]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/md/dm-cache-target.c
Merge tag 'pwm/for-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/thierry...
[mirror_ubuntu-zesty-kernel.git] / drivers / md / dm-cache-target.c
1 /*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20
21 #define DM_MSG_PREFIX "cache"
22
23 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
24 "A percentage of time allocated for copying to and/or from cache");
25
26 /*----------------------------------------------------------------*/
27
28 #define IOT_RESOLUTION 4
29
30 struct io_tracker {
31 spinlock_t lock;
32
33 /*
34 * Sectors of in-flight IO.
35 */
36 sector_t in_flight;
37
38 /*
39 * The time, in jiffies, when this device became idle (if it is
40 * indeed idle).
41 */
42 unsigned long idle_time;
43 unsigned long last_update_time;
44 };
45
46 static void iot_init(struct io_tracker *iot)
47 {
48 spin_lock_init(&iot->lock);
49 iot->in_flight = 0ul;
50 iot->idle_time = 0ul;
51 iot->last_update_time = jiffies;
52 }
53
54 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
55 {
56 if (iot->in_flight)
57 return false;
58
59 return time_after(jiffies, iot->idle_time + jifs);
60 }
61
62 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
63 {
64 bool r;
65 unsigned long flags;
66
67 spin_lock_irqsave(&iot->lock, flags);
68 r = __iot_idle_for(iot, jifs);
69 spin_unlock_irqrestore(&iot->lock, flags);
70
71 return r;
72 }
73
74 static void iot_io_begin(struct io_tracker *iot, sector_t len)
75 {
76 unsigned long flags;
77
78 spin_lock_irqsave(&iot->lock, flags);
79 iot->in_flight += len;
80 spin_unlock_irqrestore(&iot->lock, flags);
81 }
82
83 static void __iot_io_end(struct io_tracker *iot, sector_t len)
84 {
85 iot->in_flight -= len;
86 if (!iot->in_flight)
87 iot->idle_time = jiffies;
88 }
89
90 static void iot_io_end(struct io_tracker *iot, sector_t len)
91 {
92 unsigned long flags;
93
94 spin_lock_irqsave(&iot->lock, flags);
95 __iot_io_end(iot, len);
96 spin_unlock_irqrestore(&iot->lock, flags);
97 }
98
99 /*----------------------------------------------------------------*/
100
101 /*
102 * Glossary:
103 *
104 * oblock: index of an origin block
105 * cblock: index of a cache block
106 * promotion: movement of a block from origin to cache
107 * demotion: movement of a block from cache to origin
108 * migration: movement of a block between the origin and cache device,
109 * either direction
110 */
111
112 /*----------------------------------------------------------------*/
113
114 /*
115 * There are a couple of places where we let a bio run, but want to do some
116 * work before calling its endio function. We do this by temporarily
117 * changing the endio fn.
118 */
119 struct dm_hook_info {
120 bio_end_io_t *bi_end_io;
121 };
122
123 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
124 bio_end_io_t *bi_end_io, void *bi_private)
125 {
126 h->bi_end_io = bio->bi_end_io;
127
128 bio->bi_end_io = bi_end_io;
129 bio->bi_private = bi_private;
130 }
131
132 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
133 {
134 bio->bi_end_io = h->bi_end_io;
135 }
136
137 /*----------------------------------------------------------------*/
138
139 #define MIGRATION_POOL_SIZE 128
140 #define COMMIT_PERIOD HZ
141 #define MIGRATION_COUNT_WINDOW 10
142
143 /*
144 * The block size of the device holding cache data must be
145 * between 32KB and 1GB.
146 */
147 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
148 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
149
150 enum cache_metadata_mode {
151 CM_WRITE, /* metadata may be changed */
152 CM_READ_ONLY, /* metadata may not be changed */
153 CM_FAIL
154 };
155
156 enum cache_io_mode {
157 /*
158 * Data is written to cached blocks only. These blocks are marked
159 * dirty. If you lose the cache device you will lose data.
160 * Potential performance increase for both reads and writes.
161 */
162 CM_IO_WRITEBACK,
163
164 /*
165 * Data is written to both cache and origin. Blocks are never
166 * dirty. Potential performance benfit for reads only.
167 */
168 CM_IO_WRITETHROUGH,
169
170 /*
171 * A degraded mode useful for various cache coherency situations
172 * (eg, rolling back snapshots). Reads and writes always go to the
173 * origin. If a write goes to a cached oblock, then the cache
174 * block is invalidated.
175 */
176 CM_IO_PASSTHROUGH
177 };
178
179 struct cache_features {
180 enum cache_metadata_mode mode;
181 enum cache_io_mode io_mode;
182 };
183
184 struct cache_stats {
185 atomic_t read_hit;
186 atomic_t read_miss;
187 atomic_t write_hit;
188 atomic_t write_miss;
189 atomic_t demotion;
190 atomic_t promotion;
191 atomic_t copies_avoided;
192 atomic_t cache_cell_clash;
193 atomic_t commit_count;
194 atomic_t discard_count;
195 };
196
197 /*
198 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
199 * the one-past-the-end value.
200 */
201 struct cblock_range {
202 dm_cblock_t begin;
203 dm_cblock_t end;
204 };
205
206 struct invalidation_request {
207 struct list_head list;
208 struct cblock_range *cblocks;
209
210 atomic_t complete;
211 int err;
212
213 wait_queue_head_t result_wait;
214 };
215
216 struct cache {
217 struct dm_target *ti;
218 struct dm_target_callbacks callbacks;
219
220 struct dm_cache_metadata *cmd;
221
222 /*
223 * Metadata is written to this device.
224 */
225 struct dm_dev *metadata_dev;
226
227 /*
228 * The slower of the two data devices. Typically a spindle.
229 */
230 struct dm_dev *origin_dev;
231
232 /*
233 * The faster of the two data devices. Typically an SSD.
234 */
235 struct dm_dev *cache_dev;
236
237 /*
238 * Size of the origin device in _complete_ blocks and native sectors.
239 */
240 dm_oblock_t origin_blocks;
241 sector_t origin_sectors;
242
243 /*
244 * Size of the cache device in blocks.
245 */
246 dm_cblock_t cache_size;
247
248 /*
249 * Fields for converting from sectors to blocks.
250 */
251 uint32_t sectors_per_block;
252 int sectors_per_block_shift;
253
254 spinlock_t lock;
255 struct list_head deferred_cells;
256 struct bio_list deferred_bios;
257 struct bio_list deferred_flush_bios;
258 struct bio_list deferred_writethrough_bios;
259 struct list_head quiesced_migrations;
260 struct list_head completed_migrations;
261 struct list_head need_commit_migrations;
262 sector_t migration_threshold;
263 wait_queue_head_t migration_wait;
264 atomic_t nr_allocated_migrations;
265
266 /*
267 * The number of in flight migrations that are performing
268 * background io. eg, promotion, writeback.
269 */
270 atomic_t nr_io_migrations;
271
272 wait_queue_head_t quiescing_wait;
273 atomic_t quiescing;
274 atomic_t quiescing_ack;
275
276 /*
277 * cache_size entries, dirty if set
278 */
279 atomic_t nr_dirty;
280 unsigned long *dirty_bitset;
281
282 /*
283 * origin_blocks entries, discarded if set.
284 */
285 dm_dblock_t discard_nr_blocks;
286 unsigned long *discard_bitset;
287 uint32_t discard_block_size; /* a power of 2 times sectors per block */
288
289 /*
290 * Rather than reconstructing the table line for the status we just
291 * save it and regurgitate.
292 */
293 unsigned nr_ctr_args;
294 const char **ctr_args;
295
296 struct dm_kcopyd_client *copier;
297 struct workqueue_struct *wq;
298 struct work_struct worker;
299
300 struct delayed_work waker;
301 unsigned long last_commit_jiffies;
302
303 struct dm_bio_prison *prison;
304 struct dm_deferred_set *all_io_ds;
305
306 mempool_t *migration_pool;
307
308 struct dm_cache_policy *policy;
309 unsigned policy_nr_args;
310
311 bool need_tick_bio:1;
312 bool sized:1;
313 bool invalidate:1;
314 bool commit_requested:1;
315 bool loaded_mappings:1;
316 bool loaded_discards:1;
317
318 /*
319 * Cache features such as write-through.
320 */
321 struct cache_features features;
322
323 struct cache_stats stats;
324
325 /*
326 * Invalidation fields.
327 */
328 spinlock_t invalidation_lock;
329 struct list_head invalidation_requests;
330
331 struct io_tracker origin_tracker;
332 };
333
334 struct per_bio_data {
335 bool tick:1;
336 unsigned req_nr:2;
337 struct dm_deferred_entry *all_io_entry;
338 struct dm_hook_info hook_info;
339 sector_t len;
340
341 /*
342 * writethrough fields. These MUST remain at the end of this
343 * structure and the 'cache' member must be the first as it
344 * is used to determine the offset of the writethrough fields.
345 */
346 struct cache *cache;
347 dm_cblock_t cblock;
348 struct dm_bio_details bio_details;
349 };
350
351 struct dm_cache_migration {
352 struct list_head list;
353 struct cache *cache;
354
355 unsigned long start_jiffies;
356 dm_oblock_t old_oblock;
357 dm_oblock_t new_oblock;
358 dm_cblock_t cblock;
359
360 bool err:1;
361 bool discard:1;
362 bool writeback:1;
363 bool demote:1;
364 bool promote:1;
365 bool requeue_holder:1;
366 bool invalidate:1;
367
368 struct dm_bio_prison_cell *old_ocell;
369 struct dm_bio_prison_cell *new_ocell;
370 };
371
372 /*
373 * Processing a bio in the worker thread may require these memory
374 * allocations. We prealloc to avoid deadlocks (the same worker thread
375 * frees them back to the mempool).
376 */
377 struct prealloc {
378 struct dm_cache_migration *mg;
379 struct dm_bio_prison_cell *cell1;
380 struct dm_bio_prison_cell *cell2;
381 };
382
383 static enum cache_metadata_mode get_cache_mode(struct cache *cache);
384
385 static void wake_worker(struct cache *cache)
386 {
387 queue_work(cache->wq, &cache->worker);
388 }
389
390 /*----------------------------------------------------------------*/
391
392 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
393 {
394 /* FIXME: change to use a local slab. */
395 return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
396 }
397
398 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
399 {
400 dm_bio_prison_free_cell(cache->prison, cell);
401 }
402
403 static struct dm_cache_migration *alloc_migration(struct cache *cache)
404 {
405 struct dm_cache_migration *mg;
406
407 mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
408 if (mg) {
409 mg->cache = cache;
410 atomic_inc(&mg->cache->nr_allocated_migrations);
411 }
412
413 return mg;
414 }
415
416 static void free_migration(struct dm_cache_migration *mg)
417 {
418 struct cache *cache = mg->cache;
419
420 if (atomic_dec_and_test(&cache->nr_allocated_migrations))
421 wake_up(&cache->migration_wait);
422
423 mempool_free(mg, cache->migration_pool);
424 }
425
426 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
427 {
428 if (!p->mg) {
429 p->mg = alloc_migration(cache);
430 if (!p->mg)
431 return -ENOMEM;
432 }
433
434 if (!p->cell1) {
435 p->cell1 = alloc_prison_cell(cache);
436 if (!p->cell1)
437 return -ENOMEM;
438 }
439
440 if (!p->cell2) {
441 p->cell2 = alloc_prison_cell(cache);
442 if (!p->cell2)
443 return -ENOMEM;
444 }
445
446 return 0;
447 }
448
449 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
450 {
451 if (p->cell2)
452 free_prison_cell(cache, p->cell2);
453
454 if (p->cell1)
455 free_prison_cell(cache, p->cell1);
456
457 if (p->mg)
458 free_migration(p->mg);
459 }
460
461 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
462 {
463 struct dm_cache_migration *mg = p->mg;
464
465 BUG_ON(!mg);
466 p->mg = NULL;
467
468 return mg;
469 }
470
471 /*
472 * You must have a cell within the prealloc struct to return. If not this
473 * function will BUG() rather than returning NULL.
474 */
475 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
476 {
477 struct dm_bio_prison_cell *r = NULL;
478
479 if (p->cell1) {
480 r = p->cell1;
481 p->cell1 = NULL;
482
483 } else if (p->cell2) {
484 r = p->cell2;
485 p->cell2 = NULL;
486 } else
487 BUG();
488
489 return r;
490 }
491
492 /*
493 * You can't have more than two cells in a prealloc struct. BUG() will be
494 * called if you try and overfill.
495 */
496 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
497 {
498 if (!p->cell2)
499 p->cell2 = cell;
500
501 else if (!p->cell1)
502 p->cell1 = cell;
503
504 else
505 BUG();
506 }
507
508 /*----------------------------------------------------------------*/
509
510 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key *key)
511 {
512 key->virtual = 0;
513 key->dev = 0;
514 key->block_begin = from_oblock(begin);
515 key->block_end = from_oblock(end);
516 }
517
518 /*
519 * The caller hands in a preallocated cell, and a free function for it.
520 * The cell will be freed if there's an error, or if it wasn't used because
521 * a cell with that key already exists.
