1374 avoid = is_discarded_oblock(cache, mg->new_oblock);
1375
1376 if (writeback_mode(&cache->features) &&
1377 !avoid && bio_writes_complete_block(cache, bio)) {
1378 issue_overwrite(mg, bio);
1379 return;
1380 }
1381 }
1382
1383 avoid ? avoid_copy(mg) : issue_copy(mg);
1384 }
1385
1386 static void complete_migration(struct dm_cache_migration *mg)
1387 {
1388 if (mg->err)
1389 migration_failure(mg);
1390 else
1391 migration_success_pre_commit(mg);
1392 }
1393
1394 static void process_migrations(struct cache *cache, struct list_head *head,
1395 void (*fn)(struct dm_cache_migration *))
1396 {
1397 unsigned long flags;
1398 struct list_head list;
1399 struct dm_cache_migration *mg, *tmp;
1400
1401 INIT_LIST_HEAD(&list);
1402 spin_lock_irqsave(&cache->lock, flags);
1403 list_splice_init(head, &list);
1404 spin_unlock_irqrestore(&cache->lock, flags);
1405
1406 list_for_each_entry_safe(mg, tmp, &list, list)
1407 fn(mg);
1408 }
1409
1410 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1411 {
1412 list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
1413 }
1414
1415 static void queue_quiesced_migration(struct dm_cache_migration *mg)
1416 {
1417 unsigned long flags;
1418 struct cache *cache = mg->cache;
1419
1420 spin_lock_irqsave(&cache->lock, flags);
1421 __queue_quiesced_migration(mg);
1422 spin_unlock_irqrestore(&cache->lock, flags);
1423
1424 wake_worker(cache);
1425 }
1426
1427 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1428 {
1429 unsigned long flags;
1430 struct dm_cache_migration *mg, *tmp;
1431
1432 spin_lock_irqsave(&cache->lock, flags);
1433 list_for_each_entry_safe(mg, tmp, work, list)
1434 __queue_quiesced_migration(mg);
1435 spin_unlock_irqrestore(&cache->lock, flags);
1436
1437 wake_worker(cache);
1438 }
1439
1440 static void check_for_quiesced_migrations(struct cache *cache,
1441 struct per_bio_data *pb)
1442 {
1443 struct list_head work;
1444
1445 if (!pb->all_io_entry)
1446 return;
1447
1448 INIT_LIST_HEAD(&work);
1449 dm_deferred_entry_dec(pb->all_io_entry, &work);
1450
1451 if (!list_empty(&work))
1452 queue_quiesced_migrations(cache, &work);
1453 }
1454
1455 static void quiesce_migration(struct dm_cache_migration *mg)
1456 {
1457 if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1458 queue_quiesced_migration(mg);
1459 }
1460
1461 static void promote(struct cache *cache, struct prealloc *structs,
1462 dm_oblock_t oblock, dm_cblock_t cblock,
1463 struct dm_bio_prison_cell *cell)
1464 {
1465 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1466
1467 mg->err = false;
1468 mg->discard = false;
1469 mg->writeback = false;
1470 mg->demote = false;
1471 mg->promote = true;
1472 mg->requeue_holder = true;
1473 mg->invalidate = false;
1474 mg->cache = cache;
1475 mg->new_oblock = oblock;
1476 mg->cblock = cblock;
1477 mg->old_ocell = NULL;
1478 mg->new_ocell = cell;
1479 mg->start_jiffies = jiffies;
1480
1481 inc_io_migrations(cache);
1482 quiesce_migration(mg);
1483 }
1484
1485 static void writeback(struct cache *cache, struct prealloc *structs,
1486 dm_oblock_t oblock, dm_cblock_t cblock,
1487 struct dm_bio_prison_cell *cell)
1488 {
1489 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1490
1491 mg->err = false;
1492 mg->discard = false;
1493 mg->writeback = true;
1494 mg->demote = false;
1495 mg->promote = false;
1496 mg->requeue_holder = true;
1497 mg->invalidate = false;
1498 mg->cache = cache;
1499 mg->old_oblock = oblock;
1500 mg->cblock = cblock;
1501 mg->old_ocell = cell;
1502 mg->new_ocell = NULL;
1503 mg->start_jiffies = jiffies;
1504
1505 inc_io_migrations(cache);
1506 quiesce_migration(mg);
1507 }
1508
1509 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1510 dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1511 dm_cblock_t cblock,
1512 struct dm_bio_prison_cell *old_ocell,
1513 struct dm_bio_prison_cell *new_ocell)
1514 {
1515 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1516
1517 mg->err = false;
1518 mg->discard = false;
1519 mg->writeback = false;
1520 mg->demote = true;
1521 mg->promote = true;
1522 mg->requeue_holder = true;
1523 mg->invalidate = false;
1524 mg->cache = cache;
1525 mg->old_oblock = old_oblock;
1526 mg->new_oblock = new_oblock;
1527 mg->cblock = cblock;
1528 mg->old_ocell = old_ocell;
1529 mg->new_ocell = new_ocell;
1530 mg->start_jiffies = jiffies;
1531
1532 inc_io_migrations(cache);
1533 quiesce_migration(mg);
1534 }
1535
1536 /*
1537 * Invalidate a cache entry. No writeback occurs; any changes in the cache
1538 * block are thrown away.
1539 */
1540 static void invalidate(struct cache *cache, struct prealloc *structs,
1541 dm_oblock_t oblock, dm_cblock_t cblock,
1542 struct dm_bio_prison_cell *cell)
1543 {
1544 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1545
1546 mg->err = false;
1547 mg->discard = false;
1548 mg->writeback = false;
1549 mg->demote = true;
1550 mg->promote = false;
1551 mg->requeue_holder = true;
1552 mg->invalidate = true;
1553 mg->cache = cache;
1554 mg->old_oblock = oblock;
1555 mg->cblock = cblock;
1556 mg->old_ocell = cell;
1557 mg->new_ocell = NULL;
1558 mg->start_jiffies = jiffies;
1559
1560 inc_io_migrations(cache);
1561 quiesce_migration(mg);
1562 }
1563
1564 static void discard(struct cache *cache, struct prealloc *structs,
1565 struct dm_bio_prison_cell *cell)
1566 {
1567 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1568
1569 mg->err = false;
1570 mg->discard = true;
1571 mg->writeback = false;
1572 mg->demote = false;
1573 mg->promote = false;
1574 mg->requeue_holder = false;
1575 mg->invalidate = false;
1576 mg->cache = cache;
1577 mg->old_ocell = NULL;
1578 mg->new_ocell = cell;
1579 mg->start_jiffies = jiffies;
1580
1581 quiesce_migration(mg);
1582 }
1583
1584 /*----------------------------------------------------------------
1585 * bio processing
1586 *--------------------------------------------------------------*/
1587 static void defer_bio(struct cache *cache, struct bio *bio)
1588 {
1589 unsigned long flags;
1590
1591 spin_lock_irqsave(&cache->lock, flags);
1592 bio_list_add(&cache->deferred_bios, bio);
1593 spin_unlock_irqrestore(&cache->lock, flags);
1594
1595 wake_worker(cache);
1596 }
1597
1598 static void process_flush_bio(struct cache *cache, struct bio *bio)
1599 {
1600 size_t pb_data_size = get_per_bio_data_size(cache);
1601 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1602
1603 BUG_ON(bio->bi_iter.bi_size);
1604 if (!pb->req_nr)
1605 remap_to_origin(cache, bio);
1606 else
1607 remap_to_cache(cache, bio, 0);
1608
1609 /*
1610 * REQ_FLUSH is not directed at any particular block so we don't
1611 * need to inc_ds(). REQ_FUA's are split into a write + REQ_FLUSH
1612 * by dm-core.
1613 */
1614 issue(cache, bio);
1615 }
1616
1617 static void process_discard_bio(struct cache *cache, struct prealloc *structs,
1618 struct bio *bio)
1619 {
1620 int r;
1621 dm_dblock_t b, e;
1622 struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1623
1624 calc_discard_block_range(cache, bio, &b, &e);
1625 if (b == e) {
1626 bio_endio(bio);
1627 return;
1628 }
1629
1630 cell_prealloc = prealloc_get_cell(structs);
1631 r = bio_detain_range(cache, dblock_to_oblock(cache, b), dblock_to_oblock(cache, e), bio, cell_prealloc,
1632 (cell_free_fn) prealloc_put_cell,
1633 structs, &new_ocell);
1634 if (r > 0)
1635 return;
1636
1637 discard(cache, structs, new_ocell);
1638 }
1639
1640 static bool spare_migration_bandwidth(struct cache *cache)
1641 {
1642 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1643 cache->sectors_per_block;
1644 return current_volume < cache->migration_threshold;
1645 }
1646
1647 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1648 {
1649 atomic_inc(bio_data_dir(bio) == READ ?
1650 &cache->stats.read_hit : &cache->stats.write_hit);
1651 }
1652
1653 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1654 {
1655 atomic_inc(bio_data_dir(bio) == READ ?
