]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/dm-cache-target.c
block: add a op_is_flush helper
[mirror_ubuntu-bionic-kernel.git] / drivers / md / dm-cache-target.c
1 /*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20
21 #define DM_MSG_PREFIX "cache"
22
23 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
24 "A percentage of time allocated for copying to and/or from cache");
25
26 /*----------------------------------------------------------------*/
27
28 #define IOT_RESOLUTION 4
29
30 struct io_tracker {
31 spinlock_t lock;
32
33 /*
34 * Sectors of in-flight IO.
35 */
36 sector_t in_flight;
37
38 /*
39 * The time, in jiffies, when this device became idle (if it is
40 * indeed idle).
41 */
42 unsigned long idle_time;
43 unsigned long last_update_time;
44 };
45
46 static void iot_init(struct io_tracker *iot)
47 {
48 spin_lock_init(&iot->lock);
49 iot->in_flight = 0ul;
50 iot->idle_time = 0ul;
51 iot->last_update_time = jiffies;
52 }
53
54 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
55 {
56 if (iot->in_flight)
57 return false;
58
59 return time_after(jiffies, iot->idle_time + jifs);
60 }
61
62 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
63 {
64 bool r;
65 unsigned long flags;
66
67 spin_lock_irqsave(&iot->lock, flags);
68 r = __iot_idle_for(iot, jifs);
69 spin_unlock_irqrestore(&iot->lock, flags);
70
71 return r;
72 }
73
74 static void iot_io_begin(struct io_tracker *iot, sector_t len)
75 {
76 unsigned long flags;
77
78 spin_lock_irqsave(&iot->lock, flags);
79 iot->in_flight += len;
80 spin_unlock_irqrestore(&iot->lock, flags);
81 }
82
83 static void __iot_io_end(struct io_tracker *iot, sector_t len)
84 {
85 iot->in_flight -= len;
86 if (!iot->in_flight)
87 iot->idle_time = jiffies;
88 }
89
90 static void iot_io_end(struct io_tracker *iot, sector_t len)
91 {
92 unsigned long flags;
93
94 spin_lock_irqsave(&iot->lock, flags);
95 __iot_io_end(iot, len);
96 spin_unlock_irqrestore(&iot->lock, flags);
97 }
98
99 /*----------------------------------------------------------------*/
100
101 /*
102 * Glossary:
103 *
104 * oblock: index of an origin block
105 * cblock: index of a cache block
106 * promotion: movement of a block from origin to cache
107 * demotion: movement of a block from cache to origin
108 * migration: movement of a block between the origin and cache device,
109 * either direction
110 */
111
112 /*----------------------------------------------------------------*/
113
114 /*
115 * There are a couple of places where we let a bio run, but want to do some
116 * work before calling its endio function. We do this by temporarily
117 * changing the endio fn.
118 */
119 struct dm_hook_info {
120 bio_end_io_t *bi_end_io;
121 };
122
123 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
124 bio_end_io_t *bi_end_io, void *bi_private)
125 {
126 h->bi_end_io = bio->bi_end_io;
127
128 bio->bi_end_io = bi_end_io;
129 bio->bi_private = bi_private;
130 }
131
132 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
133 {
134 bio->bi_end_io = h->bi_end_io;
135 }
136
137 /*----------------------------------------------------------------*/
138
139 #define MIGRATION_POOL_SIZE 128
140 #define COMMIT_PERIOD HZ
141 #define MIGRATION_COUNT_WINDOW 10
142
143 /*
144 * The block size of the device holding cache data must be
145 * between 32KB and 1GB.
146 */
147 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
148 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
149
150 enum cache_metadata_mode {
151 CM_WRITE, /* metadata may be changed */
152 CM_READ_ONLY, /* metadata may not be changed */
153 CM_FAIL
154 };
155
156 enum cache_io_mode {
157 /*
158 * Data is written to cached blocks only. These blocks are marked
159 * dirty. If you lose the cache device you will lose data.
160 * Potential performance increase for both reads and writes.
161 */
162 CM_IO_WRITEBACK,
163
164 /*
165 * Data is written to both cache and origin. Blocks are never
166 * dirty. Potential performance benfit for reads only.
167 */
168 CM_IO_WRITETHROUGH,
169
170 /*
171 * A degraded mode useful for various cache coherency situations
172 * (eg, rolling back snapshots). Reads and writes always go to the
173 * origin. If a write goes to a cached oblock, then the cache
174 * block is invalidated.
175 */
176 CM_IO_PASSTHROUGH
177 };
178
179 struct cache_features {
180 enum cache_metadata_mode mode;
181 enum cache_io_mode io_mode;
182 };
183
184 struct cache_stats {
185 atomic_t read_hit;
186 atomic_t read_miss;
187 atomic_t write_hit;
188 atomic_t write_miss;
189 atomic_t demotion;
190 atomic_t promotion;
191 atomic_t copies_avoided;
192 atomic_t cache_cell_clash;
193 atomic_t commit_count;
194 atomic_t discard_count;
195 };
196
197 /*
198 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
199 * the one-past-the-end value.
200 */
201 struct cblock_range {
202 dm_cblock_t begin;
203 dm_cblock_t end;
204 };
205
206 struct invalidation_request {
207 struct list_head list;
208 struct cblock_range *cblocks;
209
210 atomic_t complete;
211 int err;
212
213 wait_queue_head_t result_wait;
214 };
215
216 struct cache {
217 struct dm_target *ti;
218 struct dm_target_callbacks callbacks;
219
220 struct dm_cache_metadata *cmd;
221
222 /*
223 * Metadata is written to this device.
224 */
225 struct dm_dev *metadata_dev;
226
227 /*
228 * The slower of the two data devices. Typically a spindle.
229 */
230 struct dm_dev *origin_dev;
231
232 /*
233 * The faster of the two data devices. Typically an SSD.
234 */
235 struct dm_dev *cache_dev;
236
237 /*
238 * Size of the origin device in _complete_ blocks and native sectors.
239 */
240 dm_oblock_t origin_blocks;
241 sector_t origin_sectors;
242
243 /*
244 * Size of the cache device in blocks.
245 */
246 dm_cblock_t cache_size;
247
248 /*
249 * Fields for converting from sectors to blocks.
250 */
251 uint32_t sectors_per_block;
252 int sectors_per_block_shift;
253
254 spinlock_t lock;
255 struct list_head deferred_cells;
256 struct bio_list deferred_bios;
257 struct bio_list deferred_flush_bios;
258 struct bio_list deferred_writethrough_bios;
259 struct list_head quiesced_migrations;
260 struct list_head completed_migrations;
261 struct list_head need_commit_migrations;
262 sector_t migration_threshold;
263 wait_queue_head_t migration_wait;
264 atomic_t nr_allocated_migrations;
265
266 /*
267 * The number of in flight migrations that are performing
268 * background io. eg, promotion, writeback.
269 */
270 atomic_t nr_io_migrations;
271
272 wait_queue_head_t quiescing_wait;
273 atomic_t quiescing;
274 atomic_t quiescing_ack;
275
276 /*
277 * cache_size entries, dirty if set
278 */
279 atomic_t nr_dirty;
280 unsigned long *dirty_bitset;
281
282 /*
283 * origin_blocks entries, discarded if set.
284 */
285 dm_dblock_t discard_nr_blocks;
286 unsigned long *discard_bitset;
287 uint32_t discard_block_size; /* a power of 2 times sectors per block */
288
289 /*
290 * Rather than reconstructing the table line for the status we just
291 * save it and regurgitate.
292 */
293 unsigned nr_ctr_args;
294 const char **ctr_args;
295
296 struct dm_kcopyd_client *copier;
297 struct workqueue_struct *wq;
298 struct work_struct worker;
299
300 struct delayed_work waker;
301 unsigned long last_commit_jiffies;
302
303 struct dm_bio_prison *prison;
304 struct dm_deferred_set *all_io_ds;
305
306 mempool_t *migration_pool;
307
308 struct dm_cache_policy *policy;
309 unsigned policy_nr_args;
310
311 bool need_tick_bio:1;
312 bool sized:1;
313 bool invalidate:1;
314 bool commit_requested:1;
315 bool loaded_mappings:1;
316 bool loaded_discards:1;
317
318 /*
319 * Cache features such as write-through.
320 */
321 struct cache_features features;
322
323 struct cache_stats stats;
324
325 /*
326 * Invalidation fields.
327 */
328 spinlock_t invalidation_lock;
329 struct list_head invalidation_requests;
330
331 struct io_tracker origin_tracker;
332 };
333
334 struct per_bio_data {
335 bool tick:1;
336 unsigned req_nr:2;
337 struct dm_deferred_entry *all_io_entry;
338 struct dm_hook_info hook_info;
339 sector_t len;
340
341 /*
342 * writethrough fields. These MUST remain at the end of this
343 * structure and the 'cache' member must be the first as it
344 * is used to determine the offset of the writethrough fields.
345 */
346 struct cache *cache;
347 dm_cblock_t cblock;
348 struct dm_bio_details bio_details;
349 };
350
351 struct dm_cache_migration {
352 struct list_head list;
353 struct cache *cache;
354
355 unsigned long start_jiffies;
356 dm_oblock_t old_oblock;
357 dm_oblock_t new_oblock;
358 dm_cblock_t cblock;
359
360 bool err:1;
361 bool discard:1;
362 bool writeback:1;
363 bool demote:1;
364 bool promote:1;
365 bool requeue_holder:1;
366 bool invalidate:1;
367
368 struct dm_bio_prison_cell *old_ocell;
369 struct dm_bio_prison_cell *new_ocell;
370 };
371
372 /*
373 * Processing a bio in the worker thread may require these memory
374 * allocations. We prealloc to avoid deadlocks (the same worker thread
375 * frees them back to the mempool).
376 */
377 struct prealloc {
378 struct dm_cache_migration *mg;
379 struct dm_bio_prison_cell *cell1;
380 struct dm_bio_prison_cell *cell2;
381 };
382
383 static enum cache_metadata_mode get_cache_mode(struct cache *cache);
384
385 static void wake_worker(struct cache *cache)
386 {
387 queue_work(cache->wq, &cache->worker);
388 }
389
390 /*----------------------------------------------------------------*/
391
392 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
393 {
394 /* FIXME: change to use a local slab. */
395 return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
396 }
397
398 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
399 {
400 dm_bio_prison_free_cell(cache->prison, cell);
401 }
402
403 static struct dm_cache_migration *alloc_migration(struct cache *cache)
404 {
405 struct dm_cache_migration *mg;
406
407 mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
408 if (mg) {
409 mg->cache = cache;
410 atomic_inc(&mg->cache->nr_allocated_migrations);
411 }
412
413 return mg;
414 }
415
416 static void free_migration(struct dm_cache_migration *mg)
417 {
418 struct cache *cache = mg->cache;
419
420 if (atomic_dec_and_test(&cache->nr_allocated_migrations))
421 wake_up(&cache->migration_wait);
422
423 mempool_free(mg, cache->migration_pool);
424 }
425
426 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
427 {
428 if (!p->mg) {
429 p->mg = alloc_migration(cache);
430 if (!p->mg)
431 return -ENOMEM;
432 }
433
434 if (!p->cell1) {
435 p->cell1 = alloc_prison_cell(cache);
436 if (!p->cell1)
437 return -ENOMEM;
438 }
439
440 if (!p->cell2) {
441 p->cell2 = alloc_prison_cell(cache);
442 if (!p->cell2)
443 return -ENOMEM;
444 }
445
446 return 0;
447 }
448
449 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
450 {
451 if (p->cell2)
452 free_prison_cell(cache, p->cell2);
453
454 if (p->cell1)
455 free_prison_cell(cache, p->cell1);
456
457 if (p->mg)
458 free_migration(p->mg);
459 }
460
461 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
462 {
463 struct dm_cache_migration *mg = p->mg;
464
465 BUG_ON(!mg);
466 p->mg = NULL;
467
468 return mg;
469 }
470
471 /*
472 * You must have a cell within the prealloc struct to return. If not this
473 * function will BUG() rather than returning NULL.
474 */
475 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
476 {
477 struct dm_bio_prison_cell *r = NULL;
478
479 if (p->cell1) {
480 r = p->cell1;
481 p->cell1 = NULL;
482
483 } else if (p->cell2) {
484 r = p->cell2;
485 p->cell2 = NULL;
486 } else
487 BUG();
488
489 return r;
490 }
491
492 /*
493 * You can't have more than two cells in a prealloc struct. BUG() will be
494 * called if you try and overfill.
495 */
496 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
497 {
498 if (!p->cell2)
499 p->cell2 = cell;
500
501 else if (!p->cell1)
502 p->cell1 = cell;
503
504 else
505 BUG();
506 }
507
508 /*----------------------------------------------------------------*/
509
510 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key *key)
511 {
512 key->virtual = 0;
513 key->dev = 0;
514 key->block_begin = from_oblock(begin);
515 key->block_end = from_oblock(end);
516 }
517
518 /*
519 * The caller hands in a preallocated cell, and a free function for it.
520 * The cell will be freed if there's an error, or if it wasn't used because
521 * a cell with that key already exists.
