]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/dm-cache-target.c
dm cache: lift common migration preparation code to alloc_migration()
[mirror_ubuntu-bionic-kernel.git] / drivers / md / dm-cache-target.c
1 /*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm.h"
8 #include "dm-bio-prison-v2.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/rwsem.h>
19 #include <linux/slab.h>
20 #include <linux/vmalloc.h>
21
22 #define DM_MSG_PREFIX "cache"
23
24 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
25 "A percentage of time allocated for copying to and/or from cache");
26
27 /*----------------------------------------------------------------*/
28
29 /*
30 * Glossary:
31 *
32 * oblock: index of an origin block
33 * cblock: index of a cache block
34 * promotion: movement of a block from origin to cache
35 * demotion: movement of a block from cache to origin
36 * migration: movement of a block between the origin and cache device,
37 * either direction
38 */
39
40 /*----------------------------------------------------------------*/
41
42 struct io_tracker {
43 spinlock_t lock;
44
45 /*
46 * Sectors of in-flight IO.
47 */
48 sector_t in_flight;
49
50 /*
51 * The time, in jiffies, when this device became idle (if it is
52 * indeed idle).
53 */
54 unsigned long idle_time;
55 unsigned long last_update_time;
56 };
57
58 static void iot_init(struct io_tracker *iot)
59 {
60 spin_lock_init(&iot->lock);
61 iot->in_flight = 0ul;
62 iot->idle_time = 0ul;
63 iot->last_update_time = jiffies;
64 }
65
66 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
67 {
68 if (iot->in_flight)
69 return false;
70
71 return time_after(jiffies, iot->idle_time + jifs);
72 }
73
74 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
75 {
76 bool r;
77 unsigned long flags;
78
79 spin_lock_irqsave(&iot->lock, flags);
80 r = __iot_idle_for(iot, jifs);
81 spin_unlock_irqrestore(&iot->lock, flags);
82
83 return r;
84 }
85
86 static void iot_io_begin(struct io_tracker *iot, sector_t len)
87 {
88 unsigned long flags;
89
90 spin_lock_irqsave(&iot->lock, flags);
91 iot->in_flight += len;
92 spin_unlock_irqrestore(&iot->lock, flags);
93 }
94
95 static void __iot_io_end(struct io_tracker *iot, sector_t len)
96 {
97 if (!len)
98 return;
99
100 iot->in_flight -= len;
101 if (!iot->in_flight)
102 iot->idle_time = jiffies;
103 }
104
105 static void iot_io_end(struct io_tracker *iot, sector_t len)
106 {
107 unsigned long flags;
108
109 spin_lock_irqsave(&iot->lock, flags);
110 __iot_io_end(iot, len);
111 spin_unlock_irqrestore(&iot->lock, flags);
112 }
113
114 /*----------------------------------------------------------------*/
115
116 /*
117 * Represents a chunk of future work. 'input' allows continuations to pass
118 * values between themselves, typically error values.
119 */
120 struct continuation {
121 struct work_struct ws;
122 blk_status_t input;
123 };
124
125 static inline void init_continuation(struct continuation *k,
126 void (*fn)(struct work_struct *))
127 {
128 INIT_WORK(&k->ws, fn);
129 k->input = 0;
130 }
131
132 static inline void queue_continuation(struct workqueue_struct *wq,
133 struct continuation *k)
134 {
135 queue_work(wq, &k->ws);
136 }
137
138 /*----------------------------------------------------------------*/
139
140 /*
141 * The batcher collects together pieces of work that need a particular
142 * operation to occur before they can proceed (typically a commit).
143 */
144 struct batcher {
145 /*
146 * The operation that everyone is waiting for.
147 */
148 blk_status_t (*commit_op)(void *context);
149 void *commit_context;
150
151 /*
152 * This is how bios should be issued once the commit op is complete
153 * (accounted_request).
154 */
155 void (*issue_op)(struct bio *bio, void *context);
156 void *issue_context;
157
158 /*
159 * Queued work gets put on here after commit.
160 */
161 struct workqueue_struct *wq;
162
163 spinlock_t lock;
164 struct list_head work_items;
165 struct bio_list bios;
166 struct work_struct commit_work;
167
168 bool commit_scheduled;
169 };
170
171 static void __commit(struct work_struct *_ws)
172 {
173 struct batcher *b = container_of(_ws, struct batcher, commit_work);
174 blk_status_t r;
175 unsigned long flags;
176 struct list_head work_items;
177 struct work_struct *ws, *tmp;
178 struct continuation *k;
179 struct bio *bio;
180 struct bio_list bios;
181
182 INIT_LIST_HEAD(&work_items);
183 bio_list_init(&bios);
184
185 /*
186 * We have to grab these before the commit_op to avoid a race
187 * condition.
188 */
189 spin_lock_irqsave(&b->lock, flags);
190 list_splice_init(&b->work_items, &work_items);
191 bio_list_merge(&bios, &b->bios);
192 bio_list_init(&b->bios);
193 b->commit_scheduled = false;
194 spin_unlock_irqrestore(&b->lock, flags);
195
196 r = b->commit_op(b->commit_context);
197
198 list_for_each_entry_safe(ws, tmp, &work_items, entry) {
199 k = container_of(ws, struct continuation, ws);
200 k->input = r;
201 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
202 queue_work(b->wq, ws);
203 }
204
205 while ((bio = bio_list_pop(&bios))) {
206 if (r) {
207 bio->bi_status = r;
208 bio_endio(bio);
209 } else
210 b->issue_op(bio, b->issue_context);
211 }
212 }
213
214 static void batcher_init(struct batcher *b,
215 blk_status_t (*commit_op)(void *),
216 void *commit_context,
217 void (*issue_op)(struct bio *bio, void *),
218 void *issue_context,
219 struct workqueue_struct *wq)
220 {
221 b->commit_op = commit_op;
222 b->commit_context = commit_context;
223 b->issue_op = issue_op;
224 b->issue_context = issue_context;
225 b->wq = wq;
226
227 spin_lock_init(&b->lock);
228 INIT_LIST_HEAD(&b->work_items);
229 bio_list_init(&b->bios);
230 INIT_WORK(&b->commit_work, __commit);
231 b->commit_scheduled = false;
232 }
233
234 static void async_commit(struct batcher *b)
235 {
236 queue_work(b->wq, &b->commit_work);
237 }
238
239 static void continue_after_commit(struct batcher *b, struct continuation *k)
240 {
241 unsigned long flags;
242 bool commit_scheduled;
243
244 spin_lock_irqsave(&b->lock, flags);
245 commit_scheduled = b->commit_scheduled;
246 list_add_tail(&k->ws.entry, &b->work_items);
247 spin_unlock_irqrestore(&b->lock, flags);
248
249 if (commit_scheduled)
250 async_commit(b);
251 }
252
253 /*
254 * Bios are errored if commit failed.
255 */
256 static void issue_after_commit(struct batcher *b, struct bio *bio)
257 {
258 unsigned long flags;
259 bool commit_scheduled;
260
261 spin_lock_irqsave(&b->lock, flags);
262 commit_scheduled = b->commit_scheduled;
263 bio_list_add(&b->bios, bio);
264 spin_unlock_irqrestore(&b->lock, flags);
265
266 if (commit_scheduled)
267 async_commit(b);
268 }
269
270 /*
271 * Call this if some urgent work is waiting for the commit to complete.
272 */
273 static void schedule_commit(struct batcher *b)
274 {
275 bool immediate;
276 unsigned long flags;
277
278 spin_lock_irqsave(&b->lock, flags);
279 immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
280 b->commit_scheduled = true;
281 spin_unlock_irqrestore(&b->lock, flags);
282
283 if (immediate)
284 async_commit(b);
285 }
286
287 /*
288 * There are a couple of places where we let a bio run, but want to do some
289 * work before calling its endio function. We do this by temporarily
290 * changing the endio fn.
291 */
292 struct dm_hook_info {
293 bio_end_io_t *bi_end_io;
294 };
295
296 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
297 bio_end_io_t *bi_end_io, void *bi_private)
298 {
299 h->bi_end_io = bio->bi_end_io;
300
301 bio->bi_end_io = bi_end_io;
302 bio->bi_private = bi_private;
303 }
304
305 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
306 {
307 bio->bi_end_io = h->bi_end_io;
308 }
309
310 /*----------------------------------------------------------------*/
311
312 #define MIGRATION_POOL_SIZE 128
313 #define COMMIT_PERIOD HZ
314 #define MIGRATION_COUNT_WINDOW 10
315
316 /*
317 * The block size of the device holding cache data must be
318 * between 32KB and 1GB.
319 */
320 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
321 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
322
323 enum cache_metadata_mode {
324 CM_WRITE, /* metadata may be changed */
325 CM_READ_ONLY, /* metadata may not be changed */
326 CM_FAIL
327 };
328
329 enum cache_io_mode {
330 /*
331 * Data is written to cached blocks only. These blocks are marked
332 * dirty. If you lose the cache device you will lose data.
333 * Potential performance increase for both reads and writes.
334 */
335 CM_IO_WRITEBACK,
336
337 /*
338 * Data is written to both cache and origin. Blocks are never
339 * dirty. Potential performance benfit for reads only.
340 */
341 CM_IO_WRITETHROUGH,
342
343 /*
344 * A degraded mode useful for various cache coherency situations
345 * (eg, rolling back snapshots). Reads and writes always go to the
346 * origin. If a write goes to a cached oblock, then the cache
347 * block is invalidated.
348 */
349 CM_IO_PASSTHROUGH
350 };
351
352 struct cache_features {
353 enum cache_metadata_mode mode;
354 enum cache_io_mode io_mode;
355 unsigned metadata_version;
356 };
357
358 struct cache_stats {
359 atomic_t read_hit;
360 atomic_t read_miss;
361 atomic_t write_hit;
362 atomic_t write_miss;
363 atomic_t demotion;
364 atomic_t promotion;
365 atomic_t writeback;
366 atomic_t copies_avoided;
367 atomic_t cache_cell_clash;
368 atomic_t commit_count;
369 atomic_t discard_count;
370 };
371
372 struct cache {
373 struct dm_target *ti;
374 struct dm_target_callbacks callbacks;
375
376 struct dm_cache_metadata *cmd;
377
378 /*
379 * Metadata is written to this device.
380 */
381 struct dm_dev *metadata_dev;
382
383 /*
384 * The slower of the two data devices. Typically a spindle.
385 */
386 struct dm_dev *origin_dev;
387
388 /*
389 * The faster of the two data devices. Typically an SSD.
390 */
391 struct dm_dev *cache_dev;
392
393 /*
394 * Size of the origin device in _complete_ blocks and native sectors.
395 */
396 dm_oblock_t origin_blocks;
397 sector_t origin_sectors;
398
399 /*
400 * Size of the cache device in blocks.
401 */
402 dm_cblock_t cache_size;
403
404 /*
405 * Fields for converting from sectors to blocks.
406 */
407 sector_t sectors_per_block;
408 int sectors_per_block_shift;
409
410 spinlock_t lock;
411 struct bio_list deferred_bios;
412 sector_t migration_threshold;
413 wait_queue_head_t migration_wait;
414 atomic_t nr_allocated_migrations;
415
416 /*
417 * The number of in flight migrations that are performing
418 * background io. eg, promotion, writeback.
419 */
420 atomic_t nr_io_migrations;
421
422 struct rw_semaphore quiesce_lock;
423
424 /*
425 * cache_size entries, dirty if set
426 */
427 atomic_t nr_dirty;
428 unsigned long *dirty_bitset;
429
430 /*
431 * origin_blocks entries, discarded if set.
432 */
433 dm_dblock_t discard_nr_blocks;
434 unsigned long *discard_bitset;
435 uint32_t discard_block_size; /* a power of 2 times sectors per block */
436
437 /*
438 * Rather than reconstructing the table line for the status we just
439 * save it and regurgitate.
440 */
441 unsigned nr_ctr_args;
442 const char **ctr_args;
443
444 struct dm_kcopyd_client *copier;
445 struct workqueue_struct *wq;
446 struct work_struct deferred_bio_worker;
447 struct work_struct migration_worker;
448 struct delayed_work waker;
449 struct dm_bio_prison_v2 *prison;
450 struct bio_set *bs;
451
452 mempool_t *migration_pool;
453
454 struct dm_cache_policy *policy;
455 unsigned policy_nr_args;
456
457 bool need_tick_bio:1;
458 bool sized:1;
459 bool invalidate:1;
460 bool commit_requested:1;
461 bool loaded_mappings:1;
462 bool loaded_discards:1;
463
464 /*
465 * Cache features such as write-through.