522 */
523 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
524
525 static int bio_detain_range(struct cache *cache, dm_oblock_t oblock_begin, dm_oblock_t oblock_end,
526 struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
527 cell_free_fn free_fn, void *free_context,
528 struct dm_bio_prison_cell **cell_result)
529 {
530 int r;
531 struct dm_cell_key key;
532
533 build_key(oblock_begin, oblock_end, &key);
534 r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
535 if (r)
536 free_fn(free_context, cell_prealloc);
537
538 return r;
539 }
540
541 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
542 struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
543 cell_free_fn free_fn, void *free_context,
544 struct dm_bio_prison_cell **cell_result)
545 {
546 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
547 return bio_detain_range(cache, oblock, end, bio,
548 cell_prealloc, free_fn, free_context, cell_result);
549 }
550
551 static int get_cell(struct cache *cache,
552 dm_oblock_t oblock,
553 struct prealloc *structs,
554 struct dm_bio_prison_cell **cell_result)
555 {
556 int r;
557 struct dm_cell_key key;
558 struct dm_bio_prison_cell *cell_prealloc;
559
560 cell_prealloc = prealloc_get_cell(structs);
561
562 build_key(oblock, to_oblock(from_oblock(oblock) + 1ULL), &key);
563 r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
564 if (r)
565 prealloc_put_cell(structs, cell_prealloc);
566
567 return r;
568 }
569
570 /*----------------------------------------------------------------*/
571
572 static bool is_dirty(struct cache *cache, dm_cblock_t b)
573 {
574 return test_bit(from_cblock(b), cache->dirty_bitset);
575 }
576
577 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
578 {
579 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
580 atomic_inc(&cache->nr_dirty);
581 policy_set_dirty(cache->policy, oblock);
582 }
583 }
584
585 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
586 {
587 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
588 policy_clear_dirty(cache->policy, oblock);
589 if (atomic_dec_return(&cache->nr_dirty) == 0)
590 dm_table_event(cache->ti->table);
591 }
592 }
593
594 /*----------------------------------------------------------------*/
595
596 static bool block_size_is_power_of_two(struct cache *cache)
597 {
598 return cache->sectors_per_block_shift >= 0;
599 }
600
601 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
602 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
603 __always_inline
604 #endif
605 static dm_block_t block_div(dm_block_t b, uint32_t n)
606 {
607 do_div(b, n);
608
609 return b;
610 }
611
612 static dm_block_t oblocks_per_dblock(struct cache *cache)
613 {
614 dm_block_t oblocks = cache->discard_block_size;
615
616 if (block_size_is_power_of_two(cache))
617 oblocks >>= cache->sectors_per_block_shift;
618 else
619 oblocks = block_div(oblocks, cache->sectors_per_block);
620
621 return oblocks;
622 }
623
624 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
625 {
626 return to_dblock(block_div(from_oblock(oblock),
627 oblocks_per_dblock(cache)));
628 }
629
630 static dm_oblock_t dblock_to_oblock(struct cache *cache, dm_dblock_t dblock)
631 {
632 return to_oblock(from_dblock(dblock) * oblocks_per_dblock(cache));
633 }
634
635 static void set_discard(struct cache *cache, dm_dblock_t b)
636 {
637 unsigned long flags;
638
639 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
640 atomic_inc(&cache->stats.discard_count);
641
642 spin_lock_irqsave(&cache->lock, flags);
643 set_bit(from_dblock(b), cache->discard_bitset);
644 spin_unlock_irqrestore(&cache->lock, flags);
645 }
646
647 static void clear_discard(struct cache *cache, dm_dblock_t b)
648 {
649 unsigned long flags;
650
651 spin_lock_irqsave(&cache->lock, flags);
652 clear_bit(from_dblock(b), cache->discard_bitset);
653 spin_unlock_irqrestore(&cache->lock, flags);
654 }
655
656 static bool is_discarded(struct cache *cache, dm_dblock_t b)
657 {
658 int r;
659 unsigned long flags;
660
661 spin_lock_irqsave(&cache->lock, flags);
662 r = test_bit(from_dblock(b), cache->discard_bitset);
663 spin_unlock_irqrestore(&cache->lock, flags);
664
665 return r;
666 }
667
668 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
669 {
670 int r;
671 unsigned long flags;
672
673 spin_lock_irqsave(&cache->lock, flags);
674 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
675 cache->discard_bitset);
676 spin_unlock_irqrestore(&cache->lock, flags);
677
678 return r;
679 }
680
681 /*----------------------------------------------------------------*/
682
683 static void load_stats(struct cache *cache)
684 {
685 struct dm_cache_statistics stats;
686
687 dm_cache_metadata_get_stats(cache->cmd, &stats);
688 atomic_set(&cache->stats.read_hit, stats.read_hits);
689 atomic_set(&cache->stats.read_miss, stats.read_misses);
690 atomic_set(&cache->stats.write_hit, stats.write_hits);
691 atomic_set(&cache->stats.write_miss, stats.write_misses);
692 }
693
694 static void save_stats(struct cache *cache)
695 {
696 struct dm_cache_statistics stats;
697
698 if (get_cache_mode(cache) >= CM_READ_ONLY)
699 return;
700
701 stats.read_hits = atomic_read(&cache->stats.read_hit);
702 stats.read_misses = atomic_read(&cache->stats.read_miss);
703 stats.write_hits = atomic_read(&cache->stats.write_hit);
704 stats.write_misses = atomic_read(&cache->stats.write_miss);
705
706 dm_cache_metadata_set_stats(cache->cmd, &stats);
707 }
708
709 /*----------------------------------------------------------------
710 * Per bio data
711 *--------------------------------------------------------------*/
712
713 /*
714 * If using writeback, leave out struct per_bio_data's writethrough fields.
715 */
716 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
717 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
718
719 static bool writethrough_mode(struct cache_features *f)
720 {
721 return f->io_mode == CM_IO_WRITETHROUGH;
722 }
723
724 static bool writeback_mode(struct cache_features *f)
725 {
726 return f->io_mode == CM_IO_WRITEBACK;
727 }
728
729 static bool passthrough_mode(struct cache_features *f)
730 {
731 return f->io_mode == CM_IO_PASSTHROUGH;
732 }
733
734 static size_t get_per_bio_data_size(struct cache *cache)
735 {
736 return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
737 }
738
739 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
740 {
741 struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
742 BUG_ON(!pb);
743 return pb;
744 }
745
746 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
747 {
748 struct per_bio_data *pb = get_per_bio_data(bio, data_size);
749
750 pb->tick = false;
751 pb->req_nr = dm_bio_get_target_bio_nr(bio);
752 pb->all_io_entry = NULL;
753 pb->len = 0;
754
755 return pb;
756 }
757
758 /*----------------------------------------------------------------
759 * Remapping
760 *--------------------------------------------------------------*/
761 static void remap_to_origin(struct cache *cache, struct bio *bio)
762 {
763 bio->bi_bdev = cache->origin_dev->bdev;
764 }
765
766 static void remap_to_cache(struct cache *cache, struct bio *bio,
767 dm_cblock_t cblock)
768 {
769 sector_t bi_sector = bio->bi_iter.bi_sector;
770 sector_t block = from_cblock(cblock);
771
772 bio->bi_bdev = cache->cache_dev->bdev;
773 if (!block_size_is_power_of_two(cache))
774 bio->bi_iter.bi_sector =
775 (block * cache->sectors_per_block) +
776 sector_div(bi_sector, cache->sectors_per_block);
777 else
778 bio->bi_iter.bi_sector =
779 (block << cache->sectors_per_block_shift) |
780 (bi_sector & (cache->sectors_per_block - 1));
781 }
782
783 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
784 {
785 unsigned long flags;
786 size_t pb_data_size = get_per_bio_data_size(cache);
787 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
788
789 spin_lock_irqsave(&cache->lock, flags);
790 if (cache->need_tick_bio &&
791 !(bio->bi_rw & (REQ_FUA | REQ_PREFLUSH)) &&
792 bio_op(bio) != REQ_OP_DISCARD) {
793 pb->tick = true;
794 cache->need_tick_bio = false;
795 }
796 spin_unlock_irqrestore(&cache->lock, flags);
797 }
798
799 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
800 dm_oblock_t oblock)
801 {
802 check_if_tick_bio_needed(cache, bio);
803 remap_to_origin(cache, bio);
804 if (bio_data_dir(bio) == WRITE)
805 clear_discard(cache, oblock_to_dblock(cache, oblock));
806 }
807
808 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
809 dm_oblock_t oblock, dm_cblock_t cblock)
810 {
811 check_if_tick_bio_needed(cache, bio);
812 remap_to_cache(cache, bio, cblock);
813 if (bio_data_dir(bio) == WRITE) {
814 set_dirty(cache, oblock, cblock);
815 clear_discard(cache, oblock_to_dblock(cache, oblock));
816 }
817 }
818
819 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
820 {
821 sector_t block_nr = bio->bi_iter.bi_sector;
822
823 if (!block_size_is_power_of_two(cache))
824 (void) sector_div(block_nr, cache->sectors_per_block);
825 else
826 block_nr >>= cache->sectors_per_block_shift;
827
828 return to_oblock(block_nr);
829 }
830
831 static int bio_triggers_commit(struct cache *cache, struct bio *bio)
832 {
833 return bio->bi_rw & (REQ_PREFLUSH | REQ_FUA);
834 }
835
836 /*
837 * You must increment the deferred set whilst the prison cell is held. To
838 * encourage this, we ask for 'cell' to be passed in.
839 */
840 static void inc_ds(struct cache *cache, struct bio *bio,
841 struct dm_bio_prison_cell *cell)
842 {
843 size_t pb_data_size = get_per_bio_data_size(cache);
844 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
845
846 BUG_ON(!cell);
847 BUG_ON(pb->all_io_entry);
848
849 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
850 }
851
852 static bool accountable_bio(struct cache *cache, struct bio *bio)
853 {
854 return ((bio->bi_bdev == cache->origin_dev->bdev) &&
855 bio_op(bio) != REQ_OP_DISCARD);
856 }
857
858 static void accounted_begin(struct cache *cache, struct bio *bio)
859 {
860 size_t pb_data_size = get_per_bio_data_size(cache);
861 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
862
863 if (accountable_bio(cache, bio)) {
864 pb->len = bio_sectors(bio);
865 iot_io_begin(&cache->origin_tracker, pb->len);
866 }
867 }
868
869 static void accounted_complete(struct cache *cache, struct bio *bio)
870 {
871 size_t pb_data_size = get_per_bio_data_size(cache);
872 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
873
874 iot_io_end(&cache->origin_tracker, pb->len);
875 }
876
877 static void accounted_request(struct cache *cache, struct bio *bio)
878 {
879 accounted_begin(cache, bio);
880 generic_make_request(bio);
881 }
882
883 static void issue(struct cache *cache, struct bio *bio)
884 {
885 unsigned long flags;
886
887 if (!bio_triggers_commit(cache, bio)) {
888 accounted_request(cache, bio);
889 return;
890 }
891
892 /*
893 * Batch together any bios that trigger commits and then issue a
894 * single commit for them in do_worker().
895 */
896 spin_lock_irqsave(&cache->lock, flags);
897 cache->commit_requested = true;
898 bio_list_add(&cache->deferred_flush_bios, bio);
899 spin_unlock_irqrestore(&cache->lock, flags);
900 }
901
902 static void inc_and_issue(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell *cell)
903 {
904 inc_ds(cache, bio, cell);
905 issue(cache, bio);
906 }
907
908 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
909 {
910 unsigned long flags;
911
912 spin_lock_irqsave(&cache->lock, flags);
913 bio_list_add(&cache->deferred_writethrough_bios, bio);
914 spin_unlock_irqrestore(&cache->lock, flags);
915
916 wake_worker(cache);
917 }
918
919 static void writethrough_endio(struct bio *bio)
920 {
921 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
922
923 dm_unhook_bio(&pb->hook_info, bio);
924
925 if (bio->bi_error) {
926 bio_endio(bio);
927 return;
928 }
929
930 dm_bio_restore(&pb->bio_details, bio);
931 remap_to_cache(pb->cache, bio, pb->cblock);
932
933 /*
934 * We can't issue this bio directly, since we're in interrupt
935 * context. So it gets put on a bio list for processing by the
936 * worker thread.
937 */
938 defer_writethrough_bio(pb->cache, bio);
939 }
940
941 /*
942 * When running in writethrough mode we need to send writes to clean blocks
943 * to both the cache and origin devices. In future we'd like to clone the
944 * bio and send them in parallel, but for now we're doing them in
945 * series as this is easier.
946 */
947 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
948 dm_oblock_t oblock, dm_cblock_t cblock)
949 {
950 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
951
952 pb->cache = cache;
953 pb->cblock = cblock;
954 dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
955 dm_bio_record(&pb->bio_details, bio);
956
957 remap_to_origin_clear_discard(pb->cache, bio, oblock);
958 }
959
960 /*----------------------------------------------------------------
961 * Failure modes
962 *--------------------------------------------------------------*/
963 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
964 {
965 return cache->features.mode;
966 }
967
968 static const char *cache_device_name(struct cache *cache)
969 {
970 return dm_device_name(dm_table_get_md(cache->ti->table));
971 }
972
973 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
974 {
975 const char *descs[] = {
976 "write",
977 "read-only",
978 "fail"
979 };
980
981 dm_table_event(cache->ti->table);
982 DMINFO("%s: switching cache to %s mode",
983 cache_device_name(cache), descs[(int)mode]);
984 }
985
986 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
987 {
988 bool needs_check;
989 enum cache_metadata_mode old_mode = get_cache_mode(cache);
990
991 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
992 DMERR("unable to read needs_check flag, setting failure mode");
993 new_mode = CM_FAIL;
994 }
995
996 if (new_mode == CM_WRITE && needs_check) {
997 DMERR("%s: unable to switch cache to write mode until repaired.",
998 cache_device_name(cache));
999 if (old_mode != new_mode)
1000 new_mode = old_mode;
1001 else
1002 new_mode = CM_READ_ONLY;
1003 }
1004
1005 /* Never move out of fail mode */
1006 if (old_mode == CM_FAIL)
1007 new_mode = CM_FAIL;
1008
1009 switch (new_mode) {
1010 case CM_FAIL:
1011 case CM_READ_ONLY:
1012 dm_cache_metadata_set_read_only(cache->cmd);
1013 break;
1014
1015 case CM_WRITE:
1016 dm_cache_metadata_set_read_write(cache->cmd);
1017 break;
1018 }
1019
1020 cache->features.mode = new_mode;
1021
1022 if (new_mode != old_mode)
1023 notify_mode_switch(cache, new_mode);
1024 }
1025
1026 static void abort_transaction(struct cache *cache)
1027 {
1028 const char *dev_name = cache_device_name(cache);
1029
1030 if (get_cache_mode(cache) >= CM_READ_ONLY)
1031 return;
1032
1033 if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1034 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1035 set_cache_mode(cache, CM_FAIL);
1036 }
1037
1038 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1039 if (dm_cache_metadata_abort(cache->cmd)) {
1040 DMERR("%s: failed to abort metadata transaction", dev_name);
1041 set_cache_mode(cache, CM_FAIL);
1042 }
1043 }
1044
1045 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1046 {
1047 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1048 cache_device_name(cache), op, r);
1049 abort_transaction(cache);
1050 set_cache_mode(cache, CM_READ_ONLY);
1051 }
1052
1053 /*----------------------------------------------------------------
1054 * Migration processing
1055 *
1056 * Migration covers moving data from the origin device to the cache, or
1057 * vice versa.