522 */
523 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
524
525 static int bio_detain_range(struct cache *cache, dm_oblock_t oblock_begin, dm_oblock_t oblock_end,
526 struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
527 cell_free_fn free_fn, void *free_context,
528 struct dm_bio_prison_cell **cell_result)
529 {
530 int r;
531 struct dm_cell_key key;
532
533 build_key(oblock_begin, oblock_end, &key);
534 r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
535 if (r)
536 free_fn(free_context, cell_prealloc);
537
538 return r;
539 }
540
541 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
542 struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
543 cell_free_fn free_fn, void *free_context,
544 struct dm_bio_prison_cell **cell_result)
545 {
546 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
547 return bio_detain_range(cache, oblock, end, bio,
548 cell_prealloc, free_fn, free_context, cell_result);
549 }
550
551 static int get_cell(struct cache *cache,
552 dm_oblock_t oblock,
553 struct prealloc *structs,
554 struct dm_bio_prison_cell **cell_result)
555 {
556 int r;
557 struct dm_cell_key key;
558 struct dm_bio_prison_cell *cell_prealloc;
559
560 cell_prealloc = prealloc_get_cell(structs);
561
562 build_key(oblock, to_oblock(from_oblock(oblock) + 1ULL), &key);
563 r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
564 if (r)
565 prealloc_put_cell(structs, cell_prealloc);
566
567 return r;
568 }
569
570 /*----------------------------------------------------------------*/
571
572 static bool is_dirty(struct cache *cache, dm_cblock_t b)
573 {
574 return test_bit(from_cblock(b), cache->dirty_bitset);
575 }
576
577 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
578 {
579 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
580 atomic_inc(&cache->nr_dirty);
581 policy_set_dirty(cache->policy, oblock);
582 }
583 }
584
585 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
586 {
587 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
588 policy_clear_dirty(cache->policy, oblock);
589 if (atomic_dec_return(&cache->nr_dirty) == 0)
590 dm_table_event(cache->ti->table);
591 }
592 }
593
594 /*----------------------------------------------------------------*/
595
596 static bool block_size_is_power_of_two(struct cache *cache)
597 {
598 return cache->sectors_per_block_shift >= 0;
599 }
600
601 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
602 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
603 __always_inline
604 #endif
605 static dm_block_t block_div(dm_block_t b, uint32_t n)
606 {
607 do_div(b, n);
608
609 return b;
610 }
611
612 static dm_block_t oblocks_per_dblock(struct cache *cache)
613 {
614 dm_block_t oblocks = cache->discard_block_size;
615
616 if (block_size_is_power_of_two(cache))
617 oblocks >>= cache->sectors_per_block_shift;
618 else
619 oblocks = block_div(oblocks, cache->sectors_per_block);
620
621 return oblocks;
622 }
623
624 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
625 {
626 return to_dblock(block_div(from_oblock(oblock),
627 oblocks_per_dblock(cache)));
628 }
629
630 static dm_oblock_t dblock_to_oblock(struct cache *cache, dm_dblock_t dblock)
631 {
632 return to_oblock(from_dblock(dblock) * oblocks_per_dblock(cache));
633 }
634
635 static void set_discard(struct cache *cache, dm_dblock_t b)
636 {
637 unsigned long flags;
638
639 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
640 atomic_inc(&cache->stats.discard_count);
641
642 spin_lock_irqsave(&cache->lock, flags);
643 set_bit(from_dblock(b), cache->discard_bitset);
644 spin_unlock_irqrestore(&cache->lock, flags);
645 }
646
647 static void clear_discard(struct cache *cache, dm_dblock_t b)
648 {
649 unsigned long flags;
650
651 spin_lock_irqsave(&cache->lock, flags);
652 clear_bit(from_dblock(b), cache->discard_bitset);
653 spin_unlock_irqrestore(&cache->lock, flags);
654 }
655
656 static bool is_discarded(struct cache *cache, dm_dblock_t b)
657 {
658 int r;
659 unsigned long flags;
660
661 spin_lock_irqsave(&cache->lock, flags);
662 r = test_bit(from_dblock(b), cache->discard_bitset);
663 spin_unlock_irqrestore(&cache->lock, flags);
664
665 return r;
666 }
667
668 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
669 {
670 int r;
671 unsigned long flags;
672
673 spin_lock_irqsave(&cache->lock, flags);
674 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
675 cache->discard_bitset);
676 spin_unlock_irqrestore(&cache->lock, flags);
677
678 return r;
679 }
680
681 /*----------------------------------------------------------------*/
682
683 static void load_stats(struct cache *cache)
684 {
685 struct dm_cache_statistics stats;
686
687 dm_cache_metadata_get_stats(cache->cmd, &stats);
688 atomic_set(&cache->stats.read_hit, stats.read_hits);
689 atomic_set(&cache->stats.read_miss, stats.read_misses);
690 atomic_set(&cache->stats.write_hit, stats.write_hits);
691 atomic_set(&cache->stats.write_miss, stats.write_misses);
692 }
693
694 static void save_stats(struct cache *cache)
695 {
696 struct dm_cache_statistics stats;
697
698 if (get_cache_mode(cache) >= CM_READ_ONLY)
699 return;
700
701 stats.read_hits = atomic_read(&cache->stats.read_hit);
702 stats.read_misses = atomic_read(&cache->stats.read_miss);
703 stats.write_hits = atomic_read(&cache->stats.write_hit);
704 stats.write_misses = atomic_read(&cache->stats.write_miss);
705
706 dm_cache_metadata_set_stats(cache->cmd, &stats);
707 }
708
709 /*----------------------------------------------------------------
710 * Per bio data
711 *--------------------------------------------------------------*/
712
713 /*
714 * If using writeback, leave out struct per_bio_data's writethrough fields.
715 */
716 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
717 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
718
719 static bool writethrough_mode(struct cache_features *f)
720 {
721 return f->io_mode == CM_IO_WRITETHROUGH;
722 }
723
724 static bool writeback_mode(struct cache_features *f)
725 {
726 return f->io_mode == CM_IO_WRITEBACK;
727 }
728
729 static bool passthrough_mode(struct cache_features *f)
730 {
731 return f->io_mode == CM_IO_PASSTHROUGH;
732 }
733
734 static size_t get_per_bio_data_size(struct cache *cache)
735 {
736 return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
737 }
738
739 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
740 {
741 struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
742 BUG_ON(!pb);
743 return pb;
744 }
745
746 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
747 {
748 struct per_bio_data *pb = get_per_bio_data(bio, data_size);
749
750 pb->tick = false;
751 pb->req_nr = dm_bio_get_target_bio_nr(bio);
752 pb->all_io_entry = NULL;
753 pb->len = 0;
754
755 return pb;
756 }
757
758 /*----------------------------------------------------------------
759 * Remapping
760 *--------------------------------------------------------------*/
761 static void remap_to_origin(struct cache *cache, struct bio *bio)
762 {
763 bio->bi_bdev = cache->origin_dev->bdev;
764 }
765
766 static void remap_to_cache(struct cache *cache, struct bio *bio,
767 dm_cblock_t cblock)
768 {
769 sector_t bi_sector = bio->bi_iter.bi_sector;
770 sector_t block = from_cblock(cblock);
771
772 bio->bi_bdev = cache->cache_dev->bdev;
773 if (!block_size_is_power_of_two(cache))
774 bio->bi_iter.bi_sector =
775 (block * cache->sectors_per_block) +
776 sector_div(bi_sector, cache->sectors_per_block);
777 else
778 bio->bi_iter.bi_sector =
779 (block << cache->sectors_per_block_shift) |
780 (bi_sector & (cache->sectors_per_block - 1));
781 }
782
783 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
784 {
785 unsigned long flags;
786 size_t pb_data_size = get_per_bio_data_size(cache);
787 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
788
789 spin_lock_irqsave(&cache->lock, flags);
790 if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
791 bio_op(bio) != REQ_OP_DISCARD) {
792 pb->tick = true;
793 cache->need_tick_bio = false;
794 }
795 spin_unlock_irqrestore(&cache->lock, flags);
796 }
797
798 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
799 dm_oblock_t oblock)
800 {
801 check_if_tick_bio_needed(cache, bio);
802 remap_to_origin(cache, bio);
803 if (bio_data_dir(bio) == WRITE)
804 clear_discard(cache, oblock_to_dblock(cache, oblock));
805 }
806
807 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
808 dm_oblock_t oblock, dm_cblock_t cblock)
809 {
810 check_if_tick_bio_needed(cache, bio);
811 remap_to_cache(cache, bio, cblock);
812 if (bio_data_dir(bio) == WRITE) {
813 set_dirty(cache, oblock, cblock);
814 clear_discard(cache, oblock_to_dblock(cache, oblock));
815 }
816 }
817
818 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
819 {
820 sector_t block_nr = bio->bi_iter.bi_sector;
821
822 if (!block_size_is_power_of_two(cache))
823 (void) sector_div(block_nr, cache->sectors_per_block);
824 else
825 block_nr >>= cache->sectors_per_block_shift;
826
827 return to_oblock(block_nr);
828 }
829
830 /*
831 * You must increment the deferred set whilst the prison cell is held. To
832 * encourage this, we ask for 'cell' to be passed in.
833 */
834 static void inc_ds(struct cache *cache, struct bio *bio,
835 struct dm_bio_prison_cell *cell)
836 {
837 size_t pb_data_size = get_per_bio_data_size(cache);
838 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
839
840 BUG_ON(!cell);
841 BUG_ON(pb->all_io_entry);
842
843 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
844 }
845
846 static bool accountable_bio(struct cache *cache, struct bio *bio)
847 {
848 return ((bio->bi_bdev == cache->origin_dev->bdev) &&
849 bio_op(bio) != REQ_OP_DISCARD);
850 }
851
852 static void accounted_begin(struct cache *cache, struct bio *bio)
853 {
854 size_t pb_data_size = get_per_bio_data_size(cache);
855 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
856
857 if (accountable_bio(cache, bio)) {
858 pb->len = bio_sectors(bio);
859 iot_io_begin(&cache->origin_tracker, pb->len);
860 }
861 }
862
863 static void accounted_complete(struct cache *cache, struct bio *bio)
864 {
865 size_t pb_data_size = get_per_bio_data_size(cache);
866 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
867
868 iot_io_end(&cache->origin_tracker, pb->len);
869 }
870
871 static void accounted_request(struct cache *cache, struct bio *bio)
872 {
873 accounted_begin(cache, bio);
874 generic_make_request(bio);
875 }
876
877 static void issue(struct cache *cache, struct bio *bio)
878 {
879 unsigned long flags;
880
881 if (!op_is_flush(bio->bi_opf)) {
882 accounted_request(cache, bio);
883 return;
884 }
885
886 /*
887 * Batch together any bios that trigger commits and then issue a
888 * single commit for them in do_worker().
889 */
890 spin_lock_irqsave(&cache->lock, flags);
891 cache->commit_requested = true;
892 bio_list_add(&cache->deferred_flush_bios, bio);
893 spin_unlock_irqrestore(&cache->lock, flags);
894 }
895
896 static void inc_and_issue(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell *cell)
897 {
898 inc_ds(cache, bio, cell);
899 issue(cache, bio);
900 }
901
902 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
903 {
904 unsigned long flags;
905
906 spin_lock_irqsave(&cache->lock, flags);
907 bio_list_add(&cache->deferred_writethrough_bios, bio);
908 spin_unlock_irqrestore(&cache->lock, flags);
909
910 wake_worker(cache);
911 }
912
913 static void writethrough_endio(struct bio *bio)
914 {
915 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
916
917 dm_unhook_bio(&pb->hook_info, bio);
918
919 if (bio->bi_error) {
920 bio_endio(bio);
921 return;
922 }
923
924 dm_bio_restore(&pb->bio_details, bio);
925 remap_to_cache(pb->cache, bio, pb->cblock);
926
927 /*
928 * We can't issue this bio directly, since we're in interrupt
929 * context. So it gets put on a bio list for processing by the
930 * worker thread.
931 */
932 defer_writethrough_bio(pb->cache, bio);
933 }
934
935 /*
936 * When running in writethrough mode we need to send writes to clean blocks
937 * to both the cache and origin devices. In future we'd like to clone the
938 * bio and send them in parallel, but for now we're doing them in
939 * series as this is easier.
940 */
941 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
942 dm_oblock_t oblock, dm_cblock_t cblock)
943 {
944 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
945
946 pb->cache = cache;
947 pb->cblock = cblock;
948 dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
949 dm_bio_record(&pb->bio_details, bio);
950
951 remap_to_origin_clear_discard(pb->cache, bio, oblock);
952 }
953
954 /*----------------------------------------------------------------
955 * Failure modes
956 *--------------------------------------------------------------*/
957 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
958 {
959 return cache->features.mode;
960 }
961
962 static const char *cache_device_name(struct cache *cache)
963 {
964 return dm_device_name(dm_table_get_md(cache->ti->table));
965 }
966
967 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
968 {
969 const char *descs[] = {
970 "write",
971 "read-only",
972 "fail"
973 };
974
975 dm_table_event(cache->ti->table);
976 DMINFO("%s: switching cache to %s mode",
977 cache_device_name(cache), descs[(int)mode]);
978 }
979
980 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
981 {
982 bool needs_check;
983 enum cache_metadata_mode old_mode = get_cache_mode(cache);
984
985 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
986 DMERR("%s: unable to read needs_check flag, setting failure mode.",
987 cache_device_name(cache));
988 new_mode = CM_FAIL;
989 }
990
991 if (new_mode == CM_WRITE && needs_check) {
992 DMERR("%s: unable to switch cache to write mode until repaired.",
993 cache_device_name(cache));
994 if (old_mode != new_mode)
995 new_mode = old_mode;
996 else
997 new_mode = CM_READ_ONLY;
998 }
999
1000 /* Never move out of fail mode */
1001 if (old_mode == CM_FAIL)
1002 new_mode = CM_FAIL;
1003
1004 switch (new_mode) {
1005 case CM_FAIL:
1006 case CM_READ_ONLY:
1007 dm_cache_metadata_set_read_only(cache->cmd);
1008 break;
1009
1010 case CM_WRITE:
1011 dm_cache_metadata_set_read_write(cache->cmd);
1012 break;
1013 }
1014
1015 cache->features.mode = new_mode;
1016
1017 if (new_mode != old_mode)
1018 notify_mode_switch(cache, new_mode);
1019 }
1020
1021 static void abort_transaction(struct cache *cache)
1022 {
1023 const char *dev_name = cache_device_name(cache);
1024
1025 if (get_cache_mode(cache) >= CM_READ_ONLY)
1026 return;
1027
1028 if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1029 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1030 set_cache_mode(cache, CM_FAIL);
1031 }
1032
1033 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1034 if (dm_cache_metadata_abort(cache->cmd)) {
1035 DMERR("%s: failed to abort metadata transaction", dev_name);
1036 set_cache_mode(cache, CM_FAIL);
1037 }
1038 }
1039
1040 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1041 {
1042 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1043 cache_device_name(cache), op, r);
1044 abort_transaction(cache);
1045 set_cache_mode(cache, CM_READ_ONLY);
1046 }
1047
1048 /*----------------------------------------------------------------
1049 * Migration processing
1050 *
1051 * Migration covers moving data from the origin device to the cache, or
1052 * vice versa.
