]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/md/dm-cache-target.c
bio: skip atomic inc/dec of ->bi_remaining for non-chains
[mirror_ubuntu-zesty-kernel.git] / drivers / md / dm-cache-target.c
1 /*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20
21 #define DM_MSG_PREFIX "cache"
22
23 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
24 "A percentage of time allocated for copying to and/or from cache");
25
26 /*----------------------------------------------------------------*/
27
28 /*
29 * Glossary:
30 *
31 * oblock: index of an origin block
32 * cblock: index of a cache block
33 * promotion: movement of a block from origin to cache
34 * demotion: movement of a block from cache to origin
35 * migration: movement of a block between the origin and cache device,
36 * either direction
37 */
38
39 /*----------------------------------------------------------------*/
40
41 static size_t bitset_size_in_bytes(unsigned nr_entries)
42 {
43 return sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG);
44 }
45
46 static unsigned long *alloc_bitset(unsigned nr_entries)
47 {
48 size_t s = bitset_size_in_bytes(nr_entries);
49 return vzalloc(s);
50 }
51
52 static void clear_bitset(void *bitset, unsigned nr_entries)
53 {
54 size_t s = bitset_size_in_bytes(nr_entries);
55 memset(bitset, 0, s);
56 }
57
58 static void free_bitset(unsigned long *bits)
59 {
60 vfree(bits);
61 }
62
63 /*----------------------------------------------------------------*/
64
65 /*
66 * There are a couple of places where we let a bio run, but want to do some
67 * work before calling its endio function. We do this by temporarily
68 * changing the endio fn.
69 */
70 struct dm_hook_info {
71 bio_end_io_t *bi_end_io;
72 void *bi_private;
73 };
74
75 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
76 bio_end_io_t *bi_end_io, void *bi_private)
77 {
78 h->bi_end_io = bio->bi_end_io;
79 h->bi_private = bio->bi_private;
80
81 bio->bi_end_io = bi_end_io;
82 bio->bi_private = bi_private;
83 }
84
85 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
86 {
87 bio->bi_end_io = h->bi_end_io;
88 bio->bi_private = h->bi_private;
89
90 /*
91 * Must bump bi_remaining to allow bio to complete with
92 * restored bi_end_io.
93 */
94 bio_inc_remaining(bio);
95 }
96
97 /*----------------------------------------------------------------*/
98
99 #define MIGRATION_POOL_SIZE 128
100 #define COMMIT_PERIOD HZ
101 #define MIGRATION_COUNT_WINDOW 10
102
103 /*
104 * The block size of the device holding cache data must be
105 * between 32KB and 1GB.
106 */
107 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
108 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
109
110 /*
111 * FIXME: the cache is read/write for the time being.
112 */
113 enum cache_metadata_mode {
114 CM_WRITE, /* metadata may be changed */
115 CM_READ_ONLY, /* metadata may not be changed */
116 };
117
118 enum cache_io_mode {
119 /*
120 * Data is written to cached blocks only. These blocks are marked
121 * dirty. If you lose the cache device you will lose data.
122 * Potential performance increase for both reads and writes.
123 */
124 CM_IO_WRITEBACK,
125
126 /*
127 * Data is written to both cache and origin. Blocks are never
128 * dirty. Potential performance benfit for reads only.
129 */
130 CM_IO_WRITETHROUGH,
131
132 /*
133 * A degraded mode useful for various cache coherency situations
134 * (eg, rolling back snapshots). Reads and writes always go to the
135 * origin. If a write goes to a cached oblock, then the cache
136 * block is invalidated.
137 */
138 CM_IO_PASSTHROUGH
139 };
140
141 struct cache_features {
142 enum cache_metadata_mode mode;
143 enum cache_io_mode io_mode;
144 };
145
146 struct cache_stats {
147 atomic_t read_hit;
148 atomic_t read_miss;
149 atomic_t write_hit;
150 atomic_t write_miss;
151 atomic_t demotion;
152 atomic_t promotion;
153 atomic_t copies_avoided;
154 atomic_t cache_cell_clash;
155 atomic_t commit_count;
156 atomic_t discard_count;
157 };
158
159 /*
160 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
161 * the one-past-the-end value.
162 */
163 struct cblock_range {
164 dm_cblock_t begin;
165 dm_cblock_t end;
166 };
167
168 struct invalidation_request {
169 struct list_head list;
170 struct cblock_range *cblocks;
171
172 atomic_t complete;
173 int err;
174
175 wait_queue_head_t result_wait;
176 };
177
178 struct cache {
179 struct dm_target *ti;
180 struct dm_target_callbacks callbacks;
181
182 struct dm_cache_metadata *cmd;
183
184 /*
185 * Metadata is written to this device.
186 */
187 struct dm_dev *metadata_dev;
188
189 /*
190 * The slower of the two data devices. Typically a spindle.
191 */
192 struct dm_dev *origin_dev;
193
194 /*
195 * The faster of the two data devices. Typically an SSD.
196 */
197 struct dm_dev *cache_dev;
198
199 /*
200 * Size of the origin device in _complete_ blocks and native sectors.
201 */
202 dm_oblock_t origin_blocks;
203 sector_t origin_sectors;
204
205 /*
206 * Size of the cache device in blocks.
207 */
208 dm_cblock_t cache_size;
209
210 /*
211 * Fields for converting from sectors to blocks.
212 */
213 uint32_t sectors_per_block;
214 int sectors_per_block_shift;
215
216 spinlock_t lock;
217 struct bio_list deferred_bios;
218 struct bio_list deferred_flush_bios;
219 struct bio_list deferred_writethrough_bios;
220 struct list_head quiesced_migrations;
221 struct list_head completed_migrations;
222 struct list_head need_commit_migrations;
223 sector_t migration_threshold;
224 wait_queue_head_t migration_wait;
225 atomic_t nr_allocated_migrations;
226
227 /*
228 * The number of in flight migrations that are performing
229 * background io. eg, promotion, writeback.
230 */
231 atomic_t nr_io_migrations;
232
233 wait_queue_head_t quiescing_wait;
234 atomic_t quiescing;
235 atomic_t quiescing_ack;
236
237 /*
238 * cache_size entries, dirty if set
239 */
240 atomic_t nr_dirty;
241 unsigned long *dirty_bitset;
242
243 /*
244 * origin_blocks entries, discarded if set.
245 */
246 dm_dblock_t discard_nr_blocks;
247 unsigned long *discard_bitset;
248 uint32_t discard_block_size; /* a power of 2 times sectors per block */
249
250 /*
251 * Rather than reconstructing the table line for the status we just
252 * save it and regurgitate.
253 */
254 unsigned nr_ctr_args;
255 const char **ctr_args;
256
257 struct dm_kcopyd_client *copier;
258 struct workqueue_struct *wq;
259 struct work_struct worker;
260
261 struct delayed_work waker;
262 unsigned long last_commit_jiffies;
263
264 struct dm_bio_prison *prison;
265 struct dm_deferred_set *all_io_ds;
266
267 mempool_t *migration_pool;
268
269 struct dm_cache_policy *policy;
270 unsigned policy_nr_args;
271
272 bool need_tick_bio:1;
273 bool sized:1;
274 bool invalidate:1;
275 bool commit_requested:1;
276 bool loaded_mappings:1;
277 bool loaded_discards:1;
278
279 /*
280 * Cache features such as write-through.
281 */
282 struct cache_features features;
283
284 struct cache_stats stats;
285
286 /*
287 * Invalidation fields.
288 */
289 spinlock_t invalidation_lock;
290 struct list_head invalidation_requests;
291 };
292
293 struct per_bio_data {
294 bool tick:1;
295 unsigned req_nr:2;
296 struct dm_deferred_entry *all_io_entry;
297 struct dm_hook_info hook_info;
298
299 /*
300 * writethrough fields. These MUST remain at the end of this
301 * structure and the 'cache' member must be the first as it
302 * is used to determine the offset of the writethrough fields.
303 */
304 struct cache *cache;
305 dm_cblock_t cblock;
306 struct dm_bio_details bio_details;
307 };
308
309 struct dm_cache_migration {
310 struct list_head list;
311 struct cache *cache;
312
313 unsigned long start_jiffies;
314 dm_oblock_t old_oblock;
315 dm_oblock_t new_oblock;
316 dm_cblock_t cblock;
317
318 bool err:1;
319 bool discard:1;
320 bool writeback:1;
321 bool demote:1;
322 bool promote:1;
323 bool requeue_holder:1;
324 bool invalidate:1;
325
326 struct dm_bio_prison_cell *old_ocell;
327 struct dm_bio_prison_cell *new_ocell;
328 };
329
330 /*
331 * Processing a bio in the worker thread may require these memory
332 * allocations. We prealloc to avoid deadlocks (the same worker thread
333 * frees them back to the mempool).
334 */
335 struct prealloc {
336 struct dm_cache_migration *mg;
337 struct dm_bio_prison_cell *cell1;
338 struct dm_bio_prison_cell *cell2;
339 };
340
341 static void wake_worker(struct cache *cache)
342 {
343 queue_work(cache->wq, &cache->worker);
344 }
345
346 /*----------------------------------------------------------------*/
347
348 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
349 {
350 /* FIXME: change to use a local slab. */
351 return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
352 }
353
354 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
355 {
356 dm_bio_prison_free_cell(cache->prison, cell);
357 }
358
359 static struct dm_cache_migration *alloc_migration(struct cache *cache)
360 {
361 struct dm_cache_migration *mg;
362
363 mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
364 if (mg) {
365 mg->cache = cache;
366 atomic_inc(&mg->cache->nr_allocated_migrations);
367 }
368
369 return mg;
370 }
371
372 static void free_migration(struct dm_cache_migration *mg)
373 {
374 if (atomic_dec_and_test(&mg->cache->nr_allocated_migrations))
375 wake_up(&mg->cache->migration_wait);
376
377 mempool_free(mg, mg->cache->migration_pool);
378 }
379
380 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
381 {
382 if (!p->mg) {
383 p->mg = alloc_migration(cache);
384 if (!p->mg)
385 return -ENOMEM;
386 }
387
388 if (!p->cell1) {
389 p->cell1 = alloc_prison_cell(cache);
390 if (!p->cell1)
391 return -ENOMEM;
392 }
393
394 if (!p->cell2) {
395 p->cell2 = alloc_prison_cell(cache);
396 if (!p->cell2)
397 return -ENOMEM;
398 }
399
400 return 0;
401 }
402
403 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
404 {
405 if (p->cell2)
406 free_prison_cell(cache, p->cell2);
407
408 if (p->cell1)
409 free_prison_cell(cache, p->cell1);
410
411 if (p->mg)
412 free_migration(p->mg);
413 }
414
415 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
416 {
417 struct dm_cache_migration *mg = p->mg;
418
419 BUG_ON(!mg);
420 p->mg = NULL;
421
422 return mg;
423 }
424
425 /*
426 * You must have a cell within the prealloc struct to return. If not this
427 * function will BUG() rather than returning NULL.
428 */
429 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
430 {
431 struct dm_bio_prison_cell *r = NULL;
432
433 if (p->cell1) {
434 r = p->cell1;
435 p->cell1 = NULL;
436
437 } else if (p->cell2) {
438 r = p->cell2;
439 p->cell2 = NULL;
440 } else
441 BUG();
442
443 return r;
444 }
445
446 /*
447 * You can't have more than two cells in a prealloc struct. BUG() will be
448 * called if you try and overfill.
449 */
450 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
451 {
452 if (!p->cell2)
453 p->cell2 = cell;
454
455 else if (!p->cell1)
456 p->cell1 = cell;
457
458 else
459 BUG();
460 }
461
462 /*----------------------------------------------------------------*/
463
464 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key *key)
465 {
466 key->virtual = 0;
467 key->dev = 0;
468 key->block_begin = from_oblock(begin);
469 key->block_end = from_oblock(end);
470 }
471
472 /*
473 * The caller hands in a preallocated cell, and a free function for it.
474 * The cell will be freed if there's an error, or if it wasn't used because
475 * a cell with that key already exists.