466 */
467 struct cache_features features;
468
469 struct cache_stats stats;
470
471 /*
472 * Invalidation fields.
473 */
474 spinlock_t invalidation_lock;
475 struct list_head invalidation_requests;
476
477 struct io_tracker tracker;
478
479 struct work_struct commit_ws;
480 struct batcher committer;
481
482 struct rw_semaphore background_work_lock;
483 };
484
485 struct per_bio_data {
486 bool tick:1;
487 unsigned req_nr:2;
488 struct dm_bio_prison_cell_v2 *cell;
489 struct dm_hook_info hook_info;
490 sector_t len;
491 };
492
493 struct dm_cache_migration {
494 struct continuation k;
495 struct cache *cache;
496
497 struct policy_work *op;
498 struct bio *overwrite_bio;
499 struct dm_bio_prison_cell_v2 *cell;
500
501 dm_cblock_t invalidate_cblock;
502 dm_oblock_t invalidate_oblock;
503 };
504
505 /*----------------------------------------------------------------*/
506
507 static bool writethrough_mode(struct cache *cache)
508 {
509 return cache->features.io_mode == CM_IO_WRITETHROUGH;
510 }
511
512 static bool writeback_mode(struct cache *cache)
513 {
514 return cache->features.io_mode == CM_IO_WRITEBACK;
515 }
516
517 static inline bool passthrough_mode(struct cache *cache)
518 {
519 return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
520 }
521
522 /*----------------------------------------------------------------*/
523
524 static void wake_deferred_bio_worker(struct cache *cache)
525 {
526 queue_work(cache->wq, &cache->deferred_bio_worker);
527 }
528
529 static void wake_migration_worker(struct cache *cache)
530 {
531 if (passthrough_mode(cache))
532 return;
533
534 queue_work(cache->wq, &cache->migration_worker);
535 }
536
537 /*----------------------------------------------------------------*/
538
539 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
540 {
541 return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOWAIT);
542 }
543
544 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
545 {
546 dm_bio_prison_free_cell_v2(cache->prison, cell);
547 }
548
549 static struct dm_cache_migration *alloc_migration(struct cache *cache)
550 {
551 struct dm_cache_migration *mg;
552
553 mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
554 if (!mg)
555 return NULL;
556
557 memset(mg, 0, sizeof(*mg));
558
559 mg->cache = cache;
560 atomic_inc(&cache->nr_allocated_migrations);
561
562 return mg;
563 }
564
565 static void free_migration(struct dm_cache_migration *mg)
566 {
567 struct cache *cache = mg->cache;
568
569 if (atomic_dec_and_test(&cache->nr_allocated_migrations))
570 wake_up(&cache->migration_wait);
571
572 mempool_free(mg, cache->migration_pool);
573 }
574
575 /*----------------------------------------------------------------*/
576
577 static inline dm_oblock_t oblock_succ(dm_oblock_t b)
578 {
579 return to_oblock(from_oblock(b) + 1ull);
580 }
581
582 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
583 {
584 key->virtual = 0;
585 key->dev = 0;
586 key->block_begin = from_oblock(begin);
587 key->block_end = from_oblock(end);
588 }
589
590 /*
591 * We have two lock levels. Level 0, which is used to prevent WRITEs, and
592 * level 1 which prevents *both* READs and WRITEs.
593 */
594 #define WRITE_LOCK_LEVEL 0
595 #define READ_WRITE_LOCK_LEVEL 1
596
597 static unsigned lock_level(struct bio *bio)
598 {
599 return bio_data_dir(bio) == WRITE ?
600 WRITE_LOCK_LEVEL :
601 READ_WRITE_LOCK_LEVEL;
602 }
603
604 /*----------------------------------------------------------------
605 * Per bio data
606 *--------------------------------------------------------------*/
607
608 static struct per_bio_data *get_per_bio_data(struct bio *bio)
609 {
610 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
611 BUG_ON(!pb);
612 return pb;
613 }
614
615 static struct per_bio_data *init_per_bio_data(struct bio *bio)
616 {
617 struct per_bio_data *pb = get_per_bio_data(bio);
618
619 pb->tick = false;
620 pb->req_nr = dm_bio_get_target_bio_nr(bio);
621 pb->cell = NULL;
622 pb->len = 0;
623
624 return pb;
625 }
626
627 /*----------------------------------------------------------------*/
628
629 static void defer_bio(struct cache *cache, struct bio *bio)
630 {
631 unsigned long flags;
632
633 spin_lock_irqsave(&cache->lock, flags);
634 bio_list_add(&cache->deferred_bios, bio);
635 spin_unlock_irqrestore(&cache->lock, flags);
636
637 wake_deferred_bio_worker(cache);
638 }
639
640 static void defer_bios(struct cache *cache, struct bio_list *bios)
641 {
642 unsigned long flags;
643
644 spin_lock_irqsave(&cache->lock, flags);
645 bio_list_merge(&cache->deferred_bios, bios);
646 bio_list_init(bios);
647 spin_unlock_irqrestore(&cache->lock, flags);
648
649 wake_deferred_bio_worker(cache);
650 }
651
652 /*----------------------------------------------------------------*/
653
654 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
655 {
656 bool r;
657 struct per_bio_data *pb;
658 struct dm_cell_key_v2 key;
659 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
660 struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
661
662 cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
663 if (!cell_prealloc) {
664 defer_bio(cache, bio);
665 return false;
666 }
667
668 build_key(oblock, end, &key);
669 r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
670 if (!r) {
671 /*
672 * Failed to get the lock.
673 */
674 free_prison_cell(cache, cell_prealloc);
675 return r;
676 }
677
678 if (cell != cell_prealloc)
679 free_prison_cell(cache, cell_prealloc);
680
681 pb = get_per_bio_data(bio);
682 pb->cell = cell;
683
684 return r;
685 }
686
687 /*----------------------------------------------------------------*/
688
689 static bool is_dirty(struct cache *cache, dm_cblock_t b)
690 {
691 return test_bit(from_cblock(b), cache->dirty_bitset);
692 }
693
694 static void set_dirty(struct cache *cache, dm_cblock_t cblock)
695 {
696 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
697 atomic_inc(&cache->nr_dirty);
698 policy_set_dirty(cache->policy, cblock);
699 }
700 }
701
702 /*
703 * These two are called when setting after migrations to force the policy
704 * and dirty bitset to be in sync.
705 */
706 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
707 {
708 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
709 atomic_inc(&cache->nr_dirty);
710 policy_set_dirty(cache->policy, cblock);
711 }
712
713 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
714 {
715 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
716 if (atomic_dec_return(&cache->nr_dirty) == 0)
717 dm_table_event(cache->ti->table);
718 }
719
720 policy_clear_dirty(cache->policy, cblock);
721 }
722
723 /*----------------------------------------------------------------*/
724
725 static bool block_size_is_power_of_two(struct cache *cache)
726 {
727 return cache->sectors_per_block_shift >= 0;
728 }
729
730 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
731 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
732 __always_inline
733 #endif
734 static dm_block_t block_div(dm_block_t b, uint32_t n)
735 {
736 do_div(b, n);
737
738 return b;
739 }
740
741 static dm_block_t oblocks_per_dblock(struct cache *cache)
742 {
743 dm_block_t oblocks = cache->discard_block_size;
744
745 if (block_size_is_power_of_two(cache))
746 oblocks >>= cache->sectors_per_block_shift;
747 else
748 oblocks = block_div(oblocks, cache->sectors_per_block);
749
750 return oblocks;
751 }
752
753 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
754 {
755 return to_dblock(block_div(from_oblock(oblock),
756 oblocks_per_dblock(cache)));
757 }
758
759 static void set_discard(struct cache *cache, dm_dblock_t b)
760 {
761 unsigned long flags;
762
763 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
764 atomic_inc(&cache->stats.discard_count);
765
766 spin_lock_irqsave(&cache->lock, flags);
767 set_bit(from_dblock(b), cache->discard_bitset);
768 spin_unlock_irqrestore(&cache->lock, flags);
769 }
770
771 static void clear_discard(struct cache *cache, dm_dblock_t b)
772 {
773 unsigned long flags;
774
775 spin_lock_irqsave(&cache->lock, flags);
776 clear_bit(from_dblock(b), cache->discard_bitset);
777 spin_unlock_irqrestore(&cache->lock, flags);
778 }
779
780 static bool is_discarded(struct cache *cache, dm_dblock_t b)
781 {
782 int r;
783 unsigned long flags;
784
785 spin_lock_irqsave(&cache->lock, flags);
786 r = test_bit(from_dblock(b), cache->discard_bitset);
787 spin_unlock_irqrestore(&cache->lock, flags);
788
789 return r;
790 }
791
792 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
793 {
794 int r;
795 unsigned long flags;
796
797 spin_lock_irqsave(&cache->lock, flags);
798 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
799 cache->discard_bitset);
800 spin_unlock_irqrestore(&cache->lock, flags);
801
802 return r;
803 }
804
805 /*----------------------------------------------------------------
806 * Remapping
807 *--------------------------------------------------------------*/
808 static void remap_to_origin(struct cache *cache, struct bio *bio)
809 {
810 bio_set_dev(bio, cache->origin_dev->bdev);
811 }
812
813 static void remap_to_cache(struct cache *cache, struct bio *bio,
814 dm_cblock_t cblock)
815 {
816 sector_t bi_sector = bio->bi_iter.bi_sector;
817 sector_t block = from_cblock(cblock);
818
819 bio_set_dev(bio, cache->cache_dev->bdev);
820 if (!block_size_is_power_of_two(cache))
821 bio->bi_iter.bi_sector =
822 (block * cache->sectors_per_block) +
823 sector_div(bi_sector, cache->sectors_per_block);
824 else
825 bio->bi_iter.bi_sector =
826 (block << cache->sectors_per_block_shift) |
827 (bi_sector & (cache->sectors_per_block - 1));
828 }
829
830 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
831 {
832 unsigned long flags;
833 struct per_bio_data *pb;
834
835 spin_lock_irqsave(&cache->lock, flags);
836 if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
837 bio_op(bio) != REQ_OP_DISCARD) {
838 pb = get_per_bio_data(bio);
839 pb->tick = true;
840 cache->need_tick_bio = false;
841 }
842 spin_unlock_irqrestore(&cache->lock, flags);
843 }
844
845 static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
846 dm_oblock_t oblock, bool bio_has_pbd)
847 {
848 if (bio_has_pbd)
849 check_if_tick_bio_needed(cache, bio);
850 remap_to_origin(cache, bio);
851 if (bio_data_dir(bio) == WRITE)
852 clear_discard(cache, oblock_to_dblock(cache, oblock));
853 }
854
855 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
856 dm_oblock_t oblock)
857 {
858 // FIXME: check_if_tick_bio_needed() is called way too much through this interface
859 __remap_to_origin_clear_discard(cache, bio, oblock, true);
860 }
861
862 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
863 dm_oblock_t oblock, dm_cblock_t cblock)
864 {
865 check_if_tick_bio_needed(cache, bio);
866 remap_to_cache(cache, bio, cblock);
867 if (bio_data_dir(bio) == WRITE) {
868 set_dirty(cache, cblock);
869 clear_discard(cache, oblock_to_dblock(cache, oblock));
870 }
871 }
872
873 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
874 {
875 sector_t block_nr = bio->bi_iter.bi_sector;
876
877 if (!block_size_is_power_of_two(cache))
878 (void) sector_div(block_nr, cache->sectors_per_block);
879 else
880 block_nr >>= cache->sectors_per_block_shift;
881
882 return to_oblock(block_nr);
883 }
884
885 static bool accountable_bio(struct cache *cache, struct bio *bio)
886 {
887 return bio_op(bio) != REQ_OP_DISCARD;
888 }
889
890 static void accounted_begin(struct cache *cache, struct bio *bio)
891 {
892 struct per_bio_data *pb;
893
894 if (accountable_bio(cache, bio)) {
895 pb = get_per_bio_data(bio);
896 pb->len = bio_sectors(bio);
897 iot_io_begin(&cache->tracker, pb->len);
898 }
899 }
900
901 static void accounted_complete(struct cache *cache, struct bio *bio)
902 {
903 struct per_bio_data *pb = get_per_bio_data(bio);
904
905 iot_io_end(&cache->tracker, pb->len);
906 }
907
908 static void accounted_request(struct cache *cache, struct bio *bio)
909 {
910 accounted_begin(cache, bio);
911 generic_make_request(bio);
912 }
913
914 static void issue_op(struct bio *bio, void *context)
915 {
916 struct cache *cache = context;
917 accounted_request(cache, bio);
918 }
919
920 /*
921 * When running in writethrough mode we need to send writes to clean blocks
922 * to both the cache and origin devices. Clone the bio and send them in parallel.