1058 *--------------------------------------------------------------*/
1059 static void inc_io_migrations(struct cache *cache)
1060 {
1061 atomic_inc(&cache->nr_io_migrations);
1062 }
1063
1064 static void dec_io_migrations(struct cache *cache)
1065 {
1066 atomic_dec(&cache->nr_io_migrations);
1067 }
1068
1069 static bool discard_or_flush(struct bio *bio)
1070 {
1071 return bio_op(bio) == REQ_OP_DISCARD ||
1072 bio->bi_rw & (REQ_PREFLUSH | REQ_FUA);
1073 }
1074
1075 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell)
1076 {
1077 if (discard_or_flush(cell->holder)) {
1078 /*
1079 * We have to handle these bios individually.
1080 */
1081 dm_cell_release(cache->prison, cell, &cache->deferred_bios);
1082 free_prison_cell(cache, cell);
1083 } else
1084 list_add_tail(&cell->user_list, &cache->deferred_cells);
1085 }
1086
1087 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell, bool holder)
1088 {
1089 unsigned long flags;
1090
1091 if (!holder && dm_cell_promote_or_release(cache->prison, cell)) {
1092 /*
1093 * There was no prisoner to promote to holder, the
1094 * cell has been released.
1095 */
1096 free_prison_cell(cache, cell);
1097 return;
1098 }
1099
1100 spin_lock_irqsave(&cache->lock, flags);
1101 __cell_defer(cache, cell);
1102 spin_unlock_irqrestore(&cache->lock, flags);
1103
1104 wake_worker(cache);
1105 }
1106
1107 static void cell_error_with_code(struct cache *cache, struct dm_bio_prison_cell *cell, int err)
1108 {
1109 dm_cell_error(cache->prison, cell, err);
1110 free_prison_cell(cache, cell);
1111 }
1112
1113 static void cell_requeue(struct cache *cache, struct dm_bio_prison_cell *cell)
1114 {
1115 cell_error_with_code(cache, cell, DM_ENDIO_REQUEUE);
1116 }
1117
1118 static void free_io_migration(struct dm_cache_migration *mg)
1119 {
1120 struct cache *cache = mg->cache;
1121
1122 dec_io_migrations(cache);
1123 free_migration(mg);
1124 wake_worker(cache);
1125 }
1126
1127 static void migration_failure(struct dm_cache_migration *mg)
1128 {
1129 struct cache *cache = mg->cache;
1130 const char *dev_name = cache_device_name(cache);
1131
1132 if (mg->writeback) {
1133 DMERR_LIMIT("%s: writeback failed; couldn't copy block", dev_name);
1134 set_dirty(cache, mg->old_oblock, mg->cblock);
1135 cell_defer(cache, mg->old_ocell, false);
1136
1137 } else if (mg->demote) {
1138 DMERR_LIMIT("%s: demotion failed; couldn't copy block", dev_name);
1139 policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
1140
1141 cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1142 if (mg->promote)
1143 cell_defer(cache, mg->new_ocell, true);
1144 } else {
1145 DMERR_LIMIT("%s: promotion failed; couldn't copy block", dev_name);
1146 policy_remove_mapping(cache->policy, mg->new_oblock);
1147 cell_defer(cache, mg->new_ocell, true);
1148 }
1149
1150 free_io_migration(mg);
1151 }
1152
1153 static void migration_success_pre_commit(struct dm_cache_migration *mg)
1154 {
1155 int r;
1156 unsigned long flags;
1157 struct cache *cache = mg->cache;
1158
1159 if (mg->writeback) {
1160 clear_dirty(cache, mg->old_oblock, mg->cblock);
1161 cell_defer(cache, mg->old_ocell, false);
1162 free_io_migration(mg);
1163 return;
1164
1165 } else if (mg->demote) {
1166 r = dm_cache_remove_mapping(cache->cmd, mg->cblock);
1167 if (r) {
1168 DMERR_LIMIT("%s: demotion failed; couldn't update on disk metadata",
1169 cache_device_name(cache));
1170 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1171 policy_force_mapping(cache->policy, mg->new_oblock,
1172 mg->old_oblock);
1173 if (mg->promote)
1174 cell_defer(cache, mg->new_ocell, true);
1175 free_io_migration(mg);
1176 return;
1177 }
1178 } else {
1179 r = dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock);
1180 if (r) {
1181 DMERR_LIMIT("%s: promotion failed; couldn't update on disk metadata",
1182 cache_device_name(cache));
1183 metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1184 policy_remove_mapping(cache->policy, mg->new_oblock);
1185 free_io_migration(mg);
1186 return;
1187 }
1188 }
1189
1190 spin_lock_irqsave(&cache->lock, flags);
1191 list_add_tail(&mg->list, &cache->need_commit_migrations);
1192 cache->commit_requested = true;
1193 spin_unlock_irqrestore(&cache->lock, flags);
1194 }
1195
1196 static void migration_success_post_commit(struct dm_cache_migration *mg)
1197 {
1198 unsigned long flags;
1199 struct cache *cache = mg->cache;
1200
1201 if (mg->writeback) {
1202 DMWARN_LIMIT("%s: writeback unexpectedly triggered commit",
1203 cache_device_name(cache));
1204 return;
1205
1206 } else if (mg->demote) {
1207 cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1208
1209 if (mg->promote) {
1210 mg->demote = false;
1211
1212 spin_lock_irqsave(&cache->lock, flags);
1213 list_add_tail(&mg->list, &cache->quiesced_migrations);
1214 spin_unlock_irqrestore(&cache->lock, flags);
1215
1216 } else {
1217 if (mg->invalidate)
1218 policy_remove_mapping(cache->policy, mg->old_oblock);
1219 free_io_migration(mg);
1220 }
1221
1222 } else {
1223 if (mg->requeue_holder) {
1224 clear_dirty(cache, mg->new_oblock, mg->cblock);
1225 cell_defer(cache, mg->new_ocell, true);
1226 } else {
1227 /*
1228 * The block was promoted via an overwrite, so it's dirty.
1229 */
1230 set_dirty(cache, mg->new_oblock, mg->cblock);
1231 bio_endio(mg->new_ocell->holder);
1232 cell_defer(cache, mg->new_ocell, false);
1233 }
1234 free_io_migration(mg);
1235 }
1236 }
1237
1238 static void copy_complete(int read_err, unsigned long write_err, void *context)
1239 {
1240 unsigned long flags;
1241 struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
1242 struct cache *cache = mg->cache;
1243
1244 if (read_err || write_err)
1245 mg->err = true;
1246
1247 spin_lock_irqsave(&cache->lock, flags);
1248 list_add_tail(&mg->list, &cache->completed_migrations);
1249 spin_unlock_irqrestore(&cache->lock, flags);
1250
1251 wake_worker(cache);
1252 }
1253
1254 static void issue_copy(struct dm_cache_migration *mg)
1255 {
1256 int r;
1257 struct dm_io_region o_region, c_region;
1258 struct cache *cache = mg->cache;
1259 sector_t cblock = from_cblock(mg->cblock);
1260
1261 o_region.bdev = cache->origin_dev->bdev;
1262 o_region.count = cache->sectors_per_block;
1263
1264 c_region.bdev = cache->cache_dev->bdev;
1265 c_region.sector = cblock * cache->sectors_per_block;
1266 c_region.count = cache->sectors_per_block;
1267
1268 if (mg->writeback || mg->demote) {
1269 /* demote */
1270 o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
1271 r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
1272 } else {
1273 /* promote */
1274 o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
1275 r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
1276 }
1277
1278 if (r < 0) {
1279 DMERR_LIMIT("%s: issuing migration failed", cache_device_name(cache));
1280 migration_failure(mg);
1281 }
1282 }
1283
1284 static void overwrite_endio(struct bio *bio)
1285 {
1286 struct dm_cache_migration *mg = bio->bi_private;
1287 struct cache *cache = mg->cache;
1288 size_t pb_data_size = get_per_bio_data_size(cache);
1289 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1290 unsigned long flags;
1291
1292 dm_unhook_bio(&pb->hook_info, bio);
1293
1294 if (bio->bi_error)
1295 mg->err = true;
1296
1297 mg->requeue_holder = false;
1298
1299 spin_lock_irqsave(&cache->lock, flags);
1300 list_add_tail(&mg->list, &cache->completed_migrations);
1301 spin_unlock_irqrestore(&cache->lock, flags);
1302
1303 wake_worker(cache);
1304 }
1305
1306 static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
1307 {
1308 size_t pb_data_size = get_per_bio_data_size(mg->cache);
1309 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1310
1311 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1312 remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1313
1314 /*
1315 * No need to inc_ds() here, since the cell will be held for the
1316 * duration of the io.
1317 */
1318 accounted_request(mg->cache, bio);
1319 }
1320
1321 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1322 {
1323 return (bio_data_dir(bio) == WRITE) &&
1324 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1325 }
1326
1327 static void avoid_copy(struct dm_cache_migration *mg)
1328 {
1329 atomic_inc(&mg->cache->stats.copies_avoided);
1330 migration_success_pre_commit(mg);
1331 }
1332
1333 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1334 dm_dblock_t *b, dm_dblock_t *e)
1335 {
1336 sector_t sb = bio->bi_iter.bi_sector;
1337 sector_t se = bio_end_sector(bio);
1338
1339 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1340
1341 if (se - sb < cache->discard_block_size)
1342 *e = *b;
1343 else
1344 *e = to_dblock(block_div(se, cache->discard_block_size));
1345 }
1346
1347 static void issue_discard(struct dm_cache_migration *mg)
1348 {
1349 dm_dblock_t b, e;
1350 struct bio *bio = mg->new_ocell->holder;
1351 struct cache *cache = mg->cache;
1352
1353 calc_discard_block_range(cache, bio, &b, &e);
1354 while (b != e) {
1355 set_discard(cache, b);
1356 b = to_dblock(from_dblock(b) + 1);
1357 }
1358
1359 bio_endio(bio);
1360 cell_defer(cache, mg->new_ocell, false);
1361 free_migration(mg);
1362 wake_worker(cache);
1363 }
1364
1365 static void issue_copy_or_discard(struct dm_cache_migration *mg)
1366 {
1367 bool avoid;
1368 struct cache *cache = mg->cache;
1369
1370 if (mg->discard) {
1371 issue_discard(mg);
1372 return;
1373 }
1374
1375 if (mg->writeback || mg->demote)
1376 avoid = !is_dirty(cache, mg->cblock) ||
1377 is_discarded_oblock(cache, mg->old_oblock);
1378 else {
1379 struct bio *bio = mg->new_ocell->holder;
1380
1381 avoid = is_discarded_oblock(cache, mg->new_oblock);
1382
1383 if (writeback_mode(&cache->features) &&
1384 !avoid && bio_writes_complete_block(cache, bio)) {
1385 issue_overwrite(mg, bio);
1386 return;
1387 }
1388 }
1389
1390 avoid ? avoid_copy(mg) : issue_copy(mg);
1391 }
1392
1393 static void complete_migration(struct dm_cache_migration *mg)
1394 {
1395 if (mg->err)
1396 migration_failure(mg);
1397 else
1398 migration_success_pre_commit(mg);
1399 }
1400
1401 static void process_migrations(struct cache *cache, struct list_head *head,
1402 void (*fn)(struct dm_cache_migration *))
1403 {
1404 unsigned long flags;
1405 struct list_head list;
1406 struct dm_cache_migration *mg, *tmp;
1407
1408 INIT_LIST_HEAD(&list);
1409 spin_lock_irqsave(&cache->lock, flags);
1410 list_splice_init(head, &list);
1411 spin_unlock_irqrestore(&cache->lock, flags);
1412
1413 list_for_each_entry_safe(mg, tmp, &list, list)
1414 fn(mg);
1415 }
1416
1417 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1418 {
1419 list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
1420 }
1421
1422 static void queue_quiesced_migration(struct dm_cache_migration *mg)
1423 {
1424 unsigned long flags;
1425 struct cache *cache = mg->cache;
1426
1427 spin_lock_irqsave(&cache->lock, flags);
1428 __queue_quiesced_migration(mg);
1429 spin_unlock_irqrestore(&cache->lock, flags);
1430
1431 wake_worker(cache);
1432 }
1433
1434 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1435 {
1436 unsigned long flags;
1437 struct dm_cache_migration *mg, *tmp;
1438
1439 spin_lock_irqsave(&cache->lock, flags);
1440 list_for_each_entry_safe(mg, tmp, work, list)
1441 __queue_quiesced_migration(mg);
1442 spin_unlock_irqrestore(&cache->lock, flags);
1443
1444 wake_worker(cache);
1445 }
1446
1447 static void check_for_quiesced_migrations(struct cache *cache,
1448 struct per_bio_data *pb)
1449 {
1450 struct list_head work;
1451
1452 if (!pb->all_io_entry)
1453 return;
1454
1455 INIT_LIST_HEAD(&work);
1456 dm_deferred_entry_dec(pb->all_io_entry, &work);
1457
1458 if (!list_empty(&work))
1459 queue_quiesced_migrations(cache, &work);
1460 }
1461
1462 static void quiesce_migration(struct dm_cache_migration *mg)
1463 {
1464 if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1465 queue_quiesced_migration(mg);
1466 }
1467
1468 static void promote(struct cache *cache, struct prealloc *structs,
1469 dm_oblock_t oblock, dm_cblock_t cblock,
1470 struct dm_bio_prison_cell *cell)
1471 {
1472 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1473
1474 mg->err = false;
1475 mg->discard = false;
1476 mg->writeback = false;
1477 mg->demote = false;
1478 mg->promote = true;
1479 mg->requeue_holder = true;
1480 mg->invalidate = false;
1481 mg->cache = cache;
1482 mg->new_oblock = oblock;
1483 mg->cblock = cblock;
1484 mg->old_ocell = NULL;
1485 mg->new_ocell = cell;
1486 mg->start_jiffies = jiffies;
1487
1488 inc_io_migrations(cache);
1489 quiesce_migration(mg);
1490 }
1491
1492 static void writeback(struct cache *cache, struct prealloc *structs,
1493 dm_oblock_t oblock, dm_cblock_t cblock,
1494 struct dm_bio_prison_cell *cell)
1495 {
1496 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1497
1498 mg->err = false;
1499 mg->discard = false;
1500 mg->writeback = true;
1501 mg->demote = false;
1502 mg->promote = false;
1503 mg->requeue_holder = true;
1504 mg->invalidate = false;
1505 mg->cache = cache;
1506 mg->old_oblock = oblock;
1507 mg->cblock = cblock;
1508 mg->old_ocell = cell;
1509 mg->new_ocell = NULL;
1510 mg->start_jiffies = jiffies;
1511
1512 inc_io_migrations(cache);
1513 quiesce_migration(mg);
1514 }
1515
1516 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1517 dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1518 dm_cblock_t cblock,
1519 struct dm_bio_prison_cell *old_ocell,
1520 struct dm_bio_prison_cell *new_ocell)
1521 {
1522 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1523
1524 mg->err = false;
1525 mg->discard = false;
1526 mg->writeback = false;
1527 mg->demote = true;
1528 mg->promote = true;
1529 mg->requeue_holder = true;
1530 mg->invalidate = false;
1531 mg->cache = cache;
1532 mg->old_oblock = old_oblock;
1533 mg->new_oblock = new_oblock;
1534 mg->cblock = cblock;
1535 mg->old_ocell = old_ocell;
1536 mg->new_ocell = new_ocell;
1537 mg->start_jiffies = jiffies;
1538
1539 inc_io_migrations(cache);
1540 quiesce_migration(mg);
1541 }
1542
1543 /*
1544 * Invalidate a cache entry. No writeback occurs; any changes in the cache
1545 * block are thrown away.