476 */
477 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
478
479 static int bio_detain_range(struct cache *cache, dm_oblock_t oblock_begin, dm_oblock_t oblock_end,
480 struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
481 cell_free_fn free_fn, void *free_context,
482 struct dm_bio_prison_cell **cell_result)
483 {
484 int r;
485 struct dm_cell_key key;
486
487 build_key(oblock_begin, oblock_end, &key);
488 r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
489 if (r)
490 free_fn(free_context, cell_prealloc);
491
492 return r;
493 }
494
495 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
496 struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
497 cell_free_fn free_fn, void *free_context,
498 struct dm_bio_prison_cell **cell_result)
499 {
500 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
501 return bio_detain_range(cache, oblock, end, bio,
502 cell_prealloc, free_fn, free_context, cell_result);
503 }
504
505 static int get_cell(struct cache *cache,
506 dm_oblock_t oblock,
507 struct prealloc *structs,
508 struct dm_bio_prison_cell **cell_result)
509 {
510 int r;
511 struct dm_cell_key key;
512 struct dm_bio_prison_cell *cell_prealloc;
513
514 cell_prealloc = prealloc_get_cell(structs);
515
516 build_key(oblock, to_oblock(from_oblock(oblock) + 1ULL), &key);
517 r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
518 if (r)
519 prealloc_put_cell(structs, cell_prealloc);
520
521 return r;
522 }
523
524 /*----------------------------------------------------------------*/
525
526 static bool is_dirty(struct cache *cache, dm_cblock_t b)
527 {
528 return test_bit(from_cblock(b), cache->dirty_bitset);
529 }
530
531 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
532 {
533 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
534 atomic_inc(&cache->nr_dirty);
535 policy_set_dirty(cache->policy, oblock);
536 }
537 }
538
539 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
540 {
541 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
542 policy_clear_dirty(cache->policy, oblock);
543 if (atomic_dec_return(&cache->nr_dirty) == 0)
544 dm_table_event(cache->ti->table);
545 }
546 }
547
548 /*----------------------------------------------------------------*/
549
550 static bool block_size_is_power_of_two(struct cache *cache)
551 {
552 return cache->sectors_per_block_shift >= 0;
553 }
554
555 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
556 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
557 __always_inline
558 #endif
559 static dm_block_t block_div(dm_block_t b, uint32_t n)
560 {
561 do_div(b, n);
562
563 return b;
564 }
565
566 static dm_block_t oblocks_per_dblock(struct cache *cache)
567 {
568 dm_block_t oblocks = cache->discard_block_size;
569
570 if (block_size_is_power_of_two(cache))
571 oblocks >>= cache->sectors_per_block_shift;
572 else
573 oblocks = block_div(oblocks, cache->sectors_per_block);
574
575 return oblocks;
576 }
577
578 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
579 {
580 return to_dblock(block_div(from_oblock(oblock),
581 oblocks_per_dblock(cache)));
582 }
583
584 static dm_oblock_t dblock_to_oblock(struct cache *cache, dm_dblock_t dblock)
585 {
586 return to_oblock(from_dblock(dblock) * oblocks_per_dblock(cache));
587 }
588
589 static void set_discard(struct cache *cache, dm_dblock_t b)
590 {
591 unsigned long flags;
592
593 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
594 atomic_inc(&cache->stats.discard_count);
595
596 spin_lock_irqsave(&cache->lock, flags);
597 set_bit(from_dblock(b), cache->discard_bitset);
598 spin_unlock_irqrestore(&cache->lock, flags);
599 }
600
601 static void clear_discard(struct cache *cache, dm_dblock_t b)
602 {
603 unsigned long flags;
604
605 spin_lock_irqsave(&cache->lock, flags);
606 clear_bit(from_dblock(b), cache->discard_bitset);
607 spin_unlock_irqrestore(&cache->lock, flags);
608 }
609
610 static bool is_discarded(struct cache *cache, dm_dblock_t b)
611 {
612 int r;
613 unsigned long flags;
614
615 spin_lock_irqsave(&cache->lock, flags);
616 r = test_bit(from_dblock(b), cache->discard_bitset);
617 spin_unlock_irqrestore(&cache->lock, flags);
618
619 return r;
620 }
621
622 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
623 {
624 int r;
625 unsigned long flags;
626
627 spin_lock_irqsave(&cache->lock, flags);
628 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
629 cache->discard_bitset);
630 spin_unlock_irqrestore(&cache->lock, flags);
631
632 return r;
633 }
634
635 /*----------------------------------------------------------------*/
636
637 static void load_stats(struct cache *cache)
638 {
639 struct dm_cache_statistics stats;
640
641 dm_cache_metadata_get_stats(cache->cmd, &stats);
642 atomic_set(&cache->stats.read_hit, stats.read_hits);
643 atomic_set(&cache->stats.read_miss, stats.read_misses);
644 atomic_set(&cache->stats.write_hit, stats.write_hits);
645 atomic_set(&cache->stats.write_miss, stats.write_misses);
646 }
647
648 static void save_stats(struct cache *cache)
649 {
650 struct dm_cache_statistics stats;
651
652 stats.read_hits = atomic_read(&cache->stats.read_hit);
653 stats.read_misses = atomic_read(&cache->stats.read_miss);
654 stats.write_hits = atomic_read(&cache->stats.write_hit);
655 stats.write_misses = atomic_read(&cache->stats.write_miss);
656
657 dm_cache_metadata_set_stats(cache->cmd, &stats);
658 }
659
660 /*----------------------------------------------------------------
661 * Per bio data
662 *--------------------------------------------------------------*/
663
664 /*
665 * If using writeback, leave out struct per_bio_data's writethrough fields.
666 */
667 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
668 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
669
670 static bool writethrough_mode(struct cache_features *f)
671 {
672 return f->io_mode == CM_IO_WRITETHROUGH;
673 }
674
675 static bool writeback_mode(struct cache_features *f)
676 {
677 return f->io_mode == CM_IO_WRITEBACK;
678 }
679
680 static bool passthrough_mode(struct cache_features *f)
681 {
682 return f->io_mode == CM_IO_PASSTHROUGH;
683 }
684
685 static size_t get_per_bio_data_size(struct cache *cache)
686 {
687 return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
688 }
689
690 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
691 {
692 struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
693 BUG_ON(!pb);
694 return pb;
695 }
696
697 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
698 {
699 struct per_bio_data *pb = get_per_bio_data(bio, data_size);
700
701 pb->tick = false;
702 pb->req_nr = dm_bio_get_target_bio_nr(bio);
703 pb->all_io_entry = NULL;
704
705 return pb;
706 }
707
708 /*----------------------------------------------------------------
709 * Remapping
710 *--------------------------------------------------------------*/
711 static void remap_to_origin(struct cache *cache, struct bio *bio)
712 {
713 bio->bi_bdev = cache->origin_dev->bdev;
714 }
715
716 static void remap_to_cache(struct cache *cache, struct bio *bio,
717 dm_cblock_t cblock)
718 {
719 sector_t bi_sector = bio->bi_iter.bi_sector;
720 sector_t block = from_cblock(cblock);
721
722 bio->bi_bdev = cache->cache_dev->bdev;
723 if (!block_size_is_power_of_two(cache))
724 bio->bi_iter.bi_sector =
725 (block * cache->sectors_per_block) +
726 sector_div(bi_sector, cache->sectors_per_block);
727 else
728 bio->bi_iter.bi_sector =
729 (block << cache->sectors_per_block_shift) |
730 (bi_sector & (cache->sectors_per_block - 1));
731 }
732
733 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
734 {
735 unsigned long flags;
736 size_t pb_data_size = get_per_bio_data_size(cache);
737 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
738
739 spin_lock_irqsave(&cache->lock, flags);
740 if (cache->need_tick_bio &&
741 !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
742 pb->tick = true;
743 cache->need_tick_bio = false;
744 }
745 spin_unlock_irqrestore(&cache->lock, flags);
746 }
747
748 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
749 dm_oblock_t oblock)
750 {
751 check_if_tick_bio_needed(cache, bio);
752 remap_to_origin(cache, bio);
753 if (bio_data_dir(bio) == WRITE)
754 clear_discard(cache, oblock_to_dblock(cache, oblock));
755 }
756
757 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
758 dm_oblock_t oblock, dm_cblock_t cblock)
759 {
760 check_if_tick_bio_needed(cache, bio);
761 remap_to_cache(cache, bio, cblock);
762 if (bio_data_dir(bio) == WRITE) {
763 set_dirty(cache, oblock, cblock);
764 clear_discard(cache, oblock_to_dblock(cache, oblock));
765 }
766 }
767
768 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
769 {
770 sector_t block_nr = bio->bi_iter.bi_sector;
771
772 if (!block_size_is_power_of_two(cache))
773 (void) sector_div(block_nr, cache->sectors_per_block);
774 else
775 block_nr >>= cache->sectors_per_block_shift;
776
777 return to_oblock(block_nr);
778 }
779
780 static int bio_triggers_commit(struct cache *cache, struct bio *bio)
781 {
782 return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
783 }
784
785 /*
786 * You must increment the deferred set whilst the prison cell is held. To
787 * encourage this, we ask for 'cell' to be passed in.
788 */
789 static void inc_ds(struct cache *cache, struct bio *bio,
790 struct dm_bio_prison_cell *cell)
791 {
792 size_t pb_data_size = get_per_bio_data_size(cache);
793 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
794
795 BUG_ON(!cell);
796 BUG_ON(pb->all_io_entry);
797
798 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
799 }
800
801 static void issue(struct cache *cache, struct bio *bio)
802 {
803 unsigned long flags;
804
805 if (!bio_triggers_commit(cache, bio)) {
806 generic_make_request(bio);
807 return;
808 }
809
810 /*
811 * Batch together any bios that trigger commits and then issue a
812 * single commit for them in do_worker().
813 */
814 spin_lock_irqsave(&cache->lock, flags);
815 cache->commit_requested = true;
816 bio_list_add(&cache->deferred_flush_bios, bio);
817 spin_unlock_irqrestore(&cache->lock, flags);
818 }
819
820 static void inc_and_issue(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell *cell)
821 {
822 inc_ds(cache, bio, cell);
823 issue(cache, bio);
824 }
825
826 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
827 {
828 unsigned long flags;
829
830 spin_lock_irqsave(&cache->lock, flags);
831 bio_list_add(&cache->deferred_writethrough_bios, bio);
832 spin_unlock_irqrestore(&cache->lock, flags);
833
834 wake_worker(cache);
835 }
836
837 static void writethrough_endio(struct bio *bio, int err)
838 {
839 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
840
841 dm_unhook_bio(&pb->hook_info, bio);
842
843 if (err) {
844 bio_endio(bio, err);
845 return;
846 }
847
848 dm_bio_restore(&pb->bio_details, bio);
849 remap_to_cache(pb->cache, bio, pb->cblock);
850
851 /*
852 * We can't issue this bio directly, since we're in interrupt
853 * context. So it gets put on a bio list for processing by the
854 * worker thread.
855 */
856 defer_writethrough_bio(pb->cache, bio);
857 }
858
859 /*
860 * When running in writethrough mode we need to send writes to clean blocks
861 * to both the cache and origin devices. In future we'd like to clone the
862 * bio and send them in parallel, but for now we're doing them in
863 * series as this is easier.
864 */
865 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
866 dm_oblock_t oblock, dm_cblock_t cblock)
867 {
868 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
869
870 pb->cache = cache;
871 pb->cblock = cblock;
872 dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
873 dm_bio_record(&pb->bio_details, bio);
874
875 remap_to_origin_clear_discard(pb->cache, bio, oblock);
876 }
877
878 /*----------------------------------------------------------------
879 * Migration processing
880 *
881 * Migration covers moving data from the origin device to the cache, or
882 * vice versa.