923 */
924 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
925 dm_oblock_t oblock, dm_cblock_t cblock)
926 {
927 struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, cache->bs);
928
929 BUG_ON(!origin_bio);
930
931 bio_chain(origin_bio, bio);
932 /*
933 * Passing false to __remap_to_origin_clear_discard() skips
934 * all code that might use per_bio_data (since clone doesn't have it)
935 */
936 __remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
937 submit_bio(origin_bio);
938
939 remap_to_cache(cache, bio, cblock);
940 }
941
942 /*----------------------------------------------------------------
943 * Failure modes
944 *--------------------------------------------------------------*/
945 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
946 {
947 return cache->features.mode;
948 }
949
950 static const char *cache_device_name(struct cache *cache)
951 {
952 return dm_device_name(dm_table_get_md(cache->ti->table));
953 }
954
955 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
956 {
957 const char *descs[] = {
958 "write",
959 "read-only",
960 "fail"
961 };
962
963 dm_table_event(cache->ti->table);
964 DMINFO("%s: switching cache to %s mode",
965 cache_device_name(cache), descs[(int)mode]);
966 }
967
968 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
969 {
970 bool needs_check;
971 enum cache_metadata_mode old_mode = get_cache_mode(cache);
972
973 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
974 DMERR("%s: unable to read needs_check flag, setting failure mode.",
975 cache_device_name(cache));
976 new_mode = CM_FAIL;
977 }
978
979 if (new_mode == CM_WRITE && needs_check) {
980 DMERR("%s: unable to switch cache to write mode until repaired.",
981 cache_device_name(cache));
982 if (old_mode != new_mode)
983 new_mode = old_mode;
984 else
985 new_mode = CM_READ_ONLY;
986 }
987
988 /* Never move out of fail mode */
989 if (old_mode == CM_FAIL)
990 new_mode = CM_FAIL;
991
992 switch (new_mode) {
993 case CM_FAIL:
994 case CM_READ_ONLY:
995 dm_cache_metadata_set_read_only(cache->cmd);
996 break;
997
998 case CM_WRITE:
999 dm_cache_metadata_set_read_write(cache->cmd);
1000 break;
1001 }
1002
1003 cache->features.mode = new_mode;
1004
1005 if (new_mode != old_mode)
1006 notify_mode_switch(cache, new_mode);
1007 }
1008
1009 static void abort_transaction(struct cache *cache)
1010 {
1011 const char *dev_name = cache_device_name(cache);
1012
1013 if (get_cache_mode(cache) >= CM_READ_ONLY)
1014 return;
1015
1016 if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1017 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1018 set_cache_mode(cache, CM_FAIL);
1019 }
1020
1021 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1022 if (dm_cache_metadata_abort(cache->cmd)) {
1023 DMERR("%s: failed to abort metadata transaction", dev_name);
1024 set_cache_mode(cache, CM_FAIL);
1025 }
1026 }
1027
1028 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1029 {
1030 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1031 cache_device_name(cache), op, r);
1032 abort_transaction(cache);
1033 set_cache_mode(cache, CM_READ_ONLY);
1034 }
1035
1036 /*----------------------------------------------------------------*/
1037
1038 static void load_stats(struct cache *cache)
1039 {
1040 struct dm_cache_statistics stats;
1041
1042 dm_cache_metadata_get_stats(cache->cmd, &stats);
1043 atomic_set(&cache->stats.read_hit, stats.read_hits);
1044 atomic_set(&cache->stats.read_miss, stats.read_misses);
1045 atomic_set(&cache->stats.write_hit, stats.write_hits);
1046 atomic_set(&cache->stats.write_miss, stats.write_misses);
1047 }
1048
1049 static void save_stats(struct cache *cache)
1050 {
1051 struct dm_cache_statistics stats;
1052
1053 if (get_cache_mode(cache) >= CM_READ_ONLY)
1054 return;
1055
1056 stats.read_hits = atomic_read(&cache->stats.read_hit);
1057 stats.read_misses = atomic_read(&cache->stats.read_miss);
1058 stats.write_hits = atomic_read(&cache->stats.write_hit);
1059 stats.write_misses = atomic_read(&cache->stats.write_miss);
1060
1061 dm_cache_metadata_set_stats(cache->cmd, &stats);
1062 }
1063
1064 static void update_stats(struct cache_stats *stats, enum policy_operation op)
1065 {
1066 switch (op) {
1067 case POLICY_PROMOTE:
1068 atomic_inc(&stats->promotion);
1069 break;
1070
1071 case POLICY_DEMOTE:
1072 atomic_inc(&stats->demotion);
1073 break;
1074
1075 case POLICY_WRITEBACK:
1076 atomic_inc(&stats->writeback);
1077 break;
1078 }
1079 }
1080
1081 /*----------------------------------------------------------------
1082 * Migration processing
1083 *
1084 * Migration covers moving data from the origin device to the cache, or
1085 * vice versa.
1086 *--------------------------------------------------------------*/
1087
1088 static void inc_io_migrations(struct cache *cache)
1089 {
1090 atomic_inc(&cache->nr_io_migrations);
1091 }
1092
1093 static void dec_io_migrations(struct cache *cache)
1094 {
1095 atomic_dec(&cache->nr_io_migrations);
1096 }
1097
1098 static bool discard_or_flush(struct bio *bio)
1099 {
1100 return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1101 }
1102
1103 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1104 dm_dblock_t *b, dm_dblock_t *e)
1105 {
1106 sector_t sb = bio->bi_iter.bi_sector;
1107 sector_t se = bio_end_sector(bio);
1108
1109 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1110
1111 if (se - sb < cache->discard_block_size)
1112 *e = *b;
1113 else
1114 *e = to_dblock(block_div(se, cache->discard_block_size));
1115 }
1116
1117 /*----------------------------------------------------------------*/
1118
1119 static void prevent_background_work(struct cache *cache)
1120 {
1121 lockdep_off();
1122 down_write(&cache->background_work_lock);
1123 lockdep_on();
1124 }
1125
1126 static void allow_background_work(struct cache *cache)
1127 {
1128 lockdep_off();
1129 up_write(&cache->background_work_lock);
1130 lockdep_on();
1131 }
1132
1133 static bool background_work_begin(struct cache *cache)
1134 {
1135 bool r;
1136
1137 lockdep_off();
1138 r = down_read_trylock(&cache->background_work_lock);
1139 lockdep_on();
1140
1141 return r;
1142 }
1143
1144 static void background_work_end(struct cache *cache)
1145 {
1146 lockdep_off();
1147 up_read(&cache->background_work_lock);
1148 lockdep_on();
1149 }
1150
1151 /*----------------------------------------------------------------*/
1152
1153 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1154 {
1155 return (bio_data_dir(bio) == WRITE) &&
1156 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1157 }
1158
1159 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1160 {
1161 return writeback_mode(cache) &&
1162 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1163 }
1164
1165 static void quiesce(struct dm_cache_migration *mg,
1166 void (*continuation)(struct work_struct *))
1167 {
1168 init_continuation(&mg->k, continuation);
1169 dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1170 }
1171
1172 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1173 {
1174 struct continuation *k = container_of(ws, struct continuation, ws);
1175 return container_of(k, struct dm_cache_migration, k);
1176 }
1177
1178 static void copy_complete(int read_err, unsigned long write_err, void *context)
1179 {
1180 struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1181
1182 if (read_err || write_err)
1183 mg->k.input = BLK_STS_IOERR;
1184
1185 queue_continuation(mg->cache->wq, &mg->k);
1186 }
1187
1188 static int copy(struct dm_cache_migration *mg, bool promote)
1189 {
1190 int r;
1191 struct dm_io_region o_region, c_region;
1192 struct cache *cache = mg->cache;
1193
1194 o_region.bdev = cache->origin_dev->bdev;
1195 o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1196 o_region.count = cache->sectors_per_block;
1197
1198 c_region.bdev = cache->cache_dev->bdev;
1199 c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1200 c_region.count = cache->sectors_per_block;
1201
1202 if (promote)
1203 r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1204 else
1205 r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1206
1207 return r;
1208 }
1209
1210 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1211 {
1212 struct per_bio_data *pb = get_per_bio_data(bio);
1213
1214 if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1215 free_prison_cell(cache, pb->cell);
1216 pb->cell = NULL;
1217 }
1218
1219 static void overwrite_endio(struct bio *bio)
1220 {
1221 struct dm_cache_migration *mg = bio->bi_private;
1222 struct cache *cache = mg->cache;
1223 struct per_bio_data *pb = get_per_bio_data(bio);
1224
1225 dm_unhook_bio(&pb->hook_info, bio);
1226
1227 if (bio->bi_status)
1228 mg->k.input = bio->bi_status;
1229
1230 queue_continuation(cache->wq, &mg->k);
1231 }
1232
1233 static void overwrite(struct dm_cache_migration *mg,
1234 void (*continuation)(struct work_struct *))
1235 {
1236 struct bio *bio = mg->overwrite_bio;
1237 struct per_bio_data *pb = get_per_bio_data(bio);
1238
1239 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1240
1241 /*
1242 * The overwrite bio is part of the copy operation, as such it does
1243 * not set/clear discard or dirty flags.
1244 */
1245 if (mg->op->op == POLICY_PROMOTE)
1246 remap_to_cache(mg->cache, bio, mg->op->cblock);
1247 else
1248 remap_to_origin(mg->cache, bio);
1249
1250 init_continuation(&mg->k, continuation);
1251 accounted_request(mg->cache, bio);
1252 }
1253
1254 /*
1255 * Migration steps:
1256 *
1257 * 1) exclusive lock preventing WRITEs
1258 * 2) quiesce
1259 * 3) copy or issue overwrite bio
1260 * 4) upgrade to exclusive lock preventing READs and WRITEs
1261 * 5) quiesce
1262 * 6) update metadata and commit
1263 * 7) unlock
1264 */
1265 static void mg_complete(struct dm_cache_migration *mg, bool success)
1266 {
1267 struct bio_list bios;
1268 struct cache *cache = mg->cache;
1269 struct policy_work *op = mg->op;
1270 dm_cblock_t cblock = op->cblock;
1271
1272 if (success)
1273 update_stats(&cache->stats, op->op);
1274
1275 switch (op->op) {
1276 case POLICY_PROMOTE:
1277 clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1278 policy_complete_background_work(cache->policy, op, success);
1279
1280 if (mg->overwrite_bio) {
1281 if (success)
1282 force_set_dirty(cache, cblock);
1283 else if (mg->k.input)
1284 mg->overwrite_bio->bi_status = mg->k.input;
1285 else
1286 mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1287 bio_endio(mg->overwrite_bio);
1288 } else {
1289 if (success)
1290 force_clear_dirty(cache, cblock);
1291 dec_io_migrations(cache);
1292 }
1293 break;
1294
1295 case POLICY_DEMOTE:
1296 /*
1297 * We clear dirty here to update the nr_dirty counter.