1546 */
1547 static void invalidate(struct cache *cache, struct prealloc *structs,
1548 dm_oblock_t oblock, dm_cblock_t cblock,
1549 struct dm_bio_prison_cell *cell)
1550 {
1551 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1552
1553 mg->err = false;
1554 mg->discard = false;
1555 mg->writeback = false;
1556 mg->demote = true;
1557 mg->promote = false;
1558 mg->requeue_holder = true;
1559 mg->invalidate = true;
1560 mg->cache = cache;
1561 mg->old_oblock = oblock;
1562 mg->cblock = cblock;
1563 mg->old_ocell = cell;
1564 mg->new_ocell = NULL;
1565 mg->start_jiffies = jiffies;
1566
1567 inc_io_migrations(cache);
1568 quiesce_migration(mg);
1569 }
1570
1571 static void discard(struct cache *cache, struct prealloc *structs,
1572 struct dm_bio_prison_cell *cell)
1573 {
1574 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1575
1576 mg->err = false;
1577 mg->discard = true;
1578 mg->writeback = false;
1579 mg->demote = false;
1580 mg->promote = false;
1581 mg->requeue_holder = false;
1582 mg->invalidate = false;
1583 mg->cache = cache;
1584 mg->old_ocell = NULL;
1585 mg->new_ocell = cell;
1586 mg->start_jiffies = jiffies;
1587
1588 quiesce_migration(mg);
1589 }
1590
1591 /*----------------------------------------------------------------
1592 * bio processing
1593 *--------------------------------------------------------------*/
1594 static void defer_bio(struct cache *cache, struct bio *bio)
1595 {
1596 unsigned long flags;
1597
1598 spin_lock_irqsave(&cache->lock, flags);
1599 bio_list_add(&cache->deferred_bios, bio);
1600 spin_unlock_irqrestore(&cache->lock, flags);
1601
1602 wake_worker(cache);
1603 }
1604
1605 static void process_flush_bio(struct cache *cache, struct bio *bio)
1606 {
1607 size_t pb_data_size = get_per_bio_data_size(cache);
1608 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1609
1610 BUG_ON(bio->bi_iter.bi_size);
1611 if (!pb->req_nr)
1612 remap_to_origin(cache, bio);
1613 else
1614 remap_to_cache(cache, bio, 0);
1615
1616 /*
1617 * REQ_PREFLUSH is not directed at any particular block so we don't
1618 * need to inc_ds(). REQ_FUA's are split into a write + REQ_PREFLUSH
1619 * by dm-core.
1620 */
1621 issue(cache, bio);
1622 }
1623
1624 static void process_discard_bio(struct cache *cache, struct prealloc *structs,
1625 struct bio *bio)
1626 {
1627 int r;
1628 dm_dblock_t b, e;
1629 struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1630
1631 calc_discard_block_range(cache, bio, &b, &e);
1632 if (b == e) {
1633 bio_endio(bio);
1634 return;
1635 }
1636
1637 cell_prealloc = prealloc_get_cell(structs);
1638 r = bio_detain_range(cache, dblock_to_oblock(cache, b), dblock_to_oblock(cache, e), bio, cell_prealloc,
1639 (cell_free_fn) prealloc_put_cell,
1640 structs, &new_ocell);
1641 if (r > 0)
1642 return;
1643
1644 discard(cache, structs, new_ocell);
1645 }
1646
1647 static bool spare_migration_bandwidth(struct cache *cache)
1648 {
1649 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1650 cache->sectors_per_block;
1651 return current_volume < cache->migration_threshold;
1652 }
1653
1654 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1655 {
1656 atomic_inc(bio_data_dir(bio) == READ ?
1657 &cache->stats.read_hit : &cache->stats.write_hit);
1658 }
1659
1660 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1661 {
1662 atomic_inc(bio_data_dir(bio) == READ ?
1663 &cache->stats.read_miss : &cache->stats.write_miss);
1664 }
1665
1666 /*----------------------------------------------------------------*/
1667
1668 struct inc_detail {
1669 struct cache *cache;
1670 struct bio_list bios_for_issue;
1671 struct bio_list unhandled_bios;
1672 bool any_writes;
1673 };
1674
1675 static void inc_fn(void *context, struct dm_bio_prison_cell *cell)
1676 {
1677 struct bio *bio;
1678 struct inc_detail *detail = context;
1679 struct cache *cache = detail->cache;
1680
1681 inc_ds(cache, cell->holder, cell);
1682 if (bio_data_dir(cell->holder) == WRITE)
1683 detail->any_writes = true;
1684
1685 while ((bio = bio_list_pop(&cell->bios))) {
1686 if (discard_or_flush(bio)) {
1687 bio_list_add(&detail->unhandled_bios, bio);
1688 continue;
1689 }
1690
1691 if (bio_data_dir(bio) == WRITE)
1692 detail->any_writes = true;
1693
1694 bio_list_add(&detail->bios_for_issue, bio);
1695 inc_ds(cache, bio, cell);
1696 }
1697 }
1698
1699 // FIXME: refactor these two
1700 static void remap_cell_to_origin_clear_discard(struct cache *cache,
1701 struct dm_bio_prison_cell *cell,
1702 dm_oblock_t oblock, bool issue_holder)
1703 {
1704 struct bio *bio;
1705 unsigned long flags;
1706 struct inc_detail detail;
1707
1708 detail.cache = cache;
1709 bio_list_init(&detail.bios_for_issue);
1710 bio_list_init(&detail.unhandled_bios);
1711 detail.any_writes = false;
1712
1713 spin_lock_irqsave(&cache->lock, flags);
1714 dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1715 bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1716 spin_unlock_irqrestore(&cache->lock, flags);
1717
1718 remap_to_origin(cache, cell->holder);
1719 if (issue_holder)
1720 issue(cache, cell->holder);
1721 else
1722 accounted_begin(cache, cell->holder);
1723
1724 if (detail.any_writes)
1725 clear_discard(cache, oblock_to_dblock(cache, oblock));
1726
1727 while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1728 remap_to_origin(cache, bio);
1729 issue(cache, bio);
1730 }
1731
1732 free_prison_cell(cache, cell);
1733 }
1734
1735 static void remap_cell_to_cache_dirty(struct cache *cache, struct dm_bio_prison_cell *cell,
1736 dm_oblock_t oblock, dm_cblock_t cblock, bool issue_holder)
1737 {
1738 struct bio *bio;
1739 unsigned long flags;
1740 struct inc_detail detail;
1741
1742 detail.cache = cache;
1743 bio_list_init(&detail.bios_for_issue);
1744 bio_list_init(&detail.unhandled_bios);
1745 detail.any_writes = false;
1746
1747 spin_lock_irqsave(&cache->lock, flags);
1748 dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1749 bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1750 spin_unlock_irqrestore(&cache->lock, flags);
1751
1752 remap_to_cache(cache, cell->holder, cblock);
1753 if (issue_holder)
1754 issue(cache, cell->holder);
1755 else
1756 accounted_begin(cache, cell->holder);
1757
1758 if (detail.any_writes) {
1759 set_dirty(cache, oblock, cblock);
1760 clear_discard(cache, oblock_to_dblock(cache, oblock));
1761 }
1762
1763 while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1764 remap_to_cache(cache, bio, cblock);
1765 issue(cache, bio);
1766 }
1767
1768 free_prison_cell(cache, cell);
1769 }
1770
1771 /*----------------------------------------------------------------*/
1772
1773 struct old_oblock_lock {
1774 struct policy_locker locker;
1775 struct cache *cache;
1776 struct prealloc *structs;
1777 struct dm_bio_prison_cell *cell;
1778 };
1779
1780 static int null_locker(struct policy_locker *locker, dm_oblock_t b)
1781 {
1782 /* This should never be called */
1783 BUG();
1784 return 0;
1785 }
1786
1787 static int cell_locker(struct policy_locker *locker, dm_oblock_t b)
1788 {
1789 struct old_oblock_lock *l = container_of(locker, struct old_oblock_lock, locker);
1790 struct dm_bio_prison_cell *cell_prealloc = prealloc_get_cell(l->structs);
1791
1792 return bio_detain(l->cache, b, NULL, cell_prealloc,
1793 (cell_free_fn) prealloc_put_cell,
1794 l->structs, &l->cell);
1795 }
1796
1797 static void process_cell(struct cache *cache, struct prealloc *structs,
1798 struct dm_bio_prison_cell *new_ocell)
1799 {
1800 int r;
1801 bool release_cell = true;
1802 struct bio *bio = new_ocell->holder;
1803 dm_oblock_t block = get_bio_block(cache, bio);
1804 struct policy_result lookup_result;
1805 bool passthrough = passthrough_mode(&cache->features);
1806 bool fast_promotion, can_migrate;
1807 struct old_oblock_lock ool;
1808
1809 fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
1810 can_migrate = !passthrough && (fast_promotion || spare_migration_bandwidth(cache));
1811
1812 ool.locker.fn = cell_locker;
1813 ool.cache = cache;
1814 ool.structs = structs;
1815 ool.cell = NULL;
1816 r = policy_map(cache->policy, block, true, can_migrate, fast_promotion,
1817 bio, &ool.locker, &lookup_result);
1818
1819 if (r == -EWOULDBLOCK)
1820 /* migration has been denied */
1821 lookup_result.op = POLICY_MISS;
1822
1823 switch (lookup_result.op) {
1824 case POLICY_HIT:
1825 if (passthrough) {
1826 inc_miss_counter(cache, bio);
1827
1828 /*
1829 * Passthrough always maps to the origin,
1830 * invalidating any cache blocks that are written
1831 * to.
1832 */
1833
1834 if (bio_data_dir(bio) == WRITE) {
1835 atomic_inc(&cache->stats.demotion);
1836 invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1837 release_cell = false;
1838
1839 } else {
1840 /* FIXME: factor out issue_origin() */
1841 remap_to_origin_clear_discard(cache, bio, block);
1842 inc_and_issue(cache, bio, new_ocell);
1843 }
1844 } else {
1845 inc_hit_counter(cache, bio);
1846
1847 if (bio_data_dir(bio) == WRITE &&
1848 writethrough_mode(&cache->features) &&
1849 !is_dirty(cache, lookup_result.cblock)) {
1850 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1851 inc_and_issue(cache, bio, new_ocell);
1852
1853 } else {
1854 remap_cell_to_cache_dirty(cache, new_ocell, block, lookup_result.cblock, true);
1855 release_cell = false;
1856 }
1857 }
1858
1859 break;
1860
1861 case POLICY_MISS:
1862 inc_miss_counter(cache, bio);
1863 remap_cell_to_origin_clear_discard(cache, new_ocell, block, true);
1864 release_cell = false;
1865 break;
1866
1867 case POLICY_NEW:
1868 atomic_inc(&cache->stats.promotion);
1869 promote(cache, structs, block, lookup_result.cblock, new_ocell);
1870 release_cell = false;
1871 break;
1872
1873 case POLICY_REPLACE:
1874 atomic_inc(&cache->stats.demotion);
1875 atomic_inc(&cache->stats.promotion);
1876 demote_then_promote(cache, structs, lookup_result.old_oblock,
1877 block, lookup_result.cblock,
1878 ool.cell, new_ocell);
1879 release_cell = false;
1880 break;
1881
1882 default:
1883 DMERR_LIMIT("%s: %s: erroring bio, unknown policy op: %u",
1884 cache_device_name(cache), __func__,
1885 (unsigned) lookup_result.op);
1886 bio_io_error(bio);
1887 }
1888
1889 if (release_cell)
1890 cell_defer(cache, new_ocell, false);
1891 }
1892
1893 static void process_bio(struct cache *cache, struct prealloc *structs,
1894 struct bio *bio)
1895 {
1896 int r;
1897 dm_oblock_t block = get_bio_block(cache, bio);
1898 struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1899
1900 /*
1901 * Check to see if that block is currently migrating.
1902 */
1903 cell_prealloc = prealloc_get_cell(structs);
1904 r = bio_detain(cache, block, bio, cell_prealloc,
1905 (cell_free_fn) prealloc_put_cell,
1906 structs, &new_ocell);
1907 if (r > 0)
1908 return;
1909
1910 process_cell(cache, structs, new_ocell);
1911 }
1912
1913 static int need_commit_due_to_time(struct cache *cache)
1914 {
1915 return jiffies < cache->last_commit_jiffies ||
1916 jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1917 }
1918
1919 /*
1920 * A non-zero return indicates read_only or fail_io mode.