883 *--------------------------------------------------------------*/
884 static void inc_io_migrations(struct cache *cache)
885 {
886 atomic_inc(&cache->nr_io_migrations);
887 }
888
889 static void dec_io_migrations(struct cache *cache)
890 {
891 atomic_dec(&cache->nr_io_migrations);
892 }
893
894 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
895 bool holder)
896 {
897 (holder ? dm_cell_release : dm_cell_release_no_holder)
898 (cache->prison, cell, &cache->deferred_bios);
899 free_prison_cell(cache, cell);
900 }
901
902 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
903 bool holder)
904 {
905 unsigned long flags;
906
907 spin_lock_irqsave(&cache->lock, flags);
908 __cell_defer(cache, cell, holder);
909 spin_unlock_irqrestore(&cache->lock, flags);
910
911 wake_worker(cache);
912 }
913
914 static void free_io_migration(struct dm_cache_migration *mg)
915 {
916 dec_io_migrations(mg->cache);
917 free_migration(mg);
918 }
919
920 static void migration_failure(struct dm_cache_migration *mg)
921 {
922 struct cache *cache = mg->cache;
923
924 if (mg->writeback) {
925 DMWARN_LIMIT("writeback failed; couldn't copy block");
926 set_dirty(cache, mg->old_oblock, mg->cblock);
927 cell_defer(cache, mg->old_ocell, false);
928
929 } else if (mg->demote) {
930 DMWARN_LIMIT("demotion failed; couldn't copy block");
931 policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
932
933 cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
934 if (mg->promote)
935 cell_defer(cache, mg->new_ocell, true);
936 } else {
937 DMWARN_LIMIT("promotion failed; couldn't copy block");
938 policy_remove_mapping(cache->policy, mg->new_oblock);
939 cell_defer(cache, mg->new_ocell, true);
940 }
941
942 free_io_migration(mg);
943 }
944
945 static void migration_success_pre_commit(struct dm_cache_migration *mg)
946 {
947 unsigned long flags;
948 struct cache *cache = mg->cache;
949
950 if (mg->writeback) {
951 clear_dirty(cache, mg->old_oblock, mg->cblock);
952 cell_defer(cache, mg->old_ocell, false);
953 free_io_migration(mg);
954 return;
955
956 } else if (mg->demote) {
957 if (dm_cache_remove_mapping(cache->cmd, mg->cblock)) {
958 DMWARN_LIMIT("demotion failed; couldn't update on disk metadata");
959 policy_force_mapping(cache->policy, mg->new_oblock,
960 mg->old_oblock);
961 if (mg->promote)
962 cell_defer(cache, mg->new_ocell, true);
963 free_io_migration(mg);
964 return;
965 }
966 } else {
967 if (dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock)) {
968 DMWARN_LIMIT("promotion failed; couldn't update on disk metadata");
969 policy_remove_mapping(cache->policy, mg->new_oblock);
970 free_io_migration(mg);
971 return;
972 }
973 }
974
975 spin_lock_irqsave(&cache->lock, flags);
976 list_add_tail(&mg->list, &cache->need_commit_migrations);
977 cache->commit_requested = true;
978 spin_unlock_irqrestore(&cache->lock, flags);
979 }
980
981 static void migration_success_post_commit(struct dm_cache_migration *mg)
982 {
983 unsigned long flags;
984 struct cache *cache = mg->cache;
985
986 if (mg->writeback) {
987 DMWARN("writeback unexpectedly triggered commit");
988 return;
989
990 } else if (mg->demote) {
991 cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
992
993 if (mg->promote) {
994 mg->demote = false;
995
996 spin_lock_irqsave(&cache->lock, flags);
997 list_add_tail(&mg->list, &cache->quiesced_migrations);
998 spin_unlock_irqrestore(&cache->lock, flags);
999
1000 } else {
1001 if (mg->invalidate)
1002 policy_remove_mapping(cache->policy, mg->old_oblock);
1003 free_io_migration(mg);
1004 }
1005
1006 } else {
1007 if (mg->requeue_holder) {
1008 clear_dirty(cache, mg->new_oblock, mg->cblock);
1009 cell_defer(cache, mg->new_ocell, true);
1010 } else {
1011 /*
1012 * The block was promoted via an overwrite, so it's dirty.
1013 */
1014 set_dirty(cache, mg->new_oblock, mg->cblock);
1015 bio_endio(mg->new_ocell->holder, 0);
1016 cell_defer(cache, mg->new_ocell, false);
1017 }
1018 free_io_migration(mg);
1019 }
1020 }
1021
1022 static void copy_complete(int read_err, unsigned long write_err, void *context)
1023 {
1024 unsigned long flags;
1025 struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
1026 struct cache *cache = mg->cache;
1027
1028 if (read_err || write_err)
1029 mg->err = true;
1030
1031 spin_lock_irqsave(&cache->lock, flags);
1032 list_add_tail(&mg->list, &cache->completed_migrations);
1033 spin_unlock_irqrestore(&cache->lock, flags);
1034
1035 wake_worker(cache);
1036 }
1037
1038 static void issue_copy(struct dm_cache_migration *mg)
1039 {
1040 int r;
1041 struct dm_io_region o_region, c_region;
1042 struct cache *cache = mg->cache;
1043 sector_t cblock = from_cblock(mg->cblock);
1044
1045 o_region.bdev = cache->origin_dev->bdev;
1046 o_region.count = cache->sectors_per_block;
1047
1048 c_region.bdev = cache->cache_dev->bdev;
1049 c_region.sector = cblock * cache->sectors_per_block;
1050 c_region.count = cache->sectors_per_block;
1051
1052 if (mg->writeback || mg->demote) {
1053 /* demote */
1054 o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
1055 r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
1056 } else {
1057 /* promote */
1058 o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
1059 r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
1060 }
1061
1062 if (r < 0) {
1063 DMERR_LIMIT("issuing migration failed");
1064 migration_failure(mg);
1065 }
1066 }
1067
1068 static void overwrite_endio(struct bio *bio, int err)
1069 {
1070 struct dm_cache_migration *mg = bio->bi_private;
1071 struct cache *cache = mg->cache;
1072 size_t pb_data_size = get_per_bio_data_size(cache);
1073 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1074 unsigned long flags;
1075
1076 dm_unhook_bio(&pb->hook_info, bio);
1077
1078 if (err)
1079 mg->err = true;
1080
1081 mg->requeue_holder = false;
1082
1083 spin_lock_irqsave(&cache->lock, flags);
1084 list_add_tail(&mg->list, &cache->completed_migrations);
1085 spin_unlock_irqrestore(&cache->lock, flags);
1086
1087 wake_worker(cache);
1088 }
1089
1090 static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
1091 {
1092 size_t pb_data_size = get_per_bio_data_size(mg->cache);
1093 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1094
1095 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1096 remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1097
1098 /*
1099 * No need to inc_ds() here, since the cell will be held for the
1100 * duration of the io.
1101 */
1102 generic_make_request(bio);
1103 }
1104
1105 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1106 {
1107 return (bio_data_dir(bio) == WRITE) &&
1108 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1109 }
1110
1111 static void avoid_copy(struct dm_cache_migration *mg)
1112 {
1113 atomic_inc(&mg->cache->stats.copies_avoided);
1114 migration_success_pre_commit(mg);
1115 }
1116
1117 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1118 dm_dblock_t *b, dm_dblock_t *e)
1119 {
1120 sector_t sb = bio->bi_iter.bi_sector;
1121 sector_t se = bio_end_sector(bio);
1122
1123 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1124
1125 if (se - sb < cache->discard_block_size)
1126 *e = *b;
1127 else
1128 *e = to_dblock(block_div(se, cache->discard_block_size));
1129 }
1130
1131 static void issue_discard(struct dm_cache_migration *mg)
1132 {
1133 dm_dblock_t b, e;
1134 struct bio *bio = mg->new_ocell->holder;
1135
1136 calc_discard_block_range(mg->cache, bio, &b, &e);
1137 while (b != e) {
1138 set_discard(mg->cache, b);
1139 b = to_dblock(from_dblock(b) + 1);
1140 }
1141
1142 bio_endio(bio, 0);
1143 cell_defer(mg->cache, mg->new_ocell, false);
1144 free_migration(mg);
1145 }
1146
1147 static void issue_copy_or_discard(struct dm_cache_migration *mg)
1148 {
1149 bool avoid;
1150 struct cache *cache = mg->cache;
1151
1152 if (mg->discard) {
1153 issue_discard(mg);
1154 return;
1155 }
1156
1157 if (mg->writeback || mg->demote)
1158 avoid = !is_dirty(cache, mg->cblock) ||
1159 is_discarded_oblock(cache, mg->old_oblock);
1160 else {
1161 struct bio *bio = mg->new_ocell->holder;
1162
1163 avoid = is_discarded_oblock(cache, mg->new_oblock);
1164
1165 if (writeback_mode(&cache->features) &&
1166 !avoid && bio_writes_complete_block(cache, bio)) {
1167 issue_overwrite(mg, bio);
1168 return;
1169 }
1170 }
1171
1172 avoid ? avoid_copy(mg) : issue_copy(mg);
1173 }
1174
1175 static void complete_migration(struct dm_cache_migration *mg)
1176 {
1177 if (mg->err)
1178 migration_failure(mg);
1179 else
1180 migration_success_pre_commit(mg);
1181 }
1182
1183 static void process_migrations(struct cache *cache, struct list_head *head,
1184 void (*fn)(struct dm_cache_migration *))
1185 {
1186 unsigned long flags;
1187 struct list_head list;
1188 struct dm_cache_migration *mg, *tmp;
1189
1190 INIT_LIST_HEAD(&list);
1191 spin_lock_irqsave(&cache->lock, flags);
1192 list_splice_init(head, &list);
1193 spin_unlock_irqrestore(&cache->lock, flags);
1194
1195 list_for_each_entry_safe(mg, tmp, &list, list)
1196 fn(mg);
1197 }
1198
1199 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1200 {
1201 list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
1202 }
1203
1204 static void queue_quiesced_migration(struct dm_cache_migration *mg)
1205 {
1206 unsigned long flags;
1207 struct cache *cache = mg->cache;
1208
1209 spin_lock_irqsave(&cache->lock, flags);
1210 __queue_quiesced_migration(mg);
1211 spin_unlock_irqrestore(&cache->lock, flags);
1212
1213 wake_worker(cache);
1214 }
1215
1216 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1217 {
1218 unsigned long flags;
1219 struct dm_cache_migration *mg, *tmp;
1220
1221 spin_lock_irqsave(&cache->lock, flags);
1222 list_for_each_entry_safe(mg, tmp, work, list)
1223 __queue_quiesced_migration(mg);
1224 spin_unlock_irqrestore(&cache->lock, flags);
1225
1226 wake_worker(cache);
1227 }
1228
1229 static void check_for_quiesced_migrations(struct cache *cache,
1230 struct per_bio_data *pb)
1231 {
1232 struct list_head work;
1233
1234 if (!pb->all_io_entry)
1235 return;
1236
1237 INIT_LIST_HEAD(&work);
1238 dm_deferred_entry_dec(pb->all_io_entry, &work);
1239
1240 if (!list_empty(&work))
1241 queue_quiesced_migrations(cache, &work);
1242 }
1243
1244 static void quiesce_migration(struct dm_cache_migration *mg)
1245 {
1246 if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1247 queue_quiesced_migration(mg);
1248 }
1249
1250 static void promote(struct cache *cache, struct prealloc *structs,
1251 dm_oblock_t oblock, dm_cblock_t cblock,
1252 struct dm_bio_prison_cell *cell)
1253 {
1254 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1255
1256 mg->err = false;
1257 mg->discard = false;
1258 mg->writeback = false;
1259 mg->demote = false;
1260 mg->promote = true;
1261 mg->requeue_holder = true;
1262 mg->invalidate = false;
1263 mg->cache = cache;
1264 mg->new_oblock = oblock;
1265 mg->cblock = cblock;
1266 mg->old_ocell = NULL;
1267 mg->new_ocell = cell;
1268 mg->start_jiffies = jiffies;
1269
1270 inc_io_migrations(cache);
1271 quiesce_migration(mg);
1272 }
1273
1274 static void writeback(struct cache *cache, struct prealloc *structs,
1275 dm_oblock_t oblock, dm_cblock_t cblock,
1276 struct dm_bio_prison_cell *cell)
1277 {
1278 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1279
1280 mg->err = false;
1281 mg->discard = false;
1282 mg->writeback = true;
1283 mg->demote = false;
1284 mg->promote = false;
1285 mg->requeue_holder = true;
1286 mg->invalidate = false;
1287 mg->cache = cache;
1288 mg->old_oblock = oblock;
1289 mg->cblock = cblock;
1290 mg->old_ocell = cell;
1291 mg->new_ocell = NULL;
1292 mg->start_jiffies = jiffies;
1293
1294 inc_io_migrations(cache);
1295 quiesce_migration(mg);
1296 }
1297
1298 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1299 dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1300 dm_cblock_t cblock,
1301 struct dm_bio_prison_cell *old_ocell,
1302 struct dm_bio_prison_cell *new_ocell)
1303 {
1304 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1305
1306 mg->err = false;
1307 mg->discard = false;
1308 mg->writeback = false;
1309 mg->demote = true;
1310 mg->promote = true;
1311 mg->requeue_holder = true;
1312 mg->invalidate = false;
1313 mg->cache = cache;
1314 mg->old_oblock = old_oblock;
1315 mg->new_oblock = new_oblock;
1316 mg->cblock = cblock;
1317 mg->old_ocell = old_ocell;
1318 mg->new_ocell = new_ocell;
1319 mg->start_jiffies = jiffies;
1320
1321 inc_io_migrations(cache);
1322 quiesce_migration(mg);
1323 }
1324
1325 /*
1326 * Invalidate a cache entry. No writeback occurs; any changes in the cache
1327 * block are thrown away.