1053 *--------------------------------------------------------------*/
1054 static void inc_io_migrations(struct cache *cache)
1055 {
1056 atomic_inc(&cache->nr_io_migrations);
1057 }
1058
1059 static void dec_io_migrations(struct cache *cache)
1060 {
1061 atomic_dec(&cache->nr_io_migrations);
1062 }
1063
1064 static bool discard_or_flush(struct bio *bio)
1065 {
1066 return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1067 }
1068
1069 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell)
1070 {
1071 if (discard_or_flush(cell->holder)) {
1072 /*
1073 * We have to handle these bios individually.
1074 */
1075 dm_cell_release(cache->prison, cell, &cache->deferred_bios);
1076 free_prison_cell(cache, cell);
1077 } else
1078 list_add_tail(&cell->user_list, &cache->deferred_cells);
1079 }
1080
1081 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell, bool holder)
1082 {
1083 unsigned long flags;
1084
1085 if (!holder && dm_cell_promote_or_release(cache->prison, cell)) {
1086 /*
1087 * There was no prisoner to promote to holder, the
1088 * cell has been released.
1089 */
1090 free_prison_cell(cache, cell);
1091 return;
1092 }
1093
1094 spin_lock_irqsave(&cache->lock, flags);
1095 __cell_defer(cache, cell);
1096 spin_unlock_irqrestore(&cache->lock, flags);
1097
1098 wake_worker(cache);
1099 }
1100
1101 static void cell_error_with_code(struct cache *cache, struct dm_bio_prison_cell *cell, int err)
1102 {
1103 dm_cell_error(cache->prison, cell, err);
1104 free_prison_cell(cache, cell);
1105 }
1106
1107 static void cell_requeue(struct cache *cache, struct dm_bio_prison_cell *cell)
1108 {
1109 cell_error_with_code(cache, cell, DM_ENDIO_REQUEUE);
1110 }
1111
1112 static void free_io_migration(struct dm_cache_migration *mg)
1113 {
1114 struct cache *cache = mg->cache;
1115
1116 dec_io_migrations(cache);
1117 free_migration(mg);
1118 wake_worker(cache);
1119 }
1120
1121 static void migration_failure(struct dm_cache_migration *mg)
1122 {
1123 struct cache *cache = mg->cache;
1124 const char *dev_name = cache_device_name(cache);
1125
1126 if (mg->writeback) {
1127 DMERR_LIMIT("%s: writeback failed; couldn't copy block", dev_name);
1128 set_dirty(cache, mg->old_oblock, mg->cblock);
1129 cell_defer(cache, mg->old_ocell, false);
1130
1131 } else if (mg->demote) {
1132 DMERR_LIMIT("%s: demotion failed; couldn't copy block", dev_name);
1133 policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
1134
1135 cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1136 if (mg->promote)
1137 cell_defer(cache, mg->new_ocell, true);
1138 } else {
1139 DMERR_LIMIT("%s: promotion failed; couldn't copy block", dev_name);
1140 policy_remove_mapping(cache->policy, mg->new_oblock);
1141 cell_defer(cache, mg->new_ocell, true);
1142 }
1143
1144 free_io_migration(mg);
1145 }
1146
1147 static void migration_success_pre_commit(struct dm_cache_migration *mg)
1148 {
1149 int r;
1150 unsigned long flags;
1151 struct cache *cache = mg->cache;
1152
1153 if (mg->writeback) {
1154 clear_dirty(cache, mg->old_oblock, mg->cblock);
1155 cell_defer(cache, mg->old_ocell, false);
1156 free_io_migration(mg);
1157 return;
1158
1159 } else if (mg->demote) {
1160 r = dm_cache_remove_mapping(cache->cmd, mg->cblock);
1161 if (r) {
1162 DMERR_LIMIT("%s: demotion failed; couldn't update on disk metadata",
1163 cache_device_name(cache));
1164 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1165 policy_force_mapping(cache->policy, mg->new_oblock,
1166 mg->old_oblock);
1167 if (mg->promote)
1168 cell_defer(cache, mg->new_ocell, true);
1169 free_io_migration(mg);
1170 return;
1171 }
1172 } else {
1173 r = dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock);
1174 if (r) {
1175 DMERR_LIMIT("%s: promotion failed; couldn't update on disk metadata",
1176 cache_device_name(cache));
1177 metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1178 policy_remove_mapping(cache->policy, mg->new_oblock);
1179 free_io_migration(mg);
1180 return;
1181 }
1182 }
1183
1184 spin_lock_irqsave(&cache->lock, flags);
1185 list_add_tail(&mg->list, &cache->need_commit_migrations);
1186 cache->commit_requested = true;
1187 spin_unlock_irqrestore(&cache->lock, flags);
1188 }
1189
1190 static void migration_success_post_commit(struct dm_cache_migration *mg)
1191 {
1192 unsigned long flags;
1193 struct cache *cache = mg->cache;
1194
1195 if (mg->writeback) {
1196 DMWARN_LIMIT("%s: writeback unexpectedly triggered commit",
1197 cache_device_name(cache));
1198 return;
1199
1200 } else if (mg->demote) {
1201 cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1202
1203 if (mg->promote) {
1204 mg->demote = false;
1205
1206 spin_lock_irqsave(&cache->lock, flags);
1207 list_add_tail(&mg->list, &cache->quiesced_migrations);
1208 spin_unlock_irqrestore(&cache->lock, flags);
1209
1210 } else {
1211 if (mg->invalidate)
1212 policy_remove_mapping(cache->policy, mg->old_oblock);
1213 free_io_migration(mg);
1214 }
1215
1216 } else {
1217 if (mg->requeue_holder) {
1218 clear_dirty(cache, mg->new_oblock, mg->cblock);
1219 cell_defer(cache, mg->new_ocell, true);
1220 } else {
1221 /*
1222 * The block was promoted via an overwrite, so it's dirty.
1223 */
1224 set_dirty(cache, mg->new_oblock, mg->cblock);
1225 bio_endio(mg->new_ocell->holder);
1226 cell_defer(cache, mg->new_ocell, false);
1227 }
1228 free_io_migration(mg);
1229 }
1230 }
1231
1232 static void copy_complete(int read_err, unsigned long write_err, void *context)
1233 {
1234 unsigned long flags;
1235 struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
1236 struct cache *cache = mg->cache;
1237
1238 if (read_err || write_err)
1239 mg->err = true;
1240
1241 spin_lock_irqsave(&cache->lock, flags);
1242 list_add_tail(&mg->list, &cache->completed_migrations);
1243 spin_unlock_irqrestore(&cache->lock, flags);
1244
1245 wake_worker(cache);
1246 }
1247
1248 static void issue_copy(struct dm_cache_migration *mg)
1249 {
1250 int r;
1251 struct dm_io_region o_region, c_region;
1252 struct cache *cache = mg->cache;
1253 sector_t cblock = from_cblock(mg->cblock);
1254
1255 o_region.bdev = cache->origin_dev->bdev;
1256 o_region.count = cache->sectors_per_block;
1257
1258 c_region.bdev = cache->cache_dev->bdev;
1259 c_region.sector = cblock * cache->sectors_per_block;
1260 c_region.count = cache->sectors_per_block;
1261
1262 if (mg->writeback || mg->demote) {
1263 /* demote */
1264 o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
1265 r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
1266 } else {
1267 /* promote */
1268 o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
1269 r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
1270 }
1271
1272 if (r < 0) {
1273 DMERR_LIMIT("%s: issuing migration failed", cache_device_name(cache));
1274 migration_failure(mg);
1275 }
1276 }
1277
1278 static void overwrite_endio(struct bio *bio)
1279 {
1280 struct dm_cache_migration *mg = bio->bi_private;
1281 struct cache *cache = mg->cache;
1282 size_t pb_data_size = get_per_bio_data_size(cache);
1283 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1284 unsigned long flags;
1285
1286 dm_unhook_bio(&pb->hook_info, bio);
1287
1288 if (bio->bi_error)
1289 mg->err = true;
1290
1291 mg->requeue_holder = false;
1292
1293 spin_lock_irqsave(&cache->lock, flags);
1294 list_add_tail(&mg->list, &cache->completed_migrations);
1295 spin_unlock_irqrestore(&cache->lock, flags);
1296
1297 wake_worker(cache);
1298 }
1299
1300 static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
1301 {
1302 size_t pb_data_size = get_per_bio_data_size(mg->cache);
1303 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1304
1305 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1306 remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1307
1308 /*
1309 * No need to inc_ds() here, since the cell will be held for the
1310 * duration of the io.
1311 */
1312 accounted_request(mg->cache, bio);
1313 }
1314
1315 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1316 {
1317 return (bio_data_dir(bio) == WRITE) &&
1318 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1319 }
1320
1321 static void avoid_copy(struct dm_cache_migration *mg)
1322 {
1323 atomic_inc(&mg->cache->stats.copies_avoided);
1324 migration_success_pre_commit(mg);
1325 }
1326
1327 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1328 dm_dblock_t *b, dm_dblock_t *e)
1329 {
1330 sector_t sb = bio->bi_iter.bi_sector;
1331 sector_t se = bio_end_sector(bio);
1332
1333 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1334
1335 if (se - sb < cache->discard_block_size)
1336 *e = *b;
1337 else
1338 *e = to_dblock(block_div(se, cache->discard_block_size));
1339 }
1340
1341 static void issue_discard(struct dm_cache_migration *mg)
1342 {
1343 dm_dblock_t b, e;
1344 struct bio *bio = mg->new_ocell->holder;
1345 struct cache *cache = mg->cache;
1346
1347 calc_discard_block_range(cache, bio, &b, &e);
1348 while (b != e) {
1349 set_discard(cache, b);
1350 b = to_dblock(from_dblock(b) + 1);
1351 }
1352
1353 bio_endio(bio);
1354 cell_defer(cache, mg->new_ocell, false);
1355 free_migration(mg);
1356 wake_worker(cache);
1357 }
1358
1359 static void issue_copy_or_discard(struct dm_cache_migration *mg)
1360 {
1361 bool avoid;
1362 struct cache *cache = mg->cache;
1363
1364 if (mg->discard) {
1365 issue_discard(mg);
1366 return;
1367 }
1368
1369 if (mg->writeback || mg->demote)
1370 avoid = !is_dirty(cache, mg->cblock) ||
1371 is_discarded_oblock(cache, mg->old_oblock);
1372 else {
1373 struct bio *bio = mg->new_ocell->holder;
1374
1375 avoid = is_discarded_oblock(cache, mg->new_oblock);
1376
1377 if (writeback_mode(&cache->features) &&
1378 !avoid && bio_writes_complete_block(cache, bio)) {
1379 issue_overwrite(mg, bio);
1380 return;
1381 }
1382 }
1383
1384 avoid ? avoid_copy(mg) : issue_copy(mg);
1385 }
1386
1387 static void complete_migration(struct dm_cache_migration *mg)
1388 {
1389 if (mg->err)
1390 migration_failure(mg);
1391 else
1392 migration_success_pre_commit(mg);
1393 }
1394
1395 static void process_migrations(struct cache *cache, struct list_head *head,
1396 void (*fn)(struct dm_cache_migration *))
1397 {
1398 unsigned long flags;
1399 struct list_head list;
1400 struct dm_cache_migration *mg, *tmp;
1401
1402 INIT_LIST_HEAD(&list);
1403 spin_lock_irqsave(&cache->lock, flags);
1404 list_splice_init(head, &list);
1405 spin_unlock_irqrestore(&cache->lock, flags);
1406
1407 list_for_each_entry_safe(mg, tmp, &list, list)
1408 fn(mg);
1409 }
1410
1411 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1412 {
1413 list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
1414 }
1415
1416 static void queue_quiesced_migration(struct dm_cache_migration *mg)
1417 {
1418 unsigned long flags;
1419 struct cache *cache = mg->cache;
1420
1421 spin_lock_irqsave(&cache->lock, flags);
1422 __queue_quiesced_migration(mg);
1423 spin_unlock_irqrestore(&cache->lock, flags);
1424
1425 wake_worker(cache);
1426 }
1427
1428 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1429 {
1430 unsigned long flags;
1431 struct dm_cache_migration *mg, *tmp;
1432
1433 spin_lock_irqsave(&cache->lock, flags);
1434 list_for_each_entry_safe(mg, tmp, work, list)
1435 __queue_quiesced_migration(mg);
1436 spin_unlock_irqrestore(&cache->lock, flags);
1437
1438 wake_worker(cache);
1439 }
1440
1441 static void check_for_quiesced_migrations(struct cache *cache,
1442 struct per_bio_data *pb)
1443 {
1444 struct list_head work;
1445
1446 if (!pb->all_io_entry)
1447 return;
1448
1449 INIT_LIST_HEAD(&work);
1450 dm_deferred_entry_dec(pb->all_io_entry, &work);
1451
1452 if (!list_empty(&work))
1453 queue_quiesced_migrations(cache, &work);
1454 }
1455
1456 static void quiesce_migration(struct dm_cache_migration *mg)
1457 {
1458 if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1459 queue_quiesced_migration(mg);
1460 }
1461
1462 static void promote(struct cache *cache, struct prealloc *structs,
1463 dm_oblock_t oblock, dm_cblock_t cblock,
1464 struct dm_bio_prison_cell *cell)
1465 {
1466 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1467
1468 mg->err = false;
1469 mg->discard = false;
1470 mg->writeback = false;
1471 mg->demote = false;
1472 mg->promote = true;
1473 mg->requeue_holder = true;
1474 mg->invalidate = false;
1475 mg->cache = cache;
1476 mg->new_oblock = oblock;
1477 mg->cblock = cblock;
1478 mg->old_ocell = NULL;
1479 mg->new_ocell = cell;
1480 mg->start_jiffies = jiffies;
1481
1482 inc_io_migrations(cache);
1483 quiesce_migration(mg);
1484 }
1485
1486 static void writeback(struct cache *cache, struct prealloc *structs,
1487 dm_oblock_t oblock, dm_cblock_t cblock,
1488 struct dm_bio_prison_cell *cell)
1489 {
1490 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1491
1492 mg->err = false;
1493 mg->discard = false;
1494 mg->writeback = true;
1495 mg->demote = false;
1496 mg->promote = false;
1497 mg->requeue_holder = true;
1498 mg->invalidate = false;
1499 mg->cache = cache;
1500 mg->old_oblock = oblock;
1501 mg->cblock = cblock;
1502 mg->old_ocell = cell;
1503 mg->new_ocell = NULL;
1504 mg->start_jiffies = jiffies;
1505
1506 inc_io_migrations(cache);
1507 quiesce_migration(mg);
1508 }
1509
1510 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1511 dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1512 dm_cblock_t cblock,
1513 struct dm_bio_prison_cell *old_ocell,
1514 struct dm_bio_prison_cell *new_ocell)
1515 {
1516 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1517
1518 mg->err = false;
1519 mg->discard = false;
1520 mg->writeback = false;
1521 mg->demote = true;
1522 mg->promote = true;
1523 mg->requeue_holder = true;
1524 mg->invalidate = false;
1525 mg->cache = cache;
1526 mg->old_oblock = old_oblock;
1527 mg->new_oblock = new_oblock;
1528 mg->cblock = cblock;
1529 mg->old_ocell = old_ocell;
1530 mg->new_ocell = new_ocell;
1531 mg->start_jiffies = jiffies;
1532
1533 inc_io_migrations(cache);
1534 quiesce_migration(mg);
1535 }
1536
1537 /*
1538 * Invalidate a cache entry. No writeback occurs; any changes in the cache
1539 * block are thrown away.
