]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/dm-cache-target.c
Merge remote-tracking branch 'regulator/fix/max77802' into regulator-linus
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm-cache-target.c
1 /*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm.h"
8 #include "dm-bio-prison-v2.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/rwsem.h>
19 #include <linux/slab.h>
20 #include <linux/vmalloc.h>
21
22 #define DM_MSG_PREFIX "cache"
23
24 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
25 "A percentage of time allocated for copying to and/or from cache");
26
27 /*----------------------------------------------------------------*/
28
29 /*
30 * Glossary:
31 *
32 * oblock: index of an origin block
33 * cblock: index of a cache block
34 * promotion: movement of a block from origin to cache
35 * demotion: movement of a block from cache to origin
36 * migration: movement of a block between the origin and cache device,
37 * either direction
38 */
39
40 /*----------------------------------------------------------------*/
41
42 struct io_tracker {
43 spinlock_t lock;
44
45 /*
46 * Sectors of in-flight IO.
47 */
48 sector_t in_flight;
49
50 /*
51 * The time, in jiffies, when this device became idle (if it is
52 * indeed idle).
53 */
54 unsigned long idle_time;
55 unsigned long last_update_time;
56 };
57
58 static void iot_init(struct io_tracker *iot)
59 {
60 spin_lock_init(&iot->lock);
61 iot->in_flight = 0ul;
62 iot->idle_time = 0ul;
63 iot->last_update_time = jiffies;
64 }
65
66 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
67 {
68 if (iot->in_flight)
69 return false;
70
71 return time_after(jiffies, iot->idle_time + jifs);
72 }
73
74 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
75 {
76 bool r;
77 unsigned long flags;
78
79 spin_lock_irqsave(&iot->lock, flags);
80 r = __iot_idle_for(iot, jifs);
81 spin_unlock_irqrestore(&iot->lock, flags);
82
83 return r;
84 }
85
86 static void iot_io_begin(struct io_tracker *iot, sector_t len)
87 {
88 unsigned long flags;
89
90 spin_lock_irqsave(&iot->lock, flags);
91 iot->in_flight += len;
92 spin_unlock_irqrestore(&iot->lock, flags);
93 }
94
95 static void __iot_io_end(struct io_tracker *iot, sector_t len)
96 {
97 if (!len)
98 return;
99
100 iot->in_flight -= len;
101 if (!iot->in_flight)
102 iot->idle_time = jiffies;
103 }
104
105 static void iot_io_end(struct io_tracker *iot, sector_t len)
106 {
107 unsigned long flags;
108
109 spin_lock_irqsave(&iot->lock, flags);
110 __iot_io_end(iot, len);
111 spin_unlock_irqrestore(&iot->lock, flags);
112 }
113
114 /*----------------------------------------------------------------*/
115
116 /*
117 * Represents a chunk of future work. 'input' allows continuations to pass
118 * values between themselves, typically error values.
119 */
120 struct continuation {
121 struct work_struct ws;
122 int input;
123 };
124
125 static inline void init_continuation(struct continuation *k,
126 void (*fn)(struct work_struct *))
127 {
128 INIT_WORK(&k->ws, fn);
129 k->input = 0;
130 }
131
132 static inline void queue_continuation(struct workqueue_struct *wq,
133 struct continuation *k)
134 {
135 queue_work(wq, &k->ws);
136 }
137
138 /*----------------------------------------------------------------*/
139
140 /*
141 * The batcher collects together pieces of work that need a particular
142 * operation to occur before they can proceed (typically a commit).
143 */
144 struct batcher {
145 /*
146 * The operation that everyone is waiting for.
147 */
148 int (*commit_op)(void *context);
149 void *commit_context;
150
151 /*
152 * This is how bios should be issued once the commit op is complete
153 * (accounted_request).
154 */
155 void (*issue_op)(struct bio *bio, void *context);
156 void *issue_context;
157
158 /*
159 * Queued work gets put on here after commit.
160 */
161 struct workqueue_struct *wq;
162
163 spinlock_t lock;
164 struct list_head work_items;
165 struct bio_list bios;
166 struct work_struct commit_work;
167
168 bool commit_scheduled;
169 };
170
171 static void __commit(struct work_struct *_ws)
172 {
173 struct batcher *b = container_of(_ws, struct batcher, commit_work);
174
175 int r;
176 unsigned long flags;
177 struct list_head work_items;
178 struct work_struct *ws, *tmp;
179 struct continuation *k;
180 struct bio *bio;
181 struct bio_list bios;
182
183 INIT_LIST_HEAD(&work_items);
184 bio_list_init(&bios);
185
186 /*
187 * We have to grab these before the commit_op to avoid a race
188 * condition.
189 */
190 spin_lock_irqsave(&b->lock, flags);
191 list_splice_init(&b->work_items, &work_items);
192 bio_list_merge(&bios, &b->bios);
193 bio_list_init(&b->bios);
194 b->commit_scheduled = false;
195 spin_unlock_irqrestore(&b->lock, flags);
196
197 r = b->commit_op(b->commit_context);
198
199 list_for_each_entry_safe(ws, tmp, &work_items, entry) {
200 k = container_of(ws, struct continuation, ws);
201 k->input = r;
202 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
203 queue_work(b->wq, ws);
204 }
205
206 while ((bio = bio_list_pop(&bios))) {
207 if (r) {
208 bio->bi_error = r;
209 bio_endio(bio);
210 } else
211 b->issue_op(bio, b->issue_context);
212 }
213 }
214
215 static void batcher_init(struct batcher *b,
216 int (*commit_op)(void *),
217 void *commit_context,
218 void (*issue_op)(struct bio *bio, void *),
219 void *issue_context,
220 struct workqueue_struct *wq)
221 {
222 b->commit_op = commit_op;
223 b->commit_context = commit_context;
224 b->issue_op = issue_op;
225 b->issue_context = issue_context;
226 b->wq = wq;
227
228 spin_lock_init(&b->lock);
229 INIT_LIST_HEAD(&b->work_items);
230 bio_list_init(&b->bios);
231 INIT_WORK(&b->commit_work, __commit);
232 b->commit_scheduled = false;
233 }
234
235 static void async_commit(struct batcher *b)
236 {
237 queue_work(b->wq, &b->commit_work);
238 }
239
240 static void continue_after_commit(struct batcher *b, struct continuation *k)
241 {
242 unsigned long flags;
243 bool commit_scheduled;
244
245 spin_lock_irqsave(&b->lock, flags);
246 commit_scheduled = b->commit_scheduled;
247 list_add_tail(&k->ws.entry, &b->work_items);
248 spin_unlock_irqrestore(&b->lock, flags);
249
250 if (commit_scheduled)
251 async_commit(b);
252 }
253
254 /*
255 * Bios are errored if commit failed.
256 */
257 static void issue_after_commit(struct batcher *b, struct bio *bio)
258 {
259 unsigned long flags;
260 bool commit_scheduled;
261
262 spin_lock_irqsave(&b->lock, flags);
263 commit_scheduled = b->commit_scheduled;
264 bio_list_add(&b->bios, bio);
265 spin_unlock_irqrestore(&b->lock, flags);
266
267 if (commit_scheduled)
268 async_commit(b);
269 }
270
271 /*
272 * Call this if some urgent work is waiting for the commit to complete.
273 */
274 static void schedule_commit(struct batcher *b)
275 {
276 bool immediate;
277 unsigned long flags;
278
279 spin_lock_irqsave(&b->lock, flags);
280 immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
281 b->commit_scheduled = true;
282 spin_unlock_irqrestore(&b->lock, flags);
283
284 if (immediate)
285 async_commit(b);
286 }
287
288 /*
289 * There are a couple of places where we let a bio run, but want to do some
290 * work before calling its endio function. We do this by temporarily
291 * changing the endio fn.
292 */
293 struct dm_hook_info {
294 bio_end_io_t *bi_end_io;
295 };
296
297 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
298 bio_end_io_t *bi_end_io, void *bi_private)
299 {
300 h->bi_end_io = bio->bi_end_io;
301
302 bio->bi_end_io = bi_end_io;
303 bio->bi_private = bi_private;
304 }
305
306 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
307 {
308 bio->bi_end_io = h->bi_end_io;
309 }
310
311 /*----------------------------------------------------------------*/
312
313 #define MIGRATION_POOL_SIZE 128
314 #define COMMIT_PERIOD HZ
315 #define MIGRATION_COUNT_WINDOW 10
316
317 /*
318 * The block size of the device holding cache data must be
319 * between 32KB and 1GB.
320 */
321 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
322 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
323
324 enum cache_metadata_mode {
325 CM_WRITE, /* metadata may be changed */
326 CM_READ_ONLY, /* metadata may not be changed */
327 CM_FAIL
328 };
329
330 enum cache_io_mode {
331 /*
332 * Data is written to cached blocks only. These blocks are marked
333 * dirty. If you lose the cache device you will lose data.
334 * Potential performance increase for both reads and writes.
335 */
336 CM_IO_WRITEBACK,
337
338 /*
339 * Data is written to both cache and origin. Blocks are never
340 * dirty. Potential performance benfit for reads only.
341 */
342 CM_IO_WRITETHROUGH,
343
344 /*
345 * A degraded mode useful for various cache coherency situations
346 * (eg, rolling back snapshots). Reads and writes always go to the
347 * origin. If a write goes to a cached oblock, then the cache
348 * block is invalidated.
349 */
350 CM_IO_PASSTHROUGH
351 };
352
353 struct cache_features {
354 enum cache_metadata_mode mode;
355 enum cache_io_mode io_mode;
356 unsigned metadata_version;
357 };
358
359 struct cache_stats {
360 atomic_t read_hit;
361 atomic_t read_miss;
362 atomic_t write_hit;
363 atomic_t write_miss;
364 atomic_t demotion;
365 atomic_t promotion;
366 atomic_t writeback;
367 atomic_t copies_avoided;
368 atomic_t cache_cell_clash;
369 atomic_t commit_count;
370 atomic_t discard_count;
371 };
372
373 struct cache {
374 struct dm_target *ti;
375 struct dm_target_callbacks callbacks;
376
377 struct dm_cache_metadata *cmd;
378
379 /*
380 * Metadata is written to this device.
381 */
382 struct dm_dev *metadata_dev;
383
384 /*
385 * The slower of the two data devices. Typically a spindle.
386 */
387 struct dm_dev *origin_dev;
388
389 /*
390 * The faster of the two data devices. Typically an SSD.
391 */
392 struct dm_dev *cache_dev;
393
394 /*
395 * Size of the origin device in _complete_ blocks and native sectors.
396 */
397 dm_oblock_t origin_blocks;
398 sector_t origin_sectors;
399
400 /*
401 * Size of the cache device in blocks.
402 */
403 dm_cblock_t cache_size;
404
405 /*
406 * Fields for converting from sectors to blocks.
407 */
408 sector_t sectors_per_block;
409 int sectors_per_block_shift;
410
411 spinlock_t lock;
412 struct list_head deferred_cells;
413 struct bio_list deferred_bios;
414 struct bio_list deferred_writethrough_bios;
415 sector_t migration_threshold;
416 wait_queue_head_t migration_wait;
417 atomic_t nr_allocated_migrations;
418
419 /*
420 * The number of in flight migrations that are performing
421 * background io. eg, promotion, writeback.
422 */
423 atomic_t nr_io_migrations;
424
425 struct rw_semaphore quiesce_lock;
426
427 /*
428 * cache_size entries, dirty if set
429 */
430 atomic_t nr_dirty;
431 unsigned long *dirty_bitset;
432
433 /*
434 * origin_blocks entries, discarded if set.