1656 &cache->stats.read_miss : &cache->stats.write_miss);
1657 }
1658
1659 /*----------------------------------------------------------------*/
1660
1661 struct inc_detail {
1662 struct cache *cache;
1663 struct bio_list bios_for_issue;
1664 struct bio_list unhandled_bios;
1665 bool any_writes;
1666 };
1667
1668 static void inc_fn(void *context, struct dm_bio_prison_cell *cell)
1669 {
1670 struct bio *bio;
1671 struct inc_detail *detail = context;
1672 struct cache *cache = detail->cache;
1673
1674 inc_ds(cache, cell->holder, cell);
1675 if (bio_data_dir(cell->holder) == WRITE)
1676 detail->any_writes = true;
1677
1678 while ((bio = bio_list_pop(&cell->bios))) {
1679 if (discard_or_flush(bio)) {
1680 bio_list_add(&detail->unhandled_bios, bio);
1681 continue;
1682 }
1683
1684 if (bio_data_dir(bio) == WRITE)
1685 detail->any_writes = true;
1686
1687 bio_list_add(&detail->bios_for_issue, bio);
1688 inc_ds(cache, bio, cell);
1689 }
1690 }
1691
1692 // FIXME: refactor these two
1693 static void remap_cell_to_origin_clear_discard(struct cache *cache,
1694 struct dm_bio_prison_cell *cell,
1695 dm_oblock_t oblock, bool issue_holder)
1696 {
1697 struct bio *bio;
1698 unsigned long flags;
1699 struct inc_detail detail;
1700
1701 detail.cache = cache;
1702 bio_list_init(&detail.bios_for_issue);
1703 bio_list_init(&detail.unhandled_bios);
1704 detail.any_writes = false;
1705
1706 spin_lock_irqsave(&cache->lock, flags);
1707 dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1708 bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1709 spin_unlock_irqrestore(&cache->lock, flags);
1710
1711 remap_to_origin(cache, cell->holder);
1712 if (issue_holder)
1713 issue(cache, cell->holder);
1714 else
1715 accounted_begin(cache, cell->holder);
1716
1717 if (detail.any_writes)
1718 clear_discard(cache, oblock_to_dblock(cache, oblock));
1719
1720 while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1721 remap_to_origin(cache, bio);
1722 issue(cache, bio);
1723 }
1724
1725 free_prison_cell(cache, cell);
1726 }
1727
1728 static void remap_cell_to_cache_dirty(struct cache *cache, struct dm_bio_prison_cell *cell,
1729 dm_oblock_t oblock, dm_cblock_t cblock, bool issue_holder)
1730 {
1731 struct bio *bio;
1732 unsigned long flags;
1733 struct inc_detail detail;
1734
1735 detail.cache = cache;
1736 bio_list_init(&detail.bios_for_issue);
1737 bio_list_init(&detail.unhandled_bios);
1738 detail.any_writes = false;
1739
1740 spin_lock_irqsave(&cache->lock, flags);
1741 dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1742 bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1743 spin_unlock_irqrestore(&cache->lock, flags);
1744
1745 remap_to_cache(cache, cell->holder, cblock);
1746 if (issue_holder)
1747 issue(cache, cell->holder);
1748 else
1749 accounted_begin(cache, cell->holder);
1750
1751 if (detail.any_writes) {
1752 set_dirty(cache, oblock, cblock);
1753 clear_discard(cache, oblock_to_dblock(cache, oblock));
1754 }
1755
1756 while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1757 remap_to_cache(cache, bio, cblock);
1758 issue(cache, bio);
1759 }
1760
1761 free_prison_cell(cache, cell);
1762 }
1763
1764 /*----------------------------------------------------------------*/
1765
1766 struct old_oblock_lock {
1767 struct policy_locker locker;
1768 struct cache *cache;
1769 struct prealloc *structs;
1770 struct dm_bio_prison_cell *cell;
1771 };
1772
1773 static int null_locker(struct policy_locker *locker, dm_oblock_t b)
1774 {
1775 /* This should never be called */
1776 BUG();
1777 return 0;
1778 }
1779
1780 static int cell_locker(struct policy_locker *locker, dm_oblock_t b)
1781 {
1782 struct old_oblock_lock *l = container_of(locker, struct old_oblock_lock, locker);
1783 struct dm_bio_prison_cell *cell_prealloc = prealloc_get_cell(l->structs);
1784
1785 return bio_detain(l->cache, b, NULL, cell_prealloc,
1786 (cell_free_fn) prealloc_put_cell,
1787 l->structs, &l->cell);
1788 }
1789
1790 static void process_cell(struct cache *cache, struct prealloc *structs,
1791 struct dm_bio_prison_cell *new_ocell)
1792 {
1793 int r;
1794 bool release_cell = true;
1795 struct bio *bio = new_ocell->holder;
1796 dm_oblock_t block = get_bio_block(cache, bio);
1797 struct policy_result lookup_result;
1798 bool passthrough = passthrough_mode(&cache->features);
1799 bool fast_promotion, can_migrate;
1800 struct old_oblock_lock ool;
1801
1802 fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
1803 can_migrate = !passthrough && (fast_promotion || spare_migration_bandwidth(cache));
1804
1805 ool.locker.fn = cell_locker;
1806 ool.cache = cache;
1807 ool.structs = structs;
1808 ool.cell = NULL;
1809 r = policy_map(cache->policy, block, true, can_migrate, fast_promotion,
1810 bio, &ool.locker, &lookup_result);
1811
1812 if (r == -EWOULDBLOCK)
1813 /* migration has been denied */
1814 lookup_result.op = POLICY_MISS;
1815
1816 switch (lookup_result.op) {
1817 case POLICY_HIT:
1818 if (passthrough) {
1819 inc_miss_counter(cache, bio);
1820
1821 /*
1822 * Passthrough always maps to the origin,
1823 * invalidating any cache blocks that are written
1824 * to.
1825 */
1826
1827 if (bio_data_dir(bio) == WRITE) {
1828 atomic_inc(&cache->stats.demotion);
1829 invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1830 release_cell = false;
1831
1832 } else {
1833 /* FIXME: factor out issue_origin() */
1834 remap_to_origin_clear_discard(cache, bio, block);
1835 inc_and_issue(cache, bio, new_ocell);
1836 }
1837 } else {
1838 inc_hit_counter(cache, bio);
1839
1840 if (bio_data_dir(bio) == WRITE &&
1841 writethrough_mode(&cache->features) &&
1842 !is_dirty(cache, lookup_result.cblock)) {
1843 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1844 inc_and_issue(cache, bio, new_ocell);
1845
1846 } else {
1847 remap_cell_to_cache_dirty(cache, new_ocell, block, lookup_result.cblock, true);
1848 release_cell = false;
1849 }
1850 }
1851
1852 break;
1853
1854 case POLICY_MISS:
1855 inc_miss_counter(cache, bio);
1856 remap_cell_to_origin_clear_discard(cache, new_ocell, block, true);
1857 release_cell = false;
1858 break;
1859
1860 case POLICY_NEW:
1861 atomic_inc(&cache->stats.promotion);
1862 promote(cache, structs, block, lookup_result.cblock, new_ocell);
1863 release_cell = false;
1864 break;
1865
1866 case POLICY_REPLACE:
1867 atomic_inc(&cache->stats.demotion);
1868 atomic_inc(&cache->stats.promotion);
1869 demote_then_promote(cache, structs, lookup_result.old_oblock,
1870 block, lookup_result.cblock,
1871 ool.cell, new_ocell);
1872 release_cell = false;
1873 break;
1874
1875 default:
1876 DMERR_LIMIT("%s: %s: erroring bio, unknown policy op: %u",
1877 cache_device_name(cache), __func__,
1878 (unsigned) lookup_result.op);
1879 bio_io_error(bio);
1880 }
1881
1882 if (release_cell)
1883 cell_defer(cache, new_ocell, false);
1884 }
1885
1886 static void process_bio(struct cache *cache, struct prealloc *structs,
1887 struct bio *bio)
1888 {
1889 int r;
1890 dm_oblock_t block = get_bio_block(cache, bio);
1891 struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1892
1893 /*
1894 * Check to see if that block is currently migrating.
1895 */
1896 cell_prealloc = prealloc_get_cell(structs);
1897 r = bio_detain(cache, block, bio, cell_prealloc,
1898 (cell_free_fn) prealloc_put_cell,
1899 structs, &new_ocell);
1900 if (r > 0)
1901 return;
1902
1903 process_cell(cache, structs, new_ocell);
1904 }
1905
1906 static int need_commit_due_to_time(struct cache *cache)
1907 {
1908 return jiffies < cache->last_commit_jiffies ||
1909 jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1910 }
1911
1912 /*
1913 * A non-zero return indicates read_only or fail_io mode.
1914 */
1915 static int commit(struct cache *cache, bool clean_shutdown)
1916 {
1917 int r;
1918
1919 if (get_cache_mode(cache) >= CM_READ_ONLY)
1920 return -EINVAL;
1921
1922 atomic_inc(&cache->stats.commit_count);
1923 r = dm_cache_commit(cache->cmd, clean_shutdown);
1924 if (r)
1925 metadata_operation_failed(cache, "dm_cache_commit", r);
1926
1927 return r;
1928 }
1929
1930 static int commit_if_needed(struct cache *cache)
1931 {
1932 int r = 0;
1933
1934 if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1935 dm_cache_changed_this_transaction(cache->cmd)) {
1936 r = commit(cache, false);
1937 cache->commit_requested = false;
1938 cache->last_commit_jiffies = jiffies;
1939 }
1940
1941 return r;
1942 }
1943
1944 static void process_deferred_bios(struct cache *cache)
1945 {
1946 bool prealloc_used = false;
1947 unsigned long flags;
1948 struct bio_list bios;
1949 struct bio *bio;
1950 struct prealloc structs;
1951
1952 memset(&structs, 0, sizeof(structs));
1953 bio_list_init(&bios);
1954
1955 spin_lock_irqsave(&cache->lock, flags);
1956 bio_list_merge(&bios, &cache->deferred_bios);
1957 bio_list_init(&cache->deferred_bios);
1958 spin_unlock_irqrestore(&cache->lock, flags);
1959
1960 while (!bio_list_empty(&bios)) {
1961 /*
1962 * If we've got no free migration structs, and processing
1963 * this bio might require one, we pause until there are some
1964 * prepared mappings to process.