1540 */
1541 static void invalidate(struct cache *cache, struct prealloc *structs,
1542 dm_oblock_t oblock, dm_cblock_t cblock,
1543 struct dm_bio_prison_cell *cell)
1544 {
1545 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1546
1547 mg->err = false;
1548 mg->discard = false;
1549 mg->writeback = false;
1550 mg->demote = true;
1551 mg->promote = false;
1552 mg->requeue_holder = true;
1553 mg->invalidate = true;
1554 mg->cache = cache;
1555 mg->old_oblock = oblock;
1556 mg->cblock = cblock;
1557 mg->old_ocell = cell;
1558 mg->new_ocell = NULL;
1559 mg->start_jiffies = jiffies;
1560
1561 inc_io_migrations(cache);
1562 quiesce_migration(mg);
1563 }
1564
1565 static void discard(struct cache *cache, struct prealloc *structs,
1566 struct dm_bio_prison_cell *cell)
1567 {
1568 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1569
1570 mg->err = false;
1571 mg->discard = true;
1572 mg->writeback = false;
1573 mg->demote = false;
1574 mg->promote = false;
1575 mg->requeue_holder = false;
1576 mg->invalidate = false;
1577 mg->cache = cache;
1578 mg->old_ocell = NULL;
1579 mg->new_ocell = cell;
1580 mg->start_jiffies = jiffies;
1581
1582 quiesce_migration(mg);
1583 }
1584
1585 /*----------------------------------------------------------------
1586 * bio processing
1587 *--------------------------------------------------------------*/
1588 static void defer_bio(struct cache *cache, struct bio *bio)
1589 {
1590 unsigned long flags;
1591
1592 spin_lock_irqsave(&cache->lock, flags);
1593 bio_list_add(&cache->deferred_bios, bio);
1594 spin_unlock_irqrestore(&cache->lock, flags);
1595
1596 wake_worker(cache);
1597 }
1598
1599 static void process_flush_bio(struct cache *cache, struct bio *bio)
1600 {
1601 size_t pb_data_size = get_per_bio_data_size(cache);
1602 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1603
1604 BUG_ON(bio->bi_iter.bi_size);
1605 if (!pb->req_nr)
1606 remap_to_origin(cache, bio);
1607 else
1608 remap_to_cache(cache, bio, 0);
1609
1610 /*
1611 * REQ_PREFLUSH is not directed at any particular block so we don't
1612 * need to inc_ds(). REQ_FUA's are split into a write + REQ_PREFLUSH
1613 * by dm-core.
1614 */
1615 issue(cache, bio);
1616 }
1617
1618 static void process_discard_bio(struct cache *cache, struct prealloc *structs,
1619 struct bio *bio)
1620 {
1621 int r;
1622 dm_dblock_t b, e;
1623 struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1624
1625 calc_discard_block_range(cache, bio, &b, &e);
1626 if (b == e) {
1627 bio_endio(bio);
1628 return;
1629 }
1630
1631 cell_prealloc = prealloc_get_cell(structs);
1632 r = bio_detain_range(cache, dblock_to_oblock(cache, b), dblock_to_oblock(cache, e), bio, cell_prealloc,
1633 (cell_free_fn) prealloc_put_cell,
1634 structs, &new_ocell);
1635 if (r > 0)
1636 return;
1637
1638 discard(cache, structs, new_ocell);
1639 }
1640
1641 static bool spare_migration_bandwidth(struct cache *cache)
1642 {
1643 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1644 cache->sectors_per_block;
1645 return current_volume < cache->migration_threshold;
1646 }
1647
1648 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1649 {
1650 atomic_inc(bio_data_dir(bio) == READ ?
1651 &cache->stats.read_hit : &cache->stats.write_hit);
1652 }
1653
1654 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1655 {
1656 atomic_inc(bio_data_dir(bio) == READ ?
1657 &cache->stats.read_miss : &cache->stats.write_miss);
1658 }
1659
1660 /*----------------------------------------------------------------*/
1661
1662 struct inc_detail {
1663 struct cache *cache;
1664 struct bio_list bios_for_issue;
1665 struct bio_list unhandled_bios;
1666 bool any_writes;
1667 };
1668
1669 static void inc_fn(void *context, struct dm_bio_prison_cell *cell)
1670 {
1671 struct bio *bio;
1672 struct inc_detail *detail = context;
1673 struct cache *cache = detail->cache;
1674
1675 inc_ds(cache, cell->holder, cell);
1676 if (bio_data_dir(cell->holder) == WRITE)
1677 detail->any_writes = true;
1678
1679 while ((bio = bio_list_pop(&cell->bios))) {
1680 if (discard_or_flush(bio)) {
1681 bio_list_add(&detail->unhandled_bios, bio);
1682 continue;
1683 }
1684
1685 if (bio_data_dir(bio) == WRITE)
1686 detail->any_writes = true;
1687
1688 bio_list_add(&detail->bios_for_issue, bio);
1689 inc_ds(cache, bio, cell);
1690 }
1691 }
1692
1693 // FIXME: refactor these two
1694 static void remap_cell_to_origin_clear_discard(struct cache *cache,
1695 struct dm_bio_prison_cell *cell,
1696 dm_oblock_t oblock, bool issue_holder)
1697 {
1698 struct bio *bio;
1699 unsigned long flags;
1700 struct inc_detail detail;
1701
1702 detail.cache = cache;
1703 bio_list_init(&detail.bios_for_issue);
1704 bio_list_init(&detail.unhandled_bios);
1705 detail.any_writes = false;
1706
1707 spin_lock_irqsave(&cache->lock, flags);
1708 dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1709 bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1710 spin_unlock_irqrestore(&cache->lock, flags);
1711
1712 remap_to_origin(cache, cell->holder);
1713 if (issue_holder)
1714 issue(cache, cell->holder);
1715 else
1716 accounted_begin(cache, cell->holder);
1717
1718 if (detail.any_writes)
1719 clear_discard(cache, oblock_to_dblock(cache, oblock));
1720
1721 while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1722 remap_to_origin(cache, bio);
1723 issue(cache, bio);
1724 }
1725
1726 free_prison_cell(cache, cell);
1727 }
1728
1729 static void remap_cell_to_cache_dirty(struct cache *cache, struct dm_bio_prison_cell *cell,
1730 dm_oblock_t oblock, dm_cblock_t cblock, bool issue_holder)
1731 {
1732 struct bio *bio;
1733 unsigned long flags;
1734 struct inc_detail detail;
1735
1736 detail.cache = cache;
1737 bio_list_init(&detail.bios_for_issue);
1738 bio_list_init(&detail.unhandled_bios);
1739 detail.any_writes = false;
1740
1741 spin_lock_irqsave(&cache->lock, flags);
1742 dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1743 bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1744 spin_unlock_irqrestore(&cache->lock, flags);
1745
1746 remap_to_cache(cache, cell->holder, cblock);
1747 if (issue_holder)
1748 issue(cache, cell->holder);
1749 else
1750 accounted_begin(cache, cell->holder);
1751
1752 if (detail.any_writes) {
1753 set_dirty(cache, oblock, cblock);
1754 clear_discard(cache, oblock_to_dblock(cache, oblock));
1755 }
1756
1757 while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1758 remap_to_cache(cache, bio, cblock);
1759 issue(cache, bio);
1760 }
1761
1762 free_prison_cell(cache, cell);
1763 }
1764
1765 /*----------------------------------------------------------------*/
1766
1767 struct old_oblock_lock {
1768 struct policy_locker locker;
1769 struct cache *cache;
1770 struct prealloc *structs;
1771 struct dm_bio_prison_cell *cell;
1772 };
1773
1774 static int null_locker(struct policy_locker *locker, dm_oblock_t b)
1775 {
1776 /* This should never be called */
1777 BUG();
1778 return 0;
1779 }
1780
1781 static int cell_locker(struct policy_locker *locker, dm_oblock_t b)
1782 {
1783 struct old_oblock_lock *l = container_of(locker, struct old_oblock_lock, locker);
1784 struct dm_bio_prison_cell *cell_prealloc = prealloc_get_cell(l->structs);
1785
1786 return bio_detain(l->cache, b, NULL, cell_prealloc,
1787 (cell_free_fn) prealloc_put_cell,
1788 l->structs, &l->cell);
1789 }
1790
1791 static void process_cell(struct cache *cache, struct prealloc *structs,
1792 struct dm_bio_prison_cell *new_ocell)
1793 {
1794 int r;
1795 bool release_cell = true;
1796 struct bio *bio = new_ocell->holder;
1797 dm_oblock_t block = get_bio_block(cache, bio);
1798 struct policy_result lookup_result;
1799 bool passthrough = passthrough_mode(&cache->features);
1800 bool fast_promotion, can_migrate;
1801 struct old_oblock_lock ool;
1802
1803 fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
1804 can_migrate = !passthrough && (fast_promotion || spare_migration_bandwidth(cache));
1805
1806 ool.locker.fn = cell_locker;
1807 ool.cache = cache;
1808 ool.structs = structs;
1809 ool.cell = NULL;
1810 r = policy_map(cache->policy, block, true, can_migrate, fast_promotion,
1811 bio, &ool.locker, &lookup_result);
1812
1813 if (r == -EWOULDBLOCK)
1814 /* migration has been denied */
1815 lookup_result.op = POLICY_MISS;
1816
1817 switch (lookup_result.op) {
1818 case POLICY_HIT:
1819 if (passthrough) {
1820 inc_miss_counter(cache, bio);
1821
1822 /*
1823 * Passthrough always maps to the origin,
1824 * invalidating any cache blocks that are written
1825 * to.
1826 */
1827
1828 if (bio_data_dir(bio) == WRITE) {
1829 atomic_inc(&cache->stats.demotion);
1830 invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1831 release_cell = false;
1832
1833 } else {
1834 /* FIXME: factor out issue_origin() */
1835 remap_to_origin_clear_discard(cache, bio, block);
1836 inc_and_issue(cache, bio, new_ocell);
1837 }
1838 } else {
1839 inc_hit_counter(cache, bio);
1840
1841 if (bio_data_dir(bio) == WRITE &&
1842 writethrough_mode(&cache->features) &&
1843 !is_dirty(cache, lookup_result.cblock)) {
1844 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1845 inc_and_issue(cache, bio, new_ocell);
1846
1847 } else {
1848 remap_cell_to_cache_dirty(cache, new_ocell, block, lookup_result.cblock, true);
1849 release_cell = false;
1850 }
1851 }
1852
1853 break;
1854
1855 case POLICY_MISS:
1856 inc_miss_counter(cache, bio);
1857 remap_cell_to_origin_clear_discard(cache, new_ocell, block, true);
1858 release_cell = false;
1859 break;
1860
1861 case POLICY_NEW:
1862 atomic_inc(&cache->stats.promotion);
1863 promote(cache, structs, block, lookup_result.cblock, new_ocell);
1864 release_cell = false;
1865 break;
1866
1867 case POLICY_REPLACE:
1868 atomic_inc(&cache->stats.demotion);
1869 atomic_inc(&cache->stats.promotion);
1870 demote_then_promote(cache, structs, lookup_result.old_oblock,
1871 block, lookup_result.cblock,
1872 ool.cell, new_ocell);
1873 release_cell = false;
1874 break;
1875
1876 default:
1877 DMERR_LIMIT("%s: %s: erroring bio, unknown policy op: %u",
1878 cache_device_name(cache), __func__,
1879 (unsigned) lookup_result.op);
1880 bio_io_error(bio);
1881 }
1882
1883 if (release_cell)
1884 cell_defer(cache, new_ocell, false);
1885 }
1886
1887 static void process_bio(struct cache *cache, struct prealloc *structs,
1888 struct bio *bio)
1889 {
1890 int r;
1891 dm_oblock_t block = get_bio_block(cache, bio);
1892 struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1893
1894 /*
1895 * Check to see if that block is currently migrating.
1896 */
1897 cell_prealloc = prealloc_get_cell(structs);
1898 r = bio_detain(cache, block, bio, cell_prealloc,
1899 (cell_free_fn) prealloc_put_cell,
1900 structs, &new_ocell);
1901 if (r > 0)
1902 return;
1903
1904 process_cell(cache, structs, new_ocell);
1905 }
1906
1907 static int need_commit_due_to_time(struct cache *cache)
1908 {
1909 return jiffies < cache->last_commit_jiffies ||
1910 jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1911 }
1912
1913 /*
1914 * A non-zero return indicates read_only or fail_io mode.