435 */
436 dm_dblock_t discard_nr_blocks;
437 unsigned long *discard_bitset;
438 uint32_t discard_block_size; /* a power of 2 times sectors per block */
439
440 /*
441 * Rather than reconstructing the table line for the status we just
442 * save it and regurgitate.
443 */
444 unsigned nr_ctr_args;
445 const char **ctr_args;
446
447 struct dm_kcopyd_client *copier;
448 struct workqueue_struct *wq;
449 struct work_struct deferred_bio_worker;
450 struct work_struct deferred_writethrough_worker;
451 struct work_struct migration_worker;
452 struct delayed_work waker;
453 struct dm_bio_prison_v2 *prison;
454
455 mempool_t *migration_pool;
456
457 struct dm_cache_policy *policy;
458 unsigned policy_nr_args;
459
460 bool need_tick_bio:1;
461 bool sized:1;
462 bool invalidate:1;
463 bool commit_requested:1;
464 bool loaded_mappings:1;
465 bool loaded_discards:1;
466
467 /*
468 * Cache features such as write-through.
469 */
470 struct cache_features features;
471
472 struct cache_stats stats;
473
474 /*
475 * Invalidation fields.
476 */
477 spinlock_t invalidation_lock;
478 struct list_head invalidation_requests;
479
480 struct io_tracker tracker;
481
482 struct work_struct commit_ws;
483 struct batcher committer;
484
485 struct rw_semaphore background_work_lock;
486 };
487
488 struct per_bio_data {
489 bool tick:1;
490 unsigned req_nr:2;
491 struct dm_bio_prison_cell_v2 *cell;
492 struct dm_hook_info hook_info;
493 sector_t len;
494
495 /*
496 * writethrough fields. These MUST remain at the end of this
497 * structure and the 'cache' member must be the first as it
498 * is used to determine the offset of the writethrough fields.
499 */
500 struct cache *cache;
501 dm_cblock_t cblock;
502 struct dm_bio_details bio_details;
503 };
504
505 struct dm_cache_migration {
506 struct continuation k;
507 struct cache *cache;
508
509 struct policy_work *op;
510 struct bio *overwrite_bio;
511 struct dm_bio_prison_cell_v2 *cell;
512
513 dm_cblock_t invalidate_cblock;
514 dm_oblock_t invalidate_oblock;
515 };
516
517 /*----------------------------------------------------------------*/
518
519 static bool writethrough_mode(struct cache_features *f)
520 {
521 return f->io_mode == CM_IO_WRITETHROUGH;
522 }
523
524 static bool writeback_mode(struct cache_features *f)
525 {
526 return f->io_mode == CM_IO_WRITEBACK;
527 }
528
529 static inline bool passthrough_mode(struct cache_features *f)
530 {
531 return unlikely(f->io_mode == CM_IO_PASSTHROUGH);
532 }
533
534 /*----------------------------------------------------------------*/
535
536 static void wake_deferred_bio_worker(struct cache *cache)
537 {
538 queue_work(cache->wq, &cache->deferred_bio_worker);
539 }
540
541 static void wake_deferred_writethrough_worker(struct cache *cache)
542 {
543 queue_work(cache->wq, &cache->deferred_writethrough_worker);
544 }
545
546 static void wake_migration_worker(struct cache *cache)
547 {
548 if (passthrough_mode(&cache->features))
549 return;
550
551 queue_work(cache->wq, &cache->migration_worker);
552 }
553
554 /*----------------------------------------------------------------*/
555
556 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
557 {
558 return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOWAIT);
559 }
560
561 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
562 {
563 dm_bio_prison_free_cell_v2(cache->prison, cell);
564 }
565
566 static struct dm_cache_migration *alloc_migration(struct cache *cache)
567 {
568 struct dm_cache_migration *mg;
569
570 mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
571 if (mg) {
572 mg->cache = cache;
573 atomic_inc(&mg->cache->nr_allocated_migrations);
574 }
575
576 return mg;
577 }
578
579 static void free_migration(struct dm_cache_migration *mg)
580 {
581 struct cache *cache = mg->cache;
582
583 if (atomic_dec_and_test(&cache->nr_allocated_migrations))
584 wake_up(&cache->migration_wait);
585
586 mempool_free(mg, cache->migration_pool);
587 }
588
589 /*----------------------------------------------------------------*/
590
591 static inline dm_oblock_t oblock_succ(dm_oblock_t b)
592 {
593 return to_oblock(from_oblock(b) + 1ull);
594 }
595
596 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
597 {
598 key->virtual = 0;
599 key->dev = 0;
600 key->block_begin = from_oblock(begin);
601 key->block_end = from_oblock(end);
602 }
603
604 /*
605 * We have two lock levels. Level 0, which is used to prevent WRITEs, and
606 * level 1 which prevents *both* READs and WRITEs.
607 */
608 #define WRITE_LOCK_LEVEL 0
609 #define READ_WRITE_LOCK_LEVEL 1
610
611 static unsigned lock_level(struct bio *bio)
612 {
613 return bio_data_dir(bio) == WRITE ?
614 WRITE_LOCK_LEVEL :
615 READ_WRITE_LOCK_LEVEL;
616 }
617
618 /*----------------------------------------------------------------
619 * Per bio data
620 *--------------------------------------------------------------*/
621
622 /*
623 * If using writeback, leave out struct per_bio_data's writethrough fields.
624 */
625 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
626 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
627
628 static size_t get_per_bio_data_size(struct cache *cache)
629 {
630 return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
631 }
632
633 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
634 {
635 struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
636 BUG_ON(!pb);
637 return pb;
638 }
639
640 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
641 {
642 struct per_bio_data *pb = get_per_bio_data(bio, data_size);
643
644 pb->tick = false;
645 pb->req_nr = dm_bio_get_target_bio_nr(bio);
646 pb->cell = NULL;
647 pb->len = 0;
648
649 return pb;
650 }
651
652 /*----------------------------------------------------------------*/
653
654 static void defer_bio(struct cache *cache, struct bio *bio)
655 {
656 unsigned long flags;
657
658 spin_lock_irqsave(&cache->lock, flags);
659 bio_list_add(&cache->deferred_bios, bio);
660 spin_unlock_irqrestore(&cache->lock, flags);
661
662 wake_deferred_bio_worker(cache);
663 }
664
665 static void defer_bios(struct cache *cache, struct bio_list *bios)
666 {
667 unsigned long flags;
668
669 spin_lock_irqsave(&cache->lock, flags);
670 bio_list_merge(&cache->deferred_bios, bios);
671 bio_list_init(bios);
672 spin_unlock_irqrestore(&cache->lock, flags);
673
674 wake_deferred_bio_worker(cache);
675 }
676
677 /*----------------------------------------------------------------*/
678
679 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
680 {
681 bool r;
682 size_t pb_size;
683 struct per_bio_data *pb;
684 struct dm_cell_key_v2 key;
685 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
686 struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
687
688 cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
689 if (!cell_prealloc) {
690 defer_bio(cache, bio);
691 return false;
692 }
693
694 build_key(oblock, end, &key);
695 r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
696 if (!r) {
697 /*
698 * Failed to get the lock.
699 */
700 free_prison_cell(cache, cell_prealloc);
701 return r;
702 }
703
704 if (cell != cell_prealloc)
705 free_prison_cell(cache, cell_prealloc);
706
707 pb_size = get_per_bio_data_size(cache);
708 pb = get_per_bio_data(bio, pb_size);
709 pb->cell = cell;
710
711 return r;
712 }
713
714 /*----------------------------------------------------------------*/
715
716 static bool is_dirty(struct cache *cache, dm_cblock_t b)
717 {
718 return test_bit(from_cblock(b), cache->dirty_bitset);
719 }
720
721 static void set_dirty(struct cache *cache, dm_cblock_t cblock)
722 {
723 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
724 atomic_inc(&cache->nr_dirty);
725 policy_set_dirty(cache->policy, cblock);
726 }
727 }
728
729 /*
730 * These two are called when setting after migrations to force the policy
731 * and dirty bitset to be in sync.
732 */
733 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
734 {
735 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
736 atomic_inc(&cache->nr_dirty);
737 policy_set_dirty(cache->policy, cblock);
738 }
739
740 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
741 {
742 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
743 if (atomic_dec_return(&cache->nr_dirty) == 0)
744 dm_table_event(cache->ti->table);
745 }
746
747 policy_clear_dirty(cache->policy, cblock);
748 }
749
750 /*----------------------------------------------------------------*/
751
752 static bool block_size_is_power_of_two(struct cache *cache)
753 {
754 return cache->sectors_per_block_shift >= 0;
755 }
756
757 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
758 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
759 __always_inline
760 #endif
761 static dm_block_t block_div(dm_block_t b, uint32_t n)
762 {
763 do_div(b, n);
764
765 return b;
766 }
767
768 static dm_block_t oblocks_per_dblock(struct cache *cache)
769 {
770 dm_block_t oblocks = cache->discard_block_size;
771
772 if (block_size_is_power_of_two(cache))
773 oblocks >>= cache->sectors_per_block_shift;
774 else
775 oblocks = block_div(oblocks, cache->sectors_per_block);
776
777 return oblocks;
778 }
779
780 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
781 {
782 return to_dblock(block_div(from_oblock(oblock),
783 oblocks_per_dblock(cache)));
784 }
785
786 static void set_discard(struct cache *cache, dm_dblock_t b)
787 {
788 unsigned long flags;
789
790 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
791 atomic_inc(&cache->stats.discard_count);
792
793 spin_lock_irqsave(&cache->lock, flags);
794 set_bit(from_dblock(b), cache->discard_bitset);
795 spin_unlock_irqrestore(&cache->lock, flags);
796 }
797
798 static void clear_discard(struct cache *cache, dm_dblock_t b)
799 {
800 unsigned long flags;
801
802 spin_lock_irqsave(&cache->lock, flags);
803 clear_bit(from_dblock(b), cache->discard_bitset);
804 spin_unlock_irqrestore(&cache->lock, flags);
805 }
806
807 static bool is_discarded(struct cache *cache, dm_dblock_t b)
808 {
809 int r;
810 unsigned long flags;
811
812 spin_lock_irqsave(&cache->lock, flags);
813 r = test_bit(from_dblock(b), cache->discard_bitset);
814 spin_unlock_irqrestore(&cache->lock, flags);
815
816 return r;
817 }
818
819 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
820 {
821 int r;
822 unsigned long flags;
823
824 spin_lock_irqsave(&cache->lock, flags);
825 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
826 cache->discard_bitset);
827 spin_unlock_irqrestore(&cache->lock, flags);
828
829 return r;
830 }
831
832 /*----------------------------------------------------------------
833 * Remapping
834 *--------------------------------------------------------------*/
835 static void remap_to_origin(struct cache *cache, struct bio *bio)
836 {
837 bio->bi_bdev = cache->origin_dev->bdev;
838 }
839
840 static void remap_to_cache(struct cache *cache, struct bio *bio,
841 dm_cblock_t cblock)
842 {
843 sector_t bi_sector = bio->bi_iter.bi_sector;
844 sector_t block = from_cblock(cblock);
845
846 bio->bi_bdev = cache->cache_dev->bdev;
847 if (!block_size_is_power_of_two(cache))
848 bio->bi_iter.bi_sector =
849 (block * cache->sectors_per_block) +
850 sector_div(bi_sector, cache->sectors_per_block);
851 else
852 bio->bi_iter.bi_sector =
853 (block << cache->sectors_per_block_shift) |
854 (bi_sector & (cache->sectors_per_block - 1));
855 }
856
857 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
858 {
859 unsigned long flags;
860 size_t pb_data_size = get_per_bio_data_size(cache);
861 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
862
863 spin_lock_irqsave(&cache->lock, flags);
864 if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
865 bio_op(bio) != REQ_OP_DISCARD) {
866 pb->tick = true;
867 cache->need_tick_bio = false;
868 }
869 spin_unlock_irqrestore(&cache->lock, flags);
870 }
871
872 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
873 dm_oblock_t oblock)
874 {
875 // FIXME: this is called way too much.