1298 */
1299 if (success)
1300 force_clear_dirty(cache, cblock);
1301 policy_complete_background_work(cache->policy, op, success);
1302 dec_io_migrations(cache);
1303 break;
1304
1305 case POLICY_WRITEBACK:
1306 if (success)
1307 force_clear_dirty(cache, cblock);
1308 policy_complete_background_work(cache->policy, op, success);
1309 dec_io_migrations(cache);
1310 break;
1311 }
1312
1313 bio_list_init(&bios);
1314 if (mg->cell) {
1315 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1316 free_prison_cell(cache, mg->cell);
1317 }
1318
1319 free_migration(mg);
1320 defer_bios(cache, &bios);
1321 wake_migration_worker(cache);
1322
1323 background_work_end(cache);
1324 }
1325
1326 static void mg_success(struct work_struct *ws)
1327 {
1328 struct dm_cache_migration *mg = ws_to_mg(ws);
1329 mg_complete(mg, mg->k.input == 0);
1330 }
1331
1332 static void mg_update_metadata(struct work_struct *ws)
1333 {
1334 int r;
1335 struct dm_cache_migration *mg = ws_to_mg(ws);
1336 struct cache *cache = mg->cache;
1337 struct policy_work *op = mg->op;
1338
1339 switch (op->op) {
1340 case POLICY_PROMOTE:
1341 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1342 if (r) {
1343 DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1344 cache_device_name(cache));
1345 metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1346
1347 mg_complete(mg, false);
1348 return;
1349 }
1350 mg_complete(mg, true);
1351 break;
1352
1353 case POLICY_DEMOTE:
1354 r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1355 if (r) {
1356 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1357 cache_device_name(cache));
1358 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1359
1360 mg_complete(mg, false);
1361 return;
1362 }
1363
1364 /*
1365 * It would be nice if we only had to commit when a REQ_FLUSH
1366 * comes through. But there's one scenario that we have to
1367 * look out for:
1368 *
1369 * - vblock x in a cache block
1370 * - domotion occurs
1371 * - cache block gets reallocated and over written
1372 * - crash
1373 *
1374 * When we recover, because there was no commit the cache will
1375 * rollback to having the data for vblock x in the cache block.
1376 * But the cache block has since been overwritten, so it'll end
1377 * up pointing to data that was never in 'x' during the history
1378 * of the device.
1379 *
1380 * To avoid this issue we require a commit as part of the
1381 * demotion operation.
1382 */
1383 init_continuation(&mg->k, mg_success);
1384 continue_after_commit(&cache->committer, &mg->k);
1385 schedule_commit(&cache->committer);
1386 break;
1387
1388 case POLICY_WRITEBACK:
1389 mg_complete(mg, true);
1390 break;
1391 }
1392 }
1393
1394 static void mg_update_metadata_after_copy(struct work_struct *ws)
1395 {
1396 struct dm_cache_migration *mg = ws_to_mg(ws);
1397
1398 /*
1399 * Did the copy succeed?
1400 */
1401 if (mg->k.input)
1402 mg_complete(mg, false);
1403 else
1404 mg_update_metadata(ws);
1405 }
1406
1407 static void mg_upgrade_lock(struct work_struct *ws)
1408 {
1409 int r;
1410 struct dm_cache_migration *mg = ws_to_mg(ws);
1411
1412 /*
1413 * Did the copy succeed?
1414 */
1415 if (mg->k.input)
1416 mg_complete(mg, false);
1417
1418 else {
1419 /*
1420 * Now we want the lock to prevent both reads and writes.
1421 */
1422 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1423 READ_WRITE_LOCK_LEVEL);
1424 if (r < 0)
1425 mg_complete(mg, false);
1426
1427 else if (r)
1428 quiesce(mg, mg_update_metadata);
1429
1430 else
1431 mg_update_metadata(ws);
1432 }
1433 }
1434
1435 static void mg_full_copy(struct work_struct *ws)
1436 {
1437 struct dm_cache_migration *mg = ws_to_mg(ws);
1438 struct cache *cache = mg->cache;
1439 struct policy_work *op = mg->op;
1440 bool is_policy_promote = (op->op == POLICY_PROMOTE);
1441
1442 if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1443 is_discarded_oblock(cache, op->oblock)) {
1444 mg_upgrade_lock(ws);
1445 return;
1446 }
1447
1448 init_continuation(&mg->k, mg_upgrade_lock);
1449
1450 if (copy(mg, is_policy_promote)) {
1451 DMERR_LIMIT("%s: migration copy failed", cache_device_name(cache));
1452 mg->k.input = BLK_STS_IOERR;
1453 mg_complete(mg, false);
1454 }
1455 }
1456
1457 static void mg_copy(struct work_struct *ws)
1458 {
1459 struct dm_cache_migration *mg = ws_to_mg(ws);
1460
1461 if (mg->overwrite_bio) {
1462 /*
1463 * No exclusive lock was held when we last checked if the bio
1464 * was optimisable. So we have to check again in case things
1465 * have changed (eg, the block may no longer be discarded).
1466 */
1467 if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1468 /*
1469 * Fallback to a real full copy after doing some tidying up.
1470 */
1471 bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1472 BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1473 mg->overwrite_bio = NULL;
1474 inc_io_migrations(mg->cache);
1475 mg_full_copy(ws);
1476 return;
1477 }
1478
1479 /*
1480 * It's safe to do this here, even though it's new data
1481 * because all IO has been locked out of the block.
1482 *
1483 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1484 * so _not_ using mg_upgrade_lock() as continutation.
1485 */
1486 overwrite(mg, mg_update_metadata_after_copy);
1487
1488 } else
1489 mg_full_copy(ws);
1490 }
1491
1492 static int mg_lock_writes(struct dm_cache_migration *mg)
1493 {
1494 int r;
1495 struct dm_cell_key_v2 key;
1496 struct cache *cache = mg->cache;
1497 struct dm_bio_prison_cell_v2 *prealloc;
1498
1499 prealloc = alloc_prison_cell(cache);
1500 if (!prealloc) {
1501 DMERR_LIMIT("%s: alloc_prison_cell failed", cache_device_name(cache));
1502 mg_complete(mg, false);
1503 return -ENOMEM;
1504 }
1505
1506 /*
1507 * Prevent writes to the block, but allow reads to continue.
1508 * Unless we're using an overwrite bio, in which case we lock
1509 * everything.
1510 */
1511 build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1512 r = dm_cell_lock_v2(cache->prison, &key,
1513 mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1514 prealloc, &mg->cell);
1515 if (r < 0) {
1516 free_prison_cell(cache, prealloc);
1517 mg_complete(mg, false);
1518 return r;
1519 }
1520
1521 if (mg->cell != prealloc)
1522 free_prison_cell(cache, prealloc);
1523
1524 if (r == 0)
1525 mg_copy(&mg->k.ws);
1526 else
1527 quiesce(mg, mg_copy);
1528
1529 return 0;
1530 }
1531
1532 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1533 {
1534 struct dm_cache_migration *mg;
1535
1536 if (!background_work_begin(cache)) {
1537 policy_complete_background_work(cache->policy, op, false);
1538 return -EPERM;
1539 }
1540
1541 mg = alloc_migration(cache);
1542 if (!mg) {
1543 policy_complete_background_work(cache->policy, op, false);
1544 background_work_end(cache);
1545 return -ENOMEM;
1546 }
1547
1548 mg->op = op;
1549 mg->overwrite_bio = bio;
1550
1551 if (!bio)
1552 inc_io_migrations(cache);
1553
1554 return mg_lock_writes(mg);
1555 }
1556
1557 /*----------------------------------------------------------------
1558 * invalidation processing
1559 *--------------------------------------------------------------*/
1560
1561 static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1562 {
1563 struct bio_list bios;
1564 struct cache *cache = mg->cache;
1565
1566 bio_list_init(&bios);
1567 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1568 free_prison_cell(cache, mg->cell);
1569
1570 if (!success && mg->overwrite_bio)
1571 bio_io_error(mg->overwrite_bio);
1572
1573 free_migration(mg);
1574 defer_bios(cache, &bios);
1575
1576 background_work_end(cache);
1577 }
1578
1579 static void invalidate_completed(struct work_struct *ws)
1580 {
1581 struct dm_cache_migration *mg = ws_to_mg(ws);
1582 invalidate_complete(mg, !mg->k.input);
1583 }
1584
1585 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1586 {
1587 int r = policy_invalidate_mapping(cache->policy, cblock);
1588 if (!r) {
1589 r = dm_cache_remove_mapping(cache->cmd, cblock);
1590 if (r) {
1591 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1592 cache_device_name(cache));
1593 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1594 }
1595
1596 } else if (r == -ENODATA) {
1597 /*
1598 * Harmless, already unmapped.
1599 */
1600 r = 0;
1601
1602 } else
1603 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1604
1605 return r;
1606 }
1607
1608 static void invalidate_remove(struct work_struct *ws)
1609 {
1610 int r;
1611 struct dm_cache_migration *mg = ws_to_mg(ws);
1612 struct cache *cache = mg->cache;
1613
1614 r = invalidate_cblock(cache, mg->invalidate_cblock);
1615 if (r) {
1616 invalidate_complete(mg, false);
1617 return;
1618 }
1619
1620 init_continuation(&mg->k, invalidate_completed);
1621 continue_after_commit(&cache->committer, &mg->k);
1622 remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1623 mg->overwrite_bio = NULL;
1624 schedule_commit(&cache->committer);
1625 }
1626
1627 static int invalidate_lock(struct dm_cache_migration *mg)
1628 {
1629 int r;
1630 struct dm_cell_key_v2 key;
1631 struct cache *cache = mg->cache;
1632 struct dm_bio_prison_cell_v2 *prealloc;
1633
1634 prealloc = alloc_prison_cell(cache);
1635 if (!prealloc) {
1636 invalidate_complete(mg, false);
1637 return -ENOMEM;
1638 }
1639
1640 build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1641 r = dm_cell_lock_v2(cache->prison, &key,
1642 READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1643 if (r < 0) {
1644 free_prison_cell(cache, prealloc);
1645 invalidate_complete(mg, false);
1646 return r;
1647 }
1648
1649 if (mg->cell != prealloc)
1650 free_prison_cell(cache, prealloc);
1651
1652 if (r)
1653 quiesce(mg, invalidate_remove);
1654
1655 else {
1656 /*
1657 * We can't call invalidate_remove() directly here because we
1658 * might still be in request context.
1659 */
1660 init_continuation(&mg->k, invalidate_remove);
1661 queue_work(cache->wq, &mg->k.ws);
1662 }
1663
1664 return 0;
1665 }
1666
1667 static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1668 dm_oblock_t oblock, struct bio *bio)
1669 {
1670 struct dm_cache_migration *mg;
1671
1672 if (!background_work_begin(cache))
1673 return -EPERM;
1674
1675 mg = alloc_migration(cache);
1676 if (!mg) {
1677 background_work_end(cache);
1678 return -ENOMEM;
1679 }
1680
1681 mg->overwrite_bio = bio;
1682 mg->invalidate_cblock = cblock;
1683 mg->invalidate_oblock = oblock;
1684
1685 return invalidate_lock(mg);
1686 }
1687
1688 /*----------------------------------------------------------------
1689 * bio processing
1690 *--------------------------------------------------------------*/
1691
1692 enum busy {
1693 IDLE,
1694 BUSY
1695 };
1696
1697 static enum busy spare_migration_bandwidth(struct cache *cache)
1698 {
1699 bool idle = iot_idle_for(&cache->tracker, HZ);
1700 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1701 cache->sectors_per_block;
1702
1703 if (idle && current_volume <= cache->migration_threshold)
1704 return IDLE;
1705 else
1706 return BUSY;
1707 }
1708
1709 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1710 {
1711 atomic_inc(bio_data_dir(bio) == READ ?
1712 &cache->stats.read_hit : &cache->stats.write_hit);
1713 }
1714
1715 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1716 {
1717 atomic_inc(bio_data_dir(bio) == READ ?
1718 &cache->stats.read_miss : &cache->stats.write_miss);
1719 }
1720
1721 /*----------------------------------------------------------------*/
1722
1723 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1724 bool *commit_needed)
1725 {
1726 int r, data_dir;
1727 bool rb, background_queued;
1728 dm_cblock_t cblock;
1729
1730 *commit_needed = false;
1731
1732 rb = bio_detain_shared(cache, block, bio);
1733 if (!rb) {
1734 /*
1735 * An exclusive lock is held for this block, so we have to
1736 * wait. We set the commit_needed flag so the current
1737 * transaction will be committed asap, allowing this lock
1738 * to be dropped.