1915 */
1916 static int commit(struct cache *cache, bool clean_shutdown)
1917 {
1918 int r;
1919
1920 if (get_cache_mode(cache) >= CM_READ_ONLY)
1921 return -EINVAL;
1922
1923 atomic_inc(&cache->stats.commit_count);
1924 r = dm_cache_commit(cache->cmd, clean_shutdown);
1925 if (r)
1926 metadata_operation_failed(cache, "dm_cache_commit", r);
1927
1928 return r;
1929 }
1930
1931 static int commit_if_needed(struct cache *cache)
1932 {
1933 int r = 0;
1934
1935 if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1936 dm_cache_changed_this_transaction(cache->cmd)) {
1937 r = commit(cache, false);
1938 cache->commit_requested = false;
1939 cache->last_commit_jiffies = jiffies;
1940 }
1941
1942 return r;
1943 }
1944
1945 static void process_deferred_bios(struct cache *cache)
1946 {
1947 bool prealloc_used = false;
1948 unsigned long flags;
1949 struct bio_list bios;
1950 struct bio *bio;
1951 struct prealloc structs;
1952
1953 memset(&structs, 0, sizeof(structs));
1954 bio_list_init(&bios);
1955
1956 spin_lock_irqsave(&cache->lock, flags);
1957 bio_list_merge(&bios, &cache->deferred_bios);
1958 bio_list_init(&cache->deferred_bios);
1959 spin_unlock_irqrestore(&cache->lock, flags);
1960
1961 while (!bio_list_empty(&bios)) {
1962 /*
1963 * If we've got no free migration structs, and processing
1964 * this bio might require one, we pause until there are some
1965 * prepared mappings to process.
1966 */
1967 prealloc_used = true;
1968 if (prealloc_data_structs(cache, &structs)) {
1969 spin_lock_irqsave(&cache->lock, flags);
1970 bio_list_merge(&cache->deferred_bios, &bios);
1971 spin_unlock_irqrestore(&cache->lock, flags);
1972 break;
1973 }
1974
1975 bio = bio_list_pop(&bios);
1976
1977 if (bio->bi_opf & REQ_PREFLUSH)
1978 process_flush_bio(cache, bio);
1979 else if (bio_op(bio) == REQ_OP_DISCARD)
1980 process_discard_bio(cache, &structs, bio);
1981 else
1982 process_bio(cache, &structs, bio);
1983 }
1984
1985 if (prealloc_used)
1986 prealloc_free_structs(cache, &structs);
1987 }
1988
1989 static void process_deferred_cells(struct cache *cache)
1990 {
1991 bool prealloc_used = false;
1992 unsigned long flags;
1993 struct dm_bio_prison_cell *cell, *tmp;
1994 struct list_head cells;
1995 struct prealloc structs;
1996
1997 memset(&structs, 0, sizeof(structs));
1998
1999 INIT_LIST_HEAD(&cells);
2000
2001 spin_lock_irqsave(&cache->lock, flags);
2002 list_splice_init(&cache->deferred_cells, &cells);
2003 spin_unlock_irqrestore(&cache->lock, flags);
2004
2005 list_for_each_entry_safe(cell, tmp, &cells, user_list) {
2006 /*
2007 * If we've got no free migration structs, and processing
2008 * this bio might require one, we pause until there are some
2009 * prepared mappings to process.
2010 */
2011 prealloc_used = true;
2012 if (prealloc_data_structs(cache, &structs)) {
2013 spin_lock_irqsave(&cache->lock, flags);
2014 list_splice(&cells, &cache->deferred_cells);
2015 spin_unlock_irqrestore(&cache->lock, flags);
2016 break;
2017 }
2018
2019 process_cell(cache, &structs, cell);
2020 }
2021
2022 if (prealloc_used)
2023 prealloc_free_structs(cache, &structs);
2024 }
2025
2026 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
2027 {
2028 unsigned long flags;
2029 struct bio_list bios;
2030 struct bio *bio;
2031
2032 bio_list_init(&bios);
2033
2034 spin_lock_irqsave(&cache->lock, flags);
2035 bio_list_merge(&bios, &cache->deferred_flush_bios);
2036 bio_list_init(&cache->deferred_flush_bios);
2037 spin_unlock_irqrestore(&cache->lock, flags);
2038
2039 /*
2040 * These bios have already been through inc_ds()
2041 */
2042 while ((bio = bio_list_pop(&bios)))
2043 submit_bios ? accounted_request(cache, bio) : bio_io_error(bio);
2044 }
2045
2046 static void process_deferred_writethrough_bios(struct cache *cache)
2047 {
2048 unsigned long flags;
2049 struct bio_list bios;
2050 struct bio *bio;
2051
2052 bio_list_init(&bios);
2053
2054 spin_lock_irqsave(&cache->lock, flags);
2055 bio_list_merge(&bios, &cache->deferred_writethrough_bios);
2056 bio_list_init(&cache->deferred_writethrough_bios);
2057 spin_unlock_irqrestore(&cache->lock, flags);
2058
2059 /*
2060 * These bios have already been through inc_ds()
2061 */
2062 while ((bio = bio_list_pop(&bios)))
2063 accounted_request(cache, bio);
2064 }
2065
2066 static void writeback_some_dirty_blocks(struct cache *cache)
2067 {
2068 bool prealloc_used = false;
2069 dm_oblock_t oblock;
2070 dm_cblock_t cblock;
2071 struct prealloc structs;
2072 struct dm_bio_prison_cell *old_ocell;
2073 bool busy = !iot_idle_for(&cache->origin_tracker, HZ);
2074
2075 memset(&structs, 0, sizeof(structs));
2076
2077 while (spare_migration_bandwidth(cache)) {
2078 if (policy_writeback_work(cache->policy, &oblock, &cblock, busy))
2079 break; /* no work to do */
2080
2081 prealloc_used = true;
2082 if (prealloc_data_structs(cache, &structs) ||
2083 get_cell(cache, oblock, &structs, &old_ocell)) {
2084 policy_set_dirty(cache->policy, oblock);
2085 break;
2086 }
2087
2088 writeback(cache, &structs, oblock, cblock, old_ocell);
2089 }
2090
2091 if (prealloc_used)
2092 prealloc_free_structs(cache, &structs);
2093 }
2094
2095 /*----------------------------------------------------------------
2096 * Invalidations.
2097 * Dropping something from the cache *without* writing back.
2098 *--------------------------------------------------------------*/
2099
2100 static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
2101 {
2102 int r = 0;
2103 uint64_t begin = from_cblock(req->cblocks->begin);
2104 uint64_t end = from_cblock(req->cblocks->end);
2105
2106 while (begin != end) {
2107 r = policy_remove_cblock(cache->policy, to_cblock(begin));
2108 if (!r) {
2109 r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
2110 if (r) {
2111 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
2112 break;
2113 }
2114
2115 } else if (r == -ENODATA) {
2116 /* harmless, already unmapped */
2117 r = 0;
2118
2119 } else {
2120 DMERR("%s: policy_remove_cblock failed", cache_device_name(cache));
2121 break;
2122 }
2123
2124 begin++;
2125 }
2126
2127 cache->commit_requested = true;
2128
2129 req->err = r;
2130 atomic_set(&req->complete, 1);
2131
2132 wake_up(&req->result_wait);
2133 }
2134
2135 static void process_invalidation_requests(struct cache *cache)
2136 {
2137 struct list_head list;
2138 struct invalidation_request *req, *tmp;
2139
2140 INIT_LIST_HEAD(&list);
2141 spin_lock(&cache->invalidation_lock);
2142 list_splice_init(&cache->invalidation_requests, &list);
2143 spin_unlock(&cache->invalidation_lock);
2144
2145 list_for_each_entry_safe (req, tmp, &list, list)
2146 process_invalidation_request(cache, req);
2147 }
2148
2149 /*----------------------------------------------------------------
2150 * Main worker loop
2151 *--------------------------------------------------------------*/
2152 static bool is_quiescing(struct cache *cache)
2153 {
2154 return atomic_read(&cache->quiescing);
2155 }
2156
2157 static void ack_quiescing(struct cache *cache)
2158 {
2159 if (is_quiescing(cache)) {
2160 atomic_inc(&cache->quiescing_ack);
2161 wake_up(&cache->quiescing_wait);
2162 }
2163 }
2164
2165 static void wait_for_quiescing_ack(struct cache *cache)
2166 {
2167 wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
2168 }
2169
2170 static void start_quiescing(struct cache *cache)
2171 {
2172 atomic_inc(&cache->quiescing);
2173 wait_for_quiescing_ack(cache);
2174 }
2175
2176 static void stop_quiescing(struct cache *cache)
2177 {
2178 atomic_set(&cache->quiescing, 0);
2179 atomic_set(&cache->quiescing_ack, 0);
2180 }
2181
2182 static void wait_for_migrations(struct cache *cache)
2183 {
2184 wait_event(cache->migration_wait, !atomic_read(&cache->nr_allocated_migrations));
2185 }
2186
2187 static void stop_worker(struct cache *cache)
2188 {
2189 cancel_delayed_work(&cache->waker);
2190 flush_workqueue(cache->wq);
2191 }
2192
2193 static void requeue_deferred_cells(struct cache *cache)
2194 {
2195 unsigned long flags;
2196 struct list_head cells;
2197 struct dm_bio_prison_cell *cell, *tmp;
2198
2199 INIT_LIST_HEAD(&cells);
2200 spin_lock_irqsave(&cache->lock, flags);
2201 list_splice_init(&cache->deferred_cells, &cells);
2202 spin_unlock_irqrestore(&cache->lock, flags);
2203
2204 list_for_each_entry_safe(cell, tmp, &cells, user_list)
2205 cell_requeue(cache, cell);
2206 }
2207
2208 static void requeue_deferred_bios(struct cache *cache)
2209 {
2210 struct bio *bio;
2211 struct bio_list bios;
2212
2213 bio_list_init(&bios);
2214 bio_list_merge(&bios, &cache->deferred_bios);
2215 bio_list_init(&cache->deferred_bios);
2216
2217 while ((bio = bio_list_pop(&bios))) {
2218 bio->bi_error = DM_ENDIO_REQUEUE;
2219 bio_endio(bio);
2220 }
2221 }
2222
2223 static int more_work(struct cache *cache)
2224 {
2225 if (is_quiescing(cache))
2226 return !list_empty(&cache->quiesced_migrations) ||
2227 !list_empty(&cache->completed_migrations) ||
2228 !list_empty(&cache->need_commit_migrations);
2229 else
2230 return !bio_list_empty(&cache->deferred_bios) ||
2231 !list_empty(&cache->deferred_cells) ||
2232 !bio_list_empty(&cache->deferred_flush_bios) ||
2233 !bio_list_empty(&cache->deferred_writethrough_bios) ||
2234 !list_empty(&cache->quiesced_migrations) ||
2235 !list_empty(&cache->completed_migrations) ||
2236 !list_empty(&cache->need_commit_migrations) ||
2237 cache->invalidate;
2238 }
2239
2240 static void do_worker(struct work_struct *ws)
2241 {
2242 struct cache *cache = container_of(ws, struct cache, worker);
2243
2244 do {
2245 if (!is_quiescing(cache)) {
2246 writeback_some_dirty_blocks(cache);
2247 process_deferred_writethrough_bios(cache);
2248 process_deferred_bios(cache);
2249 process_deferred_cells(cache);
2250 process_invalidation_requests(cache);
2251 }
2252
2253 process_migrations(cache, &cache->quiesced_migrations, issue_copy_or_discard);
2254 process_migrations(cache, &cache->completed_migrations, complete_migration);
2255
2256 if (commit_if_needed(cache)) {
2257 process_deferred_flush_bios(cache, false);
2258 process_migrations(cache, &cache->need_commit_migrations, migration_failure);
2259 } else {
2260 process_deferred_flush_bios(cache, true);
2261 process_migrations(cache, &cache->need_commit_migrations,
2262 migration_success_post_commit);
2263 }
2264
2265 ack_quiescing(cache);
2266
2267 } while (more_work(cache));
2268 }
2269
2270 /*
2271 * We want to commit periodically so that not too much
2272 * unwritten metadata builds up.
2273 */
2274 static void do_waker(struct work_struct *ws)
2275 {
2276 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
2277 policy_tick(cache->policy, true);
2278 wake_worker(cache);
2279 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
2280 }
2281
2282 /*----------------------------------------------------------------*/
2283
2284 static int is_congested(struct dm_dev *dev, int bdi_bits)
2285 {
2286 struct request_queue *q = bdev_get_queue(dev->bdev);
2287 return bdi_congested(&q->backing_dev_info, bdi_bits);
2288 }
2289
2290 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2291 {
2292 struct cache *cache = container_of(cb, struct cache, callbacks);
2293
2294 return is_congested(cache->origin_dev, bdi_bits) ||
2295 is_congested(cache->cache_dev, bdi_bits);
2296 }
2297
2298 /*----------------------------------------------------------------
2299 * Target methods
2300 *--------------------------------------------------------------*/
2301
2302 /*
2303 * This function gets called on the error paths of the constructor, so we
2304 * have to cope with a partially initialised struct.
2305 */
2306 static void destroy(struct cache *cache)
2307 {
2308 unsigned i;
2309
2310 mempool_destroy(cache->migration_pool);
2311
2312 if (cache->all_io_ds)
2313 dm_deferred_set_destroy(cache->all_io_ds);
2314
2315 if (cache->prison)
2316 dm_bio_prison_destroy(cache->prison);
2317
2318 if (cache->wq)
2319 destroy_workqueue(cache->wq);
2320
2321 if (cache->dirty_bitset)
2322 free_bitset(cache->dirty_bitset);
2323
2324 if (cache->discard_bitset)
2325 free_bitset(cache->discard_bitset);
2326
2327 if (cache->copier)
2328 dm_kcopyd_client_destroy(cache->copier);
2329
2330 if (cache->cmd)
2331 dm_cache_metadata_close(cache->cmd);
2332
2333 if (cache->metadata_dev)
2334 dm_put_device(cache->ti, cache->metadata_dev);
2335
2336 if (cache->origin_dev)
2337 dm_put_device(cache->ti, cache->origin_dev);
2338
2339 if (cache->cache_dev)
2340 dm_put_device(cache->ti, cache->cache_dev);
2341
2342 if (cache->policy)
2343 dm_cache_policy_destroy(cache->policy);
2344
2345 for (i = 0; i < cache->nr_ctr_args ; i++)
2346 kfree(cache->ctr_args[i]);
2347 kfree(cache->ctr_args);
2348
2349 kfree(cache);
2350 }
2351
2352 static void cache_dtr(struct dm_target *ti)
2353 {
2354 struct cache *cache = ti->private;
2355
2356 destroy(cache);
2357 }
2358
2359 static sector_t get_dev_size(struct dm_dev *dev)
2360 {
2361 return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2362 }
2363
2364 /*----------------------------------------------------------------*/
2365
2366 /*
2367 * Construct a cache device mapping.