876 check_if_tick_bio_needed(cache, bio);
877 remap_to_origin(cache, bio);
878 if (bio_data_dir(bio) == WRITE)
879 clear_discard(cache, oblock_to_dblock(cache, oblock));
880 }
881
882 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
883 dm_oblock_t oblock, dm_cblock_t cblock)
884 {
885 check_if_tick_bio_needed(cache, bio);
886 remap_to_cache(cache, bio, cblock);
887 if (bio_data_dir(bio) == WRITE) {
888 set_dirty(cache, cblock);
889 clear_discard(cache, oblock_to_dblock(cache, oblock));
890 }
891 }
892
893 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
894 {
895 sector_t block_nr = bio->bi_iter.bi_sector;
896
897 if (!block_size_is_power_of_two(cache))
898 (void) sector_div(block_nr, cache->sectors_per_block);
899 else
900 block_nr >>= cache->sectors_per_block_shift;
901
902 return to_oblock(block_nr);
903 }
904
905 static bool accountable_bio(struct cache *cache, struct bio *bio)
906 {
907 return bio_op(bio) != REQ_OP_DISCARD;
908 }
909
910 static void accounted_begin(struct cache *cache, struct bio *bio)
911 {
912 size_t pb_data_size = get_per_bio_data_size(cache);
913 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
914
915 if (accountable_bio(cache, bio)) {
916 pb->len = bio_sectors(bio);
917 iot_io_begin(&cache->tracker, pb->len);
918 }
919 }
920
921 static void accounted_complete(struct cache *cache, struct bio *bio)
922 {
923 size_t pb_data_size = get_per_bio_data_size(cache);
924 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
925
926 iot_io_end(&cache->tracker, pb->len);
927 }
928
929 static void accounted_request(struct cache *cache, struct bio *bio)
930 {
931 accounted_begin(cache, bio);
932 generic_make_request(bio);
933 }
934
935 static void issue_op(struct bio *bio, void *context)
936 {
937 struct cache *cache = context;
938 accounted_request(cache, bio);
939 }
940
941 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
942 {
943 unsigned long flags;
944
945 spin_lock_irqsave(&cache->lock, flags);
946 bio_list_add(&cache->deferred_writethrough_bios, bio);
947 spin_unlock_irqrestore(&cache->lock, flags);
948
949 wake_deferred_writethrough_worker(cache);
950 }
951
952 static void writethrough_endio(struct bio *bio)
953 {
954 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
955
956 dm_unhook_bio(&pb->hook_info, bio);
957
958 if (bio->bi_error) {
959 bio_endio(bio);
960 return;
961 }
962
963 dm_bio_restore(&pb->bio_details, bio);
964 remap_to_cache(pb->cache, bio, pb->cblock);
965
966 /*
967 * We can't issue this bio directly, since we're in interrupt
968 * context. So it gets put on a bio list for processing by the
969 * worker thread.
970 */
971 defer_writethrough_bio(pb->cache, bio);
972 }
973
974 /*
975 * FIXME: send in parallel, huge latency as is.
976 * When running in writethrough mode we need to send writes to clean blocks
977 * to both the cache and origin devices. In future we'd like to clone the
978 * bio and send them in parallel, but for now we're doing them in
979 * series as this is easier.
980 */
981 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
982 dm_oblock_t oblock, dm_cblock_t cblock)
983 {
984 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
985
986 pb->cache = cache;
987 pb->cblock = cblock;
988 dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
989 dm_bio_record(&pb->bio_details, bio);
990
991 remap_to_origin_clear_discard(pb->cache, bio, oblock);
992 }
993
994 /*----------------------------------------------------------------
995 * Failure modes
996 *--------------------------------------------------------------*/
997 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
998 {
999 return cache->features.mode;
1000 }
1001
1002 static const char *cache_device_name(struct cache *cache)
1003 {
1004 return dm_device_name(dm_table_get_md(cache->ti->table));
1005 }
1006
1007 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
1008 {
1009 const char *descs[] = {
1010 "write",
1011 "read-only",
1012 "fail"
1013 };
1014
1015 dm_table_event(cache->ti->table);
1016 DMINFO("%s: switching cache to %s mode",
1017 cache_device_name(cache), descs[(int)mode]);
1018 }
1019
1020 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
1021 {
1022 bool needs_check;
1023 enum cache_metadata_mode old_mode = get_cache_mode(cache);
1024
1025 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
1026 DMERR("%s: unable to read needs_check flag, setting failure mode.",
1027 cache_device_name(cache));
1028 new_mode = CM_FAIL;
1029 }
1030
1031 if (new_mode == CM_WRITE && needs_check) {
1032 DMERR("%s: unable to switch cache to write mode until repaired.",
1033 cache_device_name(cache));
1034 if (old_mode != new_mode)
1035 new_mode = old_mode;
1036 else
1037 new_mode = CM_READ_ONLY;
1038 }
1039
1040 /* Never move out of fail mode */
1041 if (old_mode == CM_FAIL)
1042 new_mode = CM_FAIL;
1043
1044 switch (new_mode) {
1045 case CM_FAIL:
1046 case CM_READ_ONLY:
1047 dm_cache_metadata_set_read_only(cache->cmd);
1048 break;
1049
1050 case CM_WRITE:
1051 dm_cache_metadata_set_read_write(cache->cmd);
1052 break;
1053 }
1054
1055 cache->features.mode = new_mode;
1056
1057 if (new_mode != old_mode)
1058 notify_mode_switch(cache, new_mode);
1059 }
1060
1061 static void abort_transaction(struct cache *cache)
1062 {
1063 const char *dev_name = cache_device_name(cache);
1064
1065 if (get_cache_mode(cache) >= CM_READ_ONLY)
1066 return;
1067
1068 if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1069 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1070 set_cache_mode(cache, CM_FAIL);
1071 }
1072
1073 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1074 if (dm_cache_metadata_abort(cache->cmd)) {
1075 DMERR("%s: failed to abort metadata transaction", dev_name);
1076 set_cache_mode(cache, CM_FAIL);
1077 }
1078 }
1079
1080 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1081 {
1082 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1083 cache_device_name(cache), op, r);
1084 abort_transaction(cache);
1085 set_cache_mode(cache, CM_READ_ONLY);
1086 }
1087
1088 /*----------------------------------------------------------------*/
1089
1090 static void load_stats(struct cache *cache)
1091 {
1092 struct dm_cache_statistics stats;
1093
1094 dm_cache_metadata_get_stats(cache->cmd, &stats);
1095 atomic_set(&cache->stats.read_hit, stats.read_hits);
1096 atomic_set(&cache->stats.read_miss, stats.read_misses);
1097 atomic_set(&cache->stats.write_hit, stats.write_hits);
1098 atomic_set(&cache->stats.write_miss, stats.write_misses);
1099 }
1100
1101 static void save_stats(struct cache *cache)
1102 {
1103 struct dm_cache_statistics stats;
1104
1105 if (get_cache_mode(cache) >= CM_READ_ONLY)
1106 return;
1107
1108 stats.read_hits = atomic_read(&cache->stats.read_hit);
1109 stats.read_misses = atomic_read(&cache->stats.read_miss);
1110 stats.write_hits = atomic_read(&cache->stats.write_hit);
1111 stats.write_misses = atomic_read(&cache->stats.write_miss);
1112
1113 dm_cache_metadata_set_stats(cache->cmd, &stats);
1114 }
1115
1116 static void update_stats(struct cache_stats *stats, enum policy_operation op)
1117 {
1118 switch (op) {
1119 case POLICY_PROMOTE:
1120 atomic_inc(&stats->promotion);
1121 break;
1122
1123 case POLICY_DEMOTE:
1124 atomic_inc(&stats->demotion);
1125 break;
1126
1127 case POLICY_WRITEBACK:
1128 atomic_inc(&stats->writeback);
1129 break;
1130 }
1131 }
1132
1133 /*----------------------------------------------------------------
1134 * Migration processing
1135 *
1136 * Migration covers moving data from the origin device to the cache, or
1137 * vice versa.
1138 *--------------------------------------------------------------*/
1139
1140 static void inc_io_migrations(struct cache *cache)
1141 {
1142 atomic_inc(&cache->nr_io_migrations);
1143 }
1144
1145 static void dec_io_migrations(struct cache *cache)
1146 {
1147 atomic_dec(&cache->nr_io_migrations);
1148 }
1149
1150 static bool discard_or_flush(struct bio *bio)
1151 {
1152 return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1153 }
1154
1155 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1156 dm_dblock_t *b, dm_dblock_t *e)
1157 {
1158 sector_t sb = bio->bi_iter.bi_sector;
1159 sector_t se = bio_end_sector(bio);
1160
1161 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1162
1163 if (se - sb < cache->discard_block_size)
1164 *e = *b;
1165 else
1166 *e = to_dblock(block_div(se, cache->discard_block_size));
1167 }
1168
1169 /*----------------------------------------------------------------*/
1170
1171 static void prevent_background_work(struct cache *cache)
1172 {
1173 lockdep_off();
1174 down_write(&cache->background_work_lock);
1175 lockdep_on();
1176 }
1177
1178 static void allow_background_work(struct cache *cache)
1179 {
1180 lockdep_off();
1181 up_write(&cache->background_work_lock);
1182 lockdep_on();
1183 }
1184
1185 static bool background_work_begin(struct cache *cache)
1186 {
1187 bool r;
1188
1189 lockdep_off();
1190 r = down_read_trylock(&cache->background_work_lock);
1191 lockdep_on();
1192
1193 return r;
1194 }
1195
1196 static void background_work_end(struct cache *cache)
1197 {
1198 lockdep_off();
1199 up_read(&cache->background_work_lock);
1200 lockdep_on();
1201 }
1202
1203 /*----------------------------------------------------------------*/
1204
1205 static void quiesce(struct dm_cache_migration *mg,
1206 void (*continuation)(struct work_struct *))
1207 {
1208 init_continuation(&mg->k, continuation);
1209 dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1210 }
1211
1212 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1213 {
1214 struct continuation *k = container_of(ws, struct continuation, ws);
1215 return container_of(k, struct dm_cache_migration, k);
1216 }
1217
1218 static void copy_complete(int read_err, unsigned long write_err, void *context)
1219 {
1220 struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1221
1222 if (read_err || write_err)
1223 mg->k.input = -EIO;
1224
1225 queue_continuation(mg->cache->wq, &mg->k);
1226 }
1227
1228 static int copy(struct dm_cache_migration *mg, bool promote)
1229 {
1230 int r;
1231 struct dm_io_region o_region, c_region;
1232 struct cache *cache = mg->cache;
1233
1234 o_region.bdev = cache->origin_dev->bdev;
1235 o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1236 o_region.count = cache->sectors_per_block;
1237
1238 c_region.bdev = cache->cache_dev->bdev;
1239 c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1240 c_region.count = cache->sectors_per_block;
1241
1242 if (promote)
1243 r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1244 else
1245 r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1246
1247 return r;
1248 }
1249
1250 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1251 {
1252 size_t pb_data_size = get_per_bio_data_size(cache);
1253 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1254
1255 if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1256 free_prison_cell(cache, pb->cell);
1257 pb->cell = NULL;
1258 }
1259
1260 static void overwrite_endio(struct bio *bio)
1261 {
1262 struct dm_cache_migration *mg = bio->bi_private;
1263 struct cache *cache = mg->cache;
1264 size_t pb_data_size = get_per_bio_data_size(cache);
1265 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1266
1267 dm_unhook_bio(&pb->hook_info, bio);
1268
1269 if (bio->bi_error)
1270 mg->k.input = bio->bi_error;
1271
1272 queue_continuation(mg->cache->wq, &mg->k);
1273 }
1274
1275 static void overwrite(struct dm_cache_migration *mg,
1276 void (*continuation)(struct work_struct *))
1277 {
1278 struct bio *bio = mg->overwrite_bio;
1279 size_t pb_data_size = get_per_bio_data_size(mg->cache);
1280 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1281
1282 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1283
1284 /*
1285 * The overwrite bio is part of the copy operation, as such it does
1286 * not set/clear discard or dirty flags.