1965 */
1966 prealloc_used = true;
1967 if (prealloc_data_structs(cache, &structs)) {
1968 spin_lock_irqsave(&cache->lock, flags);
1969 bio_list_merge(&cache->deferred_bios, &bios);
1970 spin_unlock_irqrestore(&cache->lock, flags);
1971 break;
1972 }
1973
1974 bio = bio_list_pop(&bios);
1975
1976 if (bio->bi_rw & REQ_FLUSH)
1977 process_flush_bio(cache, bio);
1978 else if (bio->bi_rw & REQ_DISCARD)
1979 process_discard_bio(cache, &structs, bio);
1980 else
1981 process_bio(cache, &structs, bio);
1982 }
1983
1984 if (prealloc_used)
1985 prealloc_free_structs(cache, &structs);
1986 }
1987
1988 static void process_deferred_cells(struct cache *cache)
1989 {
1990 bool prealloc_used = false;
1991 unsigned long flags;
1992 struct dm_bio_prison_cell *cell, *tmp;
1993 struct list_head cells;
1994 struct prealloc structs;
1995
1996 memset(&structs, 0, sizeof(structs));
1997
1998 INIT_LIST_HEAD(&cells);
1999
2000 spin_lock_irqsave(&cache->lock, flags);
2001 list_splice_init(&cache->deferred_cells, &cells);
2002 spin_unlock_irqrestore(&cache->lock, flags);
2003
2004 list_for_each_entry_safe(cell, tmp, &cells, user_list) {
2005 /*
2006 * If we've got no free migration structs, and processing
2007 * this bio might require one, we pause until there are some
2008 * prepared mappings to process.
2009 */
2010 prealloc_used = true;
2011 if (prealloc_data_structs(cache, &structs)) {
2012 spin_lock_irqsave(&cache->lock, flags);
2013 list_splice(&cells, &cache->deferred_cells);
2014 spin_unlock_irqrestore(&cache->lock, flags);
2015 break;
2016 }
2017
2018 process_cell(cache, &structs, cell);
2019 }
2020
2021 if (prealloc_used)
2022 prealloc_free_structs(cache, &structs);
2023 }
2024
2025 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
2026 {
2027 unsigned long flags;
2028 struct bio_list bios;
2029 struct bio *bio;
2030
2031 bio_list_init(&bios);
2032
2033 spin_lock_irqsave(&cache->lock, flags);
2034 bio_list_merge(&bios, &cache->deferred_flush_bios);
2035 bio_list_init(&cache->deferred_flush_bios);
2036 spin_unlock_irqrestore(&cache->lock, flags);
2037
2038 /*
2039 * These bios have already been through inc_ds()
2040 */
2041 while ((bio = bio_list_pop(&bios)))
2042 submit_bios ? accounted_request(cache, bio) : bio_io_error(bio);
2043 }
2044
2045 static void process_deferred_writethrough_bios(struct cache *cache)
2046 {
2047 unsigned long flags;
2048 struct bio_list bios;
2049 struct bio *bio;
2050
2051 bio_list_init(&bios);
2052
2053 spin_lock_irqsave(&cache->lock, flags);
2054 bio_list_merge(&bios, &cache->deferred_writethrough_bios);
2055 bio_list_init(&cache->deferred_writethrough_bios);
2056 spin_unlock_irqrestore(&cache->lock, flags);
2057
2058 /*
2059 * These bios have already been through inc_ds()
2060 */
2061 while ((bio = bio_list_pop(&bios)))
2062 accounted_request(cache, bio);
2063 }
2064
2065 static void writeback_some_dirty_blocks(struct cache *cache)
2066 {
2067 bool prealloc_used = false;
2068 dm_oblock_t oblock;
2069 dm_cblock_t cblock;
2070 struct prealloc structs;
2071 struct dm_bio_prison_cell *old_ocell;
2072 bool busy = !iot_idle_for(&cache->origin_tracker, HZ);
2073
2074 memset(&structs, 0, sizeof(structs));
2075
2076 while (spare_migration_bandwidth(cache)) {
2077 if (policy_writeback_work(cache->policy, &oblock, &cblock, busy))
2078 break; /* no work to do */
2079
2080 prealloc_used = true;
2081 if (prealloc_data_structs(cache, &structs) ||
2082 get_cell(cache, oblock, &structs, &old_ocell)) {
2083 policy_set_dirty(cache->policy, oblock);
2084 break;
2085 }
2086
2087 writeback(cache, &structs, oblock, cblock, old_ocell);
2088 }
2089
2090 if (prealloc_used)
2091 prealloc_free_structs(cache, &structs);
2092 }
2093
2094 /*----------------------------------------------------------------
2095 * Invalidations.
2096 * Dropping something from the cache *without* writing back.
2097 *--------------------------------------------------------------*/
2098
2099 static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
2100 {
2101 int r = 0;
2102 uint64_t begin = from_cblock(req->cblocks->begin);
2103 uint64_t end = from_cblock(req->cblocks->end);
2104
2105 while (begin != end) {
2106 r = policy_remove_cblock(cache->policy, to_cblock(begin));
2107 if (!r) {
2108 r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
2109 if (r) {
2110 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
2111 break;
2112 }
2113
2114 } else if (r == -ENODATA) {
2115 /* harmless, already unmapped */
2116 r = 0;
2117
2118 } else {
2119 DMERR("%s: policy_remove_cblock failed", cache_device_name(cache));
2120 break;
2121 }
2122
2123 begin++;
2124 }
2125
2126 cache->commit_requested = true;
2127
2128 req->err = r;
2129 atomic_set(&req->complete, 1);
2130
2131 wake_up(&req->result_wait);
2132 }
2133
2134 static void process_invalidation_requests(struct cache *cache)
2135 {
2136 struct list_head list;
2137 struct invalidation_request *req, *tmp;
2138
2139 INIT_LIST_HEAD(&list);
2140 spin_lock(&cache->invalidation_lock);
2141 list_splice_init(&cache->invalidation_requests, &list);
2142 spin_unlock(&cache->invalidation_lock);
2143
2144 list_for_each_entry_safe (req, tmp, &list, list)
2145 process_invalidation_request(cache, req);
2146 }
2147
2148 /*----------------------------------------------------------------
2149 * Main worker loop
2150 *--------------------------------------------------------------*/
2151 static bool is_quiescing(struct cache *cache)
2152 {
2153 return atomic_read(&cache->quiescing);
2154 }
2155
2156 static void ack_quiescing(struct cache *cache)
2157 {
2158 if (is_quiescing(cache)) {
2159 atomic_inc(&cache->quiescing_ack);
2160 wake_up(&cache->quiescing_wait);
2161 }
2162 }
2163
2164 static void wait_for_quiescing_ack(struct cache *cache)
2165 {
2166 wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
2167 }
2168
2169 static void start_quiescing(struct cache *cache)
2170 {
2171 atomic_inc(&cache->quiescing);
2172 wait_for_quiescing_ack(cache);
2173 }
2174
2175 static void stop_quiescing(struct cache *cache)
2176 {
2177 atomic_set(&cache->quiescing, 0);
2178 atomic_set(&cache->quiescing_ack, 0);
2179 }
2180
2181 static void wait_for_migrations(struct cache *cache)
2182 {
2183 wait_event(cache->migration_wait, !atomic_read(&cache->nr_allocated_migrations));
2184 }
2185
2186 static void stop_worker(struct cache *cache)
2187 {
2188 cancel_delayed_work(&cache->waker);
2189 flush_workqueue(cache->wq);
2190 }
2191
2192 static void requeue_deferred_cells(struct cache *cache)
2193 {
2194 unsigned long flags;
2195 struct list_head cells;
2196 struct dm_bio_prison_cell *cell, *tmp;
2197
2198 INIT_LIST_HEAD(&cells);
2199 spin_lock_irqsave(&cache->lock, flags);
2200 list_splice_init(&cache->deferred_cells, &cells);
2201 spin_unlock_irqrestore(&cache->lock, flags);
2202
2203 list_for_each_entry_safe(cell, tmp, &cells, user_list)
2204 cell_requeue(cache, cell);
2205 }
2206
2207 static void requeue_deferred_bios(struct cache *cache)
2208 {
2209 struct bio *bio;
2210 struct bio_list bios;
2211
2212 bio_list_init(&bios);
2213 bio_list_merge(&bios, &cache->deferred_bios);
2214 bio_list_init(&cache->deferred_bios);
2215
2216 while ((bio = bio_list_pop(&bios))) {
2217 bio->bi_error = DM_ENDIO_REQUEUE;
2218 bio_endio(bio);
2219 }
2220 }
2221
2222 static int more_work(struct cache *cache)
2223 {
2224 if (is_quiescing(cache))
2225 return !list_empty(&cache->quiesced_migrations) ||
2226 !list_empty(&cache->completed_migrations) ||
2227 !list_empty(&cache->need_commit_migrations);
2228 else
2229 return !bio_list_empty(&cache->deferred_bios) ||
2230 !list_empty(&cache->deferred_cells) ||
2231 !bio_list_empty(&cache->deferred_flush_bios) ||
2232 !bio_list_empty(&cache->deferred_writethrough_bios) ||
2233 !list_empty(&cache->quiesced_migrations) ||
2234 !list_empty(&cache->completed_migrations) ||
2235 !list_empty(&cache->need_commit_migrations) ||
2236 cache->invalidate;
2237 }
2238
2239 static void do_worker(struct work_struct *ws)
2240 {
2241 struct cache *cache = container_of(ws, struct cache, worker);
2242
2243 do {
2244 if (!is_quiescing(cache)) {
2245 writeback_some_dirty_blocks(cache);
2246 process_deferred_writethrough_bios(cache);
2247 process_deferred_bios(cache);
2248 process_deferred_cells(cache);
2249 process_invalidation_requests(cache);
2250 }
2251
2252 process_migrations(cache, &cache->quiesced_migrations, issue_copy_or_discard);
2253 process_migrations(cache, &cache->completed_migrations, complete_migration);
2254
2255 if (commit_if_needed(cache)) {
2256 process_deferred_flush_bios(cache, false);
2257 process_migrations(cache, &cache->need_commit_migrations, migration_failure);
2258 } else {
2259 process_deferred_flush_bios(cache, true);
2260 process_migrations(cache, &cache->need_commit_migrations,
2261 migration_success_post_commit);
2262 }
2263
2264 ack_quiescing(cache);
2265
2266 } while (more_work(cache));
2267 }
2268
2269 /*
2270 * We want to commit periodically so that not too much
2271 * unwritten metadata builds up.