1328 */
1329 static void invalidate(struct cache *cache, struct prealloc *structs,
1330 dm_oblock_t oblock, dm_cblock_t cblock,
1331 struct dm_bio_prison_cell *cell)
1332 {
1333 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1334
1335 mg->err = false;
1336 mg->discard = false;
1337 mg->writeback = false;
1338 mg->demote = true;
1339 mg->promote = false;
1340 mg->requeue_holder = true;
1341 mg->invalidate = true;
1342 mg->cache = cache;
1343 mg->old_oblock = oblock;
1344 mg->cblock = cblock;
1345 mg->old_ocell = cell;
1346 mg->new_ocell = NULL;
1347 mg->start_jiffies = jiffies;
1348
1349 inc_io_migrations(cache);
1350 quiesce_migration(mg);
1351 }
1352
1353 static void discard(struct cache *cache, struct prealloc *structs,
1354 struct dm_bio_prison_cell *cell)
1355 {
1356 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1357
1358 mg->err = false;
1359 mg->discard = true;
1360 mg->writeback = false;
1361 mg->demote = false;
1362 mg->promote = false;
1363 mg->requeue_holder = false;
1364 mg->invalidate = false;
1365 mg->cache = cache;
1366 mg->old_ocell = NULL;
1367 mg->new_ocell = cell;
1368 mg->start_jiffies = jiffies;
1369
1370 quiesce_migration(mg);
1371 }
1372
1373 /*----------------------------------------------------------------
1374 * bio processing
1375 *--------------------------------------------------------------*/
1376 static void defer_bio(struct cache *cache, struct bio *bio)
1377 {
1378 unsigned long flags;
1379
1380 spin_lock_irqsave(&cache->lock, flags);
1381 bio_list_add(&cache->deferred_bios, bio);
1382 spin_unlock_irqrestore(&cache->lock, flags);
1383
1384 wake_worker(cache);
1385 }
1386
1387 static void process_flush_bio(struct cache *cache, struct bio *bio)
1388 {
1389 size_t pb_data_size = get_per_bio_data_size(cache);
1390 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1391
1392 BUG_ON(bio->bi_iter.bi_size);
1393 if (!pb->req_nr)
1394 remap_to_origin(cache, bio);
1395 else
1396 remap_to_cache(cache, bio, 0);
1397
1398 /*
1399 * REQ_FLUSH is not directed at any particular block so we don't
1400 * need to inc_ds(). REQ_FUA's are split into a write + REQ_FLUSH
1401 * by dm-core.
1402 */
1403 issue(cache, bio);
1404 }
1405
1406 static void process_discard_bio(struct cache *cache, struct prealloc *structs,
1407 struct bio *bio)
1408 {
1409 int r;
1410 dm_dblock_t b, e;
1411 struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1412
1413 calc_discard_block_range(cache, bio, &b, &e);
1414 if (b == e) {
1415 bio_endio(bio, 0);
1416 return;
1417 }
1418
1419 cell_prealloc = prealloc_get_cell(structs);
1420 r = bio_detain_range(cache, dblock_to_oblock(cache, b), dblock_to_oblock(cache, e), bio, cell_prealloc,
1421 (cell_free_fn) prealloc_put_cell,
1422 structs, &new_ocell);
1423 if (r > 0)
1424 return;
1425
1426 discard(cache, structs, new_ocell);
1427 }
1428
1429 static bool spare_migration_bandwidth(struct cache *cache)
1430 {
1431 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1432 cache->sectors_per_block;
1433 return current_volume < cache->migration_threshold;
1434 }
1435
1436 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1437 {
1438 atomic_inc(bio_data_dir(bio) == READ ?
1439 &cache->stats.read_hit : &cache->stats.write_hit);
1440 }
1441
1442 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1443 {
1444 atomic_inc(bio_data_dir(bio) == READ ?
1445 &cache->stats.read_miss : &cache->stats.write_miss);
1446 }
1447
1448 static void process_bio(struct cache *cache, struct prealloc *structs,
1449 struct bio *bio)
1450 {
1451 int r;
1452 bool release_cell = true;
1453 dm_oblock_t block = get_bio_block(cache, bio);
1454 struct dm_bio_prison_cell *cell_prealloc, *old_ocell, *new_ocell;
1455 struct policy_result lookup_result;
1456 bool passthrough = passthrough_mode(&cache->features);
1457 bool discarded_block, can_migrate;
1458
1459 /*
1460 * Check to see if that block is currently migrating.
1461 */
1462 cell_prealloc = prealloc_get_cell(structs);
1463 r = bio_detain(cache, block, bio, cell_prealloc,
1464 (cell_free_fn) prealloc_put_cell,
1465 structs, &new_ocell);
1466 if (r > 0)
1467 return;
1468
1469 discarded_block = is_discarded_oblock(cache, block);
1470 can_migrate = !passthrough && (discarded_block || spare_migration_bandwidth(cache));
1471
1472 r = policy_map(cache->policy, block, true, can_migrate, discarded_block,
1473 bio, &lookup_result);
1474
1475 if (r == -EWOULDBLOCK)
1476 /* migration has been denied */
1477 lookup_result.op = POLICY_MISS;
1478
1479 switch (lookup_result.op) {
1480 case POLICY_HIT:
1481 if (passthrough) {
1482 inc_miss_counter(cache, bio);
1483
1484 /*
1485 * Passthrough always maps to the origin,
1486 * invalidating any cache blocks that are written
1487 * to.
1488 */
1489
1490 if (bio_data_dir(bio) == WRITE) {
1491 atomic_inc(&cache->stats.demotion);
1492 invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1493 release_cell = false;
1494
1495 } else {
1496 /* FIXME: factor out issue_origin() */
1497 remap_to_origin_clear_discard(cache, bio, block);
1498 inc_and_issue(cache, bio, new_ocell);
1499 }
1500 } else {
1501 inc_hit_counter(cache, bio);
1502
1503 if (bio_data_dir(bio) == WRITE &&
1504 writethrough_mode(&cache->features) &&
1505 !is_dirty(cache, lookup_result.cblock)) {
1506 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1507 inc_and_issue(cache, bio, new_ocell);
1508
1509 } else {
1510 remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
1511 inc_and_issue(cache, bio, new_ocell);
1512 }
1513 }
1514
1515 break;
1516
1517 case POLICY_MISS:
1518 inc_miss_counter(cache, bio);
1519 remap_to_origin_clear_discard(cache, bio, block);
1520 inc_and_issue(cache, bio, new_ocell);
1521 break;
1522
1523 case POLICY_NEW:
1524 atomic_inc(&cache->stats.promotion);
1525 promote(cache, structs, block, lookup_result.cblock, new_ocell);
1526 release_cell = false;
1527 break;
1528
1529 case POLICY_REPLACE:
1530 cell_prealloc = prealloc_get_cell(structs);
1531 r = bio_detain(cache, lookup_result.old_oblock, bio, cell_prealloc,
1532 (cell_free_fn) prealloc_put_cell,
1533 structs, &old_ocell);
1534 if (r > 0) {
1535 /*
1536 * We have to be careful to avoid lock inversion of
1537 * the cells. So we back off, and wait for the
1538 * old_ocell to become free.
1539 */
1540 policy_force_mapping(cache->policy, block,
1541 lookup_result.old_oblock);
1542 atomic_inc(&cache->stats.cache_cell_clash);
1543 break;
1544 }
1545 atomic_inc(&cache->stats.demotion);
1546 atomic_inc(&cache->stats.promotion);
1547
1548 demote_then_promote(cache, structs, lookup_result.old_oblock,
1549 block, lookup_result.cblock,
1550 old_ocell, new_ocell);
1551 release_cell = false;
1552 break;
1553
1554 default:
1555 DMERR_LIMIT("%s: erroring bio, unknown policy op: %u", __func__,
1556 (unsigned) lookup_result.op);
1557 bio_io_error(bio);
1558 }
1559
1560 if (release_cell)
1561 cell_defer(cache, new_ocell, false);
1562 }
1563
1564 static int need_commit_due_to_time(struct cache *cache)
1565 {
1566 return !time_in_range(jiffies, cache->last_commit_jiffies,
1567 cache->last_commit_jiffies + COMMIT_PERIOD);
1568 }
1569
1570 static int commit_if_needed(struct cache *cache)
1571 {
1572 int r = 0;
1573
1574 if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1575 dm_cache_changed_this_transaction(cache->cmd)) {
1576 atomic_inc(&cache->stats.commit_count);
1577 cache->commit_requested = false;
1578 r = dm_cache_commit(cache->cmd, false);
1579 cache->last_commit_jiffies = jiffies;
1580 }
1581
1582 return r;
1583 }
1584
1585 static void process_deferred_bios(struct cache *cache)
1586 {
1587 unsigned long flags;
1588 struct bio_list bios;
1589 struct bio *bio;
1590 struct prealloc structs;
1591
1592 memset(&structs, 0, sizeof(structs));
1593 bio_list_init(&bios);
1594
1595 spin_lock_irqsave(&cache->lock, flags);
1596 bio_list_merge(&bios, &cache->deferred_bios);
1597 bio_list_init(&cache->deferred_bios);
1598 spin_unlock_irqrestore(&cache->lock, flags);
1599
1600 while (!bio_list_empty(&bios)) {
1601 /*
1602 * If we've got no free migration structs, and processing
1603 * this bio might require one, we pause until there are some
1604 * prepared mappings to process.
1605 */
1606 if (prealloc_data_structs(cache, &structs)) {
1607 spin_lock_irqsave(&cache->lock, flags);
1608 bio_list_merge(&cache->deferred_bios, &bios);
1609 spin_unlock_irqrestore(&cache->lock, flags);
1610 break;
1611 }
1612
1613 bio = bio_list_pop(&bios);
1614
1615 if (bio->bi_rw & REQ_FLUSH)
1616 process_flush_bio(cache, bio);
1617 else if (bio->bi_rw & REQ_DISCARD)
1618 process_discard_bio(cache, &structs, bio);
1619 else
1620 process_bio(cache, &structs, bio);
1621 }
1622
1623 prealloc_free_structs(cache, &structs);
1624 }
1625
1626 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
1627 {
1628 unsigned long flags;
1629 struct bio_list bios;
1630 struct bio *bio;
1631
1632 bio_list_init(&bios);
1633
1634 spin_lock_irqsave(&cache->lock, flags);
1635 bio_list_merge(&bios, &cache->deferred_flush_bios);
1636 bio_list_init(&cache->deferred_flush_bios);
1637 spin_unlock_irqrestore(&cache->lock, flags);
1638
1639 /*
1640 * These bios have already been through inc_ds()
1641 */
1642 while ((bio = bio_list_pop(&bios)))
1643 submit_bios ? generic_make_request(bio) : bio_io_error(bio);
1644 }
1645
1646 static void process_deferred_writethrough_bios(struct cache *cache)
1647 {
1648 unsigned long flags;
1649 struct bio_list bios;
1650 struct bio *bio;
1651
1652 bio_list_init(&bios);
1653
1654 spin_lock_irqsave(&cache->lock, flags);
1655 bio_list_merge(&bios, &cache->deferred_writethrough_bios);
1656 bio_list_init(&cache->deferred_writethrough_bios);
1657 spin_unlock_irqrestore(&cache->lock, flags);
1658
1659 /*
1660 * These bios have already been through inc_ds()
1661 */
1662 while ((bio = bio_list_pop(&bios)))
1663 generic_make_request(bio);
1664 }
1665
1666 static void writeback_some_dirty_blocks(struct cache *cache)
1667 {
1668 int r = 0;
1669 dm_oblock_t oblock;
1670 dm_cblock_t cblock;
1671 struct prealloc structs;
1672 struct dm_bio_prison_cell *old_ocell;
1673
1674 memset(&structs, 0, sizeof(structs));
1675
1676 while (spare_migration_bandwidth(cache)) {
1677 if (prealloc_data_structs(cache, &structs))
1678 break;
1679
1680 r = policy_writeback_work(cache->policy, &oblock, &cblock);
1681 if (r)
1682 break;
1683
1684 r = get_cell(cache, oblock, &structs, &old_ocell);
1685 if (r) {
1686 policy_set_dirty(cache->policy, oblock);
1687 break;
1688 }
1689
1690 writeback(cache, &structs, oblock, cblock, old_ocell);
1691 }
1692
1693 prealloc_free_structs(cache, &structs);
1694 }
1695
1696 /*----------------------------------------------------------------
1697 * Invalidations.