1287 */
1288 if (mg->op->op == POLICY_PROMOTE)
1289 remap_to_cache(mg->cache, bio, mg->op->cblock);
1290 else
1291 remap_to_origin(mg->cache, bio);
1292
1293 init_continuation(&mg->k, continuation);
1294 accounted_request(mg->cache, bio);
1295 }
1296
1297 /*
1298 * Migration steps:
1299 *
1300 * 1) exclusive lock preventing WRITEs
1301 * 2) quiesce
1302 * 3) copy or issue overwrite bio
1303 * 4) upgrade to exclusive lock preventing READs and WRITEs
1304 * 5) quiesce
1305 * 6) update metadata and commit
1306 * 7) unlock
1307 */
1308 static void mg_complete(struct dm_cache_migration *mg, bool success)
1309 {
1310 struct bio_list bios;
1311 struct cache *cache = mg->cache;
1312 struct policy_work *op = mg->op;
1313 dm_cblock_t cblock = op->cblock;
1314
1315 if (success)
1316 update_stats(&cache->stats, op->op);
1317
1318 switch (op->op) {
1319 case POLICY_PROMOTE:
1320 clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1321 policy_complete_background_work(cache->policy, op, success);
1322
1323 if (mg->overwrite_bio) {
1324 if (success)
1325 force_set_dirty(cache, cblock);
1326 else
1327 mg->overwrite_bio->bi_error = (mg->k.input ? : -EIO);
1328 bio_endio(mg->overwrite_bio);
1329 } else {
1330 if (success)
1331 force_clear_dirty(cache, cblock);
1332 dec_io_migrations(cache);
1333 }
1334 break;
1335
1336 case POLICY_DEMOTE:
1337 /*
1338 * We clear dirty here to update the nr_dirty counter.
1339 */
1340 if (success)
1341 force_clear_dirty(cache, cblock);
1342 policy_complete_background_work(cache->policy, op, success);
1343 dec_io_migrations(cache);
1344 break;
1345
1346 case POLICY_WRITEBACK:
1347 if (success)
1348 force_clear_dirty(cache, cblock);
1349 policy_complete_background_work(cache->policy, op, success);
1350 dec_io_migrations(cache);
1351 break;
1352 }
1353
1354 bio_list_init(&bios);
1355 if (mg->cell) {
1356 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1357 free_prison_cell(cache, mg->cell);
1358 }
1359
1360 free_migration(mg);
1361 defer_bios(cache, &bios);
1362 wake_migration_worker(cache);
1363
1364 background_work_end(cache);
1365 }
1366
1367 static void mg_success(struct work_struct *ws)
1368 {
1369 struct dm_cache_migration *mg = ws_to_mg(ws);
1370 mg_complete(mg, mg->k.input == 0);
1371 }
1372
1373 static void mg_update_metadata(struct work_struct *ws)
1374 {
1375 int r;
1376 struct dm_cache_migration *mg = ws_to_mg(ws);
1377 struct cache *cache = mg->cache;
1378 struct policy_work *op = mg->op;
1379
1380 switch (op->op) {
1381 case POLICY_PROMOTE:
1382 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1383 if (r) {
1384 DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1385 cache_device_name(cache));
1386 metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1387
1388 mg_complete(mg, false);
1389 return;
1390 }
1391 mg_complete(mg, true);
1392 break;
1393
1394 case POLICY_DEMOTE:
1395 r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1396 if (r) {
1397 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1398 cache_device_name(cache));
1399 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1400
1401 mg_complete(mg, false);
1402 return;
1403 }
1404
1405 /*
1406 * It would be nice if we only had to commit when a REQ_FLUSH
1407 * comes through. But there's one scenario that we have to
1408 * look out for:
1409 *
1410 * - vblock x in a cache block
1411 * - domotion occurs
1412 * - cache block gets reallocated and over written
1413 * - crash
1414 *
1415 * When we recover, because there was no commit the cache will
1416 * rollback to having the data for vblock x in the cache block.
1417 * But the cache block has since been overwritten, so it'll end
1418 * up pointing to data that was never in 'x' during the history
1419 * of the device.
1420 *
1421 * To avoid this issue we require a commit as part of the
1422 * demotion operation.
1423 */
1424 init_continuation(&mg->k, mg_success);
1425 continue_after_commit(&cache->committer, &mg->k);
1426 schedule_commit(&cache->committer);
1427 break;
1428
1429 case POLICY_WRITEBACK:
1430 mg_complete(mg, true);
1431 break;
1432 }
1433 }
1434
1435 static void mg_update_metadata_after_copy(struct work_struct *ws)
1436 {
1437 struct dm_cache_migration *mg = ws_to_mg(ws);
1438
1439 /*
1440 * Did the copy succeed?
1441 */
1442 if (mg->k.input)
1443 mg_complete(mg, false);
1444 else
1445 mg_update_metadata(ws);
1446 }
1447
1448 static void mg_upgrade_lock(struct work_struct *ws)
1449 {
1450 int r;
1451 struct dm_cache_migration *mg = ws_to_mg(ws);
1452
1453 /*
1454 * Did the copy succeed?
1455 */
1456 if (mg->k.input)
1457 mg_complete(mg, false);
1458
1459 else {
1460 /*
1461 * Now we want the lock to prevent both reads and writes.
1462 */
1463 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1464 READ_WRITE_LOCK_LEVEL);
1465 if (r < 0)
1466 mg_complete(mg, false);
1467
1468 else if (r)
1469 quiesce(mg, mg_update_metadata);
1470
1471 else
1472 mg_update_metadata(ws);
1473 }
1474 }
1475
1476 static void mg_copy(struct work_struct *ws)
1477 {
1478 int r;
1479 struct dm_cache_migration *mg = ws_to_mg(ws);
1480
1481 if (mg->overwrite_bio) {
1482 /*
1483 * It's safe to do this here, even though it's new data
1484 * because all IO has been locked out of the block.
1485 *
1486 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1487 * so _not_ using mg_upgrade_lock() as continutation.
1488 */
1489 overwrite(mg, mg_update_metadata_after_copy);
1490
1491 } else {
1492 struct cache *cache = mg->cache;
1493 struct policy_work *op = mg->op;
1494 bool is_policy_promote = (op->op == POLICY_PROMOTE);
1495
1496 if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1497 is_discarded_oblock(cache, op->oblock)) {
1498 mg_upgrade_lock(ws);
1499 return;
1500 }
1501
1502 init_continuation(&mg->k, mg_upgrade_lock);
1503
1504 r = copy(mg, is_policy_promote);
1505 if (r) {
1506 DMERR_LIMIT("%s: migration copy failed", cache_device_name(cache));
1507 mg->k.input = -EIO;
1508 mg_complete(mg, false);
1509 }
1510 }
1511 }
1512
1513 static int mg_lock_writes(struct dm_cache_migration *mg)
1514 {
1515 int r;
1516 struct dm_cell_key_v2 key;
1517 struct cache *cache = mg->cache;
1518 struct dm_bio_prison_cell_v2 *prealloc;
1519
1520 prealloc = alloc_prison_cell(cache);
1521 if (!prealloc) {
1522 DMERR_LIMIT("%s: alloc_prison_cell failed", cache_device_name(cache));
1523 mg_complete(mg, false);
1524 return -ENOMEM;
1525 }
1526
1527 /*
1528 * Prevent writes to the block, but allow reads to continue.
1529 * Unless we're using an overwrite bio, in which case we lock
1530 * everything.
1531 */
1532 build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1533 r = dm_cell_lock_v2(cache->prison, &key,
1534 mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1535 prealloc, &mg->cell);
1536 if (r < 0) {
1537 free_prison_cell(cache, prealloc);
1538 mg_complete(mg, false);
1539 return r;
1540 }
1541
1542 if (mg->cell != prealloc)
1543 free_prison_cell(cache, prealloc);
1544
1545 if (r == 0)
1546 mg_copy(&mg->k.ws);
1547 else
1548 quiesce(mg, mg_copy);
1549
1550 return 0;
1551 }
1552
1553 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1554 {
1555 struct dm_cache_migration *mg;
1556
1557 if (!background_work_begin(cache)) {
1558 policy_complete_background_work(cache->policy, op, false);
1559 return -EPERM;
1560 }
1561
1562 mg = alloc_migration(cache);
1563 if (!mg) {
1564 policy_complete_background_work(cache->policy, op, false);
1565 background_work_end(cache);
1566 return -ENOMEM;
1567 }
1568
1569 memset(mg, 0, sizeof(*mg));
1570
1571 mg->cache = cache;
1572 mg->op = op;
1573 mg->overwrite_bio = bio;
1574
1575 if (!bio)
1576 inc_io_migrations(cache);
1577
1578 return mg_lock_writes(mg);
1579 }
1580
1581 /*----------------------------------------------------------------
1582 * invalidation processing
1583 *--------------------------------------------------------------*/
1584
1585 static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1586 {
1587 struct bio_list bios;
1588 struct cache *cache = mg->cache;
1589
1590 bio_list_init(&bios);
1591 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1592 free_prison_cell(cache, mg->cell);
1593
1594 if (!success && mg->overwrite_bio)
1595 bio_io_error(mg->overwrite_bio);
1596
1597 free_migration(mg);
1598 defer_bios(cache, &bios);
1599
1600 background_work_end(cache);
1601 }
1602
1603 static void invalidate_completed(struct work_struct *ws)
1604 {
1605 struct dm_cache_migration *mg = ws_to_mg(ws);
1606 invalidate_complete(mg, !mg->k.input);
1607 }
1608
1609 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1610 {
1611 int r = policy_invalidate_mapping(cache->policy, cblock);
1612 if (!r) {
1613 r = dm_cache_remove_mapping(cache->cmd, cblock);
1614 if (r) {
1615 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1616 cache_device_name(cache));
1617 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1618 }
1619
1620 } else if (r == -ENODATA) {
1621 /*
1622 * Harmless, already unmapped.