2272 */
2273 static void do_waker(struct work_struct *ws)
2274 {
2275 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
2276 policy_tick(cache->policy, true);
2277 wake_worker(cache);
2278 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
2279 }
2280
2281 /*----------------------------------------------------------------*/
2282
2283 static int is_congested(struct dm_dev *dev, int bdi_bits)
2284 {
2285 struct request_queue *q = bdev_get_queue(dev->bdev);
2286 return bdi_congested(&q->backing_dev_info, bdi_bits);
2287 }
2288
2289 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2290 {
2291 struct cache *cache = container_of(cb, struct cache, callbacks);
2292
2293 return is_congested(cache->origin_dev, bdi_bits) ||
2294 is_congested(cache->cache_dev, bdi_bits);
2295 }
2296
2297 /*----------------------------------------------------------------
2298 * Target methods
2299 *--------------------------------------------------------------*/
2300
2301 /*
2302 * This function gets called on the error paths of the constructor, so we
2303 * have to cope with a partially initialised struct.
2304 */
2305 static void destroy(struct cache *cache)
2306 {
2307 unsigned i;
2308
2309 mempool_destroy(cache->migration_pool);
2310
2311 if (cache->all_io_ds)
2312 dm_deferred_set_destroy(cache->all_io_ds);
2313
2314 if (cache->prison)
2315 dm_bio_prison_destroy(cache->prison);
2316
2317 if (cache->wq)
2318 destroy_workqueue(cache->wq);
2319
2320 if (cache->dirty_bitset)
2321 free_bitset(cache->dirty_bitset);
2322
2323 if (cache->discard_bitset)
2324 free_bitset(cache->discard_bitset);
2325
2326 if (cache->copier)
2327 dm_kcopyd_client_destroy(cache->copier);
2328
2329 if (cache->cmd)
2330 dm_cache_metadata_close(cache->cmd);
2331
2332 if (cache->metadata_dev)
2333 dm_put_device(cache->ti, cache->metadata_dev);
2334
2335 if (cache->origin_dev)
2336 dm_put_device(cache->ti, cache->origin_dev);
2337
2338 if (cache->cache_dev)
2339 dm_put_device(cache->ti, cache->cache_dev);
2340
2341 if (cache->policy)
2342 dm_cache_policy_destroy(cache->policy);
2343
2344 for (i = 0; i < cache->nr_ctr_args ; i++)
2345 kfree(cache->ctr_args[i]);
2346 kfree(cache->ctr_args);
2347
2348 kfree(cache);
2349 }
2350
2351 static void cache_dtr(struct dm_target *ti)
2352 {
2353 struct cache *cache = ti->private;
2354
2355 destroy(cache);
2356 }
2357
2358 static sector_t get_dev_size(struct dm_dev *dev)
2359 {
2360 return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2361 }
2362
2363 /*----------------------------------------------------------------*/
2364
2365 /*
2366 * Construct a cache device mapping.
2367 *
2368 * cache <metadata dev> <cache dev> <origin dev> <block size>
2369 * <#feature args> [<feature arg>]*
2370 * <policy> <#policy args> [<policy arg>]*
2371 *
2372 * metadata dev : fast device holding the persistent metadata
2373 * cache dev : fast device holding cached data blocks
2374 * origin dev : slow device holding original data blocks
2375 * block size : cache unit size in sectors
2376 *
2377 * #feature args : number of feature arguments passed
2378 * feature args : writethrough. (The default is writeback.)
2379 *
2380 * policy : the replacement policy to use
2381 * #policy args : an even number of policy arguments corresponding
2382 * to key/value pairs passed to the policy
2383 * policy args : key/value pairs passed to the policy
2384 * E.g. 'sequential_threshold 1024'
2385 * See cache-policies.txt for details.
2386 *
2387 * Optional feature arguments are:
2388 * writethrough : write through caching that prohibits cache block
2389 * content from being different from origin block content.
2390 * Without this argument, the default behaviour is to write
2391 * back cache block contents later for performance reasons,
2392 * so they may differ from the corresponding origin blocks.
2393 */
2394 struct cache_args {
2395 struct dm_target *ti;
2396
2397 struct dm_dev *metadata_dev;
2398
2399 struct dm_dev *cache_dev;
2400 sector_t cache_sectors;
2401
2402 struct dm_dev *origin_dev;
2403 sector_t origin_sectors;
2404
2405 uint32_t block_size;
2406
2407 const char *policy_name;
2408 int policy_argc;
2409 const char **policy_argv;
2410
2411 struct cache_features features;
2412 };
2413
2414 static void destroy_cache_args(struct cache_args *ca)
2415 {
2416 if (ca->metadata_dev)
2417 dm_put_device(ca->ti, ca->metadata_dev);
2418
2419 if (ca->cache_dev)
2420 dm_put_device(ca->ti, ca->cache_dev);
2421
2422 if (ca->origin_dev)
2423 dm_put_device(ca->ti, ca->origin_dev);
2424
2425 kfree(ca);
2426 }
2427
2428 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2429 {
2430 if (!as->argc) {
2431 *error = "Insufficient args";
2432 return false;
2433 }
2434
2435 return true;
2436 }
2437
2438 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2439 char **error)
2440 {
2441 int r;
2442 sector_t metadata_dev_size;
2443 char b[BDEVNAME_SIZE];
2444
2445 if (!at_least_one_arg(as, error))
2446 return -EINVAL;
2447
2448 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2449 &ca->metadata_dev);
2450 if (r) {
2451 *error = "Error opening metadata device";
2452 return r;
2453 }
2454
2455 metadata_dev_size = get_dev_size(ca->metadata_dev);
2456 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2457 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2458 bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2459
2460 return 0;
2461 }
2462
2463 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2464 char **error)
2465 {
2466 int r;
2467
2468 if (!at_least_one_arg(as, error))
2469 return -EINVAL;
2470
2471 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2472 &ca->cache_dev);
2473 if (r) {
2474 *error = "Error opening cache device";
2475 return r;
2476 }
2477 ca->cache_sectors = get_dev_size(ca->cache_dev);
2478
2479 return 0;
2480 }
2481
2482 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2483 char **error)
2484 {
2485 int r;
2486
2487 if (!at_least_one_arg(as, error))
2488 return -EINVAL;
2489
2490 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2491 &ca->origin_dev);
2492 if (r) {
2493 *error = "Error opening origin device";
2494 return r;
2495 }
2496
2497 ca->origin_sectors = get_dev_size(ca->origin_dev);
2498 if (ca->ti->len > ca->origin_sectors) {
2499 *error = "Device size larger than cached device";
2500 return -EINVAL;
2501 }
2502
2503 return 0;
2504 }
2505
2506 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2507 char **error)
2508 {
2509 unsigned long block_size;
2510
2511 if (!at_least_one_arg(as, error))
2512 return -EINVAL;
2513
2514 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2515 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2516 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2517 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2518 *error = "Invalid data block size";
2519 return -EINVAL;
2520 }
2521
2522 if (block_size > ca->cache_sectors) {
2523 *error = "Data block size is larger than the cache device";
2524 return -EINVAL;
2525 }
2526
2527 ca->block_size = block_size;
2528
2529 return 0;
2530 }
2531
2532 static void init_features(struct cache_features *cf)
2533 {
2534 cf->mode = CM_WRITE;
2535 cf->io_mode = CM_IO_WRITEBACK;
2536 }
2537
2538 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2539 char **error)
2540 {
2541 static struct dm_arg _args[] = {
2542 {0, 1, "Invalid number of cache feature arguments"},
2543 };
2544
2545 int r;
2546 unsigned argc;
2547 const char *arg;
2548 struct cache_features *cf = &ca->features;
2549
2550 init_features(cf);
2551
2552 r = dm_read_arg_group(_args, as, &argc, error);
2553 if (r)
2554 return -EINVAL;
2555
2556 while (argc--) {
2557 arg = dm_shift_arg(as);
2558