1921 */
1922 static int commit(struct cache *cache, bool clean_shutdown)
1923 {
1924 int r;
1925
1926 if (get_cache_mode(cache) >= CM_READ_ONLY)
1927 return -EINVAL;
1928
1929 atomic_inc(&cache->stats.commit_count);
1930 r = dm_cache_commit(cache->cmd, clean_shutdown);
1931 if (r)
1932 metadata_operation_failed(cache, "dm_cache_commit", r);
1933
1934 return r;
1935 }
1936
1937 static int commit_if_needed(struct cache *cache)
1938 {
1939 int r = 0;
1940
1941 if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1942 dm_cache_changed_this_transaction(cache->cmd)) {
1943 r = commit(cache, false);
1944 cache->commit_requested = false;
1945 cache->last_commit_jiffies = jiffies;
1946 }
1947
1948 return r;
1949 }
1950
1951 static void process_deferred_bios(struct cache *cache)
1952 {
1953 bool prealloc_used = false;
1954 unsigned long flags;
1955 struct bio_list bios;
1956 struct bio *bio;
1957 struct prealloc structs;
1958
1959 memset(&structs, 0, sizeof(structs));
1960 bio_list_init(&bios);
1961
1962 spin_lock_irqsave(&cache->lock, flags);
1963 bio_list_merge(&bios, &cache->deferred_bios);
1964 bio_list_init(&cache->deferred_bios);
1965 spin_unlock_irqrestore(&cache->lock, flags);
1966
1967 while (!bio_list_empty(&bios)) {
1968 /*
1969 * If we've got no free migration structs, and processing
1970 * this bio might require one, we pause until there are some
1971 * prepared mappings to process.
1972 */
1973 prealloc_used = true;
1974 if (prealloc_data_structs(cache, &structs)) {
1975 spin_lock_irqsave(&cache->lock, flags);
1976 bio_list_merge(&cache->deferred_bios, &bios);
1977 spin_unlock_irqrestore(&cache->lock, flags);
1978 break;
1979 }
1980
1981 bio = bio_list_pop(&bios);
1982
1983 if (bio->bi_rw & REQ_PREFLUSH)
1984 process_flush_bio(cache, bio);
1985 else if (bio_op(bio) == REQ_OP_DISCARD)
1986 process_discard_bio(cache, &structs, bio);
1987 else
1988 process_bio(cache, &structs, bio);
1989 }
1990
1991 if (prealloc_used)
1992 prealloc_free_structs(cache, &structs);
1993 }
1994
1995 static void process_deferred_cells(struct cache *cache)
1996 {
1997 bool prealloc_used = false;
1998 unsigned long flags;
1999 struct dm_bio_prison_cell *cell, *tmp;
2000 struct list_head cells;
2001 struct prealloc structs;
2002
2003 memset(&structs, 0, sizeof(structs));
2004
2005 INIT_LIST_HEAD(&cells);
2006
2007 spin_lock_irqsave(&cache->lock, flags);
2008 list_splice_init(&cache->deferred_cells, &cells);
2009 spin_unlock_irqrestore(&cache->lock, flags);
2010
2011 list_for_each_entry_safe(cell, tmp, &cells, user_list) {
2012 /*
2013 * If we've got no free migration structs, and processing
2014 * this bio might require one, we pause until there are some
2015 * prepared mappings to process.
2016 */
2017 prealloc_used = true;
2018 if (prealloc_data_structs(cache, &structs)) {
2019 spin_lock_irqsave(&cache->lock, flags);
2020 list_splice(&cells, &cache->deferred_cells);
2021 spin_unlock_irqrestore(&cache->lock, flags);
2022 break;
2023 }
2024
2025 process_cell(cache, &structs, cell);
2026 }
2027
2028 if (prealloc_used)
2029 prealloc_free_structs(cache, &structs);
2030 }
2031
2032 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
2033 {
2034 unsigned long flags;
2035 struct bio_list bios;
2036 struct bio *bio;
2037
2038 bio_list_init(&bios);
2039
2040 spin_lock_irqsave(&cache->lock, flags);
2041 bio_list_merge(&bios, &cache->deferred_flush_bios);
2042 bio_list_init(&cache->deferred_flush_bios);
2043 spin_unlock_irqrestore(&cache->lock, flags);
2044
2045 /*
2046 * These bios have already been through inc_ds()
2047 */
2048 while ((bio = bio_list_pop(&bios)))
2049 submit_bios ? accounted_request(cache, bio) : bio_io_error(bio);
2050 }
2051
2052 static void process_deferred_writethrough_bios(struct cache *cache)
2053 {
2054 unsigned long flags;
2055 struct bio_list bios;
2056 struct bio *bio;
2057
2058 bio_list_init(&bios);
2059
2060 spin_lock_irqsave(&cache->lock, flags);
2061 bio_list_merge(&bios, &cache->deferred_writethrough_bios);
2062 bio_list_init(&cache->deferred_writethrough_bios);
2063 spin_unlock_irqrestore(&cache->lock, flags);
2064
2065 /*
2066 * These bios have already been through inc_ds()
2067 */
2068 while ((bio = bio_list_pop(&bios)))
2069 accounted_request(cache, bio);
2070 }
2071
2072 static void writeback_some_dirty_blocks(struct cache *cache)
2073 {
2074 bool prealloc_used = false;
2075 dm_oblock_t oblock;
2076 dm_cblock_t cblock;
2077 struct prealloc structs;
2078 struct dm_bio_prison_cell *old_ocell;
2079 bool busy = !iot_idle_for(&cache->origin_tracker, HZ);
2080
2081 memset(&structs, 0, sizeof(structs));
2082
2083 while (spare_migration_bandwidth(cache)) {
2084 if (policy_writeback_work(cache->policy, &oblock, &cblock, busy))
2085 break; /* no work to do */
2086
2087 prealloc_used = true;
2088 if (prealloc_data_structs(cache, &structs) ||
2089 get_cell(cache, oblock, &structs, &old_ocell)) {
2090 policy_set_dirty(cache->policy, oblock);
2091 break;
2092 }
2093
2094 writeback(cache, &structs, oblock, cblock, old_ocell);
2095 }
2096
2097 if (prealloc_used)
2098 prealloc_free_structs(cache, &structs);
2099 }
2100
2101 /*----------------------------------------------------------------
2102 * Invalidations.
2103 * Dropping something from the cache *without* writing back.
2104 *--------------------------------------------------------------*/
2105
2106 static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
2107 {
2108 int r = 0;
2109 uint64_t begin = from_cblock(req->cblocks->begin);
2110 uint64_t end = from_cblock(req->cblocks->end);
2111
2112 while (begin != end) {
2113 r = policy_remove_cblock(cache->policy, to_cblock(begin));
2114 if (!r) {
2115 r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
2116 if (r) {
2117 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
2118 break;
2119 }
2120
2121 } else if (r == -ENODATA) {
2122 /* harmless, already unmapped */
2123 r = 0;
2124
2125 } else {
2126 DMERR("%s: policy_remove_cblock failed", cache_device_name(cache));
2127 break;
2128 }
2129
2130 begin++;
2131 }
2132
2133 cache->commit_requested = true;
2134
2135 req->err = r;
2136 atomic_set(&req->complete, 1);
2137
2138 wake_up(&req->result_wait);
2139 }
2140
2141 static void process_invalidation_requests(struct cache *cache)
2142 {
2143 struct list_head list;
2144 struct invalidation_request *req, *tmp;
2145
2146 INIT_LIST_HEAD(&list);
2147 spin_lock(&cache->invalidation_lock);
2148 list_splice_init(&cache->invalidation_requests, &list);
2149 spin_unlock(&cache->invalidation_lock);
2150
2151 list_for_each_entry_safe (req, tmp, &list, list)
2152 process_invalidation_request(cache, req);
2153 }
2154
2155 /*----------------------------------------------------------------
2156 * Main worker loop
2157 *--------------------------------------------------------------*/
2158 static bool is_quiescing(struct cache *cache)
2159 {
2160 return atomic_read(&cache->quiescing);
2161 }
2162
2163 static void ack_quiescing(struct cache *cache)
2164 {
2165 if (is_quiescing(cache)) {
2166 atomic_inc(&cache->quiescing_ack);
2167 wake_up(&cache->quiescing_wait);
2168 }
2169 }
2170
2171 static void wait_for_quiescing_ack(struct cache *cache)
2172 {
2173 wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
2174 }
2175
2176 static void start_quiescing(struct cache *cache)
2177 {
2178 atomic_inc(&cache->quiescing);
2179 wait_for_quiescing_ack(cache);
2180 }
2181
2182 static void stop_quiescing(struct cache *cache)
2183 {
2184 atomic_set(&cache->quiescing, 0);
2185 atomic_set(&cache->quiescing_ack, 0);
2186 }
2187
2188 static void wait_for_migrations(struct cache *cache)
2189 {
2190 wait_event(cache->migration_wait, !atomic_read(&cache->nr_allocated_migrations));
2191 }
2192
2193 static void stop_worker(struct cache *cache)
2194 {
2195 cancel_delayed_work(&cache->waker);
2196 flush_workqueue(cache->wq);
2197 }
2198
2199 static void requeue_deferred_cells(struct cache *cache)
2200 {
2201 unsigned long flags;
2202 struct list_head cells;
2203 struct dm_bio_prison_cell *cell, *tmp;
2204
2205 INIT_LIST_HEAD(&cells);
2206 spin_lock_irqsave(&cache->lock, flags);
2207 list_splice_init(&cache->deferred_cells, &cells);
2208 spin_unlock_irqrestore(&cache->lock, flags);
2209
2210 list_for_each_entry_safe(cell, tmp, &cells, user_list)
2211 cell_requeue(cache, cell);
2212 }
2213
2214 static void requeue_deferred_bios(struct cache *cache)
2215 {
2216 struct bio *bio;
2217 struct bio_list bios;
2218
2219 bio_list_init(&bios);
2220 bio_list_merge(&bios, &cache->deferred_bios);
2221 bio_list_init(&cache->deferred_bios);
2222
2223 while ((bio = bio_list_pop(&bios))) {
2224 bio->bi_error = DM_ENDIO_REQUEUE;
2225 bio_endio(bio);
2226 }
2227 }
2228
2229 static int more_work(struct cache *cache)
2230 {
2231 if (is_quiescing(cache))
2232 return !list_empty(&cache->quiesced_migrations) ||
2233 !list_empty(&cache->completed_migrations) ||
2234 !list_empty(&cache->need_commit_migrations);
2235 else
2236 return !bio_list_empty(&cache->deferred_bios) ||
2237 !list_empty(&cache->deferred_cells) ||
2238 !bio_list_empty(&cache->deferred_flush_bios) ||
2239 !bio_list_empty(&cache->deferred_writethrough_bios) ||
2240 !list_empty(&cache->quiesced_migrations) ||
2241 !list_empty(&cache->completed_migrations) ||
2242 !list_empty(&cache->need_commit_migrations) ||
2243 cache->invalidate;
2244 }
2245
2246 static void do_worker(struct work_struct *ws)
2247 {
2248 struct cache *cache = container_of(ws, struct cache, worker);
2249
2250 do {
2251 if (!is_quiescing(cache)) {
2252 writeback_some_dirty_blocks(cache);
2253 process_deferred_writethrough_bios(cache);
2254 process_deferred_bios(cache);
2255 process_deferred_cells(cache);
2256 process_invalidation_requests(cache);
2257 }
2258
2259 process_migrations(cache, &cache->quiesced_migrations, issue_copy_or_discard);
2260 process_migrations(cache, &cache->completed_migrations, complete_migration);
2261
2262 if (commit_if_needed(cache)) {
2263 process_deferred_flush_bios(cache, false);
2264 process_migrations(cache, &cache->need_commit_migrations, migration_failure);
2265 } else {
2266 process_deferred_flush_bios(cache, true);
2267 process_migrations(cache, &cache->need_commit_migrations,
2268 migration_success_post_commit);
2269 }
2270
2271 ack_quiescing(cache);
2272
2273 } while (more_work(cache));
2274 }
2275
2276 /*
2277 * We want to commit periodically so that not too much
2278 * unwritten metadata builds up.
2279 */
2280 static void do_waker(struct work_struct *ws)
2281 {
2282 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
2283 policy_tick(cache->policy, true);
2284 wake_worker(cache);
2285 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
2286 }
2287
2288 /*----------------------------------------------------------------*/
2289
2290 static int is_congested(struct dm_dev *dev, int bdi_bits)
2291 {
2292 struct request_queue *q = bdev_get_queue(dev->bdev);
2293 return bdi_congested(&q->backing_dev_info, bdi_bits);
2294 }
2295
2296 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2297 {
2298 struct cache *cache = container_of(cb, struct cache, callbacks);
2299
2300 return is_congested(cache->origin_dev, bdi_bits) ||
2301 is_congested(cache->cache_dev, bdi_bits);
2302 }
2303
2304 /*----------------------------------------------------------------
2305 * Target methods
2306 *--------------------------------------------------------------*/
2307
2308 /*
2309 * This function gets called on the error paths of the constructor, so we
2310 * have to cope with a partially initialised struct.
2311 */
2312 static void destroy(struct cache *cache)
2313 {
2314 unsigned i;
2315
2316 mempool_destroy(cache->migration_pool);
2317
2318 if (cache->all_io_ds)
2319 dm_deferred_set_destroy(cache->all_io_ds);
2320
2321 if (cache->prison)
2322 dm_bio_prison_destroy(cache->prison);
2323
2324 if (cache->wq)
2325 destroy_workqueue(cache->wq);
2326
2327 if (cache->dirty_bitset)
2328 free_bitset(cache->dirty_bitset);
2329
2330 if (cache->discard_bitset)
2331 free_bitset(cache->discard_bitset);
2332
2333 if (cache->copier)
2334 dm_kcopyd_client_destroy(cache->copier);
2335
2336 if (cache->cmd)
2337 dm_cache_metadata_close(cache->cmd);
2338
2339 if (cache->metadata_dev)
2340 dm_put_device(cache->ti, cache->metadata_dev);
2341
2342 if (cache->origin_dev)
2343 dm_put_device(cache->ti, cache->origin_dev);
2344
2345 if (cache->cache_dev)
2346 dm_put_device(cache->ti, cache->cache_dev);
2347
2348 if (cache->policy)
2349 dm_cache_policy_destroy(cache->policy);
2350
2351 for (i = 0; i < cache->nr_ctr_args ; i++)
2352 kfree(cache->ctr_args[i]);
2353 kfree(cache->ctr_args);
2354
2355 kfree(cache);
2356 }
2357
2358 static void cache_dtr(struct dm_target *ti)
2359 {
2360 struct cache *cache = ti->private;
2361
2362 destroy(cache);
2363 }
2364
2365 static sector_t get_dev_size(struct dm_dev *dev)
2366 {
2367 return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2368 }
2369
2370 /*----------------------------------------------------------------*/
2371
2372 /*
2373 * Construct a cache device mapping.