1623 */
1624 r = 0;
1625
1626 } else
1627 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1628
1629 return r;
1630 }
1631
1632 static void invalidate_remove(struct work_struct *ws)
1633 {
1634 int r;
1635 struct dm_cache_migration *mg = ws_to_mg(ws);
1636 struct cache *cache = mg->cache;
1637
1638 r = invalidate_cblock(cache, mg->invalidate_cblock);
1639 if (r) {
1640 invalidate_complete(mg, false);
1641 return;
1642 }
1643
1644 init_continuation(&mg->k, invalidate_completed);
1645 continue_after_commit(&cache->committer, &mg->k);
1646 remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1647 mg->overwrite_bio = NULL;
1648 schedule_commit(&cache->committer);
1649 }
1650
1651 static int invalidate_lock(struct dm_cache_migration *mg)
1652 {
1653 int r;
1654 struct dm_cell_key_v2 key;
1655 struct cache *cache = mg->cache;
1656 struct dm_bio_prison_cell_v2 *prealloc;
1657
1658 prealloc = alloc_prison_cell(cache);
1659 if (!prealloc) {
1660 invalidate_complete(mg, false);
1661 return -ENOMEM;
1662 }
1663
1664 build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1665 r = dm_cell_lock_v2(cache->prison, &key,
1666 READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1667 if (r < 0) {
1668 free_prison_cell(cache, prealloc);
1669 invalidate_complete(mg, false);
1670 return r;
1671 }
1672
1673 if (mg->cell != prealloc)
1674 free_prison_cell(cache, prealloc);
1675
1676 if (r)
1677 quiesce(mg, invalidate_remove);
1678
1679 else {
1680 /*
1681 * We can't call invalidate_remove() directly here because we
1682 * might still be in request context.
1683 */
1684 init_continuation(&mg->k, invalidate_remove);
1685 queue_work(cache->wq, &mg->k.ws);
1686 }
1687
1688 return 0;
1689 }
1690
1691 static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1692 dm_oblock_t oblock, struct bio *bio)
1693 {
1694 struct dm_cache_migration *mg;
1695
1696 if (!background_work_begin(cache))
1697 return -EPERM;
1698
1699 mg = alloc_migration(cache);
1700 if (!mg) {
1701 background_work_end(cache);
1702 return -ENOMEM;
1703 }
1704
1705 memset(mg, 0, sizeof(*mg));
1706
1707 mg->cache = cache;
1708 mg->overwrite_bio = bio;
1709 mg->invalidate_cblock = cblock;
1710 mg->invalidate_oblock = oblock;
1711
1712 return invalidate_lock(mg);
1713 }
1714
1715 /*----------------------------------------------------------------
1716 * bio processing
1717 *--------------------------------------------------------------*/
1718
1719 enum busy {
1720 IDLE,
1721 BUSY
1722 };
1723
1724 static enum busy spare_migration_bandwidth(struct cache *cache)
1725 {
1726 bool idle = iot_idle_for(&cache->tracker, HZ);
1727 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1728 cache->sectors_per_block;
1729
1730 if (idle && current_volume <= cache->migration_threshold)
1731 return IDLE;
1732 else
1733 return BUSY;
1734 }
1735
1736 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1737 {
1738 atomic_inc(bio_data_dir(bio) == READ ?
1739 &cache->stats.read_hit : &cache->stats.write_hit);
1740 }
1741
1742 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1743 {
1744 atomic_inc(bio_data_dir(bio) == READ ?
1745 &cache->stats.read_miss : &cache->stats.write_miss);
1746 }
1747
1748 /*----------------------------------------------------------------*/
1749
1750 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1751 {
1752 return (bio_data_dir(bio) == WRITE) &&
1753 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1754 }
1755
1756 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1757 {
1758 return writeback_mode(&cache->features) &&
1759 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1760 }
1761
1762 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1763 bool *commit_needed)
1764 {
1765 int r, data_dir;
1766 bool rb, background_queued;
1767 dm_cblock_t cblock;
1768 size_t pb_data_size = get_per_bio_data_size(cache);
1769 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1770
1771 *commit_needed = false;
1772
1773 rb = bio_detain_shared(cache, block, bio);
1774 if (!rb) {
1775 /*
1776 * An exclusive lock is held for this block, so we have to
1777 * wait. We set the commit_needed flag so the current
1778 * transaction will be committed asap, allowing this lock
1779 * to be dropped.
1780 */
1781 *commit_needed = true;
1782 return DM_MAPIO_SUBMITTED;
1783 }
1784
1785 data_dir = bio_data_dir(bio);
1786
1787 if (optimisable_bio(cache, bio, block)) {
1788 struct policy_work *op = NULL;
1789
1790 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1791 if (unlikely(r && r != -ENOENT)) {
1792 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1793 cache_device_name(cache), r);
1794 bio_io_error(bio);
1795 return DM_MAPIO_SUBMITTED;
1796 }
1797
1798 if (r == -ENOENT && op) {
1799 bio_drop_shared_lock(cache, bio);
1800 BUG_ON(op->op != POLICY_PROMOTE);
1801 mg_start(cache, op, bio);
1802 return DM_MAPIO_SUBMITTED;
1803 }
1804 } else {
1805 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1806 if (unlikely(r && r != -ENOENT)) {
1807 DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1808 cache_device_name(cache), r);
1809 bio_io_error(bio);
1810 return DM_MAPIO_SUBMITTED;
1811 }
1812
1813 if (background_queued)
1814 wake_migration_worker(cache);
1815 }
1816
1817 if (r == -ENOENT) {
1818 /*
1819 * Miss.
1820 */
1821 inc_miss_counter(cache, bio);
1822 if (pb->req_nr == 0) {
1823 accounted_begin(cache, bio);
1824 remap_to_origin_clear_discard(cache, bio, block);
1825
1826 } else {
1827 /*
1828 * This is a duplicate writethrough io that is no
1829 * longer needed because the block has been demoted.
1830 */
1831 bio_endio(bio);
1832 return DM_MAPIO_SUBMITTED;
1833 }
1834 } else {
1835 /*
1836 * Hit.
1837 */
1838 inc_hit_counter(cache, bio);
1839
1840 /*
1841 * Passthrough always maps to the origin, invalidating any
1842 * cache blocks that are written to.
1843 */
1844 if (passthrough_mode(&cache->features)) {
1845 if (bio_data_dir(bio) == WRITE) {
1846 bio_drop_shared_lock(cache, bio);
1847 atomic_inc(&cache->stats.demotion);
1848 invalidate_start(cache, cblock, block, bio);
1849 } else
1850 remap_to_origin_clear_discard(cache, bio, block);
1851
1852 } else {
1853 if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
1854 !is_dirty(cache, cblock)) {
1855 remap_to_origin_then_cache(cache, bio, block, cblock);
1856 accounted_begin(cache, bio);
1857 } else
1858 remap_to_cache_dirty(cache, bio, block, cblock);
1859 }
1860 }
1861
1862 /*
1863 * dm core turns FUA requests into a separate payload and FLUSH req.
1864 */
1865 if (bio->bi_opf & REQ_FUA) {
1866 /*
1867 * issue_after_commit will call accounted_begin a second time. So
1868 * we call accounted_complete() to avoid double accounting.
1869 */
1870 accounted_complete(cache, bio);
1871 issue_after_commit(&cache->committer, bio);
1872 *commit_needed = true;
1873 return DM_MAPIO_SUBMITTED;
1874 }
1875
1876 return DM_MAPIO_REMAPPED;
1877 }
1878
1879 static bool process_bio(struct cache *cache, struct bio *bio)
1880 {
1881 bool commit_needed;
1882
1883 if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1884 generic_make_request(bio);
1885
1886 return commit_needed;
1887 }
1888
1889 /*
1890 * A non-zero return indicates read_only or fail_io mode.
1891 */
1892 static int commit(struct cache *cache, bool clean_shutdown)
1893 {
1894 int r;
1895
1896 if (get_cache_mode(cache) >= CM_READ_ONLY)
1897 return -EINVAL;
1898
1899 atomic_inc(&cache->stats.commit_count);
1900 r = dm_cache_commit(cache->cmd, clean_shutdown);
1901 if (r)
1902 metadata_operation_failed(cache, "dm_cache_commit", r);
1903
1904 return r;
1905 }
1906
1907 /*
1908 * Used by the batcher.
1909 */
1910 static int commit_op(void *context)
1911 {
1912 struct cache *cache = context;
1913
1914 if (dm_cache_changed_this_transaction(cache->cmd))
1915 return commit(cache, false);
1916
1917 return 0;
1918 }
1919
1920 /*----------------------------------------------------------------*/
1921
1922 static bool process_flush_bio(struct cache *cache, struct bio *bio)
1923 {
1924 size_t pb_data_size = get_per_bio_data_size(cache);
1925 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1926
1927 if (!pb->req_nr)
1928 remap_to_origin(cache, bio);
1929 else
1930 remap_to_cache(cache, bio, 0);
1931
1932 issue_after_commit(&cache->committer, bio);
1933 return true;
1934 }
1935
1936 static bool process_discard_bio(struct cache *cache, struct bio *bio)
1937 {
1938 dm_dblock_t b, e;
1939
1940 // FIXME: do we need to lock the region? Or can we just assume the
1941 // user wont be so foolish as to issue discard concurrently with
1942 // other IO?
1943 calc_discard_block_range(cache, bio, &b, &e);
1944 while (b != e) {
1945 set_discard(cache, b);
1946 b = to_dblock(from_dblock(b) + 1);
1947 }
1948
1949 bio_endio(bio);
1950
1951 return false;
1952 }
1953
1954 static void process_deferred_bios(struct work_struct *ws)
1955 {
1956 struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1957
1958 unsigned long flags;
1959 bool commit_needed = false;
1960 struct bio_list bios;
1961 struct bio *bio;
1962
1963 bio_list_init(&bios);
1964
1965 spin_lock_irqsave(&cache->lock, flags);
1966 bio_list_merge(&bios, &cache->deferred_bios);
1967 bio_list_init(&cache->deferred_bios);
1968 spin_unlock_irqrestore(&cache->lock, flags);
1969
1970 while ((bio = bio_list_pop(&bios))) {
1971 if (bio->bi_opf & REQ_PREFLUSH)
1972 commit_needed = process_flush_bio(cache, bio) || commit_needed;
1973
1974 else if (bio_op(bio) == REQ_OP_DISCARD)
1975 commit_needed = process_discard_bio(cache, bio) || commit_needed;
1976
1977 else
1978 commit_needed = process_bio(cache, bio) || commit_needed;
1979 }
1980
1981 if (commit_needed)
1982 schedule_commit(&cache->committer);
1983 }
1984
1985 static void process_deferred_writethrough_bios(struct work_struct *ws)
1986 {
1987 struct cache *cache = container_of(ws, struct cache, deferred_writethrough_worker);
1988
1989 unsigned long flags;
1990 struct bio_list bios;
1991 struct bio *bio;
1992
1993 bio_list_init(&bios);
1994
1995 spin_lock_irqsave(&cache->lock, flags);
1996 bio_list_merge(&bios, &cache->deferred_writethrough_bios);
1997 bio_list_init(&cache->deferred_writethrough_bios);
1998 spin_unlock_irqrestore(&cache->lock, flags);
1999
2000 /*
2001 * These bios have already been through accounted_begin()
2002 */
2003 while ((bio = bio_list_pop(&bios)))
2004 generic_make_request(bio);
2005 }
2006
2007 /*----------------------------------------------------------------
2008 * Main worker loop
2009 *--------------------------------------------------------------*/
2010
2011 static void requeue_deferred_bios(struct cache *cache)
2012 {
2013 struct bio *bio;
2014 struct bio_list bios;
2015
2016 bio_list_init(&bios);
2017 bio_list_merge(&bios, &cache->deferred_bios);
2018 bio_list_init(&cache->deferred_bios);
2019
2020 while ((bio = bio_list_pop(&bios))) {
2021 bio->bi_error = DM_ENDIO_REQUEUE;
2022 bio_endio(bio);
2023 }
2024 }
2025
2026 /*
2027 * We want to commit periodically so that not too much
2028 * unwritten metadata builds up.