2559 if (!strcasecmp(arg, "writeback"))
2560 cf->io_mode = CM_IO_WRITEBACK;
2561
2562 else if (!strcasecmp(arg, "writethrough"))
2563 cf->io_mode = CM_IO_WRITETHROUGH;
2564
2565 else if (!strcasecmp(arg, "passthrough"))
2566 cf->io_mode = CM_IO_PASSTHROUGH;
2567
2568 else {
2569 *error = "Unrecognised cache feature requested";
2570 return -EINVAL;
2571 }
2572 }
2573
2574 return 0;
2575 }
2576
2577 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2578 char **error)
2579 {
2580 static struct dm_arg _args[] = {
2581 {0, 1024, "Invalid number of policy arguments"},
2582 };
2583
2584 int r;
2585
2586 if (!at_least_one_arg(as, error))
2587 return -EINVAL;
2588
2589 ca->policy_name = dm_shift_arg(as);
2590
2591 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2592 if (r)
2593 return -EINVAL;
2594
2595 ca->policy_argv = (const char **)as->argv;
2596 dm_consume_args(as, ca->policy_argc);
2597
2598 return 0;
2599 }
2600
2601 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2602 char **error)
2603 {
2604 int r;
2605 struct dm_arg_set as;
2606
2607 as.argc = argc;
2608 as.argv = argv;
2609
2610 r = parse_metadata_dev(ca, &as, error);
2611 if (r)
2612 return r;
2613
2614 r = parse_cache_dev(ca, &as, error);
2615 if (r)
2616 return r;
2617
2618 r = parse_origin_dev(ca, &as, error);
2619 if (r)
2620 return r;
2621
2622 r = parse_block_size(ca, &as, error);
2623 if (r)
2624 return r;
2625
2626 r = parse_features(ca, &as, error);
2627 if (r)
2628 return r;
2629
2630 r = parse_policy(ca, &as, error);
2631 if (r)
2632 return r;
2633
2634 return 0;
2635 }
2636
2637 /*----------------------------------------------------------------*/
2638
2639 static struct kmem_cache *migration_cache;
2640
2641 #define NOT_CORE_OPTION 1
2642
2643 static int process_config_option(struct cache *cache, const char *key, const char *value)
2644 {
2645 unsigned long tmp;
2646
2647 if (!strcasecmp(key, "migration_threshold")) {
2648 if (kstrtoul(value, 10, &tmp))
2649 return -EINVAL;
2650
2651 cache->migration_threshold = tmp;
2652 return 0;
2653 }
2654
2655 return NOT_CORE_OPTION;
2656 }
2657
2658 static int set_config_value(struct cache *cache, const char *key, const char *value)
2659 {
2660 int r = process_config_option(cache, key, value);
2661
2662 if (r == NOT_CORE_OPTION)
2663 r = policy_set_config_value(cache->policy, key, value);
2664
2665 if (r)
2666 DMWARN("bad config value for %s: %s", key, value);
2667
2668 return r;
2669 }
2670
2671 static int set_config_values(struct cache *cache, int argc, const char **argv)
2672 {
2673 int r = 0;
2674
2675 if (argc & 1) {
2676 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2677 return -EINVAL;
2678 }
2679
2680 while (argc) {
2681 r = set_config_value(cache, argv[0], argv[1]);
2682 if (r)
2683 break;
2684
2685 argc -= 2;
2686 argv += 2;
2687 }
2688
2689 return r;
2690 }
2691
2692 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2693 char **error)
2694 {
2695 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2696 cache->cache_size,
2697 cache->origin_sectors,
2698 cache->sectors_per_block);
2699 if (IS_ERR(p)) {
2700 *error = "Error creating cache's policy";
2701 return PTR_ERR(p);
2702 }
2703 cache->policy = p;
2704
2705 return 0;
2706 }
2707
2708 /*
2709 * We want the discard block size to be at least the size of the cache
2710 * block size and have no more than 2^14 discard blocks across the origin.
2711 */
2712 #define MAX_DISCARD_BLOCKS (1 << 14)
2713
2714 static bool too_many_discard_blocks(sector_t discard_block_size,
2715 sector_t origin_size)
2716 {
2717 (void) sector_div(origin_size, discard_block_size);
2718
2719 return origin_size > MAX_DISCARD_BLOCKS;
2720 }
2721
2722 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2723 sector_t origin_size)
2724 {
2725 sector_t discard_block_size = cache_block_size;
2726
2727 if (origin_size)
2728 while (too_many_discard_blocks(discard_block_size, origin_size))
2729 discard_block_size *= 2;
2730
2731 return discard_block_size;
2732 }
2733
2734 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2735 {
2736 dm_block_t nr_blocks = from_cblock(size);
2737
2738 if (nr_blocks > (1 << 20) && cache->cache_size != size)
2739 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2740 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2741 "Please consider increasing the cache block size to reduce the overall cache block count.",
2742 (unsigned long long) nr_blocks);
2743
2744 cache->cache_size = size;
2745 }
2746
2747 #define DEFAULT_MIGRATION_THRESHOLD 2048
2748
2749 static int cache_create(struct cache_args *ca, struct cache **result)
2750 {
2751 int r = 0;
2752 char **error = &ca->ti->error;
2753 struct cache *cache;
2754 struct dm_target *ti = ca->ti;
2755 dm_block_t origin_blocks;
2756 struct dm_cache_metadata *cmd;
2757 bool may_format = ca->features.mode == CM_WRITE;
2758
2759 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2760 if (!cache)
2761 return -ENOMEM;
2762
2763 cache->ti = ca->ti;
2764 ti->private = cache;
2765 ti->num_flush_bios = 2;
2766 ti->flush_supported = true;
2767
2768 ti->num_discard_bios = 1;
2769 ti->discards_supported = true;
2770 ti->discard_zeroes_data_unsupported = true;
2771 ti->split_discard_bios = false;
2772
2773 cache->features = ca->features;
2774 ti->per_bio_data_size = get_per_bio_data_size(cache);
2775
2776 cache->callbacks.congested_fn = cache_is_congested;
2777 dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2778
2779 cache->metadata_dev = ca->metadata_dev;
2780 cache->origin_dev = ca->origin_dev;
2781 cache->cache_dev = ca->cache_dev;
2782
2783 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2784
2785 /* FIXME: factor out this whole section */
2786 origin_blocks = cache->origin_sectors = ca->origin_sectors;
2787 origin_blocks = block_div(origin_blocks, ca->block_size);
2788 cache->origin_blocks = to_oblock(origin_blocks);
2789
2790 cache->sectors_per_block = ca->block_size;
2791 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2792 r = -EINVAL;
2793 goto bad;
2794 }
2795
2796 if (ca->block_size & (ca->block_size - 1)) {
2797 dm_block_t cache_size = ca->cache_sectors;
2798
2799 cache->sectors_per_block_shift = -1;
2800 cache_size = block_div(cache_size, ca->block_size);
2801 set_cache_size(cache, to_cblock(cache_size));
2802 } else {
2803 cache->sectors_per_block_shift = __ffs(ca->block_size);
2804 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2805 }
2806
2807 r = create_cache_policy(cache, ca, error);
2808 if (r)
2809 goto bad;
2810
2811 cache->policy_nr_args = ca->policy_argc;
2812 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2813
2814 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2815 if (r) {
2816 *error = "Error setting cache policy's config values";
2817 goto bad;
2818 }
2819
2820 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2821 ca->block_size, may_format,
2822 dm_cache_policy_get_hint_size(cache->policy));
2823 if (IS_ERR(cmd)) {
2824 *error = "Error creating metadata object";
2825 r = PTR_ERR(cmd);
2826 goto bad;
2827 }
2828 cache->cmd = cmd;
2829 set_cache_mode(cache, CM_WRITE);
2830 if (get_cache_mode(cache) != CM_WRITE) {
2831 *error = "Unable to get write access to metadata, please check/repair metadata.";
2832 r = -EINVAL;
2833 goto bad;
2834 }
2835
2836 if (passthrough_mode(&cache->features)) {
2837 bool all_clean;
2838
2839 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2840 if (r) {
2841 *error = "dm_cache_metadata_all_clean() failed";
2842 goto bad;
2843 }
2844
2845 if (!all_clean) {
2846 *error = "Cannot enter passthrough mode unless all blocks are clean";
2847 r = -EINVAL;
2848 goto bad;
2849 }
2850 }
2851
2852 spin_lock_init(&cache->lock);