1698 * Dropping something from the cache *without* writing back.
1699 *--------------------------------------------------------------*/
1700
1701 static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
1702 {
1703 int r = 0;
1704 uint64_t begin = from_cblock(req->cblocks->begin);
1705 uint64_t end = from_cblock(req->cblocks->end);
1706
1707 while (begin != end) {
1708 r = policy_remove_cblock(cache->policy, to_cblock(begin));
1709 if (!r) {
1710 r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
1711 if (r)
1712 break;
1713
1714 } else if (r == -ENODATA) {
1715 /* harmless, already unmapped */
1716 r = 0;
1717
1718 } else {
1719 DMERR("policy_remove_cblock failed");
1720 break;
1721 }
1722
1723 begin++;
1724 }
1725
1726 cache->commit_requested = true;
1727
1728 req->err = r;
1729 atomic_set(&req->complete, 1);
1730
1731 wake_up(&req->result_wait);
1732 }
1733
1734 static void process_invalidation_requests(struct cache *cache)
1735 {
1736 struct list_head list;
1737 struct invalidation_request *req, *tmp;
1738
1739 INIT_LIST_HEAD(&list);
1740 spin_lock(&cache->invalidation_lock);
1741 list_splice_init(&cache->invalidation_requests, &list);
1742 spin_unlock(&cache->invalidation_lock);
1743
1744 list_for_each_entry_safe (req, tmp, &list, list)
1745 process_invalidation_request(cache, req);
1746 }
1747
1748 /*----------------------------------------------------------------
1749 * Main worker loop
1750 *--------------------------------------------------------------*/
1751 static bool is_quiescing(struct cache *cache)
1752 {
1753 return atomic_read(&cache->quiescing);
1754 }
1755
1756 static void ack_quiescing(struct cache *cache)
1757 {
1758 if (is_quiescing(cache)) {
1759 atomic_inc(&cache->quiescing_ack);
1760 wake_up(&cache->quiescing_wait);
1761 }
1762 }
1763
1764 static void wait_for_quiescing_ack(struct cache *cache)
1765 {
1766 wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
1767 }
1768
1769 static void start_quiescing(struct cache *cache)
1770 {
1771 atomic_inc(&cache->quiescing);
1772 wait_for_quiescing_ack(cache);
1773 }
1774
1775 static void stop_quiescing(struct cache *cache)
1776 {
1777 atomic_set(&cache->quiescing, 0);
1778 atomic_set(&cache->quiescing_ack, 0);
1779 }
1780
1781 static void wait_for_migrations(struct cache *cache)
1782 {
1783 wait_event(cache->migration_wait, !atomic_read(&cache->nr_allocated_migrations));
1784 }
1785
1786 static void stop_worker(struct cache *cache)
1787 {
1788 cancel_delayed_work(&cache->waker);
1789 flush_workqueue(cache->wq);
1790 }
1791
1792 static void requeue_deferred_io(struct cache *cache)
1793 {
1794 struct bio *bio;
1795 struct bio_list bios;
1796
1797 bio_list_init(&bios);
1798 bio_list_merge(&bios, &cache->deferred_bios);
1799 bio_list_init(&cache->deferred_bios);
1800
1801 while ((bio = bio_list_pop(&bios)))
1802 bio_endio(bio, DM_ENDIO_REQUEUE);
1803 }
1804
1805 static int more_work(struct cache *cache)
1806 {
1807 if (is_quiescing(cache))
1808 return !list_empty(&cache->quiesced_migrations) ||
1809 !list_empty(&cache->completed_migrations) ||
1810 !list_empty(&cache->need_commit_migrations);
1811 else
1812 return !bio_list_empty(&cache->deferred_bios) ||
1813 !bio_list_empty(&cache->deferred_flush_bios) ||
1814 !bio_list_empty(&cache->deferred_writethrough_bios) ||
1815 !list_empty(&cache->quiesced_migrations) ||
1816 !list_empty(&cache->completed_migrations) ||
1817 !list_empty(&cache->need_commit_migrations) ||
1818 cache->invalidate;
1819 }
1820
1821 static void do_worker(struct work_struct *ws)
1822 {
1823 struct cache *cache = container_of(ws, struct cache, worker);
1824
1825 do {
1826 if (!is_quiescing(cache)) {
1827 writeback_some_dirty_blocks(cache);
1828 process_deferred_writethrough_bios(cache);
1829 process_deferred_bios(cache);
1830 process_invalidation_requests(cache);
1831 }
1832
1833 process_migrations(cache, &cache->quiesced_migrations, issue_copy_or_discard);
1834 process_migrations(cache, &cache->completed_migrations, complete_migration);
1835
1836 if (commit_if_needed(cache)) {
1837 process_deferred_flush_bios(cache, false);
1838 process_migrations(cache, &cache->need_commit_migrations, migration_failure);
1839
1840 /*
1841 * FIXME: rollback metadata or just go into a
1842 * failure mode and error everything
1843 */
1844 } else {
1845 process_deferred_flush_bios(cache, true);
1846 process_migrations(cache, &cache->need_commit_migrations,
1847 migration_success_post_commit);
1848 }
1849
1850 ack_quiescing(cache);
1851
1852 } while (more_work(cache));
1853 }
1854
1855 /*
1856 * We want to commit periodically so that not too much
1857 * unwritten metadata builds up.
1858 */
1859 static void do_waker(struct work_struct *ws)
1860 {
1861 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1862 policy_tick(cache->policy);
1863 wake_worker(cache);
1864 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1865 }
1866
1867 /*----------------------------------------------------------------*/
1868
1869 static int is_congested(struct dm_dev *dev, int bdi_bits)
1870 {
1871 struct request_queue *q = bdev_get_queue(dev->bdev);
1872 return bdi_congested(&q->backing_dev_info, bdi_bits);
1873 }
1874
1875 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1876 {
1877 struct cache *cache = container_of(cb, struct cache, callbacks);
1878
1879 return is_congested(cache->origin_dev, bdi_bits) ||
1880 is_congested(cache->cache_dev, bdi_bits);
1881 }
1882
1883 /*----------------------------------------------------------------
1884 * Target methods
1885 *--------------------------------------------------------------*/
1886
1887 /*
1888 * This function gets called on the error paths of the constructor, so we
1889 * have to cope with a partially initialised struct.
1890 */
1891 static void destroy(struct cache *cache)
1892 {
1893 unsigned i;
1894
1895 if (cache->migration_pool)
1896 mempool_destroy(cache->migration_pool);
1897
1898 if (cache->all_io_ds)
1899 dm_deferred_set_destroy(cache->all_io_ds);
1900
1901 if (cache->prison)
1902 dm_bio_prison_destroy(cache->prison);
1903
1904 if (cache->wq)
1905 destroy_workqueue(cache->wq);
1906
1907 if (cache->dirty_bitset)
1908 free_bitset(cache->dirty_bitset);
1909
1910 if (cache->discard_bitset)
1911 free_bitset(cache->discard_bitset);
1912
1913 if (cache->copier)
1914 dm_kcopyd_client_destroy(cache->copier);
1915
1916 if (cache->cmd)
1917 dm_cache_metadata_close(cache->cmd);
1918
1919 if (cache->metadata_dev)
1920 dm_put_device(cache->ti, cache->metadata_dev);
1921
1922 if (cache->origin_dev)
1923 dm_put_device(cache->ti, cache->origin_dev);
1924
1925 if (cache->cache_dev)
1926 dm_put_device(cache->ti, cache->cache_dev);
1927
1928 if (cache->policy)
1929 dm_cache_policy_destroy(cache->policy);
1930
1931 for (i = 0; i < cache->nr_ctr_args ; i++)
1932 kfree(cache->ctr_args[i]);
1933 kfree(cache->ctr_args);
1934
1935 kfree(cache);
1936 }
1937
1938 static void cache_dtr(struct dm_target *ti)
1939 {
1940 struct cache *cache = ti->private;
1941
1942 destroy(cache);
1943 }
1944
1945 static sector_t get_dev_size(struct dm_dev *dev)
1946 {
1947 return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
1948 }
1949
1950 /*----------------------------------------------------------------*/
1951
1952 /*
1953 * Construct a cache device mapping.
1954 *
1955 * cache <metadata dev> <cache dev> <origin dev> <block size>
1956 * <#feature args> [<feature arg>]*
1957 * <policy> <#policy args> [<policy arg>]*
1958 *
1959 * metadata dev : fast device holding the persistent metadata
1960 * cache dev : fast device holding cached data blocks
1961 * origin dev : slow device holding original data blocks
1962 * block size : cache unit size in sectors
1963 *
1964 * #feature args : number of feature arguments passed
1965 * feature args : writethrough. (The default is writeback.)
1966 *
1967 * policy : the replacement policy to use
1968 * #policy args : an even number of policy arguments corresponding
1969 * to key/value pairs passed to the policy
1970 * policy args : key/value pairs passed to the policy
1971 * E.g. 'sequential_threshold 1024'
1972 * See cache-policies.txt for details.
1973 *
1974 * Optional feature arguments are:
1975 * writethrough : write through caching that prohibits cache block
1976 * content from being different from origin block content.
1977 * Without this argument, the default behaviour is to write
1978 * back cache block contents later for performance reasons,
1979 * so they may differ from the corresponding origin blocks.