1739 */
1740 *commit_needed = true;
1741 return DM_MAPIO_SUBMITTED;
1742 }
1743
1744 data_dir = bio_data_dir(bio);
1745
1746 if (optimisable_bio(cache, bio, block)) {
1747 struct policy_work *op = NULL;
1748
1749 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1750 if (unlikely(r && r != -ENOENT)) {
1751 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1752 cache_device_name(cache), r);
1753 bio_io_error(bio);
1754 return DM_MAPIO_SUBMITTED;
1755 }
1756
1757 if (r == -ENOENT && op) {
1758 bio_drop_shared_lock(cache, bio);
1759 BUG_ON(op->op != POLICY_PROMOTE);
1760 mg_start(cache, op, bio);
1761 return DM_MAPIO_SUBMITTED;
1762 }
1763 } else {
1764 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1765 if (unlikely(r && r != -ENOENT)) {
1766 DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1767 cache_device_name(cache), r);
1768 bio_io_error(bio);
1769 return DM_MAPIO_SUBMITTED;
1770 }
1771
1772 if (background_queued)
1773 wake_migration_worker(cache);
1774 }
1775
1776 if (r == -ENOENT) {
1777 struct per_bio_data *pb = get_per_bio_data(bio);
1778
1779 /*
1780 * Miss.
1781 */
1782 inc_miss_counter(cache, bio);
1783 if (pb->req_nr == 0) {
1784 accounted_begin(cache, bio);
1785 remap_to_origin_clear_discard(cache, bio, block);
1786 } else {
1787 /*
1788 * This is a duplicate writethrough io that is no
1789 * longer needed because the block has been demoted.
1790 */
1791 bio_endio(bio);
1792 return DM_MAPIO_SUBMITTED;
1793 }
1794 } else {
1795 /*
1796 * Hit.
1797 */
1798 inc_hit_counter(cache, bio);
1799
1800 /*
1801 * Passthrough always maps to the origin, invalidating any
1802 * cache blocks that are written to.
1803 */
1804 if (passthrough_mode(cache)) {
1805 if (bio_data_dir(bio) == WRITE) {
1806 bio_drop_shared_lock(cache, bio);
1807 atomic_inc(&cache->stats.demotion);
1808 invalidate_start(cache, cblock, block, bio);
1809 } else
1810 remap_to_origin_clear_discard(cache, bio, block);
1811 } else {
1812 if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1813 !is_dirty(cache, cblock)) {
1814 remap_to_origin_and_cache(cache, bio, block, cblock);
1815 accounted_begin(cache, bio);
1816 } else
1817 remap_to_cache_dirty(cache, bio, block, cblock);
1818 }
1819 }
1820
1821 /*
1822 * dm core turns FUA requests into a separate payload and FLUSH req.
1823 */
1824 if (bio->bi_opf & REQ_FUA) {
1825 /*
1826 * issue_after_commit will call accounted_begin a second time. So
1827 * we call accounted_complete() to avoid double accounting.
1828 */
1829 accounted_complete(cache, bio);
1830 issue_after_commit(&cache->committer, bio);
1831 *commit_needed = true;
1832 return DM_MAPIO_SUBMITTED;
1833 }
1834
1835 return DM_MAPIO_REMAPPED;
1836 }
1837
1838 static bool process_bio(struct cache *cache, struct bio *bio)
1839 {
1840 bool commit_needed;
1841
1842 if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1843 generic_make_request(bio);
1844
1845 return commit_needed;
1846 }
1847
1848 /*
1849 * A non-zero return indicates read_only or fail_io mode.
1850 */
1851 static int commit(struct cache *cache, bool clean_shutdown)
1852 {
1853 int r;
1854
1855 if (get_cache_mode(cache) >= CM_READ_ONLY)
1856 return -EINVAL;
1857
1858 atomic_inc(&cache->stats.commit_count);
1859 r = dm_cache_commit(cache->cmd, clean_shutdown);
1860 if (r)
1861 metadata_operation_failed(cache, "dm_cache_commit", r);
1862
1863 return r;
1864 }
1865
1866 /*
1867 * Used by the batcher.
1868 */
1869 static blk_status_t commit_op(void *context)
1870 {
1871 struct cache *cache = context;
1872
1873 if (dm_cache_changed_this_transaction(cache->cmd))
1874 return errno_to_blk_status(commit(cache, false));
1875
1876 return 0;
1877 }
1878
1879 /*----------------------------------------------------------------*/
1880
1881 static bool process_flush_bio(struct cache *cache, struct bio *bio)
1882 {
1883 struct per_bio_data *pb = get_per_bio_data(bio);
1884
1885 if (!pb->req_nr)
1886 remap_to_origin(cache, bio);
1887 else
1888 remap_to_cache(cache, bio, 0);
1889
1890 issue_after_commit(&cache->committer, bio);
1891 return true;
1892 }
1893
1894 static bool process_discard_bio(struct cache *cache, struct bio *bio)
1895 {
1896 dm_dblock_t b, e;
1897
1898 // FIXME: do we need to lock the region? Or can we just assume the
1899 // user wont be so foolish as to issue discard concurrently with
1900 // other IO?
1901 calc_discard_block_range(cache, bio, &b, &e);
1902 while (b != e) {
1903 set_discard(cache, b);
1904 b = to_dblock(from_dblock(b) + 1);
1905 }
1906
1907 bio_endio(bio);
1908
1909 return false;
1910 }
1911
1912 static void process_deferred_bios(struct work_struct *ws)
1913 {
1914 struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1915
1916 unsigned long flags;
1917 bool commit_needed = false;
1918 struct bio_list bios;
1919 struct bio *bio;
1920
1921 bio_list_init(&bios);
1922
1923 spin_lock_irqsave(&cache->lock, flags);
1924 bio_list_merge(&bios, &cache->deferred_bios);
1925 bio_list_init(&cache->deferred_bios);
1926 spin_unlock_irqrestore(&cache->lock, flags);
1927
1928 while ((bio = bio_list_pop(&bios))) {
1929 if (bio->bi_opf & REQ_PREFLUSH)
1930 commit_needed = process_flush_bio(cache, bio) || commit_needed;
1931
1932 else if (bio_op(bio) == REQ_OP_DISCARD)
1933 commit_needed = process_discard_bio(cache, bio) || commit_needed;
1934
1935 else
1936 commit_needed = process_bio(cache, bio) || commit_needed;
1937 }
1938
1939 if (commit_needed)
1940 schedule_commit(&cache->committer);
1941 }
1942
1943 /*----------------------------------------------------------------
1944 * Main worker loop
1945 *--------------------------------------------------------------*/
1946
1947 static void requeue_deferred_bios(struct cache *cache)
1948 {
1949 struct bio *bio;
1950 struct bio_list bios;
1951
1952 bio_list_init(&bios);
1953 bio_list_merge(&bios, &cache->deferred_bios);
1954 bio_list_init(&cache->deferred_bios);
1955
1956 while ((bio = bio_list_pop(&bios))) {
1957 bio->bi_status = BLK_STS_DM_REQUEUE;
1958 bio_endio(bio);
1959 }
1960 }
1961
1962 /*
1963 * We want to commit periodically so that not too much
1964 * unwritten metadata builds up.
1965 */
1966 static void do_waker(struct work_struct *ws)
1967 {
1968 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1969
1970 policy_tick(cache->policy, true);
1971 wake_migration_worker(cache);
1972 schedule_commit(&cache->committer);
1973 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1974 }
1975
1976 static void check_migrations(struct work_struct *ws)
1977 {
1978 int r;
1979 struct policy_work *op;
1980 struct cache *cache = container_of(ws, struct cache, migration_worker);
1981 enum busy b;
1982
1983 for (;;) {
1984 b = spare_migration_bandwidth(cache);
1985
1986 r = policy_get_background_work(cache->policy, b == IDLE, &op);
1987 if (r == -ENODATA)
1988 break;
1989
1990 if (r) {
1991 DMERR_LIMIT("%s: policy_background_work failed",
1992 cache_device_name(cache));
1993 break;
1994 }
1995
1996 r = mg_start(cache, op, NULL);
1997 if (r)
1998 break;
1999 }
2000 }
2001
2002 /*----------------------------------------------------------------
2003 * Target methods
2004 *--------------------------------------------------------------*/
2005
2006 /*
2007 * This function gets called on the error paths of the constructor, so we
2008 * have to cope with a partially initialised struct.
2009 */
2010 static void destroy(struct cache *cache)
2011 {
2012 unsigned i;
2013
2014 mempool_destroy(cache->migration_pool);
2015
2016 if (cache->prison)
2017 dm_bio_prison_destroy_v2(cache->prison);
2018
2019 if (cache->wq)
2020 destroy_workqueue(cache->wq);
2021
2022 if (cache->dirty_bitset)
2023 free_bitset(cache->dirty_bitset);
2024
2025 if (cache->discard_bitset)
2026 free_bitset(cache->discard_bitset);
2027
2028 if (cache->copier)
2029 dm_kcopyd_client_destroy(cache->copier);
2030
2031 if (cache->cmd)
2032 dm_cache_metadata_close(cache->cmd);
2033
2034 if (cache->metadata_dev)
2035 dm_put_device(cache->ti, cache->metadata_dev);
2036
2037 if (cache->origin_dev)
2038 dm_put_device(cache->ti, cache->origin_dev);
2039
2040 if (cache->cache_dev)
2041 dm_put_device(cache->ti, cache->cache_dev);
2042
2043 if (cache->policy)
2044 dm_cache_policy_destroy(cache->policy);
2045
2046 for (i = 0; i < cache->nr_ctr_args ; i++)
2047 kfree(cache->ctr_args[i]);
2048 kfree(cache->ctr_args);
2049
2050 if (cache->bs)
2051 bioset_free(cache->bs);
2052
2053 kfree(cache);
2054 }
2055
2056 static void cache_dtr(struct dm_target *ti)
2057 {
2058 struct cache *cache = ti->private;
2059
2060 destroy(cache);
2061 }
2062
2063 static sector_t get_dev_size(struct dm_dev *dev)
2064 {
2065 return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2066 }
2067
2068 /*----------------------------------------------------------------*/
2069
2070 /*
2071 * Construct a cache device mapping.
2072 *
2073 * cache <metadata dev> <cache dev> <origin dev> <block size>
2074 * <#feature args> [<feature arg>]*
2075 * <policy> <#policy args> [<policy arg>]*
2076 *
2077 * metadata dev : fast device holding the persistent metadata
2078 * cache dev : fast device holding cached data blocks
2079 * origin dev : slow device holding original data blocks
2080 * block size : cache unit size in sectors
2081 *
2082 * #feature args : number of feature arguments passed
2083 * feature args : writethrough. (The default is writeback.)
2084 *
2085 * policy : the replacement policy to use
2086 * #policy args : an even number of policy arguments corresponding
2087 * to key/value pairs passed to the policy
2088 * policy args : key/value pairs passed to the policy
2089 * E.g. 'sequential_threshold 1024'
2090 * See cache-policies.txt for details.
2091 *
2092 * Optional feature arguments are:
2093 * writethrough : write through caching that prohibits cache block
2094 * content from being different from origin block content.
2095 * Without this argument, the default behaviour is to write
2096 * back cache block contents later for performance reasons,
2097 * so they may differ from the corresponding origin blocks.