2368 *
2369 * cache <metadata dev> <cache dev> <origin dev> <block size>
2370 * <#feature args> [<feature arg>]*
2371 * <policy> <#policy args> [<policy arg>]*
2372 *
2373 * metadata dev : fast device holding the persistent metadata
2374 * cache dev : fast device holding cached data blocks
2375 * origin dev : slow device holding original data blocks
2376 * block size : cache unit size in sectors
2377 *
2378 * #feature args : number of feature arguments passed
2379 * feature args : writethrough. (The default is writeback.)
2380 *
2381 * policy : the replacement policy to use
2382 * #policy args : an even number of policy arguments corresponding
2383 * to key/value pairs passed to the policy
2384 * policy args : key/value pairs passed to the policy
2385 * E.g. 'sequential_threshold 1024'
2386 * See cache-policies.txt for details.
2387 *
2388 * Optional feature arguments are:
2389 * writethrough : write through caching that prohibits cache block
2390 * content from being different from origin block content.
2391 * Without this argument, the default behaviour is to write
2392 * back cache block contents later for performance reasons,
2393 * so they may differ from the corresponding origin blocks.
2394 */
2395 struct cache_args {
2396 struct dm_target *ti;
2397
2398 struct dm_dev *metadata_dev;
2399
2400 struct dm_dev *cache_dev;
2401 sector_t cache_sectors;
2402
2403 struct dm_dev *origin_dev;
2404 sector_t origin_sectors;
2405
2406 uint32_t block_size;
2407
2408 const char *policy_name;
2409 int policy_argc;
2410 const char **policy_argv;
2411
2412 struct cache_features features;
2413 };
2414
2415 static void destroy_cache_args(struct cache_args *ca)
2416 {
2417 if (ca->metadata_dev)
2418 dm_put_device(ca->ti, ca->metadata_dev);
2419
2420 if (ca->cache_dev)
2421 dm_put_device(ca->ti, ca->cache_dev);
2422
2423 if (ca->origin_dev)
2424 dm_put_device(ca->ti, ca->origin_dev);
2425
2426 kfree(ca);
2427 }
2428
2429 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2430 {
2431 if (!as->argc) {
2432 *error = "Insufficient args";
2433 return false;
2434 }
2435
2436 return true;
2437 }
2438
2439 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2440 char **error)
2441 {
2442 int r;
2443 sector_t metadata_dev_size;
2444 char b[BDEVNAME_SIZE];
2445
2446 if (!at_least_one_arg(as, error))
2447 return -EINVAL;
2448
2449 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2450 &ca->metadata_dev);
2451 if (r) {
2452 *error = "Error opening metadata device";
2453 return r;
2454 }
2455
2456 metadata_dev_size = get_dev_size(ca->metadata_dev);
2457 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2458 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2459 bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2460
2461 return 0;
2462 }
2463
2464 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2465 char **error)
2466 {
2467 int r;
2468
2469 if (!at_least_one_arg(as, error))
2470 return -EINVAL;
2471
2472 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2473 &ca->cache_dev);
2474 if (r) {
2475 *error = "Error opening cache device";
2476 return r;
2477 }
2478 ca->cache_sectors = get_dev_size(ca->cache_dev);
2479
2480 return 0;
2481 }
2482
2483 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2484 char **error)
2485 {
2486 int r;
2487
2488 if (!at_least_one_arg(as, error))
2489 return -EINVAL;
2490
2491 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2492 &ca->origin_dev);
2493 if (r) {
2494 *error = "Error opening origin device";
2495 return r;
2496 }
2497
2498 ca->origin_sectors = get_dev_size(ca->origin_dev);
2499 if (ca->ti->len > ca->origin_sectors) {
2500 *error = "Device size larger than cached device";
2501 return -EINVAL;
2502 }
2503
2504 return 0;
2505 }
2506
2507 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2508 char **error)
2509 {
2510 unsigned long block_size;
2511
2512 if (!at_least_one_arg(as, error))
2513 return -EINVAL;
2514
2515 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2516 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2517 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2518 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2519 *error = "Invalid data block size";
2520 return -EINVAL;
2521 }
2522
2523 if (block_size > ca->cache_sectors) {
2524 *error = "Data block size is larger than the cache device";
2525 return -EINVAL;
2526 }
2527
2528 ca->block_size = block_size;
2529
2530 return 0;
2531 }
2532
2533 static void init_features(struct cache_features *cf)
2534 {
2535 cf->mode = CM_WRITE;
2536 cf->io_mode = CM_IO_WRITEBACK;
2537 }
2538
2539 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2540 char **error)
2541 {
2542 static struct dm_arg _args[] = {
2543 {0, 1, "Invalid number of cache feature arguments"},
2544 };
2545
2546 int r;
2547 unsigned argc;
2548 const char *arg;
2549 struct cache_features *cf = &ca->features;
2550
2551 init_features(cf);
2552
2553 r = dm_read_arg_group(_args, as, &argc, error);
2554 if (r)
2555 return -EINVAL;
2556
2557 while (argc--) {
2558 arg = dm_shift_arg(as);
2559
2560 if (!strcasecmp(arg, "writeback"))
2561 cf->io_mode = CM_IO_WRITEBACK;
2562
2563 else if (!strcasecmp(arg, "writethrough"))
2564 cf->io_mode = CM_IO_WRITETHROUGH;
2565
2566 else if (!strcasecmp(arg, "passthrough"))
2567 cf->io_mode = CM_IO_PASSTHROUGH;
2568
2569 else {
2570 *error = "Unrecognised cache feature requested";
2571 return -EINVAL;
2572 }
2573 }
2574
2575 return 0;
2576 }
2577
2578 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2579 char **error)
2580 {
2581 static struct dm_arg _args[] = {
2582 {0, 1024, "Invalid number of policy arguments"},
2583 };
2584
2585 int r;
2586
2587 if (!at_least_one_arg(as, error))
2588 return -EINVAL;
2589
2590 ca->policy_name = dm_shift_arg(as);
2591
2592 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2593 if (r)
2594 return -EINVAL;
2595
2596 ca->policy_argv = (const char **)as->argv;
2597 dm_consume_args(as, ca->policy_argc);
2598
2599 return 0;
2600 }
2601
2602 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2603 char **error)
2604 {
2605 int r;
2606 struct dm_arg_set as;
2607
2608 as.argc = argc;
2609 as.argv = argv;
2610
2611 r = parse_metadata_dev(ca, &as, error);
2612 if (r)
2613 return r;
2614
2615 r = parse_cache_dev(ca, &as, error);
2616 if (r)
2617 return r;
2618
2619 r = parse_origin_dev(ca, &as, error);
2620 if (r)
2621 return r;
2622
2623 r = parse_block_size(ca, &as, error);
2624 if (r)
2625 return r;
2626
2627 r = parse_features(ca, &as, error);
2628 if (r)
2629 return r;
2630
2631 r = parse_policy(ca, &as, error);
2632 if (r)
2633 return r;
2634
2635 return 0;
2636 }
2637
2638 /*----------------------------------------------------------------*/
2639
2640 static struct kmem_cache *migration_cache;
2641
2642 #define NOT_CORE_OPTION 1
2643
2644 static int process_config_option(struct cache *cache, const char *key, const char *value)
2645 {
2646 unsigned long tmp;
2647
2648 if (!strcasecmp(key, "migration_threshold")) {
2649 if (kstrtoul(value, 10, &tmp))
2650 return -EINVAL;
2651
2652 cache->migration_threshold = tmp;
2653 return 0;
2654 }
2655
2656 return NOT_CORE_OPTION;
2657 }
2658
2659 static int set_config_value(struct cache *cache, const char *key, const char *value)
2660 {
2661 int r = process_config_option(cache, key, value);
2662
2663 if (r == NOT_CORE_OPTION)
2664 r = policy_set_config_value(cache->policy, key, value);
2665
2666 if (r)
2667 DMWARN("bad config value for %s: %s", key, value);
2668
2669 return r;
2670 }
2671
2672 static int set_config_values(struct cache *cache, int argc, const char **argv)
2673 {
2674 int r = 0;
2675
2676 if (argc & 1) {
2677 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2678 return -EINVAL;
2679 }
2680
2681 while (argc) {
2682 r = set_config_value(cache, argv[0], argv[1]);
2683 if (r)
2684 break;
2685
2686 argc -= 2;
2687 argv += 2;
2688 }
2689
2690 return r;
2691 }
2692
2693 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2694 char **error)
2695 {
2696 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2697 cache->cache_size,
2698 cache->origin_sectors,
2699 cache->sectors_per_block);
2700 if (IS_ERR(p)) {
2701 *error = "Error creating cache's policy";
2702 return PTR_ERR(p);
2703 }
2704 cache->policy = p;
2705
2706 return 0;
2707 }
2708
2709 /*
2710 * We want the discard block size to be at least the size of the cache
2711 * block size and have no more than 2^14 discard blocks across the origin.
2712 */
2713 #define MAX_DISCARD_BLOCKS (1 << 14)
2714
2715 static bool too_many_discard_blocks(sector_t discard_block_size,
2716 sector_t origin_size)
2717 {
2718 (void) sector_div(origin_size, discard_block_size);
2719
2720 return origin_size > MAX_DISCARD_BLOCKS;
2721 }
2722
2723 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2724 sector_t origin_size)
2725 {
2726 sector_t discard_block_size = cache_block_size;
2727
2728 if (origin_size)
2729 while (too_many_discard_blocks(discard_block_size, origin_size))
2730 discard_block_size *= 2;
2731
2732 return discard_block_size;
2733 }
2734
2735 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2736 {
2737 dm_block_t nr_blocks = from_cblock(size);
2738
2739 if (nr_blocks > (1 << 20) && cache->cache_size != size)
2740 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2741 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2742 "Please consider increasing the cache block size to reduce the overall cache block count.",
2743 (unsigned long long) nr_blocks);
2744
2745 cache->cache_size = size;
2746 }
2747
2748 #define DEFAULT_MIGRATION_THRESHOLD 2048
2749
2750 static int cache_create(struct cache_args *ca, struct cache **result)
2751 {
2752 int r = 0;
2753 char **error = &ca->ti->error;
2754 struct cache *cache;
2755 struct dm_target *ti = ca->ti;
2756 dm_block_t origin_blocks;
2757 struct dm_cache_metadata *cmd;
2758 bool may_format = ca->features.mode == CM_WRITE;
2759
2760 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2761 if (!cache)
2762 return -ENOMEM;
2763
2764 cache->ti = ca->ti;
2765 ti->private = cache;
2766 ti->num_flush_bios = 2;
2767 ti->flush_supported = true;
2768
2769 ti->num_discard_bios = 1;
2770 ti->discards_supported = true;
2771 ti->discard_zeroes_data_unsupported = true;
2772 ti->split_discard_bios = false;
2773
2774 cache->features = ca->features;
2775 ti->per_io_data_size = get_per_bio_data_size(cache);
2776
2777 cache->callbacks.congested_fn = cache_is_congested;
2778 dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2779
2780 cache->metadata_dev = ca->metadata_dev;
2781 cache->origin_dev = ca->origin_dev;
2782 cache->cache_dev = ca->cache_dev;
2783
2784 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2785
2786 /* FIXME: factor out this whole section */
2787 origin_blocks = cache->origin_sectors = ca->origin_sectors;
2788 origin_blocks = block_div(origin_blocks, ca->block_size);
2789 cache->origin_blocks = to_oblock(origin_blocks);
2790
2791 cache->sectors_per_block = ca->block_size;
2792 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2793 r = -EINVAL;
2794 goto bad;
2795 }
2796
2797 if (ca->block_size & (ca->block_size - 1)) {
2798 dm_block_t cache_size = ca->cache_sectors;
2799
2800 cache->sectors_per_block_shift = -1;
2801 cache_size = block_div(cache_size, ca->block_size);
2802 set_cache_size(cache, to_cblock(cache_size));
2803 } else {
2804 cache->sectors_per_block_shift = __ffs(ca->block_size);
2805 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2806 }
2807
2808 r = create_cache_policy(cache, ca, error);
2809 if (r)
2810 goto bad;
2811
2812 cache->policy_nr_args = ca->policy_argc;
2813 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2814
2815 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2816 if (r) {
2817 *error = "Error setting cache policy's config values";
2818 goto bad;
2819 }
2820
2821 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2822 ca->block_size, may_format,
2823 dm_cache_policy_get_hint_size(cache->policy));
2824 if (IS_ERR(cmd)) {
2825 *error = "Error creating metadata object";
2826 r = PTR_ERR(cmd);
2827 goto bad;
2828 }
2829 cache->cmd = cmd;
2830 set_cache_mode(cache, CM_WRITE);
2831 if (get_cache_mode(cache) != CM_WRITE) {
2832 *error = "Unable to get write access to metadata, please check/repair metadata.";
2833 r = -EINVAL;
2834 goto bad;
2835 }
2836
2837 if (passthrough_mode(&cache->features)) {
2838 bool all_clean;
2839
2840 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2841 if (r) {
2842 *error = "dm_cache_metadata_all_clean() failed";
2843 goto bad;
2844 }
2845
2846 if (!all_clean) {
2847 *error = "Cannot enter passthrough mode unless all blocks are clean";
2848 r = -EINVAL;
2849 goto bad;
2850 }
2851 }
2852
2853 spin_lock_init(&cache->lock);
2854 INIT_LIST_HEAD(&cache->deferred_cells);
2855 bio_list_init(&cache->deferred_bios);
2856 bio_list_init(&cache->deferred_flush_bios);
2857 bio_list_init(&cache->deferred_writethrough_bios);
2858 INIT_LIST_HEAD(&cache->quiesced_migrations);