2029 */
2030 static void do_waker(struct work_struct *ws)
2031 {
2032 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
2033
2034 policy_tick(cache->policy, true);
2035 wake_migration_worker(cache);
2036 schedule_commit(&cache->committer);
2037 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
2038 }
2039
2040 static void check_migrations(struct work_struct *ws)
2041 {
2042 int r;
2043 struct policy_work *op;
2044 struct cache *cache = container_of(ws, struct cache, migration_worker);
2045 enum busy b;
2046
2047 for (;;) {
2048 b = spare_migration_bandwidth(cache);
2049
2050 r = policy_get_background_work(cache->policy, b == IDLE, &op);
2051 if (r == -ENODATA)
2052 break;
2053
2054 if (r) {
2055 DMERR_LIMIT("%s: policy_background_work failed",
2056 cache_device_name(cache));
2057 break;
2058 }
2059
2060 r = mg_start(cache, op, NULL);
2061 if (r)
2062 break;
2063 }
2064 }
2065
2066 /*----------------------------------------------------------------
2067 * Target methods
2068 *--------------------------------------------------------------*/
2069
2070 /*
2071 * This function gets called on the error paths of the constructor, so we
2072 * have to cope with a partially initialised struct.
2073 */
2074 static void destroy(struct cache *cache)
2075 {
2076 unsigned i;
2077
2078 mempool_destroy(cache->migration_pool);
2079
2080 if (cache->prison)
2081 dm_bio_prison_destroy_v2(cache->prison);
2082
2083 if (cache->wq)
2084 destroy_workqueue(cache->wq);
2085
2086 if (cache->dirty_bitset)
2087 free_bitset(cache->dirty_bitset);
2088
2089 if (cache->discard_bitset)
2090 free_bitset(cache->discard_bitset);
2091
2092 if (cache->copier)
2093 dm_kcopyd_client_destroy(cache->copier);
2094
2095 if (cache->cmd)
2096 dm_cache_metadata_close(cache->cmd);
2097
2098 if (cache->metadata_dev)
2099 dm_put_device(cache->ti, cache->metadata_dev);
2100
2101 if (cache->origin_dev)
2102 dm_put_device(cache->ti, cache->origin_dev);
2103
2104 if (cache->cache_dev)
2105 dm_put_device(cache->ti, cache->cache_dev);
2106
2107 if (cache->policy)
2108 dm_cache_policy_destroy(cache->policy);
2109
2110 for (i = 0; i < cache->nr_ctr_args ; i++)
2111 kfree(cache->ctr_args[i]);
2112 kfree(cache->ctr_args);
2113
2114 kfree(cache);
2115 }
2116
2117 static void cache_dtr(struct dm_target *ti)
2118 {
2119 struct cache *cache = ti->private;
2120
2121 destroy(cache);
2122 }
2123
2124 static sector_t get_dev_size(struct dm_dev *dev)
2125 {
2126 return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2127 }
2128
2129 /*----------------------------------------------------------------*/
2130
2131 /*
2132 * Construct a cache device mapping.
2133 *
2134 * cache <metadata dev> <cache dev> <origin dev> <block size>
2135 * <#feature args> [<feature arg>]*
2136 * <policy> <#policy args> [<policy arg>]*
2137 *
2138 * metadata dev : fast device holding the persistent metadata
2139 * cache dev : fast device holding cached data blocks
2140 * origin dev : slow device holding original data blocks
2141 * block size : cache unit size in sectors
2142 *
2143 * #feature args : number of feature arguments passed
2144 * feature args : writethrough. (The default is writeback.)
2145 *
2146 * policy : the replacement policy to use
2147 * #policy args : an even number of policy arguments corresponding
2148 * to key/value pairs passed to the policy
2149 * policy args : key/value pairs passed to the policy
2150 * E.g. 'sequential_threshold 1024'
2151 * See cache-policies.txt for details.
2152 *
2153 * Optional feature arguments are:
2154 * writethrough : write through caching that prohibits cache block
2155 * content from being different from origin block content.
2156 * Without this argument, the default behaviour is to write
2157 * back cache block contents later for performance reasons,
2158 * so they may differ from the corresponding origin blocks.
2159 */
2160 struct cache_args {
2161 struct dm_target *ti;
2162
2163 struct dm_dev *metadata_dev;
2164
2165 struct dm_dev *cache_dev;
2166 sector_t cache_sectors;
2167
2168 struct dm_dev *origin_dev;
2169 sector_t origin_sectors;
2170
2171 uint32_t block_size;
2172
2173 const char *policy_name;
2174 int policy_argc;
2175 const char **policy_argv;
2176
2177 struct cache_features features;
2178 };
2179
2180 static void destroy_cache_args(struct cache_args *ca)
2181 {
2182 if (ca->metadata_dev)
2183 dm_put_device(ca->ti, ca->metadata_dev);
2184
2185 if (ca->cache_dev)
2186 dm_put_device(ca->ti, ca->cache_dev);
2187
2188 if (ca->origin_dev)
2189 dm_put_device(ca->ti, ca->origin_dev);
2190
2191 kfree(ca);
2192 }
2193
2194 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2195 {
2196 if (!as->argc) {
2197 *error = "Insufficient args";
2198 return false;
2199 }
2200
2201 return true;
2202 }
2203
2204 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2205 char **error)
2206 {
2207 int r;
2208 sector_t metadata_dev_size;
2209 char b[BDEVNAME_SIZE];
2210
2211 if (!at_least_one_arg(as, error))
2212 return -EINVAL;
2213
2214 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2215 &ca->metadata_dev);
2216 if (r) {
2217 *error = "Error opening metadata device";
2218 return r;
2219 }
2220
2221 metadata_dev_size = get_dev_size(ca->metadata_dev);
2222 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2223 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2224 bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2225
2226 return 0;
2227 }
2228
2229 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2230 char **error)
2231 {
2232 int r;
2233
2234 if (!at_least_one_arg(as, error))
2235 return -EINVAL;
2236
2237 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2238 &ca->cache_dev);
2239 if (r) {
2240 *error = "Error opening cache device";
2241 return r;
2242 }
2243 ca->cache_sectors = get_dev_size(ca->cache_dev);
2244
2245 return 0;
2246 }
2247
2248 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2249 char **error)
2250 {
2251 int r;
2252
2253 if (!at_least_one_arg(as, error))
2254 return -EINVAL;
2255
2256 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2257 &ca->origin_dev);
2258 if (r) {
2259 *error = "Error opening origin device";
2260 return r;
2261 }
2262
2263 ca->origin_sectors = get_dev_size(ca->origin_dev);
2264 if (ca->ti->len > ca->origin_sectors) {
2265 *error = "Device size larger than cached device";
2266 return -EINVAL;
2267 }
2268
2269 return 0;
2270 }
2271
2272 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2273 char **error)
2274 {
2275 unsigned long block_size;
2276
2277 if (!at_least_one_arg(as, error))
2278 return -EINVAL;
2279
2280 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2281 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2282 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2283 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2284 *error = "Invalid data block size";
2285 return -EINVAL;
2286 }
2287
2288 if (block_size > ca->cache_sectors) {
2289 *error = "Data block size is larger than the cache device";
2290 return -EINVAL;
2291 }
2292
2293 ca->block_size = block_size;
2294
2295 return 0;
2296 }
2297
2298 static void init_features(struct cache_features *cf)
2299 {
2300 cf->mode = CM_WRITE;
2301 cf->io_mode = CM_IO_WRITEBACK;
2302 cf->metadata_version = 1;
2303 }
2304
2305 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2306 char **error)
2307 {
2308 static struct dm_arg _args[] = {
2309 {0, 2, "Invalid number of cache feature arguments"},
2310 };
2311
2312 int r;
2313 unsigned argc;
2314 const char *arg;
2315 struct cache_features *cf = &ca->features;
2316
2317 init_features(cf);
2318
2319 r = dm_read_arg_group(_args, as, &argc, error);
2320 if (r)
2321 return -EINVAL;
2322
2323 while (argc--) {
2324 arg = dm_shift_arg(as);
2325
2326 if (!strcasecmp(arg, "writeback"))
2327 cf->io_mode = CM_IO_WRITEBACK;
2328
2329 else if (!strcasecmp(arg, "writethrough"))
2330 cf->io_mode = CM_IO_WRITETHROUGH;
2331
2332 else if (!strcasecmp(arg, "passthrough"))
2333 cf->io_mode = CM_IO_PASSTHROUGH;
2334
2335 else if (!strcasecmp(arg, "metadata2"))
2336 cf->metadata_version = 2;
2337
2338 else {
2339 *error = "Unrecognised cache feature requested";
2340 return -EINVAL;
2341 }
2342 }
2343
2344 return 0;
2345 }
2346
2347 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2348 char **error)
2349 {
2350 static struct dm_arg _args[] = {
2351 {0, 1024, "Invalid number of policy arguments"},
2352 };
2353
2354 int r;
2355
2356 if (!at_least_one_arg(as, error))
2357 return -EINVAL;
2358
2359 ca->policy_name = dm_shift_arg(as);
2360
2361 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2362 if (r)
2363 return -EINVAL;
2364
2365 ca->policy_argv = (const char **)as->argv;
2366 dm_consume_args(as, ca->policy_argc);
2367
2368 return 0;
2369 }
2370
2371 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2372 char **error)
2373 {
2374 int r;
2375 struct dm_arg_set as;
2376
2377 as.argc = argc;
2378 as.argv = argv;
2379
2380 r = parse_metadata_dev(ca, &as, error);
2381 if (r)
2382 return r;
2383
2384 r = parse_cache_dev(ca, &as, error);
2385 if (r)
2386 return r;
2387
2388 r = parse_origin_dev(ca, &as, error);
2389 if (r)
2390 return r;
2391
2392 r = parse_block_size(ca, &as, error);
2393 if (r)
2394 return r;
2395
2396 r = parse_features(ca, &as, error);
2397 if (r)
2398 return r;
2399
2400 r = parse_policy(ca, &as, error);
2401 if (r)
2402 return r;
2403
2404 return 0;
2405 }
2406
2407 /*----------------------------------------------------------------*/
2408
2409 static struct kmem_cache *migration_cache;
2410
2411 #define NOT_CORE_OPTION 1
2412
2413 static int process_config_option(struct cache *cache, const char *key, const char *value)
2414 {
2415 unsigned long tmp;
2416
2417 if (!strcasecmp(key, "migration_threshold")) {
2418 if (kstrtoul(value, 10, &tmp))
2419 return -EINVAL;
2420
2421 cache->migration_threshold = tmp;
2422 return 0;
2423 }
2424
2425 return NOT_CORE_OPTION;
2426 }
2427
2428 static int set_config_value(struct cache *cache, const char *key, const char *value)
2429 {
2430 int r = process_config_option(cache, key, value);
2431
2432 if (r == NOT_CORE_OPTION)
2433 r = policy_set_config_value(cache->policy, key, value);
2434
2435 if (r)
2436 DMWARN("bad config value for %s: %s", key, value);
2437
2438 return r;
2439 }
2440
2441 static int set_config_values(struct cache *cache, int argc, const char **argv)
2442 {
2443 int r = 0;
2444
2445 if (argc & 1) {
2446 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2447 return -EINVAL;
2448 }
2449
2450 while (argc) {
2451 r = set_config_value(cache, argv[0], argv[1]);
2452 if (r)
2453 break;
2454
2455 argc -= 2;
2456 argv += 2;
2457 }
2458
2459 return r;
2460 }
2461
2462 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2463 char **error)
2464 {
2465 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2466 cache->cache_size,
2467 cache->origin_sectors,
2468 cache->sectors_per_block);
2469 if (IS_ERR(p)) {
2470 *error = "Error creating cache's policy";
2471 return PTR_ERR(p);
2472 }
2473 cache->policy = p;
2474 BUG_ON(!cache->policy);
2475
2476 return 0;
2477 }
2478
2479 /*
2480 * We want the discard block size to be at least the size of the cache
2481 * block size and have no more than 2^14 discard blocks across the origin.