2853 INIT_LIST_HEAD(&cache->deferred_cells);
2854 bio_list_init(&cache->deferred_bios);
2855 bio_list_init(&cache->deferred_flush_bios);
2856 bio_list_init(&cache->deferred_writethrough_bios);
2857 INIT_LIST_HEAD(&cache->quiesced_migrations);
2858 INIT_LIST_HEAD(&cache->completed_migrations);
2859 INIT_LIST_HEAD(&cache->need_commit_migrations);
2860 atomic_set(&cache->nr_allocated_migrations, 0);
2861 atomic_set(&cache->nr_io_migrations, 0);
2862 init_waitqueue_head(&cache->migration_wait);
2863
2864 init_waitqueue_head(&cache->quiescing_wait);
2865 atomic_set(&cache->quiescing, 0);
2866 atomic_set(&cache->quiescing_ack, 0);
2867
2868 r = -ENOMEM;
2869 atomic_set(&cache->nr_dirty, 0);
2870 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2871 if (!cache->dirty_bitset) {
2872 *error = "could not allocate dirty bitset";
2873 goto bad;
2874 }
2875 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2876
2877 cache->discard_block_size =
2878 calculate_discard_block_size(cache->sectors_per_block,
2879 cache->origin_sectors);
2880 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2881 cache->discard_block_size));
2882 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2883 if (!cache->discard_bitset) {
2884 *error = "could not allocate discard bitset";
2885 goto bad;
2886 }
2887 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2888
2889 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2890 if (IS_ERR(cache->copier)) {
2891 *error = "could not create kcopyd client";
2892 r = PTR_ERR(cache->copier);
2893 goto bad;
2894 }
2895
2896 cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2897 if (!cache->wq) {
2898 *error = "could not create workqueue for metadata object";
2899 goto bad;
2900 }
2901 INIT_WORK(&cache->worker, do_worker);
2902 INIT_DELAYED_WORK(&cache->waker, do_waker);
2903 cache->last_commit_jiffies = jiffies;
2904
2905 cache->prison = dm_bio_prison_create();
2906 if (!cache->prison) {
2907 *error = "could not create bio prison";
2908 goto bad;
2909 }
2910
2911 cache->all_io_ds = dm_deferred_set_create();
2912 if (!cache->all_io_ds) {
2913 *error = "could not create all_io deferred set";
2914 goto bad;
2915 }
2916
2917 cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2918 migration_cache);
2919 if (!cache->migration_pool) {
2920 *error = "Error creating cache's migration mempool";
2921 goto bad;
2922 }
2923
2924 cache->need_tick_bio = true;
2925 cache->sized = false;
2926 cache->invalidate = false;
2927 cache->commit_requested = false;
2928 cache->loaded_mappings = false;
2929 cache->loaded_discards = false;
2930
2931 load_stats(cache);
2932
2933 atomic_set(&cache->stats.demotion, 0);
2934 atomic_set(&cache->stats.promotion, 0);
2935 atomic_set(&cache->stats.copies_avoided, 0);
2936 atomic_set(&cache->stats.cache_cell_clash, 0);
2937 atomic_set(&cache->stats.commit_count, 0);
2938 atomic_set(&cache->stats.discard_count, 0);
2939
2940 spin_lock_init(&cache->invalidation_lock);
2941 INIT_LIST_HEAD(&cache->invalidation_requests);
2942
2943 iot_init(&cache->origin_tracker);
2944
2945 *result = cache;
2946 return 0;
2947
2948 bad:
2949 destroy(cache);
2950 return r;
2951 }
2952
2953 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2954 {
2955 unsigned i;
2956 const char **copy;
2957
2958 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2959 if (!copy)
2960 return -ENOMEM;
2961 for (i = 0; i < argc; i++) {
2962 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2963 if (!copy[i]) {
2964 while (i--)
2965 kfree(copy[i]);
2966 kfree(copy);
2967 return -ENOMEM;
2968 }
2969 }
2970
2971 cache->nr_ctr_args = argc;
2972 cache->ctr_args = copy;
2973
2974 return 0;
2975 }
2976
2977 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2978 {
2979 int r = -EINVAL;
2980 struct cache_args *ca;
2981 struct cache *cache = NULL;
2982
2983 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2984 if (!ca) {
2985 ti->error = "Error allocating memory for cache";
2986 return -ENOMEM;
2987 }
2988 ca->ti = ti;
2989
2990 r = parse_cache_args(ca, argc, argv, &ti->error);
2991 if (r)
2992 goto out;
2993
2994 r = cache_create(ca, &cache);
2995 if (r)
2996 goto out;
2997
2998 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2999 if (r) {
3000 destroy(cache);
3001 goto out;
3002 }
3003
3004 ti->private = cache;
3005
3006 out:
3007 destroy_cache_args(ca);
3008 return r;
3009 }
3010
3011 /*----------------------------------------------------------------*/
3012
3013 static int cache_map(struct dm_target *ti, struct bio *bio)
3014 {
3015 struct cache *cache = ti->private;
3016
3017 int r;
3018 struct dm_bio_prison_cell *cell = NULL;
3019 dm_oblock_t block = get_bio_block(cache, bio);
3020 size_t pb_data_size = get_per_bio_data_size(cache);
3021 bool can_migrate = false;
3022 bool fast_promotion;
3023 struct policy_result lookup_result;
3024 struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
3025 struct old_oblock_lock ool;
3026
3027 ool.locker.fn = null_locker;
3028
3029 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
3030 /*
3031 * This can only occur if the io goes to a partial block at
3032 * the end of the origin device. We don't cache these.
3033 * Just remap to the origin and carry on.
3034 */
3035 remap_to_origin(cache, bio);
3036 accounted_begin(cache, bio);
3037 return DM_MAPIO_REMAPPED;
3038 }
3039
3040 if (discard_or_flush(bio)) {
3041 defer_bio(cache, bio);
3042 return DM_MAPIO_SUBMITTED;
3043 }
3044
3045 /*
3046 * Check to see if that block is currently migrating.
3047 */
3048 cell = alloc_prison_cell(cache);
3049 if (!cell) {
3050 defer_bio(cache, bio);
3051 return DM_MAPIO_SUBMITTED;
3052 }
3053
3054 r = bio_detain(cache, block, bio, cell,
3055 (cell_free_fn) free_prison_cell,
3056 cache, &cell);
3057 if (r) {
3058 if (r < 0)
3059 defer_bio(cache, bio);
3060
3061 return DM_MAPIO_SUBMITTED;
3062 }
3063
3064 fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
3065
3066 r = policy_map(cache->policy, block, false, can_migrate, fast_promotion,
3067 bio, &ool.locker, &lookup_result);
3068 if (r == -EWOULDBLOCK) {
3069 cell_defer(cache, cell, true);
3070 return DM_MAPIO_SUBMITTED;
3071
3072 } else if (r) {
3073 DMERR_LIMIT("%s: Unexpected return from cache replacement policy: %d",
3074 cache_device_name(cache), r);
3075 cell_defer(cache, cell, false);
3076 bio_io_error(bio);
3077 return DM_MAPIO_SUBMITTED;
3078 }
3079
3080 r = DM_MAPIO_REMAPPED;
3081 switch (lookup_result.op) {
3082 case POLICY_HIT:
3083 if (passthrough_mode(&cache->features)) {
3084 if (bio_data_dir(bio) == WRITE) {
3085 /*
3086 * We need to invalidate this block, so
3087 * defer for the worker thread.
3088 */
3089 cell_defer(cache, cell, true);
3090 r = DM_MAPIO_SUBMITTED;
3091
3092 } else {
3093 inc_miss_counter(cache, bio);
3094 remap_to_origin_clear_discard(cache, bio, block);
3095 accounted_begin(cache, bio);
3096 inc_ds(cache, bio, cell);
3097 // FIXME: we want to remap hits or misses straight
3098 // away rather than passing over to the worker.
3099 cell_defer(cache, cell, false);
3100 }
3101
3102 } else {
3103 inc_hit_counter(cache, bio);
3104 if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
3105 !is_dirty(cache, lookup_result.cblock)) {
3106 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
3107 accounted_begin(cache, bio);
3108 inc_ds(cache, bio, cell);
3109 cell_defer(cache, cell, false);
3110
3111 } else
3112 remap_cell_to_cache_dirty(cache, cell, block, lookup_result.cblock, false);
3113 }
3114 break;
3115
3116 case POLICY_MISS:
3117 inc_miss_counter(cache, bio);
3118 if (pb->req_nr != 0) {
3119 /*
3120 * This is a duplicate writethrough io that is no
3121 * longer needed because the block has been demoted.