2859 INIT_LIST_HEAD(&cache->completed_migrations);
2860 INIT_LIST_HEAD(&cache->need_commit_migrations);
2861 atomic_set(&cache->nr_allocated_migrations, 0);
2862 atomic_set(&cache->nr_io_migrations, 0);
2863 init_waitqueue_head(&cache->migration_wait);
2864
2865 init_waitqueue_head(&cache->quiescing_wait);
2866 atomic_set(&cache->quiescing, 0);
2867 atomic_set(&cache->quiescing_ack, 0);
2868
2869 r = -ENOMEM;
2870 atomic_set(&cache->nr_dirty, 0);
2871 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2872 if (!cache->dirty_bitset) {
2873 *error = "could not allocate dirty bitset";
2874 goto bad;
2875 }
2876 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2877
2878 cache->discard_block_size =
2879 calculate_discard_block_size(cache->sectors_per_block,
2880 cache->origin_sectors);
2881 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2882 cache->discard_block_size));
2883 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2884 if (!cache->discard_bitset) {
2885 *error = "could not allocate discard bitset";
2886 goto bad;
2887 }
2888 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2889
2890 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2891 if (IS_ERR(cache->copier)) {
2892 *error = "could not create kcopyd client";
2893 r = PTR_ERR(cache->copier);
2894 goto bad;
2895 }
2896
2897 cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2898 if (!cache->wq) {
2899 *error = "could not create workqueue for metadata object";
2900 goto bad;
2901 }
2902 INIT_WORK(&cache->worker, do_worker);
2903 INIT_DELAYED_WORK(&cache->waker, do_waker);
2904 cache->last_commit_jiffies = jiffies;
2905
2906 cache->prison = dm_bio_prison_create();
2907 if (!cache->prison) {
2908 *error = "could not create bio prison";
2909 goto bad;
2910 }
2911
2912 cache->all_io_ds = dm_deferred_set_create();
2913 if (!cache->all_io_ds) {
2914 *error = "could not create all_io deferred set";
2915 goto bad;
2916 }
2917
2918 cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2919 migration_cache);
2920 if (!cache->migration_pool) {
2921 *error = "Error creating cache's migration mempool";
2922 goto bad;
2923 }
2924
2925 cache->need_tick_bio = true;
2926 cache->sized = false;
2927 cache->invalidate = false;
2928 cache->commit_requested = false;
2929 cache->loaded_mappings = false;
2930 cache->loaded_discards = false;
2931
2932 load_stats(cache);
2933
2934 atomic_set(&cache->stats.demotion, 0);
2935 atomic_set(&cache->stats.promotion, 0);
2936 atomic_set(&cache->stats.copies_avoided, 0);
2937 atomic_set(&cache->stats.cache_cell_clash, 0);
2938 atomic_set(&cache->stats.commit_count, 0);
2939 atomic_set(&cache->stats.discard_count, 0);
2940
2941 spin_lock_init(&cache->invalidation_lock);
2942 INIT_LIST_HEAD(&cache->invalidation_requests);
2943
2944 iot_init(&cache->origin_tracker);
2945
2946 *result = cache;
2947 return 0;
2948
2949 bad:
2950 destroy(cache);
2951 return r;
2952 }
2953
2954 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2955 {
2956 unsigned i;
2957 const char **copy;
2958
2959 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2960 if (!copy)
2961 return -ENOMEM;
2962 for (i = 0; i < argc; i++) {
2963 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2964 if (!copy[i]) {
2965 while (i--)
2966 kfree(copy[i]);
2967 kfree(copy);
2968 return -ENOMEM;
2969 }
2970 }
2971
2972 cache->nr_ctr_args = argc;
2973 cache->ctr_args = copy;
2974
2975 return 0;
2976 }
2977
2978 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2979 {
2980 int r = -EINVAL;
2981 struct cache_args *ca;
2982 struct cache *cache = NULL;
2983
2984 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2985 if (!ca) {
2986 ti->error = "Error allocating memory for cache";
2987 return -ENOMEM;
2988 }
2989 ca->ti = ti;
2990
2991 r = parse_cache_args(ca, argc, argv, &ti->error);
2992 if (r)
2993 goto out;
2994
2995 r = cache_create(ca, &cache);
2996 if (r)
2997 goto out;
2998
2999 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
3000 if (r) {
3001 destroy(cache);
3002 goto out;
3003 }
3004
3005 ti->private = cache;
3006
3007 out:
3008 destroy_cache_args(ca);
3009 return r;
3010 }
3011
3012 /*----------------------------------------------------------------*/
3013
3014 static int cache_map(struct dm_target *ti, struct bio *bio)
3015 {
3016 struct cache *cache = ti->private;
3017
3018 int r;
3019 struct dm_bio_prison_cell *cell = NULL;
3020 dm_oblock_t block = get_bio_block(cache, bio);
3021 size_t pb_data_size = get_per_bio_data_size(cache);
3022 bool can_migrate = false;
3023 bool fast_promotion;
3024 struct policy_result lookup_result;
3025 struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
3026 struct old_oblock_lock ool;
3027
3028 ool.locker.fn = null_locker;
3029
3030 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
3031 /*
3032 * This can only occur if the io goes to a partial block at
3033 * the end of the origin device. We don't cache these.
3034 * Just remap to the origin and carry on.
3035 */
3036 remap_to_origin(cache, bio);
3037 accounted_begin(cache, bio);
3038 return DM_MAPIO_REMAPPED;
3039 }
3040
3041 if (discard_or_flush(bio)) {
3042 defer_bio(cache, bio);
3043 return DM_MAPIO_SUBMITTED;
3044 }
3045
3046 /*
3047 * Check to see if that block is currently migrating.
3048 */
3049 cell = alloc_prison_cell(cache);
3050 if (!cell) {
3051 defer_bio(cache, bio);
3052 return DM_MAPIO_SUBMITTED;
3053 }
3054
3055 r = bio_detain(cache, block, bio, cell,
3056 (cell_free_fn) free_prison_cell,
3057 cache, &cell);
3058 if (r) {
3059 if (r < 0)
3060 defer_bio(cache, bio);
3061
3062 return DM_MAPIO_SUBMITTED;
3063 }
3064
3065 fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
3066
3067 r = policy_map(cache->policy, block, false, can_migrate, fast_promotion,
3068 bio, &ool.locker, &lookup_result);
3069 if (r == -EWOULDBLOCK) {
3070 cell_defer(cache, cell, true);
3071 return DM_MAPIO_SUBMITTED;
3072
3073 } else if (r) {
3074 DMERR_LIMIT("%s: Unexpected return from cache replacement policy: %d",
3075 cache_device_name(cache), r);
3076 cell_defer(cache, cell, false);
3077 bio_io_error(bio);
3078 return DM_MAPIO_SUBMITTED;
3079 }
3080
3081 r = DM_MAPIO_REMAPPED;
3082 switch (lookup_result.op) {
3083 case POLICY_HIT:
3084 if (passthrough_mode(&cache->features)) {
3085 if (bio_data_dir(bio) == WRITE) {
3086 /*
3087 * We need to invalidate this block, so
3088 * defer for the worker thread.
3089 */
3090 cell_defer(cache, cell, true);
3091 r = DM_MAPIO_SUBMITTED;
3092
3093 } else {
3094 inc_miss_counter(cache, bio);
3095 remap_to_origin_clear_discard(cache, bio, block);
3096 accounted_begin(cache, bio);
3097 inc_ds(cache, bio, cell);
3098 // FIXME: we want to remap hits or misses straight
3099 // away rather than passing over to the worker.
3100 cell_defer(cache, cell, false);
3101 }
3102
3103 } else {
3104 inc_hit_counter(cache, bio);
3105 if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
3106 !is_dirty(cache, lookup_result.cblock)) {
3107 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
3108 accounted_begin(cache, bio);
3109 inc_ds(cache, bio, cell);
3110 cell_defer(cache, cell, false);
3111
3112 } else
3113 remap_cell_to_cache_dirty(cache, cell, block, lookup_result.cblock, false);
3114 }
3115 break;
3116
3117 case POLICY_MISS:
3118 inc_miss_counter(cache, bio);
3119 if (pb->req_nr != 0) {
3120 /*
3121 * This is a duplicate writethrough io that is no
3122 * longer needed because the block has been demoted.
3123 */
3124 bio_endio(bio);
3125 // FIXME: remap everything as a miss
3126 cell_defer(cache, cell, false);
3127 r = DM_MAPIO_SUBMITTED;
3128
3129 } else
3130 remap_cell_to_origin_clear_discard(cache, cell, block, false);
3131 break;
3132
3133 default:
3134 DMERR_LIMIT("%s: %s: erroring bio: unknown policy op: %u",
3135 cache_device_name(cache), __func__,
3136 (unsigned) lookup_result.op);
3137 cell_defer(cache, cell, false);
3138 bio_io_error(bio);
3139 r = DM_MAPIO_SUBMITTED;
3140 }
3141
3142 return r;
3143 }
3144
3145 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
3146 {
3147 struct cache *cache = ti->private;
3148 unsigned long flags;
3149 size_t pb_data_size = get_per_bio_data_size(cache);
3150 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
3151
3152 if (pb->tick) {
3153 policy_tick(cache->policy, false);
3154
3155 spin_lock_irqsave(&cache->lock, flags);
3156 cache->need_tick_bio = true;
3157 spin_unlock_irqrestore(&cache->lock, flags);
3158 }
3159
3160 check_for_quiesced_migrations(cache, pb);
3161 accounted_complete(cache, bio);
3162
3163 return 0;
3164 }
3165
3166 static int write_dirty_bitset(struct cache *cache)
3167 {
3168 unsigned i, r;
3169
3170 if (get_cache_mode(cache) >= CM_READ_ONLY)
3171 return -EINVAL;
3172
3173 for (i = 0; i < from_cblock(cache->cache_size); i++) {
3174 r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
3175 is_dirty(cache, to_cblock(i)));
3176 if (r) {
3177 metadata_operation_failed(cache, "dm_cache_set_dirty", r);
3178 return r;
3179 }
3180 }
3181
3182 return 0;
3183 }
3184
3185 static int write_discard_bitset(struct cache *cache)
3186 {
3187 unsigned i, r;
3188
3189 if (get_cache_mode(cache) >= CM_READ_ONLY)
3190 return -EINVAL;
3191
3192 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
3193 cache->discard_nr_blocks);
3194 if (r) {
3195 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
3196 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
3197 return r;
3198 }
3199
3200 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
3201 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
3202 is_discarded(cache, to_dblock(i)));
3203 if (r) {
3204 metadata_operation_failed(cache, "dm_cache_set_discard", r);
3205 return r;
3206 }
3207 }
3208
3209 return 0;
3210 }
3211
3212 static int write_hints(struct cache *cache)
3213 {
3214 int r;
3215
3216 if (get_cache_mode(cache) >= CM_READ_ONLY)
3217 return -EINVAL;
3218
3219 r = dm_cache_write_hints(cache->cmd, cache->policy);
3220 if (r) {
3221 metadata_operation_failed(cache, "dm_cache_write_hints", r);
3222 return r;
3223 }
3224
3225 return 0;
3226 }
3227
3228 /*
3229 * returns true on success
3230 */
3231 static bool sync_metadata(struct cache *cache)
3232 {
3233 int r1, r2, r3, r4;
3234
3235 r1 = write_dirty_bitset(cache);
3236 if (r1)
3237 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
3238
3239 r2 = write_discard_bitset(cache);
3240 if (r2)
3241 DMERR("%s: could not write discard bitset", cache_device_name(cache));
3242
3243 save_stats(cache);
3244
3245 r3 = write_hints(cache);
3246 if (r3)
3247 DMERR("%s: could not write hints", cache_device_name(cache));
3248
3249 /*
3250 * If writing the above metadata failed, we still commit, but don't
3251 * set the clean shutdown flag. This will effectively force every
3252 * dirty bit to be set on reload.
3253 */
3254 r4 = commit(cache, !r1 && !r2 && !r3);
3255 if (r4)
3256 DMERR("%s: could not write cache metadata", cache_device_name(cache));
3257
3258 return !r1 && !r2 && !r3 && !r4;
3259 }
3260
3261 static void cache_postsuspend(struct dm_target *ti)
3262 {
3263 struct cache *cache = ti->private;
3264
3265 start_quiescing(cache);
3266 wait_for_migrations(cache);
3267 stop_worker(cache);
3268 requeue_deferred_bios(cache);
3269 requeue_deferred_cells(cache);
3270 stop_quiescing(cache);
3271
3272 if (get_cache_mode(cache) == CM_WRITE)
3273 (void) sync_metadata(cache);
3274 }
3275
3276 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
3277 bool dirty, uint32_t hint, bool hint_valid)
3278 {
3279 int r;
3280 struct cache *cache = context;
3281
3282 r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
3283 if (r)
3284 return r;
3285
3286 if (dirty)
3287 set_dirty(cache, oblock, cblock);
3288 else
3289 clear_dirty(cache, oblock, cblock);
3290
3291 return 0;
3292 }
3293
3294 /*
3295 * The discard block size in the on disk metadata is not
3296 * neccessarily the same as we're currently using. So we have to
3297 * be careful to only set the discarded attribute if we know it
3298 * covers a complete block of the new size.
3299 */
3300 struct discard_load_info {
3301 struct cache *cache;
3302
3303 /*
3304 * These blocks are sized using the on disk dblock size, rather
3305 * than the current one.
3306 */
3307 dm_block_t block_size;
3308 dm_block_t discard_begin, discard_end;
3309 };
3310
3311 static void discard_load_info_init(struct cache *cache,
3312 struct discard_load_info *li)
3313 {
3314 li->cache = cache;
3315 li->discard_begin = li->discard_end = 0;
3316 }
3317
3318 static void set_discard_range(struct discard_load_info *li)
3319 {
3320 sector_t b, e;
3321
3322 if (li->discard_begin == li->discard_end)
3323 return;
3324
3325 /*
3326 * Convert to sectors.
3327 */
3328 b = li->discard_begin * li->block_size;
3329 e = li->discard_end * li->block_size;
3330
3331 /*
3332 * Then convert back to the current dblock size.
3333 */
3334 b = dm_sector_div_up(b, li->cache->discard_block_size);
3335 sector_div(e, li->cache->discard_block_size);
3336
3337 /*
3338 * The origin may have shrunk, so we need to check we're still in
3339 * bounds.