2482 */
2483 #define MAX_DISCARD_BLOCKS (1 << 14)
2484
2485 static bool too_many_discard_blocks(sector_t discard_block_size,
2486 sector_t origin_size)
2487 {
2488 (void) sector_div(origin_size, discard_block_size);
2489
2490 return origin_size > MAX_DISCARD_BLOCKS;
2491 }
2492
2493 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2494 sector_t origin_size)
2495 {
2496 sector_t discard_block_size = cache_block_size;
2497
2498 if (origin_size)
2499 while (too_many_discard_blocks(discard_block_size, origin_size))
2500 discard_block_size *= 2;
2501
2502 return discard_block_size;
2503 }
2504
2505 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2506 {
2507 dm_block_t nr_blocks = from_cblock(size);
2508
2509 if (nr_blocks > (1 << 20) && cache->cache_size != size)
2510 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2511 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2512 "Please consider increasing the cache block size to reduce the overall cache block count.",
2513 (unsigned long long) nr_blocks);
2514
2515 cache->cache_size = size;
2516 }
2517
2518 static int is_congested(struct dm_dev *dev, int bdi_bits)
2519 {
2520 struct request_queue *q = bdev_get_queue(dev->bdev);
2521 return bdi_congested(q->backing_dev_info, bdi_bits);
2522 }
2523
2524 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2525 {
2526 struct cache *cache = container_of(cb, struct cache, callbacks);
2527
2528 return is_congested(cache->origin_dev, bdi_bits) ||
2529 is_congested(cache->cache_dev, bdi_bits);
2530 }
2531
2532 #define DEFAULT_MIGRATION_THRESHOLD 2048
2533
2534 static int cache_create(struct cache_args *ca, struct cache **result)
2535 {
2536 int r = 0;
2537 char **error = &ca->ti->error;
2538 struct cache *cache;
2539 struct dm_target *ti = ca->ti;
2540 dm_block_t origin_blocks;
2541 struct dm_cache_metadata *cmd;
2542 bool may_format = ca->features.mode == CM_WRITE;
2543
2544 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2545 if (!cache)
2546 return -ENOMEM;
2547
2548 cache->ti = ca->ti;
2549 ti->private = cache;
2550 ti->num_flush_bios = 2;
2551 ti->flush_supported = true;
2552
2553 ti->num_discard_bios = 1;
2554 ti->discards_supported = true;
2555 ti->split_discard_bios = false;
2556
2557 cache->features = ca->features;
2558 ti->per_io_data_size = get_per_bio_data_size(cache);
2559
2560 cache->callbacks.congested_fn = cache_is_congested;
2561 dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2562
2563 cache->metadata_dev = ca->metadata_dev;
2564 cache->origin_dev = ca->origin_dev;
2565 cache->cache_dev = ca->cache_dev;
2566
2567 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2568
2569 origin_blocks = cache->origin_sectors = ca->origin_sectors;
2570 origin_blocks = block_div(origin_blocks, ca->block_size);
2571 cache->origin_blocks = to_oblock(origin_blocks);
2572
2573 cache->sectors_per_block = ca->block_size;
2574 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2575 r = -EINVAL;
2576 goto bad;
2577 }
2578
2579 if (ca->block_size & (ca->block_size - 1)) {
2580 dm_block_t cache_size = ca->cache_sectors;
2581
2582 cache->sectors_per_block_shift = -1;
2583 cache_size = block_div(cache_size, ca->block_size);
2584 set_cache_size(cache, to_cblock(cache_size));
2585 } else {
2586 cache->sectors_per_block_shift = __ffs(ca->block_size);
2587 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2588 }
2589
2590 r = create_cache_policy(cache, ca, error);
2591 if (r)
2592 goto bad;
2593
2594 cache->policy_nr_args = ca->policy_argc;
2595 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2596
2597 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2598 if (r) {
2599 *error = "Error setting cache policy's config values";
2600 goto bad;
2601 }
2602
2603 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2604 ca->block_size, may_format,
2605 dm_cache_policy_get_hint_size(cache->policy),
2606 ca->features.metadata_version);
2607 if (IS_ERR(cmd)) {
2608 *error = "Error creating metadata object";
2609 r = PTR_ERR(cmd);
2610 goto bad;
2611 }
2612 cache->cmd = cmd;
2613 set_cache_mode(cache, CM_WRITE);
2614 if (get_cache_mode(cache) != CM_WRITE) {
2615 *error = "Unable to get write access to metadata, please check/repair metadata.";
2616 r = -EINVAL;
2617 goto bad;
2618 }
2619
2620 if (passthrough_mode(&cache->features)) {
2621 bool all_clean;
2622
2623 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2624 if (r) {
2625 *error = "dm_cache_metadata_all_clean() failed";
2626 goto bad;
2627 }
2628
2629 if (!all_clean) {
2630 *error = "Cannot enter passthrough mode unless all blocks are clean";
2631 r = -EINVAL;
2632 goto bad;
2633 }
2634
2635 policy_allow_migrations(cache->policy, false);
2636 }
2637
2638 spin_lock_init(&cache->lock);
2639 INIT_LIST_HEAD(&cache->deferred_cells);
2640 bio_list_init(&cache->deferred_bios);
2641 bio_list_init(&cache->deferred_writethrough_bios);
2642 atomic_set(&cache->nr_allocated_migrations, 0);
2643 atomic_set(&cache->nr_io_migrations, 0);
2644 init_waitqueue_head(&cache->migration_wait);
2645
2646 r = -ENOMEM;
2647 atomic_set(&cache->nr_dirty, 0);
2648 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2649 if (!cache->dirty_bitset) {
2650 *error = "could not allocate dirty bitset";
2651 goto bad;
2652 }
2653 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2654
2655 cache->discard_block_size =
2656 calculate_discard_block_size(cache->sectors_per_block,
2657 cache->origin_sectors);
2658 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2659 cache->discard_block_size));
2660 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2661 if (!cache->discard_bitset) {
2662 *error = "could not allocate discard bitset";
2663 goto bad;
2664 }
2665 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2666
2667 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2668 if (IS_ERR(cache->copier)) {
2669 *error = "could not create kcopyd client";
2670 r = PTR_ERR(cache->copier);
2671 goto bad;
2672 }
2673
2674 cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2675 if (!cache->wq) {
2676 *error = "could not create workqueue for metadata object";
2677 goto bad;
2678 }
2679 INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2680 INIT_WORK(&cache->deferred_writethrough_worker,
2681 process_deferred_writethrough_bios);
2682 INIT_WORK(&cache->migration_worker, check_migrations);
2683 INIT_DELAYED_WORK(&cache->waker, do_waker);
2684
2685 cache->prison = dm_bio_prison_create_v2(cache->wq);
2686 if (!cache->prison) {
2687 *error = "could not create bio prison";
2688 goto bad;
2689 }
2690
2691 cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2692 migration_cache);
2693 if (!cache->migration_pool) {
2694 *error = "Error creating cache's migration mempool";
2695 goto bad;
2696 }
2697
2698 cache->need_tick_bio = true;
2699 cache->sized = false;
2700 cache->invalidate = false;
2701 cache->commit_requested = false;
2702 cache->loaded_mappings = false;
2703 cache->loaded_discards = false;
2704
2705 load_stats(cache);
2706
2707 atomic_set(&cache->stats.demotion, 0);
2708 atomic_set(&cache->stats.promotion, 0);
2709 atomic_set(&cache->stats.copies_avoided, 0);
2710 atomic_set(&cache->stats.cache_cell_clash, 0);
2711 atomic_set(&cache->stats.commit_count, 0);
2712 atomic_set(&cache->stats.discard_count, 0);
2713
2714 spin_lock_init(&cache->invalidation_lock);
2715 INIT_LIST_HEAD(&cache->invalidation_requests);
2716
2717 batcher_init(&cache->committer, commit_op, cache,
2718 issue_op, cache, cache->wq);
2719 iot_init(&cache->tracker);
2720
2721 init_rwsem(&cache->background_work_lock);
2722 prevent_background_work(cache);
2723
2724 *result = cache;
2725 return 0;
2726 bad:
2727 destroy(cache);
2728 return r;
2729 }
2730
2731 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2732 {
2733 unsigned i;
2734 const char **copy;
2735
2736 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2737 if (!copy)
2738 return -ENOMEM;
2739 for (i = 0; i < argc; i++) {
2740 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2741 if (!copy[i]) {
2742 while (i--)
2743 kfree(copy[i]);
2744 kfree(copy);
2745 return -ENOMEM;
2746 }
2747 }
2748
2749 cache->nr_ctr_args = argc;
2750 cache->ctr_args = copy;
2751
2752 return 0;
2753 }
2754
2755 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2756 {
2757 int r = -EINVAL;
2758 struct cache_args *ca;
2759 struct cache *cache = NULL;
2760
2761 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2762 if (!ca) {
2763 ti->error = "Error allocating memory for cache";
2764 return -ENOMEM;
2765 }
2766 ca->ti = ti;
2767
2768 r = parse_cache_args(ca, argc, argv, &ti->error);
2769 if (r)
2770 goto out;
2771
2772 r = cache_create(ca, &cache);
2773 if (r)
2774 goto out;
2775
2776 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2777 if (r) {
2778 destroy(cache);
2779 goto out;
2780 }
2781
2782 ti->private = cache;
2783 out:
2784 destroy_cache_args(ca);
2785 return r;
2786 }
2787
2788 /*----------------------------------------------------------------*/
2789
2790 static int cache_map(struct dm_target *ti, struct bio *bio)
2791 {
2792 struct cache *cache = ti->private;
2793
2794 int r;
2795 bool commit_needed;
2796 dm_oblock_t block = get_bio_block(cache, bio);
2797 size_t pb_data_size = get_per_bio_data_size(cache);
2798
2799 init_per_bio_data(bio, pb_data_size);
2800 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2801 /*
2802 * This can only occur if the io goes to a partial block at
2803 * the end of the origin device. We don't cache these.
2804 * Just remap to the origin and carry on.