2374 *
2375 * cache <metadata dev> <cache dev> <origin dev> <block size>
2376 * <#feature args> [<feature arg>]*
2377 * <policy> <#policy args> [<policy arg>]*
2378 *
2379 * metadata dev : fast device holding the persistent metadata
2380 * cache dev : fast device holding cached data blocks
2381 * origin dev : slow device holding original data blocks
2382 * block size : cache unit size in sectors
2383 *
2384 * #feature args : number of feature arguments passed
2385 * feature args : writethrough. (The default is writeback.)
2386 *
2387 * policy : the replacement policy to use
2388 * #policy args : an even number of policy arguments corresponding
2389 * to key/value pairs passed to the policy
2390 * policy args : key/value pairs passed to the policy
2391 * E.g. 'sequential_threshold 1024'
2392 * See cache-policies.txt for details.
2393 *
2394 * Optional feature arguments are:
2395 * writethrough : write through caching that prohibits cache block
2396 * content from being different from origin block content.
2397 * Without this argument, the default behaviour is to write
2398 * back cache block contents later for performance reasons,
2399 * so they may differ from the corresponding origin blocks.
2400 */
2401 struct cache_args {
2402 struct dm_target *ti;
2403
2404 struct dm_dev *metadata_dev;
2405
2406 struct dm_dev *cache_dev;
2407 sector_t cache_sectors;
2408
2409 struct dm_dev *origin_dev;
2410 sector_t origin_sectors;
2411
2412 uint32_t block_size;
2413
2414 const char *policy_name;
2415 int policy_argc;
2416 const char **policy_argv;
2417
2418 struct cache_features features;
2419 };
2420
2421 static void destroy_cache_args(struct cache_args *ca)
2422 {
2423 if (ca->metadata_dev)
2424 dm_put_device(ca->ti, ca->metadata_dev);
2425
2426 if (ca->cache_dev)
2427 dm_put_device(ca->ti, ca->cache_dev);
2428
2429 if (ca->origin_dev)
2430 dm_put_device(ca->ti, ca->origin_dev);
2431
2432 kfree(ca);
2433 }
2434
2435 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2436 {
2437 if (!as->argc) {
2438 *error = "Insufficient args";
2439 return false;
2440 }
2441
2442 return true;
2443 }
2444
2445 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2446 char **error)
2447 {
2448 int r;
2449 sector_t metadata_dev_size;
2450 char b[BDEVNAME_SIZE];
2451
2452 if (!at_least_one_arg(as, error))
2453 return -EINVAL;
2454
2455 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2456 &ca->metadata_dev);
2457 if (r) {
2458 *error = "Error opening metadata device";
2459 return r;
2460 }
2461
2462 metadata_dev_size = get_dev_size(ca->metadata_dev);
2463 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2464 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2465 bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2466
2467 return 0;
2468 }
2469
2470 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2471 char **error)
2472 {
2473 int r;
2474
2475 if (!at_least_one_arg(as, error))
2476 return -EINVAL;
2477
2478 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2479 &ca->cache_dev);
2480 if (r) {
2481 *error = "Error opening cache device";
2482 return r;
2483 }
2484 ca->cache_sectors = get_dev_size(ca->cache_dev);
2485
2486 return 0;
2487 }
2488
2489 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2490 char **error)
2491 {
2492 int r;
2493
2494 if (!at_least_one_arg(as, error))
2495 return -EINVAL;
2496
2497 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2498 &ca->origin_dev);
2499 if (r) {
2500 *error = "Error opening origin device";
2501 return r;
2502 }
2503
2504 ca->origin_sectors = get_dev_size(ca->origin_dev);
2505 if (ca->ti->len > ca->origin_sectors) {
2506 *error = "Device size larger than cached device";
2507 return -EINVAL;
2508 }
2509
2510 return 0;
2511 }
2512
2513 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2514 char **error)
2515 {
2516 unsigned long block_size;
2517
2518 if (!at_least_one_arg(as, error))
2519 return -EINVAL;
2520
2521 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2522 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2523 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2524 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2525 *error = "Invalid data block size";
2526 return -EINVAL;
2527 }
2528
2529 if (block_size > ca->cache_sectors) {
2530 *error = "Data block size is larger than the cache device";
2531 return -EINVAL;
2532 }
2533
2534 ca->block_size = block_size;
2535
2536 return 0;
2537 }
2538
2539 static void init_features(struct cache_features *cf)
2540 {
2541 cf->mode = CM_WRITE;
2542 cf->io_mode = CM_IO_WRITEBACK;
2543 }
2544
2545 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2546 char **error)
2547 {
2548 static struct dm_arg _args[] = {
2549 {0, 1, "Invalid number of cache feature arguments"},
2550 };
2551
2552 int r;
2553 unsigned argc;
2554 const char *arg;
2555 struct cache_features *cf = &ca->features;
2556
2557 init_features(cf);
2558
2559 r = dm_read_arg_group(_args, as, &argc, error);
2560 if (r)
2561 return -EINVAL;
2562
2563 while (argc--) {
2564 arg = dm_shift_arg(as);
2565
2566 if (!strcasecmp(arg, "writeback"))
2567 cf->io_mode = CM_IO_WRITEBACK;
2568
2569 else if (!strcasecmp(arg, "writethrough"))
2570 cf->io_mode = CM_IO_WRITETHROUGH;
2571
2572 else if (!strcasecmp(arg, "passthrough"))
2573 cf->io_mode = CM_IO_PASSTHROUGH;
2574
2575 else {
2576 *error = "Unrecognised cache feature requested";
2577 return -EINVAL;
2578 }
2579 }
2580
2581 return 0;
2582 }
2583
2584 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2585 char **error)
2586 {
2587 static struct dm_arg _args[] = {
2588 {0, 1024, "Invalid number of policy arguments"},
2589 };
2590
2591 int r;
2592
2593 if (!at_least_one_arg(as, error))
2594 return -EINVAL;
2595
2596 ca->policy_name = dm_shift_arg(as);
2597
2598 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2599 if (r)
2600 return -EINVAL;
2601
2602 ca->policy_argv = (const char **)as->argv;
2603 dm_consume_args(as, ca->policy_argc);
2604
2605 return 0;
2606 }
2607
2608 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2609 char **error)
2610 {
2611 int r;
2612 struct dm_arg_set as;
2613
2614 as.argc = argc;
2615 as.argv = argv;
2616
2617 r = parse_metadata_dev(ca, &as, error);
2618 if (r)
2619 return r;
2620
2621 r = parse_cache_dev(ca, &as, error);
2622 if (r)
2623 return r;
2624
2625 r = parse_origin_dev(ca, &as, error);
2626 if (r)
2627 return r;
2628
2629 r = parse_block_size(ca, &as, error);
2630 if (r)
2631 return r;
2632
2633 r = parse_features(ca, &as, error);
2634 if (r)
2635 return r;
2636
2637 r = parse_policy(ca, &as, error);
2638 if (r)
2639 return r;
2640
2641 return 0;
2642 }
2643
2644 /*----------------------------------------------------------------*/
2645
2646 static struct kmem_cache *migration_cache;
2647
2648 #define NOT_CORE_OPTION 1
2649
2650 static int process_config_option(struct cache *cache, const char *key, const char *value)
2651 {
2652 unsigned long tmp;
2653
2654 if (!strcasecmp(key, "migration_threshold")) {
2655 if (kstrtoul(value, 10, &tmp))
2656 return -EINVAL;
2657
2658 cache->migration_threshold = tmp;
2659 return 0;
2660 }
2661
2662 return NOT_CORE_OPTION;
2663 }
2664
2665 static int set_config_value(struct cache *cache, const char *key, const char *value)
2666 {
2667 int r = process_config_option(cache, key, value);
2668
2669 if (r == NOT_CORE_OPTION)
2670 r = policy_set_config_value(cache->policy, key, value);
2671
2672 if (r)
2673 DMWARN("bad config value for %s: %s", key, value);
2674
2675 return r;
2676 }
2677
2678 static int set_config_values(struct cache *cache, int argc, const char **argv)
2679 {
2680 int r = 0;
2681
2682 if (argc & 1) {
2683 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2684 return -EINVAL;
2685 }
2686
2687 while (argc) {
2688 r = set_config_value(cache, argv[0], argv[1]);
2689 if (r)
2690 break;
2691
2692 argc -= 2;
2693 argv += 2;
2694 }
2695
2696 return r;
2697 }
2698
2699 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2700 char **error)
2701 {
2702 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2703 cache->cache_size,
2704 cache->origin_sectors,
2705 cache->sectors_per_block);
2706 if (IS_ERR(p)) {
2707 *error = "Error creating cache's policy";
2708 return PTR_ERR(p);
2709 }
2710 cache->policy = p;
2711
2712 return 0;
2713 }
2714
2715 /*
2716 * We want the discard block size to be at least the size of the cache
2717 * block size and have no more than 2^14 discard blocks across the origin.
2718 */
2719 #define MAX_DISCARD_BLOCKS (1 << 14)
2720
2721 static bool too_many_discard_blocks(sector_t discard_block_size,
2722 sector_t origin_size)
2723 {
2724 (void) sector_div(origin_size, discard_block_size);
2725
2726 return origin_size > MAX_DISCARD_BLOCKS;
2727 }
2728
2729 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2730 sector_t origin_size)
2731 {
2732 sector_t discard_block_size = cache_block_size;
2733
2734 if (origin_size)
2735 while (too_many_discard_blocks(discard_block_size, origin_size))
2736 discard_block_size *= 2;
2737
2738 return discard_block_size;
2739 }
2740
2741 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2742 {
2743 dm_block_t nr_blocks = from_cblock(size);
2744
2745 if (nr_blocks > (1 << 20) && cache->cache_size != size)
2746 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2747 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2748 "Please consider increasing the cache block size to reduce the overall cache block count.",
2749 (unsigned long long) nr_blocks);
2750
2751 cache->cache_size = size;
2752 }
2753
2754 #define DEFAULT_MIGRATION_THRESHOLD 2048
2755
2756 static int cache_create(struct cache_args *ca, struct cache **result)
2757 {
2758 int r = 0;
2759 char **error = &ca->ti->error;
2760 struct cache *cache;
2761 struct dm_target *ti = ca->ti;
2762 dm_block_t origin_blocks;
2763 struct dm_cache_metadata *cmd;
2764 bool may_format = ca->features.mode == CM_WRITE;
2765
2766 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2767 if (!cache)
2768 return -ENOMEM;
2769
2770 cache->ti = ca->ti;
2771 ti->private = cache;
2772 ti->num_flush_bios = 2;
2773 ti->flush_supported = true;
2774
2775 ti->num_discard_bios = 1;
2776 ti->discards_supported = true;
2777 ti->discard_zeroes_data_unsupported = true;
2778 ti->split_discard_bios = false;
2779
2780 cache->features = ca->features;
2781 ti->per_io_data_size = get_per_bio_data_size(cache);
2782
2783 cache->callbacks.congested_fn = cache_is_congested;
2784 dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2785
2786 cache->metadata_dev = ca->metadata_dev;
2787 cache->origin_dev = ca->origin_dev;
2788 cache->cache_dev = ca->cache_dev;
2789
2790 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2791
2792 /* FIXME: factor out this whole section */
2793 origin_blocks = cache->origin_sectors = ca->origin_sectors;
2794 origin_blocks = block_div(origin_blocks, ca->block_size);
2795 cache->origin_blocks = to_oblock(origin_blocks);
2796
2797 cache->sectors_per_block = ca->block_size;
2798 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2799 r = -EINVAL;
2800 goto bad;
2801 }
2802
2803 if (ca->block_size & (ca->block_size - 1)) {
2804 dm_block_t cache_size = ca->cache_sectors;
2805
2806 cache->sectors_per_block_shift = -1;
2807 cache_size = block_div(cache_size, ca->block_size);
2808 set_cache_size(cache, to_cblock(cache_size));
2809 } else {
2810 cache->sectors_per_block_shift = __ffs(ca->block_size);
2811 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2812 }
2813
2814 r = create_cache_policy(cache, ca, error);
2815 if (r)
2816 goto bad;
2817
2818 cache->policy_nr_args = ca->policy_argc;
2819 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2820
2821 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2822 if (r) {
2823 *error = "Error setting cache policy's config values";
2824 goto bad;
2825 }
2826
2827 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2828 ca->block_size, may_format,
2829 dm_cache_policy_get_hint_size(cache->policy));
2830 if (IS_ERR(cmd)) {
2831 *error = "Error creating metadata object";
2832 r = PTR_ERR(cmd);
2833 goto bad;
2834 }
2835 cache->cmd = cmd;
2836 set_cache_mode(cache, CM_WRITE);
2837 if (get_cache_mode(cache) != CM_WRITE) {
2838 *error = "Unable to get write access to metadata, please check/repair metadata.";
2839 r = -EINVAL;
2840 goto bad;
2841 }
2842
2843 if (passthrough_mode(&cache->features)) {
2844 bool all_clean;
2845
2846 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2847 if (r) {
2848 *error = "dm_cache_metadata_all_clean() failed";
2849 goto bad;
2850 }
2851
2852 if (!all_clean) {
2853 *error = "Cannot enter passthrough mode unless all blocks are clean";
2854 r = -EINVAL;
2855 goto bad;
2856 }
2857 }
2858
2859 spin_lock_init(&cache->lock);
2860 INIT_LIST_HEAD(&cache->deferred_cells);
2861 bio_list_init(&cache->deferred_bios);
2862 bio_list_init(&cache->deferred_flush_bios);
2863 bio_list_init(&cache->deferred_writethrough_bios);
2864 INIT_LIST_HEAD(&cache->quiesced_migrations);