3340 */
3341 if (e > from_dblock(li->cache->discard_nr_blocks))
3342 e = from_dblock(li->cache->discard_nr_blocks);
3343
3344 for (; b < e; b++)
3345 set_discard(li->cache, to_dblock(b));
3346 }
3347
3348 static int load_discard(void *context, sector_t discard_block_size,
3349 dm_dblock_t dblock, bool discard)
3350 {
3351 struct discard_load_info *li = context;
3352
3353 li->block_size = discard_block_size;
3354
3355 if (discard) {
3356 if (from_dblock(dblock) == li->discard_end)
3357 /*
3358 * We're already in a discard range, just extend it.
3359 */
3360 li->discard_end = li->discard_end + 1ULL;
3361
3362 else {
3363 /*
3364 * Emit the old range and start a new one.
3365 */
3366 set_discard_range(li);
3367 li->discard_begin = from_dblock(dblock);
3368 li->discard_end = li->discard_begin + 1ULL;
3369 }
3370 } else {
3371 set_discard_range(li);
3372 li->discard_begin = li->discard_end = 0;
3373 }
3374
3375 return 0;
3376 }
3377
3378 static dm_cblock_t get_cache_dev_size(struct cache *cache)
3379 {
3380 sector_t size = get_dev_size(cache->cache_dev);
3381 (void) sector_div(size, cache->sectors_per_block);
3382 return to_cblock(size);
3383 }
3384
3385 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3386 {
3387 if (from_cblock(new_size) > from_cblock(cache->cache_size))
3388 return true;
3389
3390 /*
3391 * We can't drop a dirty block when shrinking the cache.
3392 */
3393 while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3394 new_size = to_cblock(from_cblock(new_size) + 1);
3395 if (is_dirty(cache, new_size)) {
3396 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3397 cache_device_name(cache),
3398 (unsigned long long) from_cblock(new_size));
3399 return false;
3400 }
3401 }
3402
3403 return true;
3404 }
3405
3406 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3407 {
3408 int r;
3409
3410 r = dm_cache_resize(cache->cmd, new_size);
3411 if (r) {
3412 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3413 metadata_operation_failed(cache, "dm_cache_resize", r);
3414 return r;
3415 }
3416
3417 set_cache_size(cache, new_size);
3418
3419 return 0;
3420 }
3421
3422 static int cache_preresume(struct dm_target *ti)
3423 {
3424 int r = 0;
3425 struct cache *cache = ti->private;
3426 dm_cblock_t csize = get_cache_dev_size(cache);
3427
3428 /*
3429 * Check to see if the cache has resized.
3430 */
3431 if (!cache->sized) {
3432 r = resize_cache_dev(cache, csize);
3433 if (r)
3434 return r;
3435
3436 cache->sized = true;
3437
3438 } else if (csize != cache->cache_size) {
3439 if (!can_resize(cache, csize))
3440 return -EINVAL;
3441
3442 r = resize_cache_dev(cache, csize);
3443 if (r)
3444 return r;
3445 }
3446
3447 if (!cache->loaded_mappings) {
3448 r = dm_cache_load_mappings(cache->cmd, cache->policy,
3449 load_mapping, cache);
3450 if (r) {
3451 DMERR("%s: could not load cache mappings", cache_device_name(cache));
3452 metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3453 return r;
3454 }
3455
3456 cache->loaded_mappings = true;
3457 }
3458
3459 if (!cache->loaded_discards) {
3460 struct discard_load_info li;
3461
3462 /*
3463 * The discard bitset could have been resized, or the
3464 * discard block size changed. To be safe we start by
3465 * setting every dblock to not discarded.
3466 */
3467 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3468
3469 discard_load_info_init(cache, &li);
3470 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3471 if (r) {
3472 DMERR("%s: could not load origin discards", cache_device_name(cache));
3473 metadata_operation_failed(cache, "dm_cache_load_discards", r);
3474 return r;
3475 }
3476 set_discard_range(&li);
3477
3478 cache->loaded_discards = true;
3479 }
3480
3481 return r;
3482 }
3483
3484 static void cache_resume(struct dm_target *ti)
3485 {
3486 struct cache *cache = ti->private;
3487
3488 cache->need_tick_bio = true;
3489 do_waker(&cache->waker.work);
3490 }
3491
3492 /*
3493 * Status format:
3494 *
3495 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3496 * <cache block size> <#used cache blocks>/<#total cache blocks>
3497 * <#read hits> <#read misses> <#write hits> <#write misses>
3498 * <#demotions> <#promotions> <#dirty>
3499 * <#features> <features>*
3500 * <#core args> <core args>
3501 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3502 */
3503 static void cache_status(struct dm_target *ti, status_type_t type,
3504 unsigned status_flags, char *result, unsigned maxlen)
3505 {
3506 int r = 0;
3507 unsigned i;
3508 ssize_t sz = 0;
3509 dm_block_t nr_free_blocks_metadata = 0;
3510 dm_block_t nr_blocks_metadata = 0;
3511 char buf[BDEVNAME_SIZE];
3512 struct cache *cache = ti->private;
3513 dm_cblock_t residency;
3514 bool needs_check;
3515
3516 switch (type) {
3517 case STATUSTYPE_INFO:
3518 if (get_cache_mode(cache) == CM_FAIL) {
3519 DMEMIT("Fail");
3520 break;
3521 }
3522
3523 /* Commit to ensure statistics aren't out-of-date */
3524 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3525 (void) commit(cache, false);
3526
3527 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3528 if (r) {
3529 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3530 cache_device_name(cache), r);
3531 goto err;
3532 }
3533
3534 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3535 if (r) {
3536 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3537 cache_device_name(cache), r);
3538 goto err;
3539 }
3540
3541 residency = policy_residency(cache->policy);
3542
3543 DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %lu ",
3544 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3545 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3546 (unsigned long long)nr_blocks_metadata,
3547 cache->sectors_per_block,
3548 (unsigned long long) from_cblock(residency),
3549 (unsigned long long) from_cblock(cache->cache_size),
3550 (unsigned) atomic_read(&cache->stats.read_hit),
3551 (unsigned) atomic_read(&cache->stats.read_miss),
3552 (unsigned) atomic_read(&cache->stats.write_hit),
3553 (unsigned) atomic_read(&cache->stats.write_miss),
3554 (unsigned) atomic_read(&cache->stats.demotion),
3555 (unsigned) atomic_read(&cache->stats.promotion),
3556 (unsigned long) atomic_read(&cache->nr_dirty));
3557
3558 if (writethrough_mode(&cache->features))
3559 DMEMIT("1 writethrough ");
3560
3561 else if (passthrough_mode(&cache->features))
3562 DMEMIT("1 passthrough ");
3563
3564 else if (writeback_mode(&cache->features))
3565 DMEMIT("1 writeback ");
3566
3567 else {
3568 DMERR("%s: internal error: unknown io mode: %d",
3569 cache_device_name(cache), (int) cache->features.io_mode);
3570 goto err;
3571 }
3572
3573 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3574
3575 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3576 if (sz < maxlen) {
3577 r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3578 if (r)
3579 DMERR("%s: policy_emit_config_values returned %d",
3580 cache_device_name(cache), r);
3581 }
3582
3583 if (get_cache_mode(cache) == CM_READ_ONLY)
3584 DMEMIT("ro ");
3585 else
3586 DMEMIT("rw ");
3587
3588 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3589
3590 if (r || needs_check)
3591 DMEMIT("needs_check ");
3592 else
3593 DMEMIT("- ");
3594
3595 break;
3596
3597 case STATUSTYPE_TABLE:
3598 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3599 DMEMIT("%s ", buf);
3600 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3601 DMEMIT("%s ", buf);
3602 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3603 DMEMIT("%s", buf);
3604
3605 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3606 DMEMIT(" %s", cache->ctr_args[i]);
3607 if (cache->nr_ctr_args)
3608 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3609 }
3610
3611 return;
3612
3613 err:
3614 DMEMIT("Error");
3615 }
3616
3617 /*
3618 * A cache block range can take two forms:
3619 *
3620 * i) A single cblock, eg. '3456'
3621 * ii) A begin and end cblock with dots between, eg. 123-234
3622 */
3623 static int parse_cblock_range(struct cache *cache, const char *str,
3624 struct cblock_range *result)
3625 {
3626 char dummy;
3627 uint64_t b, e;
3628 int r;
3629
3630 /*
3631 * Try and parse form (ii) first.
3632 */
3633 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3634 if (r < 0)
3635 return r;
3636
3637 if (r == 2) {
3638 result->begin = to_cblock(b);
3639 result->end = to_cblock(e);
3640 return 0;
3641 }
3642
3643 /*
3644 * That didn't work, try form (i).
3645 */
3646 r = sscanf(str, "%llu%c", &b, &dummy);
3647 if (r < 0)
3648 return r;
3649
3650 if (r == 1) {
3651 result->begin = to_cblock(b);
3652 result->end = to_cblock(from_cblock(result->begin) + 1u);
3653 return 0;
3654 }
3655
3656 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3657 return -EINVAL;
3658 }
3659
3660 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3661 {
3662 uint64_t b = from_cblock(range->begin);
3663 uint64_t e = from_cblock(range->end);
3664 uint64_t n = from_cblock(cache->cache_size);
3665
3666 if (b >= n) {
3667 DMERR("%s: begin cblock out of range: %llu >= %llu",
3668 cache_device_name(cache), b, n);
3669 return -EINVAL;
3670 }
3671
3672 if (e > n) {
3673 DMERR("%s: end cblock out of range: %llu > %llu",
3674 cache_device_name(cache), e, n);
3675 return -EINVAL;
3676 }
3677
3678 if (b >= e) {
3679 DMERR("%s: invalid cblock range: %llu >= %llu",
3680 cache_device_name(cache), b, e);
3681 return -EINVAL;
3682 }
3683
3684 return 0;
3685 }
3686
3687 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3688 {
3689 struct invalidation_request req;
3690
3691 INIT_LIST_HEAD(&req.list);
3692 req.cblocks = range;
3693 atomic_set(&req.complete, 0);
3694 req.err = 0;
3695 init_waitqueue_head(&req.result_wait);
3696
3697 spin_lock(&cache->invalidation_lock);
3698 list_add(&req.list, &cache->invalidation_requests);
3699 spin_unlock(&cache->invalidation_lock);
3700 wake_worker(cache);
3701
3702 wait_event(req.result_wait, atomic_read(&req.complete));
3703 return req.err;
3704 }
3705
3706 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3707 const char **cblock_ranges)
3708 {
3709 int r = 0;
3710 unsigned i;
3711 struct cblock_range range;
3712
3713 if (!passthrough_mode(&cache->features)) {
3714 DMERR("%s: cache has to be in passthrough mode for invalidation",
3715 cache_device_name(cache));
3716 return -EPERM;
3717 }
3718
3719 for (i = 0; i < count; i++) {
3720 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3721 if (r)
3722 break;
3723
3724 r = validate_cblock_range(cache, &range);
3725 if (r)
3726 break;
3727
3728 /*
3729 * Pass begin and end origin blocks to the worker and wake it.
3730 */
3731 r = request_invalidation(cache, &range);
3732 if (r)
3733 break;
3734 }
3735
3736 return r;
3737 }
3738
3739 /*
3740 * Supports
3741 * "<key> <value>"
3742 * and
3743 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3744 *
3745 * The key migration_threshold is supported by the cache target core.
3746 */
3747 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3748 {
3749 struct cache *cache = ti->private;
3750
3751 if (!argc)
3752 return -EINVAL;
3753
3754 if (get_cache_mode(cache) >= CM_READ_ONLY) {
3755 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3756 cache_device_name(cache));
3757 return -EOPNOTSUPP;
3758 }
3759
3760 if (!strcasecmp(argv[0], "invalidate_cblocks"))
3761 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3762
3763 if (argc != 2)
3764 return -EINVAL;
3765
3766 return set_config_value(cache, argv[0], argv[1]);
3767 }
3768
3769 static int cache_iterate_devices(struct dm_target *ti,
3770 iterate_devices_callout_fn fn, void *data)
3771 {
3772 int r = 0;
3773 struct cache *cache = ti->private;
3774
3775 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3776 if (!r)
3777 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3778
3779 return r;
3780 }
3781
3782 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3783 {
3784 /*
3785 * FIXME: these limits may be incompatible with the cache device
3786 */
3787 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3788 cache->origin_sectors);
3789 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3790 }
3791
3792 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3793 {
3794 struct cache *cache = ti->private;
3795 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3796
3797 /*
3798 * If the system-determined stacked limits are compatible with the
3799 * cache's blocksize (io_opt is a factor) do not override them.
3800 */
3801 if (io_opt_sectors < cache->sectors_per_block ||
3802 do_div(io_opt_sectors, cache->sectors_per_block)) {
3803 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3804 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3805 }
3806 set_discard_limits(cache, limits);
3807 }
3808
3809 /*----------------------------------------------------------------*/
3810
3811 static struct target_type cache_target = {
3812 .name = "cache",
3813 .version = {1, 9, 0},
3814 .module = THIS_MODULE,
3815 .ctr = cache_ctr,
3816 .dtr = cache_dtr,
3817 .map = cache_map,
3818 .end_io = cache_end_io,
3819 .postsuspend = cache_postsuspend,
3820 .preresume = cache_preresume,
3821 .resume = cache_resume,
3822 .status = cache_status,
3823 .message = cache_message,
3824 .iterate_devices = cache_iterate_devices,
3825 .io_hints = cache_io_hints,
3826 };
3827
3828 static int __init dm_cache_init(void)
3829 {
3830 int r;
3831
3832 r = dm_register_target(&cache_target);
3833 if (r) {
3834 DMERR("cache target registration failed: %d", r);
3835 return r;
3836 }
3837
3838 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3839 if (!migration_cache) {
3840 dm_unregister_target(&cache_target);
3841 return -ENOMEM;
3842 }
3843
3844 return 0;
3845 }
3846
3847 static void __exit dm_cache_exit(void)
3848 {
3849 dm_unregister_target(&cache_target);
3850 kmem_cache_destroy(migration_cache);
3851 }
3852
3853 module_init(dm_cache_init);
3854 module_exit(dm_cache_exit);
3855
3856 MODULE_DESCRIPTION(DM_NAME " cache target");
3857 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3858 MODULE_LICENSE("GPL");