1980 */
1981 struct cache_args {
1982 struct dm_target *ti;
1983
1984 struct dm_dev *metadata_dev;
1985
1986 struct dm_dev *cache_dev;
1987 sector_t cache_sectors;
1988
1989 struct dm_dev *origin_dev;
1990 sector_t origin_sectors;
1991
1992 uint32_t block_size;
1993
1994 const char *policy_name;
1995 int policy_argc;
1996 const char **policy_argv;
1997
1998 struct cache_features features;
1999 };
2000
2001 static void destroy_cache_args(struct cache_args *ca)
2002 {
2003 if (ca->metadata_dev)
2004 dm_put_device(ca->ti, ca->metadata_dev);
2005
2006 if (ca->cache_dev)
2007 dm_put_device(ca->ti, ca->cache_dev);
2008
2009 if (ca->origin_dev)
2010 dm_put_device(ca->ti, ca->origin_dev);
2011
2012 kfree(ca);
2013 }
2014
2015 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2016 {
2017 if (!as->argc) {
2018 *error = "Insufficient args";
2019 return false;
2020 }
2021
2022 return true;
2023 }
2024
2025 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2026 char **error)
2027 {
2028 int r;
2029 sector_t metadata_dev_size;
2030 char b[BDEVNAME_SIZE];
2031
2032 if (!at_least_one_arg(as, error))
2033 return -EINVAL;
2034
2035 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2036 &ca->metadata_dev);
2037 if (r) {
2038 *error = "Error opening metadata device";
2039 return r;
2040 }
2041
2042 metadata_dev_size = get_dev_size(ca->metadata_dev);
2043 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2044 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2045 bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2046
2047 return 0;
2048 }
2049
2050 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2051 char **error)
2052 {
2053 int r;
2054
2055 if (!at_least_one_arg(as, error))
2056 return -EINVAL;
2057
2058 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2059 &ca->cache_dev);
2060 if (r) {
2061 *error = "Error opening cache device";
2062 return r;
2063 }
2064 ca->cache_sectors = get_dev_size(ca->cache_dev);
2065
2066 return 0;
2067 }
2068
2069 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2070 char **error)
2071 {
2072 int r;
2073
2074 if (!at_least_one_arg(as, error))
2075 return -EINVAL;
2076
2077 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2078 &ca->origin_dev);
2079 if (r) {
2080 *error = "Error opening origin device";
2081 return r;
2082 }
2083
2084 ca->origin_sectors = get_dev_size(ca->origin_dev);
2085 if (ca->ti->len > ca->origin_sectors) {
2086 *error = "Device size larger than cached device";
2087 return -EINVAL;
2088 }
2089
2090 return 0;
2091 }
2092
2093 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2094 char **error)
2095 {
2096 unsigned long block_size;
2097
2098 if (!at_least_one_arg(as, error))
2099 return -EINVAL;
2100
2101 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2102 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2103 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2104 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2105 *error = "Invalid data block size";
2106 return -EINVAL;
2107 }
2108
2109 if (block_size > ca->cache_sectors) {
2110 *error = "Data block size is larger than the cache device";
2111 return -EINVAL;
2112 }
2113
2114 ca->block_size = block_size;
2115
2116 return 0;
2117 }
2118
2119 static void init_features(struct cache_features *cf)
2120 {
2121 cf->mode = CM_WRITE;
2122 cf->io_mode = CM_IO_WRITEBACK;
2123 }
2124
2125 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2126 char **error)
2127 {
2128 static struct dm_arg _args[] = {
2129 {0, 1, "Invalid number of cache feature arguments"},
2130 };
2131
2132 int r;
2133 unsigned argc;
2134 const char *arg;
2135 struct cache_features *cf = &ca->features;
2136
2137 init_features(cf);
2138
2139 r = dm_read_arg_group(_args, as, &argc, error);
2140 if (r)
2141 return -EINVAL;
2142
2143 while (argc--) {
2144 arg = dm_shift_arg(as);
2145
2146 if (!strcasecmp(arg, "writeback"))
2147 cf->io_mode = CM_IO_WRITEBACK;
2148
2149 else if (!strcasecmp(arg, "writethrough"))
2150 cf->io_mode = CM_IO_WRITETHROUGH;
2151
2152 else if (!strcasecmp(arg, "passthrough"))
2153 cf->io_mode = CM_IO_PASSTHROUGH;
2154
2155 else {
2156 *error = "Unrecognised cache feature requested";
2157 return -EINVAL;
2158 }
2159 }
2160
2161 return 0;
2162 }
2163
2164 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2165 char **error)
2166 {
2167 static struct dm_arg _args[] = {
2168 {0, 1024, "Invalid number of policy arguments"},
2169 };
2170
2171 int r;
2172
2173 if (!at_least_one_arg(as, error))
2174 return -EINVAL;
2175
2176 ca->policy_name = dm_shift_arg(as);
2177
2178 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2179 if (r)
2180 return -EINVAL;
2181
2182 ca->policy_argv = (const char **)as->argv;
2183 dm_consume_args(as, ca->policy_argc);
2184
2185 return 0;
2186 }
2187
2188 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2189 char **error)
2190 {
2191 int r;
2192 struct dm_arg_set as;
2193
2194 as.argc = argc;
2195 as.argv = argv;
2196
2197 r = parse_metadata_dev(ca, &as, error);
2198 if (r)
2199 return r;
2200
2201 r = parse_cache_dev(ca, &as, error);
2202 if (r)
2203 return r;
2204
2205 r = parse_origin_dev(ca, &as, error);
2206 if (r)
2207 return r;
2208
2209 r = parse_block_size(ca, &as, error);
2210 if (r)
2211 return r;
2212
2213 r = parse_features(ca, &as, error);
2214 if (r)
2215 return r;
2216
2217 r = parse_policy(ca, &as, error);
2218 if (r)
2219 return r;
2220
2221 return 0;
2222 }
2223
2224 /*----------------------------------------------------------------*/
2225
2226 static struct kmem_cache *migration_cache;
2227
2228 #define NOT_CORE_OPTION 1
2229
2230 static int process_config_option(struct cache *cache, const char *key, const char *value)
2231 {
2232 unsigned long tmp;
2233
2234 if (!strcasecmp(key, "migration_threshold")) {
2235 if (kstrtoul(value, 10, &tmp))
2236 return -EINVAL;
2237
2238 cache->migration_threshold = tmp;
2239 return 0;
2240 }
2241
2242 return NOT_CORE_OPTION;
2243 }
2244
2245 static int set_config_value(struct cache *cache, const char *key, const char *value)
2246 {
2247 int r = process_config_option(cache, key, value);
2248
2249 if (r == NOT_CORE_OPTION)
2250 r = policy_set_config_value(cache->policy, key, value);
2251
2252 if (r)
2253 DMWARN("bad config value for %s: %s", key, value);
2254
2255 return r;
2256 }
2257
2258 static int set_config_values(struct cache *cache, int argc, const char **argv)
2259 {
2260 int r = 0;
2261
2262 if (argc & 1) {
2263 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2264 return -EINVAL;
2265 }
2266
2267 while (argc) {
2268 r = set_config_value(cache, argv[0], argv[1]);
2269 if (r)
2270 break;
2271
2272 argc -= 2;
2273 argv += 2;
2274 }
2275
2276 return r;
2277 }
2278
2279 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2280 char **error)
2281 {
2282 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2283 cache->cache_size,
2284 cache->origin_sectors,
2285 cache->sectors_per_block);
2286 if (IS_ERR(p)) {
2287 *error = "Error creating cache's policy";
2288 return PTR_ERR(p);
2289 }
2290 cache->policy = p;
2291
2292 return 0;
2293 }
2294
2295 /*
2296 * We want the discard block size to be at least the size of the cache
2297 * block size and have no more than 2^14 discard blocks across the origin.
2298 */
2299 #define MAX_DISCARD_BLOCKS (1 << 14)
2300
2301 static bool too_many_discard_blocks(sector_t discard_block_size,
2302 sector_t origin_size)
2303 {
2304 (void) sector_div(origin_size, discard_block_size);
2305
2306 return origin_size > MAX_DISCARD_BLOCKS;
2307 }
2308
2309 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2310 sector_t origin_size)
2311 {
2312 sector_t discard_block_size = cache_block_size;
2313
2314 if (origin_size)
2315 while (too_many_discard_blocks(discard_block_size, origin_size))
2316 discard_block_size *= 2;
2317
2318 return discard_block_size;
2319 }
2320
2321 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2322 {
2323 dm_block_t nr_blocks = from_cblock(size);
2324
2325 if (nr_blocks > (1 << 20) && cache->cache_size != size)
2326 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2327 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2328 "Please consider increasing the cache block size to reduce the overall cache block count.",
2329 (unsigned long long) nr_blocks);
2330
2331 cache->cache_size = size;
2332 }
2333
2334 #define DEFAULT_MIGRATION_THRESHOLD 2048
2335
2336 static int cache_create(struct cache_args *ca, struct cache **result)
2337 {
2338 int r = 0;
2339 char **error = &ca->ti->error;
2340 struct cache *cache;
2341 struct dm_target *ti = ca->ti;
2342 dm_block_t origin_blocks;
2343 struct dm_cache_metadata *cmd;
2344 bool may_format = ca->features.mode == CM_WRITE;
2345
2346 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2347 if (!cache)
2348 return -ENOMEM;
2349
2350 cache->ti = ca->ti;
2351 ti->private = cache;
2352 ti->num_flush_bios = 2;
2353 ti->flush_supported = true;
2354
2355 ti->num_discard_bios = 1;
2356 ti->discards_supported = true;
2357 ti->discard_zeroes_data_unsupported = true;
2358 ti->split_discard_bios = false;
2359
2360 cache->features = ca->features;
2361 ti->per_bio_data_size = get_per_bio_data_size(cache);
2362
2363 cache->callbacks.congested_fn = cache_is_congested;
2364 dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2365
2366 cache->metadata_dev = ca->metadata_dev;
2367 cache->origin_dev = ca->origin_dev;
2368 cache->cache_dev = ca->cache_dev;
2369
2370 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2371
2372 /* FIXME: factor out this whole section */
2373 origin_blocks = cache->origin_sectors = ca->origin_sectors;
2374 origin_blocks = block_div(origin_blocks, ca->block_size);
2375 cache->origin_blocks = to_oblock(origin_blocks);
2376
2377 cache->sectors_per_block = ca->block_size;
2378 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2379 r = -EINVAL;
2380 goto bad;
2381 }
2382
2383 if (ca->block_size & (ca->block_size - 1)) {
2384 dm_block_t cache_size = ca->cache_sectors;
2385
2386 cache->sectors_per_block_shift = -1;
2387 cache_size = block_div(cache_size, ca->block_size);
2388 set_cache_size(cache, to_cblock(cache_size));
2389 } else {
2390 cache->sectors_per_block_shift = __ffs(ca->block_size);
2391 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2392 }
2393
2394 r = create_cache_policy(cache, ca, error);
2395 if (r)
2396 goto bad;
2397
2398 cache->policy_nr_args = ca->policy_argc;
2399 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2400
2401 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2402 if (r) {
2403 *error = "Error setting cache policy's config values";
2404 goto bad;
2405 }
2406
2407 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2408 ca->block_size, may_format,
2409 dm_cache_policy_get_hint_size(cache->policy));
2410 if (IS_ERR(cmd)) {
2411 *error = "Error creating metadata object";
2412 r = PTR_ERR(cmd);
2413 goto bad;
2414 }
2415 cache->cmd = cmd;
2416
2417 if (passthrough_mode(&cache->features)) {
2418 bool all_clean;
2419
2420 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2421 if (r) {
2422 *error = "dm_cache_metadata_all_clean() failed";
2423 goto bad;
2424 }
2425
2426 if (!all_clean) {
2427 *error = "Cannot enter passthrough mode unless all blocks are clean";
2428 r = -EINVAL;
2429 goto bad;
2430 }
2431 }
2432
2433 spin_lock_init(&cache->lock);
2434 bio_list_init(&cache->deferred_bios);
2435 bio_list_init(&cache->deferred_flush_bios);
2436 bio_list_init(&cache->deferred_writethrough_bios);
2437 INIT_LIST_HEAD(&cache->quiesced_migrations);
2438 INIT_LIST_HEAD(&cache->completed_migrations);
2439 INIT_LIST_HEAD(&cache->need_commit_migrations);
2440 atomic_set(&cache->nr_allocated_migrations, 0);
2441 atomic_set(&cache->nr_io_migrations, 0);
2442 init_waitqueue_head(&cache->migration_wait);
2443
2444 init_waitqueue_head(&cache->quiescing_wait);
2445 atomic_set(&cache->quiescing, 0);
2446 atomic_set(&cache->quiescing_ack, 0);
2447
2448 r = -ENOMEM;
2449 atomic_set(&cache->nr_dirty, 0);
2450 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2451 if (!cache->dirty_bitset) {
2452 *error = "could not allocate dirty bitset";
2453 goto bad;
2454 }
2455 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2456
2457 cache->discard_block_size =
2458 calculate_discard_block_size(cache->sectors_per_block,
2459 cache->origin_sectors);
2460 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2461 cache->discard_block_size));
2462 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2463 if (!cache->discard_bitset) {
2464 *error = "could not allocate discard bitset";
2465 goto bad;
2466 }
2467 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2468
2469 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2470 if (IS_ERR(cache->copier)) {
2471 *error = "could not create kcopyd client";
2472 r = PTR_ERR(cache->copier);
2473 goto bad;
2474 }
2475
2476 cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2477 if (!cache->wq) {
2478 *error = "could not create workqueue for metadata object";
2479 goto bad;
2480 }
2481 INIT_WORK(&cache->worker, do_worker);
2482 INIT_DELAYED_WORK(&cache->waker, do_waker);
2483 cache->last_commit_jiffies = jiffies;
2484
2485 cache->prison = dm_bio_prison_create();
2486 if (!cache->prison) {
2487 *error = "could not create bio prison";
2488 goto bad;
2489 }
2490
2491 cache->all_io_ds = dm_deferred_set_create();
2492 if (!cache->all_io_ds) {
2493 *error = "could not create all_io deferred set";
2494 goto bad;
2495 }
2496
2497 cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2498 migration_cache);
2499 if (!cache->migration_pool) {
2500 *error = "Error creating cache's migration mempool";
2501 goto bad;
2502 }
2503
2504 cache->need_tick_bio = true;
2505 cache->sized = false;
2506 cache->invalidate = false;
2507 cache->commit_requested = false;
2508 cache->loaded_mappings = false;
2509 cache->loaded_discards = false;
2510
2511 load_stats(cache);
2512
2513 atomic_set(&cache->stats.demotion, 0);
2514 atomic_set(&cache->stats.promotion, 0);
2515 atomic_set(&cache->stats.copies_avoided, 0);
2516 atomic_set(&cache->stats.cache_cell_clash, 0);
2517 atomic_set(&cache->stats.commit_count, 0);
2518 atomic_set(&cache->stats.discard_count, 0);
2519
2520 spin_lock_init(&cache->invalidation_lock);
2521 INIT_LIST_HEAD(&cache->invalidation_requests);
2522
2523 *result = cache;
2524 return 0;
2525
2526 bad:
2527 destroy(cache);
2528 return r;
2529 }
2530
2531 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2532 {
2533 unsigned i;
2534 const char **copy;
2535
2536 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2537 if (!copy)
2538 return -ENOMEM;
2539 for (i = 0; i < argc; i++) {
2540 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2541 if (!copy[i]) {
2542 while (i--)
2543 kfree(copy[i]);
2544 kfree(copy);
2545 return -ENOMEM;
2546 }
2547 }
2548
2549 cache->nr_ctr_args = argc;
2550 cache->ctr_args = copy;
2551
2552 return 0;
2553 }
2554
2555 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2556 {
2557 int r = -EINVAL;
2558 struct cache_args *ca;
2559 struct cache *cache = NULL;
2560
2561 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2562 if (!ca) {
2563 ti->error = "Error allocating memory for cache";
2564 return -ENOMEM;
2565 }
2566 ca->ti = ti;
2567
2568 r = parse_cache_args(ca, argc, argv, &ti->error);
2569 if (r)
2570 goto out;
2571
2572 r = cache_create(ca, &cache);
2573 if (r)
2574 goto out;
2575
2576 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2577 if (r) {
2578 destroy(cache);
2579 goto out;
2580 }
2581
2582 ti->private = cache;
2583
2584 out:
2585 destroy_cache_args(ca);
2586 return r;
2587 }
2588
2589 static int __cache_map(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell **cell)
2590 {
2591 int r;
2592 dm_oblock_t block = get_bio_block(cache, bio);
2593 size_t pb_data_size = get_per_bio_data_size(cache);
2594 bool can_migrate = false;
2595 bool discarded_block;
2596 struct policy_result lookup_result;
2597 struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
2598
2599 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2600 /*
2601 * This can only occur if the io goes to a partial block at
2602 * the end of the origin device. We don't cache these.