2098 */
2099 struct cache_args {
2100 struct dm_target *ti;
2101
2102 struct dm_dev *metadata_dev;
2103
2104 struct dm_dev *cache_dev;
2105 sector_t cache_sectors;
2106
2107 struct dm_dev *origin_dev;
2108 sector_t origin_sectors;
2109
2110 uint32_t block_size;
2111
2112 const char *policy_name;
2113 int policy_argc;
2114 const char **policy_argv;
2115
2116 struct cache_features features;
2117 };
2118
2119 static void destroy_cache_args(struct cache_args *ca)
2120 {
2121 if (ca->metadata_dev)
2122 dm_put_device(ca->ti, ca->metadata_dev);
2123
2124 if (ca->cache_dev)
2125 dm_put_device(ca->ti, ca->cache_dev);
2126
2127 if (ca->origin_dev)
2128 dm_put_device(ca->ti, ca->origin_dev);
2129
2130 kfree(ca);
2131 }
2132
2133 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2134 {
2135 if (!as->argc) {
2136 *error = "Insufficient args";
2137 return false;
2138 }
2139
2140 return true;
2141 }
2142
2143 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2144 char **error)
2145 {
2146 int r;
2147 sector_t metadata_dev_size;
2148 char b[BDEVNAME_SIZE];
2149
2150 if (!at_least_one_arg(as, error))
2151 return -EINVAL;
2152
2153 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2154 &ca->metadata_dev);
2155 if (r) {
2156 *error = "Error opening metadata device";
2157 return r;
2158 }
2159
2160 metadata_dev_size = get_dev_size(ca->metadata_dev);
2161 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2162 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2163 bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2164
2165 return 0;
2166 }
2167
2168 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2169 char **error)
2170 {
2171 int r;
2172
2173 if (!at_least_one_arg(as, error))
2174 return -EINVAL;
2175
2176 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2177 &ca->cache_dev);
2178 if (r) {
2179 *error = "Error opening cache device";
2180 return r;
2181 }
2182 ca->cache_sectors = get_dev_size(ca->cache_dev);
2183
2184 return 0;
2185 }
2186
2187 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2188 char **error)
2189 {
2190 int r;
2191
2192 if (!at_least_one_arg(as, error))
2193 return -EINVAL;
2194
2195 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2196 &ca->origin_dev);
2197 if (r) {
2198 *error = "Error opening origin device";
2199 return r;
2200 }
2201
2202 ca->origin_sectors = get_dev_size(ca->origin_dev);
2203 if (ca->ti->len > ca->origin_sectors) {
2204 *error = "Device size larger than cached device";
2205 return -EINVAL;
2206 }
2207
2208 return 0;
2209 }
2210
2211 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2212 char **error)
2213 {
2214 unsigned long block_size;
2215
2216 if (!at_least_one_arg(as, error))
2217 return -EINVAL;
2218
2219 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2220 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2221 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2222 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2223 *error = "Invalid data block size";
2224 return -EINVAL;
2225 }
2226
2227 if (block_size > ca->cache_sectors) {
2228 *error = "Data block size is larger than the cache device";
2229 return -EINVAL;
2230 }
2231
2232 ca->block_size = block_size;
2233
2234 return 0;
2235 }
2236
2237 static void init_features(struct cache_features *cf)
2238 {
2239 cf->mode = CM_WRITE;
2240 cf->io_mode = CM_IO_WRITEBACK;
2241 cf->metadata_version = 1;
2242 }
2243
2244 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2245 char **error)
2246 {
2247 static const struct dm_arg _args[] = {
2248 {0, 2, "Invalid number of cache feature arguments"},
2249 };
2250
2251 int r;
2252 unsigned argc;
2253 const char *arg;
2254 struct cache_features *cf = &ca->features;
2255
2256 init_features(cf);
2257
2258 r = dm_read_arg_group(_args, as, &argc, error);
2259 if (r)
2260 return -EINVAL;
2261
2262 while (argc--) {
2263 arg = dm_shift_arg(as);
2264
2265 if (!strcasecmp(arg, "writeback"))
2266 cf->io_mode = CM_IO_WRITEBACK;
2267
2268 else if (!strcasecmp(arg, "writethrough"))
2269 cf->io_mode = CM_IO_WRITETHROUGH;
2270
2271 else if (!strcasecmp(arg, "passthrough"))
2272 cf->io_mode = CM_IO_PASSTHROUGH;
2273
2274 else if (!strcasecmp(arg, "metadata2"))
2275 cf->metadata_version = 2;
2276
2277 else {
2278 *error = "Unrecognised cache feature requested";
2279 return -EINVAL;
2280 }
2281 }
2282
2283 return 0;
2284 }
2285
2286 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2287 char **error)
2288 {
2289 static const struct dm_arg _args[] = {
2290 {0, 1024, "Invalid number of policy arguments"},
2291 };
2292
2293 int r;
2294
2295 if (!at_least_one_arg(as, error))
2296 return -EINVAL;
2297
2298 ca->policy_name = dm_shift_arg(as);
2299
2300 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2301 if (r)
2302 return -EINVAL;
2303
2304 ca->policy_argv = (const char **)as->argv;
2305 dm_consume_args(as, ca->policy_argc);
2306
2307 return 0;
2308 }
2309
2310 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2311 char **error)
2312 {
2313 int r;
2314 struct dm_arg_set as;
2315
2316 as.argc = argc;
2317 as.argv = argv;
2318
2319 r = parse_metadata_dev(ca, &as, error);
2320 if (r)
2321 return r;
2322
2323 r = parse_cache_dev(ca, &as, error);
2324 if (r)
2325 return r;
2326
2327 r = parse_origin_dev(ca, &as, error);
2328 if (r)
2329 return r;
2330
2331 r = parse_block_size(ca, &as, error);
2332 if (r)
2333 return r;
2334
2335 r = parse_features(ca, &as, error);
2336 if (r)
2337 return r;
2338
2339 r = parse_policy(ca, &as, error);
2340 if (r)
2341 return r;
2342
2343 return 0;
2344 }
2345
2346 /*----------------------------------------------------------------*/
2347
2348 static struct kmem_cache *migration_cache;
2349
2350 #define NOT_CORE_OPTION 1
2351
2352 static int process_config_option(struct cache *cache, const char *key, const char *value)
2353 {
2354 unsigned long tmp;
2355
2356 if (!strcasecmp(key, "migration_threshold")) {
2357 if (kstrtoul(value, 10, &tmp))
2358 return -EINVAL;
2359
2360 cache->migration_threshold = tmp;
2361 return 0;
2362 }
2363
2364 return NOT_CORE_OPTION;
2365 }
2366
2367 static int set_config_value(struct cache *cache, const char *key, const char *value)
2368 {
2369 int r = process_config_option(cache, key, value);
2370
2371 if (r == NOT_CORE_OPTION)
2372 r = policy_set_config_value(cache->policy, key, value);
2373
2374 if (r)
2375 DMWARN("bad config value for %s: %s", key, value);
2376
2377 return r;
2378 }
2379
2380 static int set_config_values(struct cache *cache, int argc, const char **argv)
2381 {
2382 int r = 0;
2383
2384 if (argc & 1) {
2385 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2386 return -EINVAL;
2387 }
2388
2389 while (argc) {
2390 r = set_config_value(cache, argv[0], argv[1]);
2391 if (r)
2392 break;
2393
2394 argc -= 2;
2395 argv += 2;
2396 }
2397
2398 return r;
2399 }
2400
2401 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2402 char **error)
2403 {
2404 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2405 cache->cache_size,
2406 cache->origin_sectors,
2407 cache->sectors_per_block);
2408 if (IS_ERR(p)) {
2409 *error = "Error creating cache's policy";
2410 return PTR_ERR(p);
2411 }
2412 cache->policy = p;
2413 BUG_ON(!cache->policy);
2414
2415 return 0;
2416 }
2417
2418 /*
2419 * We want the discard block size to be at least the size of the cache
2420 * block size and have no more than 2^14 discard blocks across the origin.
2421 */
2422 #define MAX_DISCARD_BLOCKS (1 << 14)
2423
2424 static bool too_many_discard_blocks(sector_t discard_block_size,
2425 sector_t origin_size)
2426 {
2427 (void) sector_div(origin_size, discard_block_size);
2428
2429 return origin_size > MAX_DISCARD_BLOCKS;
2430 }
2431
2432 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2433 sector_t origin_size)
2434 {
2435 sector_t discard_block_size = cache_block_size;
2436
2437 if (origin_size)
2438 while (too_many_discard_blocks(discard_block_size, origin_size))
2439 discard_block_size *= 2;
2440
2441 return discard_block_size;
2442 }
2443
2444 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2445 {
2446 dm_block_t nr_blocks = from_cblock(size);
2447
2448 if (nr_blocks > (1 << 20) && cache->cache_size != size)
2449 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2450 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2451 "Please consider increasing the cache block size to reduce the overall cache block count.",
2452 (unsigned long long) nr_blocks);
2453
2454 cache->cache_size = size;
2455 }
2456
2457 static int is_congested(struct dm_dev *dev, int bdi_bits)
2458 {
2459 struct request_queue *q = bdev_get_queue(dev->bdev);
2460 return bdi_congested(q->backing_dev_info, bdi_bits);
2461 }
2462
2463 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2464 {
2465 struct cache *cache = container_of(cb, struct cache, callbacks);
2466
2467 return is_congested(cache->origin_dev, bdi_bits) ||
2468 is_congested(cache->cache_dev, bdi_bits);
2469 }
2470
2471 #define DEFAULT_MIGRATION_THRESHOLD 2048
2472
2473 static int cache_create(struct cache_args *ca, struct cache **result)
2474 {
2475 int r = 0;
2476 char **error = &ca->ti->error;
2477 struct cache *cache;
2478 struct dm_target *ti = ca->ti;
2479 dm_block_t origin_blocks;
2480 struct dm_cache_metadata *cmd;
2481 bool may_format = ca->features.mode == CM_WRITE;
2482
2483 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2484 if (!cache)
2485 return -ENOMEM;
2486
2487 cache->ti = ca->ti;
2488 ti->private = cache;
2489 ti->num_flush_bios = 2;
2490 ti->flush_supported = true;
2491
2492 ti->num_discard_bios = 1;
2493 ti->discards_supported = true;
2494 ti->split_discard_bios = false;
2495
2496 ti->per_io_data_size = sizeof(struct per_bio_data);
2497
2498 cache->features = ca->features;
2499 if (writethrough_mode(cache)) {
2500 /* Create bioset for writethrough bios issued to origin */
2501 cache->bs = bioset_create(BIO_POOL_SIZE, 0, 0);
2502 if (!cache->bs)
2503 goto bad;
2504 }
2505
2506 cache->callbacks.congested_fn = cache_is_congested;
2507 dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2508
2509 cache->metadata_dev = ca->metadata_dev;
2510 cache->origin_dev = ca->origin_dev;
2511 cache->cache_dev = ca->cache_dev;
2512
2513 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2514
2515 origin_blocks = cache->origin_sectors = ca->origin_sectors;
2516 origin_blocks = block_div(origin_blocks, ca->block_size);
2517 cache->origin_blocks = to_oblock(origin_blocks);
2518
2519 cache->sectors_per_block = ca->block_size;
2520 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2521 r = -EINVAL;
2522 goto bad;
2523 }
2524
2525 if (ca->block_size & (ca->block_size - 1)) {
2526 dm_block_t cache_size = ca->cache_sectors;
2527
2528 cache->sectors_per_block_shift = -1;
2529 cache_size = block_div(cache_size, ca->block_size);
2530 set_cache_size(cache, to_cblock(cache_size));
2531 } else {
2532 cache->sectors_per_block_shift = __ffs(ca->block_size);
2533 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2534 }
2535
2536 r = create_cache_policy(cache, ca, error);
2537 if (r)
2538 goto bad;
2539
2540 cache->policy_nr_args = ca->policy_argc;
2541 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2542
2543 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2544 if (r) {
2545 *error = "Error setting cache policy's config values";
2546 goto bad;
2547 }
2548
2549 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2550 ca->block_size, may_format,
2551 dm_cache_policy_get_hint_size(cache->policy),
2552 ca->features.metadata_version);
2553 if (IS_ERR(cmd)) {
2554 *error = "Error creating metadata object";
2555 r = PTR_ERR(cmd);
2556 goto bad;
2557 }
2558 cache->cmd = cmd;
2559 set_cache_mode(cache, CM_WRITE);
2560 if (get_cache_mode(cache) != CM_WRITE) {
2561 *error = "Unable to get write access to metadata, please check/repair metadata.";
2562 r = -EINVAL;
2563 goto bad;
2564 }
2565
2566 if (passthrough_mode(cache)) {
2567 bool all_clean;
2568
2569 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2570 if (r) {
2571 *error = "dm_cache_metadata_all_clean() failed";
2572 goto bad;
2573 }
2574
2575 if (!all_clean) {
2576 *error = "Cannot enter passthrough mode unless all blocks are clean";
2577 r = -EINVAL;
2578 goto bad;
2579 }
2580
2581 policy_allow_migrations(cache->policy, false);
2582 }
2583
2584 spin_lock_init(&cache->lock);