2865 INIT_LIST_HEAD(&cache->completed_migrations);
2866 INIT_LIST_HEAD(&cache->need_commit_migrations);
2867 atomic_set(&cache->nr_allocated_migrations, 0);
2868 atomic_set(&cache->nr_io_migrations, 0);
2869 init_waitqueue_head(&cache->migration_wait);
2870
2871 init_waitqueue_head(&cache->quiescing_wait);
2872 atomic_set(&cache->quiescing, 0);
2873 atomic_set(&cache->quiescing_ack, 0);
2874
2875 r = -ENOMEM;
2876 atomic_set(&cache->nr_dirty, 0);
2877 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2878 if (!cache->dirty_bitset) {
2879 *error = "could not allocate dirty bitset";
2880 goto bad;
2881 }
2882 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2883
2884 cache->discard_block_size =
2885 calculate_discard_block_size(cache->sectors_per_block,
2886 cache->origin_sectors);
2887 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2888 cache->discard_block_size));
2889 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2890 if (!cache->discard_bitset) {
2891 *error = "could not allocate discard bitset";
2892 goto bad;
2893 }
2894 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2895
2896 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2897 if (IS_ERR(cache->copier)) {
2898 *error = "could not create kcopyd client";
2899 r = PTR_ERR(cache->copier);
2900 goto bad;
2901 }
2902
2903 cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2904 if (!cache->wq) {
2905 *error = "could not create workqueue for metadata object";
2906 goto bad;
2907 }
2908 INIT_WORK(&cache->worker, do_worker);
2909 INIT_DELAYED_WORK(&cache->waker, do_waker);
2910 cache->last_commit_jiffies = jiffies;
2911
2912 cache->prison = dm_bio_prison_create();
2913 if (!cache->prison) {
2914 *error = "could not create bio prison";
2915 goto bad;
2916 }
2917
2918 cache->all_io_ds = dm_deferred_set_create();
2919 if (!cache->all_io_ds) {
2920 *error = "could not create all_io deferred set";
2921 goto bad;
2922 }
2923
2924 cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2925 migration_cache);
2926 if (!cache->migration_pool) {
2927 *error = "Error creating cache's migration mempool";
2928 goto bad;
2929 }
2930
2931 cache->need_tick_bio = true;
2932 cache->sized = false;
2933 cache->invalidate = false;
2934 cache->commit_requested = false;
2935 cache->loaded_mappings = false;
2936 cache->loaded_discards = false;
2937
2938 load_stats(cache);
2939
2940 atomic_set(&cache->stats.demotion, 0);
2941 atomic_set(&cache->stats.promotion, 0);
2942 atomic_set(&cache->stats.copies_avoided, 0);
2943 atomic_set(&cache->stats.cache_cell_clash, 0);
2944 atomic_set(&cache->stats.commit_count, 0);
2945 atomic_set(&cache->stats.discard_count, 0);
2946
2947 spin_lock_init(&cache->invalidation_lock);
2948 INIT_LIST_HEAD(&cache->invalidation_requests);
2949
2950 iot_init(&cache->origin_tracker);
2951
2952 *result = cache;
2953 return 0;
2954
2955 bad:
2956 destroy(cache);
2957 return r;
2958 }
2959
2960 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2961 {
2962 unsigned i;
2963 const char **copy;
2964
2965 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2966 if (!copy)
2967 return -ENOMEM;
2968 for (i = 0; i < argc; i++) {
2969 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2970 if (!copy[i]) {
2971 while (i--)
2972 kfree(copy[i]);
2973 kfree(copy);
2974 return -ENOMEM;
2975 }
2976 }
2977
2978 cache->nr_ctr_args = argc;
2979 cache->ctr_args = copy;
2980
2981 return 0;
2982 }
2983
2984 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2985 {
2986 int r = -EINVAL;
2987 struct cache_args *ca;
2988 struct cache *cache = NULL;
2989
2990 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2991 if (!ca) {
2992 ti->error = "Error allocating memory for cache";
2993 return -ENOMEM;
2994 }
2995 ca->ti = ti;
2996
2997 r = parse_cache_args(ca, argc, argv, &ti->error);
2998 if (r)
2999 goto out;
3000
3001 r = cache_create(ca, &cache);
3002 if (r)
3003 goto out;
3004
3005 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
3006 if (r) {
3007 destroy(cache);
3008 goto out;
3009 }
3010
3011 ti->private = cache;
3012
3013 out:
3014 destroy_cache_args(ca);
3015 return r;
3016 }
3017
3018 /*----------------------------------------------------------------*/
3019
3020 static int cache_map(struct dm_target *ti, struct bio *bio)
3021 {
3022 struct cache *cache = ti->private;
3023
3024 int r;
3025 struct dm_bio_prison_cell *cell = NULL;
3026 dm_oblock_t block = get_bio_block(cache, bio);
3027 size_t pb_data_size = get_per_bio_data_size(cache);
3028 bool can_migrate = false;
3029 bool fast_promotion;
3030 struct policy_result lookup_result;
3031 struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
3032 struct old_oblock_lock ool;
3033
3034 ool.locker.fn = null_locker;
3035
3036 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
3037 /*
3038 * This can only occur if the io goes to a partial block at
3039 * the end of the origin device. We don't cache these.
3040 * Just remap to the origin and carry on.
3041 */
3042 remap_to_origin(cache, bio);
3043 accounted_begin(cache, bio);
3044 return DM_MAPIO_REMAPPED;
3045 }
3046
3047 if (discard_or_flush(bio)) {
3048 defer_bio(cache, bio);
3049 return DM_MAPIO_SUBMITTED;
3050 }
3051
3052 /*
3053 * Check to see if that block is currently migrating.
3054 */
3055 cell = alloc_prison_cell(cache);
3056 if (!cell) {
3057 defer_bio(cache, bio);
3058 return DM_MAPIO_SUBMITTED;
3059 }
3060
3061 r = bio_detain(cache, block, bio, cell,
3062 (cell_free_fn) free_prison_cell,
3063 cache, &cell);
3064 if (r) {
3065 if (r < 0)
3066 defer_bio(cache, bio);
3067
3068 return DM_MAPIO_SUBMITTED;
3069 }
3070
3071 fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
3072
3073 r = policy_map(cache->policy, block, false, can_migrate, fast_promotion,
3074 bio, &ool.locker, &lookup_result);
3075 if (r == -EWOULDBLOCK) {
3076 cell_defer(cache, cell, true);
3077 return DM_MAPIO_SUBMITTED;
3078
3079 } else if (r) {
3080 DMERR_LIMIT("%s: Unexpected return from cache replacement policy: %d",
3081 cache_device_name(cache), r);
3082 cell_defer(cache, cell, false);
3083 bio_io_error(bio);
3084 return DM_MAPIO_SUBMITTED;
3085 }
3086
3087 r = DM_MAPIO_REMAPPED;
3088 switch (lookup_result.op) {
3089 case POLICY_HIT:
3090 if (passthrough_mode(&cache->features)) {
3091 if (bio_data_dir(bio) == WRITE) {
3092 /*
3093 * We need to invalidate this block, so
3094 * defer for the worker thread.
3095 */
3096 cell_defer(cache, cell, true);
3097 r = DM_MAPIO_SUBMITTED;
3098
3099 } else {
3100 inc_miss_counter(cache, bio);
3101 remap_to_origin_clear_discard(cache, bio, block);
3102 accounted_begin(cache, bio);
3103 inc_ds(cache, bio, cell);
3104 // FIXME: we want to remap hits or misses straight
3105 // away rather than passing over to the worker.
3106 cell_defer(cache, cell, false);
3107 }
3108
3109 } else {
3110 inc_hit_counter(cache, bio);
3111 if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
3112 !is_dirty(cache, lookup_result.cblock)) {
3113 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
3114 accounted_begin(cache, bio);
3115 inc_ds(cache, bio, cell);
3116 cell_defer(cache, cell, false);
3117
3118 } else
3119 remap_cell_to_cache_dirty(cache, cell, block, lookup_result.cblock, false);
3120 }
3121 break;
3122
3123 case POLICY_MISS:
3124 inc_miss_counter(cache, bio);
3125 if (pb->req_nr != 0) {
3126 /*
3127 * This is a duplicate writethrough io that is no
3128 * longer needed because the block has been demoted.
3129 */
3130 bio_endio(bio);
3131 // FIXME: remap everything as a miss
3132 cell_defer(cache, cell, false);
3133 r = DM_MAPIO_SUBMITTED;
3134
3135 } else
3136 remap_cell_to_origin_clear_discard(cache, cell, block, false);
3137 break;
3138
3139 default:
3140 DMERR_LIMIT("%s: %s: erroring bio: unknown policy op: %u",
3141 cache_device_name(cache), __func__,
3142 (unsigned) lookup_result.op);
3143 cell_defer(cache, cell, false);
3144 bio_io_error(bio);
3145 r = DM_MAPIO_SUBMITTED;
3146 }
3147
3148 return r;
3149 }
3150
3151 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
3152 {
3153 struct cache *cache = ti->private;
3154 unsigned long flags;
3155 size_t pb_data_size = get_per_bio_data_size(cache);
3156 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
3157
3158 if (pb->tick) {
3159 policy_tick(cache->policy, false);
3160
3161 spin_lock_irqsave(&cache->lock, flags);
3162 cache->need_tick_bio = true;
3163 spin_unlock_irqrestore(&cache->lock, flags);
3164 }
3165
3166 check_for_quiesced_migrations(cache, pb);
3167 accounted_complete(cache, bio);
3168
3169 return 0;
3170 }
3171
3172 static int write_dirty_bitset(struct cache *cache)
3173 {
3174 unsigned i, r;
3175
3176 if (get_cache_mode(cache) >= CM_READ_ONLY)
3177 return -EINVAL;
3178
3179 for (i = 0; i < from_cblock(cache->cache_size); i++) {
3180 r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
3181 is_dirty(cache, to_cblock(i)));
3182 if (r) {
3183 metadata_operation_failed(cache, "dm_cache_set_dirty", r);
3184 return r;
3185 }
3186 }
3187
3188 return 0;
3189 }
3190
3191 static int write_discard_bitset(struct cache *cache)
3192 {
3193 unsigned i, r;
3194
3195 if (get_cache_mode(cache) >= CM_READ_ONLY)
3196 return -EINVAL;
3197
3198 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
3199 cache->discard_nr_blocks);
3200 if (r) {
3201 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
3202 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
3203 return r;
3204 }
3205
3206 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
3207 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
3208 is_discarded(cache, to_dblock(i)));
3209 if (r) {
3210 metadata_operation_failed(cache, "dm_cache_set_discard", r);
3211 return r;
3212 }
3213 }
3214
3215 return 0;
3216 }
3217
3218 static int write_hints(struct cache *cache)
3219 {
3220 int r;
3221
3222 if (get_cache_mode(cache) >= CM_READ_ONLY)
3223 return -EINVAL;
3224
3225 r = dm_cache_write_hints(cache->cmd, cache->policy);
3226 if (r) {
3227 metadata_operation_failed(cache, "dm_cache_write_hints", r);
3228 return r;
3229 }
3230
3231 return 0;
3232 }
3233
3234 /*
3235 * returns true on success
3236 */
3237 static bool sync_metadata(struct cache *cache)
3238 {
3239 int r1, r2, r3, r4;
3240
3241 r1 = write_dirty_bitset(cache);
3242 if (r1)
3243 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
3244
3245 r2 = write_discard_bitset(cache);
3246 if (r2)
3247 DMERR("%s: could not write discard bitset", cache_device_name(cache));
3248
3249 save_stats(cache);
3250
3251 r3 = write_hints(cache);
3252 if (r3)
3253 DMERR("%s: could not write hints", cache_device_name(cache));
3254
3255 /*
3256 * If writing the above metadata failed, we still commit, but don't
3257 * set the clean shutdown flag. This will effectively force every
3258 * dirty bit to be set on reload.
3259 */
3260 r4 = commit(cache, !r1 && !r2 && !r3);
3261 if (r4)
3262 DMERR("%s: could not write cache metadata", cache_device_name(cache));
3263
3264 return !r1 && !r2 && !r3 && !r4;
3265 }
3266
3267 static void cache_postsuspend(struct dm_target *ti)
3268 {
3269 struct cache *cache = ti->private;
3270
3271 start_quiescing(cache);
3272 wait_for_migrations(cache);
3273 stop_worker(cache);
3274 requeue_deferred_bios(cache);
3275 requeue_deferred_cells(cache);
3276 stop_quiescing(cache);
3277
3278 if (get_cache_mode(cache) == CM_WRITE)
3279 (void) sync_metadata(cache);
3280 }
3281
3282 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
3283 bool dirty, uint32_t hint, bool hint_valid)
3284 {
3285 int r;
3286 struct cache *cache = context;
3287
3288 r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
3289 if (r)
3290 return r;
3291
3292 if (dirty)
3293 set_dirty(cache, oblock, cblock);
3294 else
3295 clear_dirty(cache, oblock, cblock);
3296
3297 return 0;
3298 }
3299
3300 /*
3301 * The discard block size in the on disk metadata is not
3302 * neccessarily the same as we're currently using. So we have to
3303 * be careful to only set the discarded attribute if we know it
3304 * covers a complete block of the new size.
3305 */
3306 struct discard_load_info {
3307 struct cache *cache;
3308
3309 /*
3310 * These blocks are sized using the on disk dblock size, rather
3311 * than the current one.
3312 */
3313 dm_block_t block_size;
3314 dm_block_t discard_begin, discard_end;
3315 };
3316
3317 static void discard_load_info_init(struct cache *cache,
3318 struct discard_load_info *li)
3319 {
3320 li->cache = cache;
3321 li->discard_begin = li->discard_end = 0;
3322 }
3323
3324 static void set_discard_range(struct discard_load_info *li)
3325 {
3326 sector_t b, e;
3327
3328 if (li->discard_begin == li->discard_end)
3329 return;
3330
3331 /*
3332 * Convert to sectors.
3333 */
3334 b = li->discard_begin * li->block_size;
3335 e = li->discard_end * li->block_size;
3336
3337 /*
3338 * Then convert back to the current dblock size.
3339 */
3340 b = dm_sector_div_up(b, li->cache->discard_block_size);
3341 sector_div(e, li->cache->discard_block_size);
3342
3343 /*
3344 * The origin may have shrunk, so we need to check we're still in
3345 * bounds.