3122 */
3123 bio_endio(bio);
3124 // FIXME: remap everything as a miss
3125 cell_defer(cache, cell, false);
3126 r = DM_MAPIO_SUBMITTED;
3127
3128 } else
3129 remap_cell_to_origin_clear_discard(cache, cell, block, false);
3130 break;
3131
3132 default:
3133 DMERR_LIMIT("%s: %s: erroring bio: unknown policy op: %u",
3134 cache_device_name(cache), __func__,
3135 (unsigned) lookup_result.op);
3136 cell_defer(cache, cell, false);
3137 bio_io_error(bio);
3138 r = DM_MAPIO_SUBMITTED;
3139 }
3140
3141 return r;
3142 }
3143
3144 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
3145 {
3146 struct cache *cache = ti->private;
3147 unsigned long flags;
3148 size_t pb_data_size = get_per_bio_data_size(cache);
3149 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
3150
3151 if (pb->tick) {
3152 policy_tick(cache->policy, false);
3153
3154 spin_lock_irqsave(&cache->lock, flags);
3155 cache->need_tick_bio = true;
3156 spin_unlock_irqrestore(&cache->lock, flags);
3157 }
3158
3159 check_for_quiesced_migrations(cache, pb);
3160 accounted_complete(cache, bio);
3161
3162 return 0;
3163 }
3164
3165 static int write_dirty_bitset(struct cache *cache)
3166 {
3167 unsigned i, r;
3168
3169 if (get_cache_mode(cache) >= CM_READ_ONLY)
3170 return -EINVAL;
3171
3172 for (i = 0; i < from_cblock(cache->cache_size); i++) {
3173 r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
3174 is_dirty(cache, to_cblock(i)));
3175 if (r) {
3176 metadata_operation_failed(cache, "dm_cache_set_dirty", r);
3177 return r;
3178 }
3179 }
3180
3181 return 0;
3182 }
3183
3184 static int write_discard_bitset(struct cache *cache)
3185 {
3186 unsigned i, r;
3187
3188 if (get_cache_mode(cache) >= CM_READ_ONLY)
3189 return -EINVAL;
3190
3191 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
3192 cache->discard_nr_blocks);
3193 if (r) {
3194 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
3195 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
3196 return r;
3197 }
3198
3199 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
3200 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
3201 is_discarded(cache, to_dblock(i)));
3202 if (r) {
3203 metadata_operation_failed(cache, "dm_cache_set_discard", r);
3204 return r;
3205 }
3206 }
3207
3208 return 0;
3209 }
3210
3211 static int write_hints(struct cache *cache)
3212 {
3213 int r;
3214
3215 if (get_cache_mode(cache) >= CM_READ_ONLY)
3216 return -EINVAL;
3217
3218 r = dm_cache_write_hints(cache->cmd, cache->policy);
3219 if (r) {
3220 metadata_operation_failed(cache, "dm_cache_write_hints", r);
3221 return r;
3222 }
3223
3224 return 0;
3225 }
3226
3227 /*
3228 * returns true on success
3229 */
3230 static bool sync_metadata(struct cache *cache)
3231 {
3232 int r1, r2, r3, r4;
3233
3234 r1 = write_dirty_bitset(cache);
3235 if (r1)
3236 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
3237
3238 r2 = write_discard_bitset(cache);
3239 if (r2)
3240 DMERR("%s: could not write discard bitset", cache_device_name(cache));
3241
3242 save_stats(cache);
3243
3244 r3 = write_hints(cache);
3245 if (r3)
3246 DMERR("%s: could not write hints", cache_device_name(cache));
3247
3248 /*
3249 * If writing the above metadata failed, we still commit, but don't
3250 * set the clean shutdown flag. This will effectively force every
3251 * dirty bit to be set on reload.
3252 */
3253 r4 = commit(cache, !r1 && !r2 && !r3);
3254 if (r4)
3255 DMERR("%s: could not write cache metadata", cache_device_name(cache));
3256
3257 return !r1 && !r2 && !r3 && !r4;
3258 }
3259
3260 static void cache_postsuspend(struct dm_target *ti)
3261 {
3262 struct cache *cache = ti->private;
3263
3264 start_quiescing(cache);
3265 wait_for_migrations(cache);
3266 stop_worker(cache);
3267 requeue_deferred_bios(cache);
3268 requeue_deferred_cells(cache);
3269 stop_quiescing(cache);
3270
3271 if (get_cache_mode(cache) == CM_WRITE)
3272 (void) sync_metadata(cache);
3273 }
3274
3275 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
3276 bool dirty, uint32_t hint, bool hint_valid)
3277 {
3278 int r;
3279 struct cache *cache = context;
3280
3281 r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
3282 if (r)
3283 return r;
3284
3285 if (dirty)
3286 set_dirty(cache, oblock, cblock);
3287 else
3288 clear_dirty(cache, oblock, cblock);
3289
3290 return 0;
3291 }
3292
3293 /*
3294 * The discard block size in the on disk metadata is not
3295 * neccessarily the same as we're currently using. So we have to
3296 * be careful to only set the discarded attribute if we know it
3297 * covers a complete block of the new size.
3298 */
3299 struct discard_load_info {
3300 struct cache *cache;
3301
3302 /*
3303 * These blocks are sized using the on disk dblock size, rather
3304 * than the current one.
3305 */
3306 dm_block_t block_size;
3307 dm_block_t discard_begin, discard_end;
3308 };
3309
3310 static void discard_load_info_init(struct cache *cache,
3311 struct discard_load_info *li)
3312 {
3313 li->cache = cache;
3314 li->discard_begin = li->discard_end = 0;
3315 }
3316
3317 static void set_discard_range(struct discard_load_info *li)
3318 {
3319 sector_t b, e;
3320
3321 if (li->discard_begin == li->discard_end)
3322 return;
3323
3324 /*
3325 * Convert to sectors.
3326 */
3327 b = li->discard_begin * li->block_size;
3328 e = li->discard_end * li->block_size;
3329
3330 /*
3331 * Then convert back to the current dblock size.
3332 */
3333 b = dm_sector_div_up(b, li->cache->discard_block_size);
3334 sector_div(e, li->cache->discard_block_size);
3335
3336 /*
3337 * The origin may have shrunk, so we need to check we're still in
3338 * bounds.
3339 */
3340 if (e > from_dblock(li->cache->discard_nr_blocks))
3341 e = from_dblock(li->cache->discard_nr_blocks);
3342
3343 for (; b < e; b++)
3344 set_discard(li->cache, to_dblock(b));
3345 }
3346
3347 static int load_discard(void *context, sector_t discard_block_size,
3348 dm_dblock_t dblock, bool discard)
3349 {
3350 struct discard_load_info *li = context;
3351
3352 li->block_size = discard_block_size;
3353
3354 if (discard) {
3355 if (from_dblock(dblock) == li->discard_end)
3356 /*
3357 * We're already in a discard range, just extend it.
3358 */
3359 li->discard_end = li->discard_end + 1ULL;
3360
3361 else {
3362 /*
3363 * Emit the old range and start a new one.
3364 */
3365 set_discard_range(li);
3366 li->discard_begin = from_dblock(dblock);
3367 li->discard_end = li->discard_begin + 1ULL;
3368 }
3369 } else {
3370 set_discard_range(li);
3371 li->discard_begin = li->discard_end = 0;
3372 }
3373
3374 return 0;
3375 }
3376
3377 static dm_cblock_t get_cache_dev_size(struct cache *cache)
3378 {
3379 sector_t size = get_dev_size(cache->cache_dev);
3380 (void) sector_div(size, cache->sectors_per_block);
3381 return to_cblock(size);
3382 }
3383
3384 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3385 {
3386 if (from_cblock(new_size) > from_cblock(cache->cache_size))
3387 return true;
3388
3389 /*
3390 * We can't drop a dirty block when shrinking the cache.
3391 */
3392 while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3393 new_size = to_cblock(from_cblock(new_size) + 1);
3394 if (is_dirty(cache, new_size)) {
3395 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3396 cache_device_name(cache),
3397 (unsigned long long) from_cblock(new_size));
3398 return false;
3399 }
3400 }
3401
3402 return true;
3403 }
3404
3405 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3406 {
3407 int r;
3408
3409 r = dm_cache_resize(cache->cmd, new_size);
3410 if (r) {
3411 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3412 metadata_operation_failed(cache, "dm_cache_resize", r);
3413 return r;
3414 }
3415
3416 set_cache_size(cache, new_size);
3417
3418 return 0;
3419 }
3420
3421 static int cache_preresume(struct dm_target *ti)
3422 {
3423 int r = 0;
3424 struct cache *cache = ti->private;
3425 dm_cblock_t csize = get_cache_dev_size(cache);
3426
3427 /*
3428 * Check to see if the cache has resized.
3429 */
3430 if (!cache->sized) {
3431 r = resize_cache_dev(cache, csize);
3432 if (r)
3433 return r;
3434
3435 cache->sized = true;
3436
3437 } else if (csize != cache->cache_size) {
3438 if (!can_resize(cache, csize))
3439 return -EINVAL;
3440
3441 r = resize_cache_dev(cache, csize);
3442 if (r)
3443 return r;
3444 }
3445
3446 if (!cache->loaded_mappings) {
3447 r = dm_cache_load_mappings(cache->cmd, cache->policy,
3448 load_mapping, cache);
3449 if (r) {
3450 DMERR("%s: could not load cache mappings", cache_device_name(cache));
3451 metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3452 return r;
3453 }
3454
3455 cache->loaded_mappings = true;
3456 }
3457
3458 if (!cache->loaded_discards) {
3459 struct discard_load_info li;
3460
3461 /*
3462 * The discard bitset could have been resized, or the
3463 * discard block size changed. To be safe we start by
3464 * setting every dblock to not discarded.