2585 bio_list_init(&cache->deferred_bios);
2586 atomic_set(&cache->nr_allocated_migrations, 0);
2587 atomic_set(&cache->nr_io_migrations, 0);
2588 init_waitqueue_head(&cache->migration_wait);
2589
2590 r = -ENOMEM;
2591 atomic_set(&cache->nr_dirty, 0);
2592 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2593 if (!cache->dirty_bitset) {
2594 *error = "could not allocate dirty bitset";
2595 goto bad;
2596 }
2597 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2598
2599 cache->discard_block_size =
2600 calculate_discard_block_size(cache->sectors_per_block,
2601 cache->origin_sectors);
2602 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2603 cache->discard_block_size));
2604 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2605 if (!cache->discard_bitset) {
2606 *error = "could not allocate discard bitset";
2607 goto bad;
2608 }
2609 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2610
2611 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2612 if (IS_ERR(cache->copier)) {
2613 *error = "could not create kcopyd client";
2614 r = PTR_ERR(cache->copier);
2615 goto bad;
2616 }
2617
2618 cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2619 if (!cache->wq) {
2620 *error = "could not create workqueue for metadata object";
2621 goto bad;
2622 }
2623 INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2624 INIT_WORK(&cache->migration_worker, check_migrations);
2625 INIT_DELAYED_WORK(&cache->waker, do_waker);
2626
2627 cache->prison = dm_bio_prison_create_v2(cache->wq);
2628 if (!cache->prison) {
2629 *error = "could not create bio prison";
2630 goto bad;
2631 }
2632
2633 cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2634 migration_cache);
2635 if (!cache->migration_pool) {
2636 *error = "Error creating cache's migration mempool";
2637 goto bad;
2638 }
2639
2640 cache->need_tick_bio = true;
2641 cache->sized = false;
2642 cache->invalidate = false;
2643 cache->commit_requested = false;
2644 cache->loaded_mappings = false;
2645 cache->loaded_discards = false;
2646
2647 load_stats(cache);
2648
2649 atomic_set(&cache->stats.demotion, 0);
2650 atomic_set(&cache->stats.promotion, 0);
2651 atomic_set(&cache->stats.copies_avoided, 0);
2652 atomic_set(&cache->stats.cache_cell_clash, 0);
2653 atomic_set(&cache->stats.commit_count, 0);
2654 atomic_set(&cache->stats.discard_count, 0);
2655
2656 spin_lock_init(&cache->invalidation_lock);
2657 INIT_LIST_HEAD(&cache->invalidation_requests);
2658
2659 batcher_init(&cache->committer, commit_op, cache,
2660 issue_op, cache, cache->wq);
2661 iot_init(&cache->tracker);
2662
2663 init_rwsem(&cache->background_work_lock);
2664 prevent_background_work(cache);
2665
2666 *result = cache;
2667 return 0;
2668 bad:
2669 destroy(cache);
2670 return r;
2671 }
2672
2673 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2674 {
2675 unsigned i;
2676 const char **copy;
2677
2678 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2679 if (!copy)
2680 return -ENOMEM;
2681 for (i = 0; i < argc; i++) {
2682 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2683 if (!copy[i]) {
2684 while (i--)
2685 kfree(copy[i]);
2686 kfree(copy);
2687 return -ENOMEM;
2688 }
2689 }
2690
2691 cache->nr_ctr_args = argc;
2692 cache->ctr_args = copy;
2693
2694 return 0;
2695 }
2696
2697 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2698 {
2699 int r = -EINVAL;
2700 struct cache_args *ca;
2701 struct cache *cache = NULL;
2702
2703 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2704 if (!ca) {
2705 ti->error = "Error allocating memory for cache";
2706 return -ENOMEM;
2707 }
2708 ca->ti = ti;
2709
2710 r = parse_cache_args(ca, argc, argv, &ti->error);
2711 if (r)
2712 goto out;
2713
2714 r = cache_create(ca, &cache);
2715 if (r)
2716 goto out;
2717
2718 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2719 if (r) {
2720 destroy(cache);
2721 goto out;
2722 }
2723
2724 ti->private = cache;
2725 out:
2726 destroy_cache_args(ca);
2727 return r;
2728 }
2729
2730 /*----------------------------------------------------------------*/
2731
2732 static int cache_map(struct dm_target *ti, struct bio *bio)
2733 {
2734 struct cache *cache = ti->private;
2735
2736 int r;
2737 bool commit_needed;
2738 dm_oblock_t block = get_bio_block(cache, bio);
2739
2740 init_per_bio_data(bio);
2741 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2742 /*
2743 * This can only occur if the io goes to a partial block at
2744 * the end of the origin device. We don't cache these.
2745 * Just remap to the origin and carry on.
2746 */
2747 remap_to_origin(cache, bio);
2748 accounted_begin(cache, bio);
2749 return DM_MAPIO_REMAPPED;
2750 }
2751
2752 if (discard_or_flush(bio)) {
2753 defer_bio(cache, bio);
2754 return DM_MAPIO_SUBMITTED;
2755 }
2756
2757 r = map_bio(cache, bio, block, &commit_needed);
2758 if (commit_needed)
2759 schedule_commit(&cache->committer);
2760
2761 return r;
2762 }
2763
2764 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2765 {
2766 struct cache *cache = ti->private;
2767 unsigned long flags;
2768 struct per_bio_data *pb = get_per_bio_data(bio);
2769
2770 if (pb->tick) {
2771 policy_tick(cache->policy, false);
2772
2773 spin_lock_irqsave(&cache->lock, flags);
2774 cache->need_tick_bio = true;
2775 spin_unlock_irqrestore(&cache->lock, flags);
2776 }
2777
2778 bio_drop_shared_lock(cache, bio);
2779 accounted_complete(cache, bio);
2780
2781 return DM_ENDIO_DONE;
2782 }
2783
2784 static int write_dirty_bitset(struct cache *cache)
2785 {
2786 int r;
2787
2788 if (get_cache_mode(cache) >= CM_READ_ONLY)
2789 return -EINVAL;
2790
2791 r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2792 if (r)
2793 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2794
2795 return r;
2796 }
2797
2798 static int write_discard_bitset(struct cache *cache)
2799 {
2800 unsigned i, r;
2801
2802 if (get_cache_mode(cache) >= CM_READ_ONLY)
2803 return -EINVAL;
2804
2805 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2806 cache->discard_nr_blocks);
2807 if (r) {
2808 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2809 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2810 return r;
2811 }
2812
2813 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2814 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2815 is_discarded(cache, to_dblock(i)));
2816 if (r) {
2817 metadata_operation_failed(cache, "dm_cache_set_discard", r);
2818 return r;
2819 }
2820 }
2821
2822 return 0;
2823 }
2824
2825 static int write_hints(struct cache *cache)
2826 {
2827 int r;
2828
2829 if (get_cache_mode(cache) >= CM_READ_ONLY)
2830 return -EINVAL;
2831
2832 r = dm_cache_write_hints(cache->cmd, cache->policy);
2833 if (r) {
2834 metadata_operation_failed(cache, "dm_cache_write_hints", r);
2835 return r;
2836 }
2837
2838 return 0;
2839 }
2840
2841 /*
2842 * returns true on success
2843 */
2844 static bool sync_metadata(struct cache *cache)
2845 {
2846 int r1, r2, r3, r4;
2847
2848 r1 = write_dirty_bitset(cache);
2849 if (r1)
2850 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2851
2852 r2 = write_discard_bitset(cache);
2853 if (r2)
2854 DMERR("%s: could not write discard bitset", cache_device_name(cache));
2855
2856 save_stats(cache);
2857
2858 r3 = write_hints(cache);
2859 if (r3)
2860 DMERR("%s: could not write hints", cache_device_name(cache));
2861
2862 /*
2863 * If writing the above metadata failed, we still commit, but don't
2864 * set the clean shutdown flag. This will effectively force every
2865 * dirty bit to be set on reload.
2866 */
2867 r4 = commit(cache, !r1 && !r2 && !r3);
2868 if (r4)
2869 DMERR("%s: could not write cache metadata", cache_device_name(cache));
2870
2871 return !r1 && !r2 && !r3 && !r4;
2872 }
2873
2874 static void cache_postsuspend(struct dm_target *ti)
2875 {
2876 struct cache *cache = ti->private;
2877
2878 prevent_background_work(cache);
2879 BUG_ON(atomic_read(&cache->nr_io_migrations));
2880
2881 cancel_delayed_work(&cache->waker);
2882 flush_workqueue(cache->wq);
2883 WARN_ON(cache->tracker.in_flight);
2884
2885 /*
2886 * If it's a flush suspend there won't be any deferred bios, so this
2887 * call is harmless.
2888 */
2889 requeue_deferred_bios(cache);
2890
2891 if (get_cache_mode(cache) == CM_WRITE)
2892 (void) sync_metadata(cache);
2893 }
2894
2895 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2896 bool dirty, uint32_t hint, bool hint_valid)
2897 {
2898 int r;
2899 struct cache *cache = context;
2900
2901 if (dirty) {
2902 set_bit(from_cblock(cblock), cache->dirty_bitset);
2903 atomic_inc(&cache->nr_dirty);
2904 } else
2905 clear_bit(from_cblock(cblock), cache->dirty_bitset);
2906
2907 r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2908 if (r)
2909 return r;
2910
2911 return 0;
2912 }
2913
2914 /*
2915 * The discard block size in the on disk metadata is not
2916 * neccessarily the same as we're currently using. So we have to
2917 * be careful to only set the discarded attribute if we know it
2918 * covers a complete block of the new size.
2919 */
2920 struct discard_load_info {
2921 struct cache *cache;
2922
2923 /*
2924 * These blocks are sized using the on disk dblock size, rather
2925 * than the current one.
2926 */
2927 dm_block_t block_size;
2928 dm_block_t discard_begin, discard_end;
2929 };
2930
2931 static void discard_load_info_init(struct cache *cache,
2932 struct discard_load_info *li)
2933 {
2934 li->cache = cache;
2935 li->discard_begin = li->discard_end = 0;
2936 }
2937
2938 static void set_discard_range(struct discard_load_info *li)
2939 {
2940 sector_t b, e;
2941
2942 if (li->discard_begin == li->discard_end)
2943 return;
2944
2945 /*
2946 * Convert to sectors.
2947 */
2948 b = li->discard_begin * li->block_size;
2949 e = li->discard_end * li->block_size;
2950
2951 /*
2952 * Then convert back to the current dblock size.
2953 */
2954 b = dm_sector_div_up(b, li->cache->discard_block_size);
2955 sector_div(e, li->cache->discard_block_size);
2956
2957 /*
2958 * The origin may have shrunk, so we need to check we're still in
2959 * bounds.
2960 */
2961 if (e > from_dblock(li->cache->discard_nr_blocks))
2962 e = from_dblock(li->cache->discard_nr_blocks);
2963
2964 for (; b < e; b++)
2965 set_discard(li->cache, to_dblock(b));
2966 }
2967
2968 static int load_discard(void *context, sector_t discard_block_size,
2969 dm_dblock_t dblock, bool discard)
2970 {
2971 struct discard_load_info *li = context;
2972
2973 li->block_size = discard_block_size;
2974
2975 if (discard) {
2976 if (from_dblock(dblock) == li->discard_end)
2977 /*
2978 * We're already in a discard range, just extend it.
2979 */
2980 li->discard_end = li->discard_end + 1ULL;
2981
2982 else {
2983 /*
2984 * Emit the old range and start a new one.
2985 */
2986 set_discard_range(li);
2987 li->discard_begin = from_dblock(dblock);
2988 li->discard_end = li->discard_begin + 1ULL;
2989 }
2990 } else {
2991 set_discard_range(li);
2992 li->discard_begin = li->discard_end = 0;
2993 }
2994
2995 return 0;
2996 }
2997
2998 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2999 {
3000 sector_t size = get_dev_size(cache->cache_dev);
3001 (void) sector_div(size, cache->sectors_per_block);
3002 return to_cblock(size);
3003 }
3004
3005 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3006 {
3007 if (from_cblock(new_size) > from_cblock(cache->cache_size))
3008 return true;
3009
3010 /*
3011 * We can't drop a dirty block when shrinking the cache.
3012 */
3013 while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3014 new_size = to_cblock(from_cblock(new_size) + 1);
3015 if (is_dirty(cache, new_size)) {
3016 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3017 cache_device_name(cache),
3018 (unsigned long long) from_cblock(new_size));
3019 return false;
3020 }
3021 }
3022
3023 return true;
3024 }
3025
3026 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3027 {
3028 int r;
3029
3030 r = dm_cache_resize(cache->cmd, new_size);
3031 if (r) {
3032 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3033 metadata_operation_failed(cache, "dm_cache_resize", r);
3034 return r;
3035 }
3036
3037 set_cache_size(cache, new_size);
3038
3039 return 0;
3040 }
3041
3042 static int cache_preresume(struct dm_target *ti)
3043 {
3044 int r = 0;
3045 struct cache *cache = ti->private;
3046 dm_cblock_t csize = get_cache_dev_size(cache);
3047
3048 /*
3049 * Check to see if the cache has resized.