3346 */
3347 if (e > from_dblock(li->cache->discard_nr_blocks))
3348 e = from_dblock(li->cache->discard_nr_blocks);
3349
3350 for (; b < e; b++)
3351 set_discard(li->cache, to_dblock(b));
3352 }
3353
3354 static int load_discard(void *context, sector_t discard_block_size,
3355 dm_dblock_t dblock, bool discard)
3356 {
3357 struct discard_load_info *li = context;
3358
3359 li->block_size = discard_block_size;
3360
3361 if (discard) {
3362 if (from_dblock(dblock) == li->discard_end)
3363 /*
3364 * We're already in a discard range, just extend it.
3365 */
3366 li->discard_end = li->discard_end + 1ULL;
3367
3368 else {
3369 /*
3370 * Emit the old range and start a new one.
3371 */
3372 set_discard_range(li);
3373 li->discard_begin = from_dblock(dblock);
3374 li->discard_end = li->discard_begin + 1ULL;
3375 }
3376 } else {
3377 set_discard_range(li);
3378 li->discard_begin = li->discard_end = 0;
3379 }
3380
3381 return 0;
3382 }
3383
3384 static dm_cblock_t get_cache_dev_size(struct cache *cache)
3385 {
3386 sector_t size = get_dev_size(cache->cache_dev);
3387 (void) sector_div(size, cache->sectors_per_block);
3388 return to_cblock(size);
3389 }
3390
3391 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3392 {
3393 if (from_cblock(new_size) > from_cblock(cache->cache_size))
3394 return true;
3395
3396 /*
3397 * We can't drop a dirty block when shrinking the cache.
3398 */
3399 while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3400 new_size = to_cblock(from_cblock(new_size) + 1);
3401 if (is_dirty(cache, new_size)) {
3402 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3403 cache_device_name(cache),
3404 (unsigned long long) from_cblock(new_size));
3405 return false;
3406 }
3407 }
3408
3409 return true;
3410 }
3411
3412 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3413 {
3414 int r;
3415
3416 r = dm_cache_resize(cache->cmd, new_size);
3417 if (r) {
3418 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3419 metadata_operation_failed(cache, "dm_cache_resize", r);
3420 return r;
3421 }
3422
3423 set_cache_size(cache, new_size);
3424
3425 return 0;
3426 }
3427
3428 static int cache_preresume(struct dm_target *ti)
3429 {
3430 int r = 0;
3431 struct cache *cache = ti->private;
3432 dm_cblock_t csize = get_cache_dev_size(cache);
3433
3434 /*
3435 * Check to see if the cache has resized.
3436 */
3437 if (!cache->sized) {
3438 r = resize_cache_dev(cache, csize);
3439 if (r)
3440 return r;
3441
3442 cache->sized = true;
3443
3444 } else if (csize != cache->cache_size) {
3445 if (!can_resize(cache, csize))
3446 return -EINVAL;
3447
3448 r = resize_cache_dev(cache, csize);
3449 if (r)
3450 return r;
3451 }
3452
3453 if (!cache->loaded_mappings) {
3454 r = dm_cache_load_mappings(cache->cmd, cache->policy,
3455 load_mapping, cache);
3456 if (r) {
3457 DMERR("%s: could not load cache mappings", cache_device_name(cache));
3458 metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3459 return r;
3460 }
3461
3462 cache->loaded_mappings = true;
3463 }
3464
3465 if (!cache->loaded_discards) {
3466 struct discard_load_info li;
3467
3468 /*
3469 * The discard bitset could have been resized, or the
3470 * discard block size changed. To be safe we start by
3471 * setting every dblock to not discarded.
3472 */
3473 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3474
3475 discard_load_info_init(cache, &li);
3476 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3477 if (r) {
3478 DMERR("%s: could not load origin discards", cache_device_name(cache));
3479 metadata_operation_failed(cache, "dm_cache_load_discards", r);
3480 return r;
3481 }
3482 set_discard_range(&li);
3483
3484 cache->loaded_discards = true;
3485 }
3486
3487 return r;
3488 }
3489
3490 static void cache_resume(struct dm_target *ti)
3491 {
3492 struct cache *cache = ti->private;
3493
3494 cache->need_tick_bio = true;
3495 do_waker(&cache->waker.work);
3496 }
3497
3498 /*
3499 * Status format:
3500 *
3501 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3502 * <cache block size> <#used cache blocks>/<#total cache blocks>
3503 * <#read hits> <#read misses> <#write hits> <#write misses>
3504 * <#demotions> <#promotions> <#dirty>
3505 * <#features> <features>*
3506 * <#core args> <core args>
3507 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3508 */
3509 static void cache_status(struct dm_target *ti, status_type_t type,
3510 unsigned status_flags, char *result, unsigned maxlen)
3511 {
3512 int r = 0;
3513 unsigned i;
3514 ssize_t sz = 0;
3515 dm_block_t nr_free_blocks_metadata = 0;
3516 dm_block_t nr_blocks_metadata = 0;
3517 char buf[BDEVNAME_SIZE];
3518 struct cache *cache = ti->private;
3519 dm_cblock_t residency;
3520 bool needs_check;
3521
3522 switch (type) {
3523 case STATUSTYPE_INFO:
3524 if (get_cache_mode(cache) == CM_FAIL) {
3525 DMEMIT("Fail");
3526 break;
3527 }
3528
3529 /* Commit to ensure statistics aren't out-of-date */
3530 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3531 (void) commit(cache, false);
3532
3533 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3534 if (r) {
3535 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3536 cache_device_name(cache), r);
3537 goto err;
3538 }
3539
3540 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3541 if (r) {
3542 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3543 cache_device_name(cache), r);
3544 goto err;
3545 }
3546
3547 residency = policy_residency(cache->policy);
3548
3549 DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %lu ",
3550 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3551 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3552 (unsigned long long)nr_blocks_metadata,
3553 cache->sectors_per_block,
3554 (unsigned long long) from_cblock(residency),
3555 (unsigned long long) from_cblock(cache->cache_size),
3556 (unsigned) atomic_read(&cache->stats.read_hit),
3557 (unsigned) atomic_read(&cache->stats.read_miss),
3558 (unsigned) atomic_read(&cache->stats.write_hit),
3559 (unsigned) atomic_read(&cache->stats.write_miss),
3560 (unsigned) atomic_read(&cache->stats.demotion),
3561 (unsigned) atomic_read(&cache->stats.promotion),
3562 (unsigned long) atomic_read(&cache->nr_dirty));
3563
3564 if (writethrough_mode(&cache->features))
3565 DMEMIT("1 writethrough ");
3566
3567 else if (passthrough_mode(&cache->features))
3568 DMEMIT("1 passthrough ");
3569
3570 else if (writeback_mode(&cache->features))
3571 DMEMIT("1 writeback ");
3572
3573 else {
3574 DMERR("%s: internal error: unknown io mode: %d",
3575 cache_device_name(cache), (int) cache->features.io_mode);
3576 goto err;
3577 }
3578
3579 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3580
3581 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3582 if (sz < maxlen) {
3583 r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3584 if (r)
3585 DMERR("%s: policy_emit_config_values returned %d",
3586 cache_device_name(cache), r);
3587 }
3588
3589 if (get_cache_mode(cache) == CM_READ_ONLY)
3590 DMEMIT("ro ");
3591 else
3592 DMEMIT("rw ");
3593
3594 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3595
3596 if (r || needs_check)
3597 DMEMIT("needs_check ");
3598 else
3599 DMEMIT("- ");
3600
3601 break;
3602
3603 case STATUSTYPE_TABLE:
3604 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3605 DMEMIT("%s ", buf);
3606 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3607 DMEMIT("%s ", buf);
3608 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3609 DMEMIT("%s", buf);
3610
3611 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3612 DMEMIT(" %s", cache->ctr_args[i]);
3613 if (cache->nr_ctr_args)
3614 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3615 }
3616
3617 return;
3618
3619 err:
3620 DMEMIT("Error");
3621 }
3622
3623 /*
3624 * A cache block range can take two forms:
3625 *
3626 * i) A single cblock, eg. '3456'
3627 * ii) A begin and end cblock with dots between, eg. 123-234
3628 */
3629 static int parse_cblock_range(struct cache *cache, const char *str,
3630 struct cblock_range *result)
3631 {
3632 char dummy;
3633 uint64_t b, e;
3634 int r;
3635
3636 /*
3637 * Try and parse form (ii) first.
3638 */
3639 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3640 if (r < 0)
3641 return r;
3642
3643 if (r == 2) {
3644 result->begin = to_cblock(b);
3645 result->end = to_cblock(e);
3646 return 0;
3647 }
3648
3649 /*
3650 * That didn't work, try form (i).
3651 */
3652 r = sscanf(str, "%llu%c", &b, &dummy);
3653 if (r < 0)
3654 return r;
3655
3656 if (r == 1) {
3657 result->begin = to_cblock(b);
3658 result->end = to_cblock(from_cblock(result->begin) + 1u);
3659 return 0;
3660 }
3661
3662 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3663 return -EINVAL;
3664 }
3665
3666 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3667 {
3668 uint64_t b = from_cblock(range->begin);
3669 uint64_t e = from_cblock(range->end);
3670 uint64_t n = from_cblock(cache->cache_size);
3671
3672 if (b >= n) {
3673 DMERR("%s: begin cblock out of range: %llu >= %llu",
3674 cache_device_name(cache), b, n);
3675 return -EINVAL;
3676 }
3677
3678 if (e > n) {
3679 DMERR("%s: end cblock out of range: %llu > %llu",
3680 cache_device_name(cache), e, n);
3681 return -EINVAL;
3682 }
3683
3684 if (b >= e) {
3685 DMERR("%s: invalid cblock range: %llu >= %llu",
3686 cache_device_name(cache), b, e);
3687 return -EINVAL;
3688 }
3689
3690 return 0;
3691 }
3692
3693 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3694 {
3695 struct invalidation_request req;
3696
3697 INIT_LIST_HEAD(&req.list);
3698 req.cblocks = range;
3699 atomic_set(&req.complete, 0);
3700 req.err = 0;
3701 init_waitqueue_head(&req.result_wait);
3702
3703 spin_lock(&cache->invalidation_lock);
3704 list_add(&req.list, &cache->invalidation_requests);
3705 spin_unlock(&cache->invalidation_lock);
3706 wake_worker(cache);
3707
3708 wait_event(req.result_wait, atomic_read(&req.complete));
3709 return req.err;
3710 }
3711
3712 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3713 const char **cblock_ranges)
3714 {
3715 int r = 0;
3716 unsigned i;
3717 struct cblock_range range;
3718
3719 if (!passthrough_mode(&cache->features)) {
3720 DMERR("%s: cache has to be in passthrough mode for invalidation",
3721 cache_device_name(cache));
3722 return -EPERM;
3723 }
3724
3725 for (i = 0; i < count; i++) {
3726 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3727 if (r)
3728 break;
3729
3730 r = validate_cblock_range(cache, &range);
3731 if (r)
3732 break;
3733
3734 /*
3735 * Pass begin and end origin blocks to the worker and wake it.
3736 */
3737 r = request_invalidation(cache, &range);
3738 if (r)
3739 break;
3740 }
3741
3742 return r;
3743 }
3744
3745 /*
3746 * Supports
3747 * "<key> <value>"
3748 * and
3749 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3750 *
3751 * The key migration_threshold is supported by the cache target core.
3752 */
3753 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3754 {
3755 struct cache *cache = ti->private;
3756
3757 if (!argc)
3758 return -EINVAL;
3759
3760 if (get_cache_mode(cache) >= CM_READ_ONLY) {
3761 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3762 cache_device_name(cache));
3763 return -EOPNOTSUPP;
3764 }
3765
3766 if (!strcasecmp(argv[0], "invalidate_cblocks"))
3767 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3768
3769 if (argc != 2)
3770 return -EINVAL;
3771
3772 return set_config_value(cache, argv[0], argv[1]);
3773 }
3774
3775 static int cache_iterate_devices(struct dm_target *ti,
3776 iterate_devices_callout_fn fn, void *data)
3777 {
3778 int r = 0;
3779 struct cache *cache = ti->private;
3780
3781 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3782 if (!r)
3783 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3784
3785 return r;
3786 }
3787
3788 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3789 {
3790 /*
3791 * FIXME: these limits may be incompatible with the cache device
3792 */
3793 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3794 cache->origin_sectors);
3795 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3796 }
3797
3798 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3799 {
3800 struct cache *cache = ti->private;
3801 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3802
3803 /*
3804 * If the system-determined stacked limits are compatible with the
3805 * cache's blocksize (io_opt is a factor) do not override them.
3806 */
3807 if (io_opt_sectors < cache->sectors_per_block ||
3808 do_div(io_opt_sectors, cache->sectors_per_block)) {
3809 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3810 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3811 }
3812 set_discard_limits(cache, limits);
3813 }
3814
3815 /*----------------------------------------------------------------*/
3816
3817 static struct target_type cache_target = {
3818 .name = "cache",
3819 .version = {1, 9, 0},
3820 .module = THIS_MODULE,
3821 .ctr = cache_ctr,
3822 .dtr = cache_dtr,
3823 .map = cache_map,
3824 .end_io = cache_end_io,
3825 .postsuspend = cache_postsuspend,
3826 .preresume = cache_preresume,
3827 .resume = cache_resume,
3828 .status = cache_status,
3829 .message = cache_message,
3830 .iterate_devices = cache_iterate_devices,
3831 .io_hints = cache_io_hints,
3832 };
3833
3834 static int __init dm_cache_init(void)
3835 {
3836 int r;
3837
3838 r = dm_register_target(&cache_target);
3839 if (r) {
3840 DMERR("cache target registration failed: %d", r);
3841 return r;
3842 }
3843
3844 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3845 if (!migration_cache) {
3846 dm_unregister_target(&cache_target);
3847 return -ENOMEM;
3848 }
3849
3850 return 0;
3851 }
3852
3853 static void __exit dm_cache_exit(void)
3854 {
3855 dm_unregister_target(&cache_target);
3856 kmem_cache_destroy(migration_cache);
3857 }
3858
3859 module_init(dm_cache_init);
3860 module_exit(dm_cache_exit);
3861
3862 MODULE_DESCRIPTION(DM_NAME " cache target");
3863 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3864 MODULE_LICENSE("GPL");