3465 */
3466 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3467
3468 discard_load_info_init(cache, &li);
3469 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3470 if (r) {
3471 DMERR("%s: could not load origin discards", cache_device_name(cache));
3472 metadata_operation_failed(cache, "dm_cache_load_discards", r);
3473 return r;
3474 }
3475 set_discard_range(&li);
3476
3477 cache->loaded_discards = true;
3478 }
3479
3480 return r;
3481 }
3482
3483 static void cache_resume(struct dm_target *ti)
3484 {
3485 struct cache *cache = ti->private;
3486
3487 cache->need_tick_bio = true;
3488 do_waker(&cache->waker.work);
3489 }
3490
3491 /*
3492 * Status format:
3493 *
3494 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3495 * <cache block size> <#used cache blocks>/<#total cache blocks>
3496 * <#read hits> <#read misses> <#write hits> <#write misses>
3497 * <#demotions> <#promotions> <#dirty>
3498 * <#features> <features>*
3499 * <#core args> <core args>
3500 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3501 */
3502 static void cache_status(struct dm_target *ti, status_type_t type,
3503 unsigned status_flags, char *result, unsigned maxlen)
3504 {
3505 int r = 0;
3506 unsigned i;
3507 ssize_t sz = 0;
3508 dm_block_t nr_free_blocks_metadata = 0;
3509 dm_block_t nr_blocks_metadata = 0;
3510 char buf[BDEVNAME_SIZE];
3511 struct cache *cache = ti->private;
3512 dm_cblock_t residency;
3513
3514 switch (type) {
3515 case STATUSTYPE_INFO:
3516 if (get_cache_mode(cache) == CM_FAIL) {
3517 DMEMIT("Fail");
3518 break;
3519 }
3520
3521 /* Commit to ensure statistics aren't out-of-date */
3522 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3523 (void) commit(cache, false);
3524
3525 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3526 if (r) {
3527 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3528 cache_device_name(cache), r);
3529 goto err;
3530 }
3531
3532 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3533 if (r) {
3534 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3535 cache_device_name(cache), r);
3536 goto err;
3537 }
3538
3539 residency = policy_residency(cache->policy);
3540
3541 DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %lu ",
3542 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3543 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3544 (unsigned long long)nr_blocks_metadata,
3545 cache->sectors_per_block,
3546 (unsigned long long) from_cblock(residency),
3547 (unsigned long long) from_cblock(cache->cache_size),
3548 (unsigned) atomic_read(&cache->stats.read_hit),
3549 (unsigned) atomic_read(&cache->stats.read_miss),
3550 (unsigned) atomic_read(&cache->stats.write_hit),
3551 (unsigned) atomic_read(&cache->stats.write_miss),
3552 (unsigned) atomic_read(&cache->stats.demotion),
3553 (unsigned) atomic_read(&cache->stats.promotion),
3554 (unsigned long) atomic_read(&cache->nr_dirty));
3555
3556 if (writethrough_mode(&cache->features))
3557 DMEMIT("1 writethrough ");
3558
3559 else if (passthrough_mode(&cache->features))
3560 DMEMIT("1 passthrough ");
3561
3562 else if (writeback_mode(&cache->features))
3563 DMEMIT("1 writeback ");
3564
3565 else {
3566 DMERR("%s: internal error: unknown io mode: %d",
3567 cache_device_name(cache), (int) cache->features.io_mode);
3568 goto err;
3569 }
3570
3571 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3572
3573 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3574 if (sz < maxlen) {
3575 r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3576 if (r)
3577 DMERR("%s: policy_emit_config_values returned %d",
3578 cache_device_name(cache), r);
3579 }
3580
3581 if (get_cache_mode(cache) == CM_READ_ONLY)
3582 DMEMIT("ro ");
3583 else
3584 DMEMIT("rw ");
3585
3586 if (dm_cache_metadata_needs_check(cache->cmd))
3587 DMEMIT("needs_check ");
3588 else
3589 DMEMIT("- ");
3590
3591 break;
3592
3593 case STATUSTYPE_TABLE:
3594 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3595 DMEMIT("%s ", buf);
3596 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3597 DMEMIT("%s ", buf);
3598 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3599 DMEMIT("%s", buf);
3600
3601 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3602 DMEMIT(" %s", cache->ctr_args[i]);
3603 if (cache->nr_ctr_args)
3604 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3605 }
3606
3607 return;
3608
3609 err:
3610 DMEMIT("Error");
3611 }
3612
3613 /*
3614 * A cache block range can take two forms:
3615 *
3616 * i) A single cblock, eg. '3456'
3617 * ii) A begin and end cblock with dots between, eg. 123-234
3618 */
3619 static int parse_cblock_range(struct cache *cache, const char *str,
3620 struct cblock_range *result)
3621 {
3622 char dummy;
3623 uint64_t b, e;
3624 int r;
3625
3626 /*
3627 * Try and parse form (ii) first.
3628 */
3629 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3630 if (r < 0)
3631 return r;
3632
3633 if (r == 2) {
3634 result->begin = to_cblock(b);
3635 result->end = to_cblock(e);
3636 return 0;
3637 }
3638
3639 /*
3640 * That didn't work, try form (i).
3641 */
3642 r = sscanf(str, "%llu%c", &b, &dummy);
3643 if (r < 0)
3644 return r;
3645
3646 if (r == 1) {
3647 result->begin = to_cblock(b);
3648 result->end = to_cblock(from_cblock(result->begin) + 1u);
3649 return 0;
3650 }
3651
3652 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3653 return -EINVAL;
3654 }
3655
3656 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3657 {
3658 uint64_t b = from_cblock(range->begin);
3659 uint64_t e = from_cblock(range->end);
3660 uint64_t n = from_cblock(cache->cache_size);
3661
3662 if (b >= n) {
3663 DMERR("%s: begin cblock out of range: %llu >= %llu",
3664 cache_device_name(cache), b, n);
3665 return -EINVAL;
3666 }
3667
3668 if (e > n) {
3669 DMERR("%s: end cblock out of range: %llu > %llu",
3670 cache_device_name(cache), e, n);
3671 return -EINVAL;
3672 }
3673
3674 if (b >= e) {
3675 DMERR("%s: invalid cblock range: %llu >= %llu",
3676 cache_device_name(cache), b, e);
3677 return -EINVAL;
3678 }
3679
3680 return 0;
3681 }
3682
3683 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3684 {
3685 struct invalidation_request req;
3686
3687 INIT_LIST_HEAD(&req.list);
3688 req.cblocks = range;
3689 atomic_set(&req.complete, 0);
3690 req.err = 0;
3691 init_waitqueue_head(&req.result_wait);
3692
3693 spin_lock(&cache->invalidation_lock);
3694 list_add(&req.list, &cache->invalidation_requests);
3695 spin_unlock(&cache->invalidation_lock);
3696 wake_worker(cache);
3697
3698 wait_event(req.result_wait, atomic_read(&req.complete));
3699 return req.err;
3700 }
3701
3702 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3703 const char **cblock_ranges)
3704 {
3705 int r = 0;
3706 unsigned i;
3707 struct cblock_range range;
3708
3709 if (!passthrough_mode(&cache->features)) {
3710 DMERR("%s: cache has to be in passthrough mode for invalidation",
3711 cache_device_name(cache));
3712 return -EPERM;
3713 }
3714
3715 for (i = 0; i < count; i++) {
3716 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3717 if (r)
3718 break;
3719
3720 r = validate_cblock_range(cache, &range);
3721 if (r)
3722 break;
3723
3724 /*
3725 * Pass begin and end origin blocks to the worker and wake it.
3726 */
3727 r = request_invalidation(cache, &range);
3728 if (r)
3729 break;
3730 }
3731
3732 return r;
3733 }
3734
3735 /*
3736 * Supports
3737 * "<key> <value>"
3738 * and
3739 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3740 *
3741 * The key migration_threshold is supported by the cache target core.
3742 */
3743 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3744 {
3745 struct cache *cache = ti->private;
3746
3747 if (!argc)
3748 return -EINVAL;
3749
3750 if (get_cache_mode(cache) >= CM_READ_ONLY) {
3751 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3752 cache_device_name(cache));
3753 return -EOPNOTSUPP;
3754 }
3755
3756 if (!strcasecmp(argv[0], "invalidate_cblocks"))
3757 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3758
3759 if (argc != 2)
3760 return -EINVAL;
3761
3762 return set_config_value(cache, argv[0], argv[1]);
3763 }
3764
3765 static int cache_iterate_devices(struct dm_target *ti,
3766 iterate_devices_callout_fn fn, void *data)
3767 {
3768 int r = 0;
3769 struct cache *cache = ti->private;
3770
3771 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3772 if (!r)
3773 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3774
3775 return r;
3776 }
3777
3778 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3779 {
3780 /*
3781 * FIXME: these limits may be incompatible with the cache device
3782 */
3783 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3784 cache->origin_sectors);
3785 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3786 }
3787
3788 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3789 {
3790 struct cache *cache = ti->private;
3791 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3792
3793 /*
3794 * If the system-determined stacked limits are compatible with the
3795 * cache's blocksize (io_opt is a factor) do not override them.
3796 */
3797 if (io_opt_sectors < cache->sectors_per_block ||
3798 do_div(io_opt_sectors, cache->sectors_per_block)) {
3799 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3800 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3801 }
3802 set_discard_limits(cache, limits);
3803 }
3804
3805 /*----------------------------------------------------------------*/
3806
3807 static struct target_type cache_target = {
3808 .name = "cache",
3809 .version = {1, 8, 0},
3810 .module = THIS_MODULE,
3811 .ctr = cache_ctr,
3812 .dtr = cache_dtr,
3813 .map = cache_map,
3814 .end_io = cache_end_io,
3815 .postsuspend = cache_postsuspend,
3816 .preresume = cache_preresume,
3817 .resume = cache_resume,
3818 .status = cache_status,
3819 .message = cache_message,
3820 .iterate_devices = cache_iterate_devices,
3821 .io_hints = cache_io_hints,
3822 };
3823
3824 static int __init dm_cache_init(void)
3825 {
3826 int r;
3827
3828 r = dm_register_target(&cache_target);
3829 if (r) {
3830 DMERR("cache target registration failed: %d", r);
3831 return r;
3832 }
3833
3834 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3835 if (!migration_cache) {
3836 dm_unregister_target(&cache_target);
3837 return -ENOMEM;
3838 }
3839
3840 return 0;
3841 }
3842
3843 static void __exit dm_cache_exit(void)
3844 {
3845 dm_unregister_target(&cache_target);
3846 kmem_cache_destroy(migration_cache);
3847 }
3848
3849 module_init(dm_cache_init);
3850 module_exit(dm_cache_exit);
3851
3852 MODULE_DESCRIPTION(DM_NAME " cache target");
3853 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3854 MODULE_LICENSE("GPL");