3050 */
3051 if (!cache->sized) {
3052 r = resize_cache_dev(cache, csize);
3053 if (r)
3054 return r;
3055
3056 cache->sized = true;
3057
3058 } else if (csize != cache->cache_size) {
3059 if (!can_resize(cache, csize))
3060 return -EINVAL;
3061
3062 r = resize_cache_dev(cache, csize);
3063 if (r)
3064 return r;
3065 }
3066
3067 if (!cache->loaded_mappings) {
3068 r = dm_cache_load_mappings(cache->cmd, cache->policy,
3069 load_mapping, cache);
3070 if (r) {
3071 DMERR("%s: could not load cache mappings", cache_device_name(cache));
3072 metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3073 return r;
3074 }
3075
3076 cache->loaded_mappings = true;
3077 }
3078
3079 if (!cache->loaded_discards) {
3080 struct discard_load_info li;
3081
3082 /*
3083 * The discard bitset could have been resized, or the
3084 * discard block size changed. To be safe we start by
3085 * setting every dblock to not discarded.
3086 */
3087 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3088
3089 discard_load_info_init(cache, &li);
3090 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3091 if (r) {
3092 DMERR("%s: could not load origin discards", cache_device_name(cache));
3093 metadata_operation_failed(cache, "dm_cache_load_discards", r);
3094 return r;
3095 }
3096 set_discard_range(&li);
3097
3098 cache->loaded_discards = true;
3099 }
3100
3101 return r;
3102 }
3103
3104 static void cache_resume(struct dm_target *ti)
3105 {
3106 struct cache *cache = ti->private;
3107
3108 cache->need_tick_bio = true;
3109 allow_background_work(cache);
3110 do_waker(&cache->waker.work);
3111 }
3112
3113 /*
3114 * Status format:
3115 *
3116 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3117 * <cache block size> <#used cache blocks>/<#total cache blocks>
3118 * <#read hits> <#read misses> <#write hits> <#write misses>
3119 * <#demotions> <#promotions> <#dirty>
3120 * <#features> <features>*
3121 * <#core args> <core args>
3122 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3123 */
3124 static void cache_status(struct dm_target *ti, status_type_t type,
3125 unsigned status_flags, char *result, unsigned maxlen)
3126 {
3127 int r = 0;
3128 unsigned i;
3129 ssize_t sz = 0;
3130 dm_block_t nr_free_blocks_metadata = 0;
3131 dm_block_t nr_blocks_metadata = 0;
3132 char buf[BDEVNAME_SIZE];
3133 struct cache *cache = ti->private;
3134 dm_cblock_t residency;
3135 bool needs_check;
3136
3137 switch (type) {
3138 case STATUSTYPE_INFO:
3139 if (get_cache_mode(cache) == CM_FAIL) {
3140 DMEMIT("Fail");
3141 break;
3142 }
3143
3144 /* Commit to ensure statistics aren't out-of-date */
3145 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3146 (void) commit(cache, false);
3147
3148 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3149 if (r) {
3150 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3151 cache_device_name(cache), r);
3152 goto err;
3153 }
3154
3155 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3156 if (r) {
3157 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3158 cache_device_name(cache), r);
3159 goto err;
3160 }
3161
3162 residency = policy_residency(cache->policy);
3163
3164 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3165 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3166 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3167 (unsigned long long)nr_blocks_metadata,
3168 (unsigned long long)cache->sectors_per_block,
3169 (unsigned long long) from_cblock(residency),
3170 (unsigned long long) from_cblock(cache->cache_size),
3171 (unsigned) atomic_read(&cache->stats.read_hit),
3172 (unsigned) atomic_read(&cache->stats.read_miss),
3173 (unsigned) atomic_read(&cache->stats.write_hit),
3174 (unsigned) atomic_read(&cache->stats.write_miss),
3175 (unsigned) atomic_read(&cache->stats.demotion),
3176 (unsigned) atomic_read(&cache->stats.promotion),
3177 (unsigned long) atomic_read(&cache->nr_dirty));
3178
3179 if (cache->features.metadata_version == 2)
3180 DMEMIT("2 metadata2 ");
3181 else
3182 DMEMIT("1 ");
3183
3184 if (writethrough_mode(cache))
3185 DMEMIT("writethrough ");
3186
3187 else if (passthrough_mode(cache))
3188 DMEMIT("passthrough ");
3189
3190 else if (writeback_mode(cache))
3191 DMEMIT("writeback ");
3192
3193 else {
3194 DMERR("%s: internal error: unknown io mode: %d",
3195 cache_device_name(cache), (int) cache->features.io_mode);
3196 goto err;
3197 }
3198
3199 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3200
3201 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3202 if (sz < maxlen) {
3203 r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3204 if (r)
3205 DMERR("%s: policy_emit_config_values returned %d",
3206 cache_device_name(cache), r);
3207 }
3208
3209 if (get_cache_mode(cache) == CM_READ_ONLY)
3210 DMEMIT("ro ");
3211 else
3212 DMEMIT("rw ");
3213
3214 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3215
3216 if (r || needs_check)
3217 DMEMIT("needs_check ");
3218 else
3219 DMEMIT("- ");
3220
3221 break;
3222
3223 case STATUSTYPE_TABLE:
3224 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3225 DMEMIT("%s ", buf);
3226 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3227 DMEMIT("%s ", buf);
3228 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3229 DMEMIT("%s", buf);
3230
3231 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3232 DMEMIT(" %s", cache->ctr_args[i]);
3233 if (cache->nr_ctr_args)
3234 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3235 }
3236
3237 return;
3238
3239 err:
3240 DMEMIT("Error");
3241 }
3242
3243 /*
3244 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
3245 * the one-past-the-end value.
3246 */
3247 struct cblock_range {
3248 dm_cblock_t begin;
3249 dm_cblock_t end;
3250 };
3251
3252 /*
3253 * A cache block range can take two forms:
3254 *
3255 * i) A single cblock, eg. '3456'
3256 * ii) A begin and end cblock with a dash between, eg. 123-234
3257 */
3258 static int parse_cblock_range(struct cache *cache, const char *str,
3259 struct cblock_range *result)
3260 {
3261 char dummy;
3262 uint64_t b, e;
3263 int r;
3264
3265 /*
3266 * Try and parse form (ii) first.
3267 */
3268 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3269 if (r < 0)
3270 return r;
3271
3272 if (r == 2) {
3273 result->begin = to_cblock(b);
3274 result->end = to_cblock(e);
3275 return 0;
3276 }
3277
3278 /*
3279 * That didn't work, try form (i).
3280 */
3281 r = sscanf(str, "%llu%c", &b, &dummy);
3282 if (r < 0)
3283 return r;
3284
3285 if (r == 1) {
3286 result->begin = to_cblock(b);
3287 result->end = to_cblock(from_cblock(result->begin) + 1u);
3288 return 0;
3289 }
3290
3291 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3292 return -EINVAL;
3293 }
3294
3295 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3296 {
3297 uint64_t b = from_cblock(range->begin);
3298 uint64_t e = from_cblock(range->end);
3299 uint64_t n = from_cblock(cache->cache_size);
3300
3301 if (b >= n) {
3302 DMERR("%s: begin cblock out of range: %llu >= %llu",
3303 cache_device_name(cache), b, n);
3304 return -EINVAL;
3305 }
3306
3307 if (e > n) {
3308 DMERR("%s: end cblock out of range: %llu > %llu",
3309 cache_device_name(cache), e, n);
3310 return -EINVAL;
3311 }
3312
3313 if (b >= e) {
3314 DMERR("%s: invalid cblock range: %llu >= %llu",
3315 cache_device_name(cache), b, e);
3316 return -EINVAL;
3317 }
3318
3319 return 0;
3320 }
3321
3322 static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3323 {
3324 return to_cblock(from_cblock(b) + 1);
3325 }
3326
3327 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3328 {
3329 int r = 0;
3330
3331 /*
3332 * We don't need to do any locking here because we know we're in
3333 * passthrough mode. There's is potential for a race between an
3334 * invalidation triggered by an io and an invalidation message. This
3335 * is harmless, we must not worry if the policy call fails.
3336 */
3337 while (range->begin != range->end) {
3338 r = invalidate_cblock(cache, range->begin);
3339 if (r)
3340 return r;
3341
3342 range->begin = cblock_succ(range->begin);
3343 }
3344
3345 cache->commit_requested = true;
3346 return r;
3347 }
3348
3349 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3350 const char **cblock_ranges)
3351 {
3352 int r = 0;
3353 unsigned i;
3354 struct cblock_range range;
3355
3356 if (!passthrough_mode(cache)) {
3357 DMERR("%s: cache has to be in passthrough mode for invalidation",
3358 cache_device_name(cache));
3359 return -EPERM;
3360 }
3361
3362 for (i = 0; i < count; i++) {
3363 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3364 if (r)
3365 break;
3366
3367 r = validate_cblock_range(cache, &range);
3368 if (r)
3369 break;
3370
3371 /*
3372 * Pass begin and end origin blocks to the worker and wake it.
3373 */
3374 r = request_invalidation(cache, &range);
3375 if (r)
3376 break;
3377 }
3378
3379 return r;
3380 }
3381
3382 /*
3383 * Supports
3384 * "<key> <value>"
3385 * and
3386 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3387 *
3388 * The key migration_threshold is supported by the cache target core.
3389 */
3390 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3391 {
3392 struct cache *cache = ti->private;
3393
3394 if (!argc)
3395 return -EINVAL;
3396
3397 if (get_cache_mode(cache) >= CM_READ_ONLY) {
3398 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3399 cache_device_name(cache));
3400 return -EOPNOTSUPP;
3401 }
3402
3403 if (!strcasecmp(argv[0], "invalidate_cblocks"))
3404 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3405
3406 if (argc != 2)
3407 return -EINVAL;
3408
3409 return set_config_value(cache, argv[0], argv[1]);
3410 }
3411
3412 static int cache_iterate_devices(struct dm_target *ti,
3413 iterate_devices_callout_fn fn, void *data)
3414 {
3415 int r = 0;
3416 struct cache *cache = ti->private;
3417
3418 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3419 if (!r)
3420 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3421
3422 return r;
3423 }
3424
3425 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3426 {
3427 /*
3428 * FIXME: these limits may be incompatible with the cache device
3429 */
3430 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3431 cache->origin_sectors);
3432 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3433 }
3434
3435 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3436 {
3437 struct cache *cache = ti->private;
3438 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3439
3440 /*
3441 * If the system-determined stacked limits are compatible with the
3442 * cache's blocksize (io_opt is a factor) do not override them.
3443 */
3444 if (io_opt_sectors < cache->sectors_per_block ||
3445 do_div(io_opt_sectors, cache->sectors_per_block)) {
3446 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3447 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3448 }
3449 set_discard_limits(cache, limits);
3450 }
3451
3452 /*----------------------------------------------------------------*/
3453
3454 static struct target_type cache_target = {
3455 .name = "cache",
3456 .version = {2, 0, 0},
3457 .module = THIS_MODULE,
3458 .ctr = cache_ctr,
3459 .dtr = cache_dtr,
3460 .map = cache_map,
3461 .end_io = cache_end_io,
3462 .postsuspend = cache_postsuspend,
3463 .preresume = cache_preresume,
3464 .resume = cache_resume,
3465 .status = cache_status,
3466 .message = cache_message,
3467 .iterate_devices = cache_iterate_devices,
3468 .io_hints = cache_io_hints,
3469 };
3470
3471 static int __init dm_cache_init(void)
3472 {
3473 int r;
3474
3475 r = dm_register_target(&cache_target);
3476 if (r) {
3477 DMERR("cache target registration failed: %d", r);
3478 return r;
3479 }
3480
3481 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3482 if (!migration_cache) {
3483 dm_unregister_target(&cache_target);
3484 return -ENOMEM;
3485 }
3486
3487 return 0;
3488 }
3489
3490 static void __exit dm_cache_exit(void)
3491 {
3492 dm_unregister_target(&cache_target);
3493 kmem_cache_destroy(migration_cache);
3494 }
3495
3496 module_init(dm_cache_init);
3497 module_exit(dm_cache_exit);
3498
3499 MODULE_DESCRIPTION(DM_NAME " cache target");
3500 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3501 MODULE_LICENSE("GPL");