2603 * Just remap to the origin and carry on.
2604 */
2605 remap_to_origin(cache, bio);
2606 return DM_MAPIO_REMAPPED;
2607 }
2608
2609 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD)) {
2610 defer_bio(cache, bio);
2611 return DM_MAPIO_SUBMITTED;
2612 }
2613
2614 /*
2615 * Check to see if that block is currently migrating.
2616 */
2617 *cell = alloc_prison_cell(cache);
2618 if (!*cell) {
2619 defer_bio(cache, bio);
2620 return DM_MAPIO_SUBMITTED;
2621 }
2622
2623 r = bio_detain(cache, block, bio, *cell,
2624 (cell_free_fn) free_prison_cell,
2625 cache, cell);
2626 if (r) {
2627 if (r < 0)
2628 defer_bio(cache, bio);
2629
2630 return DM_MAPIO_SUBMITTED;
2631 }
2632
2633 discarded_block = is_discarded_oblock(cache, block);
2634
2635 r = policy_map(cache->policy, block, false, can_migrate, discarded_block,
2636 bio, &lookup_result);
2637 if (r == -EWOULDBLOCK) {
2638 cell_defer(cache, *cell, true);
2639 return DM_MAPIO_SUBMITTED;
2640
2641 } else if (r) {
2642 DMERR_LIMIT("Unexpected return from cache replacement policy: %d", r);
2643 cell_defer(cache, *cell, false);
2644 bio_io_error(bio);
2645 return DM_MAPIO_SUBMITTED;
2646 }
2647
2648 r = DM_MAPIO_REMAPPED;
2649 switch (lookup_result.op) {
2650 case POLICY_HIT:
2651 if (passthrough_mode(&cache->features)) {
2652 if (bio_data_dir(bio) == WRITE) {
2653 /*
2654 * We need to invalidate this block, so
2655 * defer for the worker thread.
2656 */
2657 cell_defer(cache, *cell, true);
2658 r = DM_MAPIO_SUBMITTED;
2659
2660 } else {
2661 inc_miss_counter(cache, bio);
2662 remap_to_origin_clear_discard(cache, bio, block);
2663 }
2664
2665 } else {
2666 inc_hit_counter(cache, bio);
2667 if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
2668 !is_dirty(cache, lookup_result.cblock))
2669 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
2670 else
2671 remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
2672 }
2673 break;
2674
2675 case POLICY_MISS:
2676 inc_miss_counter(cache, bio);
2677 if (pb->req_nr != 0) {
2678 /*
2679 * This is a duplicate writethrough io that is no
2680 * longer needed because the block has been demoted.
2681 */
2682 bio_endio(bio, 0);
2683 cell_defer(cache, *cell, false);
2684 r = DM_MAPIO_SUBMITTED;
2685
2686 } else
2687 remap_to_origin_clear_discard(cache, bio, block);
2688
2689 break;
2690
2691 default:
2692 DMERR_LIMIT("%s: erroring bio: unknown policy op: %u", __func__,
2693 (unsigned) lookup_result.op);
2694 cell_defer(cache, *cell, false);
2695 bio_io_error(bio);
2696 r = DM_MAPIO_SUBMITTED;
2697 }
2698
2699 return r;
2700 }
2701
2702 static int cache_map(struct dm_target *ti, struct bio *bio)
2703 {
2704 int r;
2705 struct dm_bio_prison_cell *cell = NULL;
2706 struct cache *cache = ti->private;
2707
2708 r = __cache_map(cache, bio, &cell);
2709 if (r == DM_MAPIO_REMAPPED && cell) {
2710 inc_ds(cache, bio, cell);
2711 cell_defer(cache, cell, false);
2712 }
2713
2714 return r;
2715 }
2716
2717 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
2718 {
2719 struct cache *cache = ti->private;
2720 unsigned long flags;
2721 size_t pb_data_size = get_per_bio_data_size(cache);
2722 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
2723
2724 if (pb->tick) {
2725 policy_tick(cache->policy);
2726
2727 spin_lock_irqsave(&cache->lock, flags);
2728 cache->need_tick_bio = true;
2729 spin_unlock_irqrestore(&cache->lock, flags);
2730 }
2731
2732 check_for_quiesced_migrations(cache, pb);
2733
2734 return 0;
2735 }
2736
2737 static int write_dirty_bitset(struct cache *cache)
2738 {
2739 unsigned i, r;
2740
2741 for (i = 0; i < from_cblock(cache->cache_size); i++) {
2742 r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
2743 is_dirty(cache, to_cblock(i)));
2744 if (r)
2745 return r;
2746 }
2747
2748 return 0;
2749 }
2750
2751 static int write_discard_bitset(struct cache *cache)
2752 {
2753 unsigned i, r;
2754
2755 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2756 cache->discard_nr_blocks);
2757 if (r) {
2758 DMERR("could not resize on-disk discard bitset");
2759 return r;
2760 }
2761
2762 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2763 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2764 is_discarded(cache, to_dblock(i)));
2765 if (r)
2766 return r;
2767 }
2768
2769 return 0;
2770 }
2771
2772 /*
2773 * returns true on success
2774 */
2775 static bool sync_metadata(struct cache *cache)
2776 {
2777 int r1, r2, r3, r4;
2778
2779 r1 = write_dirty_bitset(cache);
2780 if (r1)
2781 DMERR("could not write dirty bitset");
2782
2783 r2 = write_discard_bitset(cache);
2784 if (r2)
2785 DMERR("could not write discard bitset");
2786
2787 save_stats(cache);
2788
2789 r3 = dm_cache_write_hints(cache->cmd, cache->policy);
2790 if (r3)
2791 DMERR("could not write hints");
2792
2793 /*
2794 * If writing the above metadata failed, we still commit, but don't
2795 * set the clean shutdown flag. This will effectively force every
2796 * dirty bit to be set on reload.
2797 */
2798 r4 = dm_cache_commit(cache->cmd, !r1 && !r2 && !r3);
2799 if (r4)
2800 DMERR("could not write cache metadata. Data loss may occur.");
2801
2802 return !r1 && !r2 && !r3 && !r4;
2803 }
2804
2805 static void cache_postsuspend(struct dm_target *ti)
2806 {
2807 struct cache *cache = ti->private;
2808
2809 start_quiescing(cache);
2810 wait_for_migrations(cache);
2811 stop_worker(cache);
2812 requeue_deferred_io(cache);
2813 stop_quiescing(cache);
2814
2815 (void) sync_metadata(cache);
2816 }
2817
2818 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2819 bool dirty, uint32_t hint, bool hint_valid)
2820 {
2821 int r;
2822 struct cache *cache = context;
2823
2824 r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
2825 if (r)
2826 return r;
2827
2828 if (dirty)
2829 set_dirty(cache, oblock, cblock);
2830 else
2831 clear_dirty(cache, oblock, cblock);
2832
2833 return 0;
2834 }
2835
2836 /*
2837 * The discard block size in the on disk metadata is not
2838 * neccessarily the same as we're currently using. So we have to
2839 * be careful to only set the discarded attribute if we know it
2840 * covers a complete block of the new size.
2841 */
2842 struct discard_load_info {
2843 struct cache *cache;
2844
2845 /*
2846 * These blocks are sized using the on disk dblock size, rather
2847 * than the current one.
2848 */
2849 dm_block_t block_size;
2850 dm_block_t discard_begin, discard_end;
2851 };
2852
2853 static void discard_load_info_init(struct cache *cache,
2854 struct discard_load_info *li)
2855 {
2856 li->cache = cache;
2857 li->discard_begin = li->discard_end = 0;
2858 }
2859
2860 static void set_discard_range(struct discard_load_info *li)
2861 {
2862 sector_t b, e;
2863
2864 if (li->discard_begin == li->discard_end)
2865 return;
2866
2867 /*
2868 * Convert to sectors.
2869 */
2870 b = li->discard_begin * li->block_size;
2871 e = li->discard_end * li->block_size;
2872
2873 /*
2874 * Then convert back to the current dblock size.
2875 */
2876 b = dm_sector_div_up(b, li->cache->discard_block_size);
2877 sector_div(e, li->cache->discard_block_size);
2878
2879 /*
2880 * The origin may have shrunk, so we need to check we're still in
2881 * bounds.
2882 */
2883 if (e > from_dblock(li->cache->discard_nr_blocks))
2884 e = from_dblock(li->cache->discard_nr_blocks);
2885
2886 for (; b < e; b++)
2887 set_discard(li->cache, to_dblock(b));
2888 }
2889
2890 static int load_discard(void *context, sector_t discard_block_size,
2891 dm_dblock_t dblock, bool discard)
2892 {
2893 struct discard_load_info *li = context;
2894
2895 li->block_size = discard_block_size;
2896
2897 if (discard) {
2898 if (from_dblock(dblock) == li->discard_end)
2899 /*
2900 * We're already in a discard range, just extend it.
2901 */
2902 li->discard_end = li->discard_end + 1ULL;
2903
2904 else {
2905 /*
2906 * Emit the old range and start a new one.
2907 */
2908 set_discard_range(li);
2909 li->discard_begin = from_dblock(dblock);
2910 li->discard_end = li->discard_begin + 1ULL;
2911 }
2912 } else {
2913 set_discard_range(li);
2914 li->discard_begin = li->discard_end = 0;
2915 }
2916
2917 return 0;
2918 }
2919
2920 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2921 {
2922 sector_t size = get_dev_size(cache->cache_dev);
2923 (void) sector_div(size, cache->sectors_per_block);
2924 return to_cblock(size);
2925 }
2926
2927 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2928 {
2929 if (from_cblock(new_size) > from_cblock(cache->cache_size))
2930 return true;
2931
2932 /*
2933 * We can't drop a dirty block when shrinking the cache.
2934 */
2935 while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2936 new_size = to_cblock(from_cblock(new_size) + 1);
2937 if (is_dirty(cache, new_size)) {
2938 DMERR("unable to shrink cache; cache block %llu is dirty",
2939 (unsigned long long) from_cblock(new_size));
2940 return false;
2941 }
2942 }
2943
2944 return true;
2945 }
2946
2947 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2948 {
2949 int r;
2950
2951 r = dm_cache_resize(cache->cmd, new_size);
2952 if (r) {
2953 DMERR("could not resize cache metadata");
2954 return r;
2955 }
2956
2957 set_cache_size(cache, new_size);
2958
2959 return 0;
2960 }
2961
2962 static int cache_preresume(struct dm_target *ti)
2963 {
2964 int r = 0;
2965 struct cache *cache = ti->private;
2966 dm_cblock_t csize = get_cache_dev_size(cache);
2967
2968 /*
2969 * Check to see if the cache has resized.
2970 */
2971 if (!cache->sized) {
2972 r = resize_cache_dev(cache, csize);
2973 if (r)
2974 return r;
2975
2976 cache->sized = true;
2977
2978 } else if (csize != cache->cache_size) {
2979 if (!can_resize(cache, csize))
2980 return -EINVAL;
2981
2982 r = resize_cache_dev(cache, csize);
2983 if (r)
2984 return r;
2985 }
2986
2987 if (!cache->loaded_mappings) {
2988 r = dm_cache_load_mappings(cache->cmd, cache->policy,
2989 load_mapping, cache);
2990 if (r) {
2991 DMERR("could not load cache mappings");
2992 return r;
2993 }
2994
2995 cache->loaded_mappings = true;
2996 }
2997
2998 if (!cache->loaded_discards) {
2999 struct discard_load_info li;
3000
3001 /*
3002 * The discard bitset could have been resized, or the
3003 * discard block size changed. To be safe we start by
3004 * setting every dblock to not discarded.
3005 */
3006 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3007
3008 discard_load_info_init(cache, &li);
3009 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3010 if (r) {
3011 DMERR("could not load origin discards");
3012 return r;
3013 }
3014 set_discard_range(&li);
3015
3016 cache->loaded_discards = true;
3017 }
3018
3019 return r;
3020 }
3021
3022 static void cache_resume(struct dm_target *ti)
3023 {
3024 struct cache *cache = ti->private;
3025
3026 cache->need_tick_bio = true;
3027 do_waker(&cache->waker.work);
3028 }
3029
3030 /*
3031 * Status format:
3032 *
3033 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3034 * <cache block size> <#used cache blocks>/<#total cache blocks>
3035 * <#read hits> <#read misses> <#write hits> <#write misses>
3036 * <#demotions> <#promotions> <#dirty>
3037 * <#features> <features>*
3038 * <#core args> <core args>
3039 * <policy name> <#policy args> <policy args>*
3040 */
3041 static void cache_status(struct dm_target *ti, status_type_t type,
3042 unsigned status_flags, char *result, unsigned maxlen)
3043 {
3044 int r = 0;
3045 unsigned i;
3046 ssize_t sz = 0;
3047 dm_block_t nr_free_blocks_metadata = 0;
3048 dm_block_t nr_blocks_metadata = 0;
3049 char buf[BDEVNAME_SIZE];
3050 struct cache *cache = ti->private;
3051 dm_cblock_t residency;
3052
3053 switch (type) {
3054 case STATUSTYPE_INFO:
3055 /* Commit to ensure statistics aren't out-of-date */
3056 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) {
3057 r = dm_cache_commit(cache->cmd, false);
3058 if (r)
3059 DMERR("could not commit metadata for accurate status");
3060 }
3061
3062 r = dm_cache_get_free_metadata_block_count(cache->cmd,
3063 &nr_free_blocks_metadata);
3064 if (r) {
3065 DMERR("could not get metadata free block count");
3066 goto err;
3067 }
3068
3069 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3070 if (r) {
3071 DMERR("could not get metadata device size");
3072 goto err;
3073 }
3074
3075 residency = policy_residency(cache->policy);
3076
3077 DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %lu ",
3078 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3079 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3080 (unsigned long long)nr_blocks_metadata,
3081 cache->sectors_per_block,
3082 (unsigned long long) from_cblock(residency),
3083 (unsigned long long) from_cblock(cache->cache_size),
3084 (unsigned) atomic_read(&cache->stats.read_hit),
3085 (unsigned) atomic_read(&cache->stats.read_miss),
3086 (unsigned) atomic_read(&cache->stats.write_hit),
3087 (unsigned) atomic_read(&cache->stats.write_miss),
3088 (unsigned) atomic_read(&cache->stats.demotion),
3089 (unsigned) atomic_read(&cache->stats.promotion),
3090 (unsigned long) atomic_read(&cache->nr_dirty));
3091
3092 if (writethrough_mode(&cache->features))
3093 DMEMIT("1 writethrough ");
3094
3095 else if (passthrough_mode(&cache->features))
3096 DMEMIT("1 passthrough ");
3097
3098 else if (writeback_mode(&cache->features))
3099 DMEMIT("1 writeback ");
3100
3101 else {
3102 DMERR("internal error: unknown io mode: %d", (int) cache->features.io_mode);
3103 goto err;
3104 }
3105
3106 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3107
3108 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3109 if (sz < maxlen) {
3110 r = policy_emit_config_values(cache->policy, result + sz, maxlen - sz);
3111 if (r)
3112 DMERR("policy_emit_config_values returned %d", r);
3113 }
3114
3115 break;
3116
3117 case STATUSTYPE_TABLE:
3118 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3119 DMEMIT("%s ", buf);
3120 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3121 DMEMIT("%s ", buf);
3122 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3123 DMEMIT("%s", buf);
3124
3125 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3126 DMEMIT(" %s", cache->ctr_args[i]);
3127 if (cache->nr_ctr_args)
3128 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3129 }
3130
3131 return;
3132
3133 err:
3134 DMEMIT("Error");
3135 }
3136
3137 /*
3138 * A cache block range can take two forms:
3139 *
3140 * i) A single cblock, eg. '3456'
3141 * ii) A begin and end cblock with dots between, eg. 123-234
3142 */
3143 static int parse_cblock_range(struct cache *cache, const char *str,
3144 struct cblock_range *result)
3145 {
3146 char dummy;
3147 uint64_t b, e;
3148 int r;
3149
3150 /*
3151 * Try and parse form (ii) first.
3152 */
3153 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3154 if (r < 0)
3155 return r;
3156
3157 if (r == 2) {
3158 result->begin = to_cblock(b);
3159 result->end = to_cblock(e);
3160 return 0;
3161 }
3162
3163 /*
3164 * That didn't work, try form (i).
3165 */
3166 r = sscanf(str, "%llu%c", &b, &dummy);
3167 if (r < 0)
3168 return r;
3169
3170 if (r == 1) {
3171 result->begin = to_cblock(b);
3172 result->end = to_cblock(from_cblock(result->begin) + 1u);
3173 return 0;
3174 }
3175
3176 DMERR("invalid cblock range '%s'", str);
3177 return -EINVAL;
3178 }
3179
3180 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3181 {
3182 uint64_t b = from_cblock(range->begin);
3183 uint64_t e = from_cblock(range->end);
3184 uint64_t n = from_cblock(cache->cache_size);
3185
3186 if (b >= n) {
3187 DMERR("begin cblock out of range: %llu >= %llu", b, n);
3188 return -EINVAL;
3189 }
3190
3191 if (e > n) {
3192 DMERR("end cblock out of range: %llu > %llu", e, n);
3193 return -EINVAL;
3194 }
3195
3196 if (b >= e) {
3197 DMERR("invalid cblock range: %llu >= %llu", b, e);
3198 return -EINVAL;
3199 }
3200
3201 return 0;
3202 }
3203
3204 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3205 {
3206 struct invalidation_request req;
3207
3208 INIT_LIST_HEAD(&req.list);
3209 req.cblocks = range;
3210 atomic_set(&req.complete, 0);
3211 req.err = 0;
3212 init_waitqueue_head(&req.result_wait);
3213
3214 spin_lock(&cache->invalidation_lock);
3215 list_add(&req.list, &cache->invalidation_requests);
3216 spin_unlock(&cache->invalidation_lock);
3217 wake_worker(cache);
3218
3219 wait_event(req.result_wait, atomic_read(&req.complete));
3220 return req.err;
3221 }
3222
3223 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3224 const char **cblock_ranges)
3225 {
3226 int r = 0;
3227 unsigned i;
3228 struct cblock_range range;
3229
3230 if (!passthrough_mode(&cache->features)) {
3231 DMERR("cache has to be in passthrough mode for invalidation");
3232 return -EPERM;
3233 }
3234
3235 for (i = 0; i < count; i++) {
3236 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3237 if (r)
3238 break;
3239
3240 r = validate_cblock_range(cache, &range);
3241 if (r)
3242 break;
3243
3244 /*
3245 * Pass begin and end origin blocks to the worker and wake it.
3246 */
3247 r = request_invalidation(cache, &range);
3248 if (r)
3249 break;
3250 }
3251
3252 return r;
3253 }
3254
3255 /*
3256 * Supports
3257 * "<key> <value>"
3258 * and
3259 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3260 *
3261 * The key migration_threshold is supported by the cache target core.
3262 */
3263 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3264 {
3265 struct cache *cache = ti->private;
3266
3267 if (!argc)
3268 return -EINVAL;
3269
3270 if (!strcasecmp(argv[0], "invalidate_cblocks"))
3271 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3272
3273 if (argc != 2)
3274 return -EINVAL;
3275
3276 return set_config_value(cache, argv[0], argv[1]);
3277 }
3278
3279 static int cache_iterate_devices(struct dm_target *ti,
3280 iterate_devices_callout_fn fn, void *data)
3281 {
3282 int r = 0;
3283 struct cache *cache = ti->private;
3284
3285 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3286 if (!r)
3287 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3288
3289 return r;
3290 }
3291
3292 /*
3293 * We assume I/O is going to the origin (which is the volume
3294 * more likely to have restrictions e.g. by being striped).
3295 * (Looking up the exact location of the data would be expensive
3296 * and could always be out of date by the time the bio is submitted.)
3297 */
3298 static int cache_bvec_merge(struct dm_target *ti,
3299 struct bvec_merge_data *bvm,
3300 struct bio_vec *biovec, int max_size)
3301 {
3302 struct cache *cache = ti->private;
3303 struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev);
3304
3305 if (!q->merge_bvec_fn)
3306 return max_size;
3307
3308 bvm->bi_bdev = cache->origin_dev->bdev;
3309 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3310 }
3311
3312 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3313 {
3314 /*
3315 * FIXME: these limits may be incompatible with the cache device
3316 */
3317 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3318 cache->origin_sectors);
3319 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3320 }
3321
3322 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3323 {
3324 struct cache *cache = ti->private;
3325 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3326
3327 /*
3328 * If the system-determined stacked limits are compatible with the
3329 * cache's blocksize (io_opt is a factor) do not override them.
3330 */
3331 if (io_opt_sectors < cache->sectors_per_block ||
3332 do_div(io_opt_sectors, cache->sectors_per_block)) {
3333 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3334 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3335 }
3336 set_discard_limits(cache, limits);
3337 }
3338
3339 /*----------------------------------------------------------------*/
3340
3341 static struct target_type cache_target = {
3342 .name = "cache",
3343 .version = {1, 6, 0},
3344 .module = THIS_MODULE,
3345 .ctr = cache_ctr,
3346 .dtr = cache_dtr,
3347 .map = cache_map,
3348 .end_io = cache_end_io,
3349 .postsuspend = cache_postsuspend,
3350 .preresume = cache_preresume,
3351 .resume = cache_resume,
3352 .status = cache_status,
3353 .message = cache_message,
3354 .iterate_devices = cache_iterate_devices,
3355 .merge = cache_bvec_merge,
3356 .io_hints = cache_io_hints,
3357 };
3358
3359 static int __init dm_cache_init(void)
3360 {
3361 int r;
3362
3363 r = dm_register_target(&cache_target);
3364 if (r) {
3365 DMERR("cache target registration failed: %d", r);
3366 return r;
3367 }
3368
3369 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3370 if (!migration_cache) {
3371 dm_unregister_target(&cache_target);
3372 return -ENOMEM;
3373 }
3374
3375 return 0;
3376 }
3377
3378 static void __exit dm_cache_exit(void)
3379 {
3380 dm_unregister_target(&cache_target);
3381 kmem_cache_destroy(migration_cache);
3382 }
3383
3384 module_init(dm_cache_init);
3385 module_exit(dm_cache_exit);
3386
3387 MODULE_DESCRIPTION(DM_NAME " cache target");
3388 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3389 MODULE_LICENSE("GPL");