2805 */
2806 remap_to_origin(cache, bio);
2807 accounted_begin(cache, bio);
2808 return DM_MAPIO_REMAPPED;
2809 }
2810
2811 if (discard_or_flush(bio)) {
2812 defer_bio(cache, bio);
2813 return DM_MAPIO_SUBMITTED;
2814 }
2815
2816 r = map_bio(cache, bio, block, &commit_needed);
2817 if (commit_needed)
2818 schedule_commit(&cache->committer);
2819
2820 return r;
2821 }
2822
2823 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
2824 {
2825 struct cache *cache = ti->private;
2826 unsigned long flags;
2827 size_t pb_data_size = get_per_bio_data_size(cache);
2828 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
2829
2830 if (pb->tick) {
2831 policy_tick(cache->policy, false);
2832
2833 spin_lock_irqsave(&cache->lock, flags);
2834 cache->need_tick_bio = true;
2835 spin_unlock_irqrestore(&cache->lock, flags);
2836 }
2837
2838 bio_drop_shared_lock(cache, bio);
2839 accounted_complete(cache, bio);
2840
2841 return 0;
2842 }
2843
2844 static int write_dirty_bitset(struct cache *cache)
2845 {
2846 int r;
2847
2848 if (get_cache_mode(cache) >= CM_READ_ONLY)
2849 return -EINVAL;
2850
2851 r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2852 if (r)
2853 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2854
2855 return r;
2856 }
2857
2858 static int write_discard_bitset(struct cache *cache)
2859 {
2860 unsigned i, r;
2861
2862 if (get_cache_mode(cache) >= CM_READ_ONLY)
2863 return -EINVAL;
2864
2865 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2866 cache->discard_nr_blocks);
2867 if (r) {
2868 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2869 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2870 return r;
2871 }
2872
2873 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2874 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2875 is_discarded(cache, to_dblock(i)));
2876 if (r) {
2877 metadata_operation_failed(cache, "dm_cache_set_discard", r);
2878 return r;
2879 }
2880 }
2881
2882 return 0;
2883 }
2884
2885 static int write_hints(struct cache *cache)
2886 {
2887 int r;
2888
2889 if (get_cache_mode(cache) >= CM_READ_ONLY)
2890 return -EINVAL;
2891
2892 r = dm_cache_write_hints(cache->cmd, cache->policy);
2893 if (r) {
2894 metadata_operation_failed(cache, "dm_cache_write_hints", r);
2895 return r;
2896 }
2897
2898 return 0;
2899 }
2900
2901 /*
2902 * returns true on success
2903 */
2904 static bool sync_metadata(struct cache *cache)
2905 {
2906 int r1, r2, r3, r4;
2907
2908 r1 = write_dirty_bitset(cache);
2909 if (r1)
2910 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2911
2912 r2 = write_discard_bitset(cache);
2913 if (r2)
2914 DMERR("%s: could not write discard bitset", cache_device_name(cache));
2915
2916 save_stats(cache);
2917
2918 r3 = write_hints(cache);
2919 if (r3)
2920 DMERR("%s: could not write hints", cache_device_name(cache));
2921
2922 /*
2923 * If writing the above metadata failed, we still commit, but don't
2924 * set the clean shutdown flag. This will effectively force every
2925 * dirty bit to be set on reload.
2926 */
2927 r4 = commit(cache, !r1 && !r2 && !r3);
2928 if (r4)
2929 DMERR("%s: could not write cache metadata", cache_device_name(cache));
2930
2931 return !r1 && !r2 && !r3 && !r4;
2932 }
2933
2934 static void cache_postsuspend(struct dm_target *ti)
2935 {
2936 struct cache *cache = ti->private;
2937
2938 prevent_background_work(cache);
2939 BUG_ON(atomic_read(&cache->nr_io_migrations));
2940
2941 cancel_delayed_work(&cache->waker);
2942 flush_workqueue(cache->wq);
2943 WARN_ON(cache->tracker.in_flight);
2944
2945 /*
2946 * If it's a flush suspend there won't be any deferred bios, so this
2947 * call is harmless.
2948 */
2949 requeue_deferred_bios(cache);
2950
2951 if (get_cache_mode(cache) == CM_WRITE)
2952 (void) sync_metadata(cache);
2953 }
2954
2955 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2956 bool dirty, uint32_t hint, bool hint_valid)
2957 {
2958 int r;
2959 struct cache *cache = context;
2960
2961 if (dirty) {
2962 set_bit(from_cblock(cblock), cache->dirty_bitset);
2963 atomic_inc(&cache->nr_dirty);
2964 } else
2965 clear_bit(from_cblock(cblock), cache->dirty_bitset);
2966
2967 r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2968 if (r)
2969 return r;
2970
2971 return 0;
2972 }
2973
2974 /*
2975 * The discard block size in the on disk metadata is not
2976 * neccessarily the same as we're currently using. So we have to
2977 * be careful to only set the discarded attribute if we know it
2978 * covers a complete block of the new size.
2979 */
2980 struct discard_load_info {
2981 struct cache *cache;
2982
2983 /*
2984 * These blocks are sized using the on disk dblock size, rather
2985 * than the current one.
2986 */
2987 dm_block_t block_size;
2988 dm_block_t discard_begin, discard_end;
2989 };
2990
2991 static void discard_load_info_init(struct cache *cache,
2992 struct discard_load_info *li)
2993 {
2994 li->cache = cache;
2995 li->discard_begin = li->discard_end = 0;
2996 }
2997
2998 static void set_discard_range(struct discard_load_info *li)
2999 {
3000 sector_t b, e;
3001
3002 if (li->discard_begin == li->discard_end)
3003 return;
3004
3005 /*
3006 * Convert to sectors.
3007 */
3008 b = li->discard_begin * li->block_size;
3009 e = li->discard_end * li->block_size;
3010
3011 /*
3012 * Then convert back to the current dblock size.
3013 */
3014 b = dm_sector_div_up(b, li->cache->discard_block_size);
3015 sector_div(e, li->cache->discard_block_size);
3016
3017 /*
3018 * The origin may have shrunk, so we need to check we're still in
3019 * bounds.
3020 */
3021 if (e > from_dblock(li->cache->discard_nr_blocks))
3022 e = from_dblock(li->cache->discard_nr_blocks);
3023
3024 for (; b < e; b++)
3025 set_discard(li->cache, to_dblock(b));
3026 }
3027
3028 static int load_discard(void *context, sector_t discard_block_size,
3029 dm_dblock_t dblock, bool discard)
3030 {
3031 struct discard_load_info *li = context;
3032
3033 li->block_size = discard_block_size;
3034
3035 if (discard) {
3036 if (from_dblock(dblock) == li->discard_end)
3037 /*
3038 * We're already in a discard range, just extend it.
3039 */
3040 li->discard_end = li->discard_end + 1ULL;
3041
3042 else {
3043 /*
3044 * Emit the old range and start a new one.
3045 */
3046 set_discard_range(li);
3047 li->discard_begin = from_dblock(dblock);
3048 li->discard_end = li->discard_begin + 1ULL;
3049 }
3050 } else {
3051 set_discard_range(li);
3052 li->discard_begin = li->discard_end = 0;
3053 }
3054
3055 return 0;
3056 }
3057
3058 static dm_cblock_t get_cache_dev_size(struct cache *cache)
3059 {
3060 sector_t size = get_dev_size(cache->cache_dev);
3061 (void) sector_div(size, cache->sectors_per_block);
3062 return to_cblock(size);
3063 }
3064
3065 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3066 {
3067 if (from_cblock(new_size) > from_cblock(cache->cache_size))
3068 return true;
3069
3070 /*
3071 * We can't drop a dirty block when shrinking the cache.
3072 */
3073 while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3074 new_size = to_cblock(from_cblock(new_size) + 1);
3075 if (is_dirty(cache, new_size)) {
3076 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3077 cache_device_name(cache),
3078 (unsigned long long) from_cblock(new_size));
3079 return false;
3080 }
3081 }
3082
3083 return true;
3084 }
3085
3086 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3087 {
3088 int r;
3089
3090 r = dm_cache_resize(cache->cmd, new_size);
3091 if (r) {
3092 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3093 metadata_operation_failed(cache, "dm_cache_resize", r);
3094 return r;
3095 }
3096
3097 set_cache_size(cache, new_size);
3098
3099 return 0;
3100 }
3101
3102 static int cache_preresume(struct dm_target *ti)
3103 {
3104 int r = 0;
3105 struct cache *cache = ti->private;
3106 dm_cblock_t csize = get_cache_dev_size(cache);
3107
3108 /*
3109 * Check to see if the cache has resized.
3110 */
3111 if (!cache->sized) {
3112 r = resize_cache_dev(cache, csize);
3113 if (r)
3114 return r;
3115
3116 cache->sized = true;
3117
3118 } else if (csize != cache->cache_size) {
3119 if (!can_resize(cache, csize))
3120 return -EINVAL;
3121
3122 r = resize_cache_dev(cache, csize);
3123 if (r)
3124 return r;
3125 }
3126
3127 if (!cache->loaded_mappings) {
3128 r = dm_cache_load_mappings(cache->cmd, cache->policy,
3129 load_mapping, cache);
3130 if (r) {
3131 DMERR("%s: could not load cache mappings", cache_device_name(cache));
3132 metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3133 return r;
3134 }
3135
3136 cache->loaded_mappings = true;
3137 }
3138
3139 if (!cache->loaded_discards) {
3140 struct discard_load_info li;
3141
3142 /*
3143 * The discard bitset could have been resized, or the
3144 * discard block size changed. To be safe we start by
3145 * setting every dblock to not discarded.
3146 */
3147 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3148
3149 discard_load_info_init(cache, &li);
3150 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3151 if (r) {
3152 DMERR("%s: could not load origin discards", cache_device_name(cache));
3153 metadata_operation_failed(cache, "dm_cache_load_discards", r);
3154 return r;
3155 }
3156 set_discard_range(&li);
3157
3158 cache->loaded_discards = true;
3159 }
3160
3161 return r;
3162 }
3163
3164 static void cache_resume(struct dm_target *ti)
3165 {
3166 struct cache *cache = ti->private;
3167
3168 cache->need_tick_bio = true;
3169 allow_background_work(cache);
3170 do_waker(&cache->waker.work);
3171 }
3172
3173 /*
3174 * Status format:
3175 *
3176 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3177 * <cache block size> <#used cache blocks>/<#total cache blocks>
3178 * <#read hits> <#read misses> <#write hits> <#write misses>
3179 * <#demotions> <#promotions> <#dirty>
3180 * <#features> <features>*
3181 * <#core args> <core args>
3182 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3183 */
3184 static void cache_status(struct dm_target *ti, status_type_t type,
3185 unsigned status_flags, char *result, unsigned maxlen)
3186 {
3187 int r = 0;
3188 unsigned i;
3189 ssize_t sz = 0;
3190 dm_block_t nr_free_blocks_metadata = 0;
3191 dm_block_t nr_blocks_metadata = 0;
3192 char buf[BDEVNAME_SIZE];
3193 struct cache *cache = ti->private;
3194 dm_cblock_t residency;
3195 bool needs_check;
3196
3197 switch (type) {
3198 case STATUSTYPE_INFO:
3199 if (get_cache_mode(cache) == CM_FAIL) {
3200 DMEMIT("Fail");
3201 break;
3202 }
3203
3204 /* Commit to ensure statistics aren't out-of-date */
3205 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3206 (void) commit(cache, false);
3207
3208 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3209 if (r) {
3210 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3211 cache_device_name(cache), r);
3212 goto err;
3213 }
3214
3215 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3216 if (r) {
3217 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3218 cache_device_name(cache), r);
3219 goto err;
3220 }
3221
3222 residency = policy_residency(cache->policy);
3223
3224 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3225 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3226 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3227 (unsigned long long)nr_blocks_metadata,
3228 (unsigned long long)cache->sectors_per_block,
3229 (unsigned long long) from_cblock(residency),
3230 (unsigned long long) from_cblock(cache->cache_size),
3231 (unsigned) atomic_read(&cache->stats.read_hit),
3232 (unsigned) atomic_read(&cache->stats.read_miss),
3233 (unsigned) atomic_read(&cache->stats.write_hit),
3234 (unsigned) atomic_read(&cache->stats.write_miss),
3235 (unsigned) atomic_read(&cache->stats.demotion),
3236 (unsigned) atomic_read(&cache->stats.promotion),
3237 (unsigned long) atomic_read(&cache->nr_dirty));
3238
3239 if (cache->features.metadata_version == 2)
3240 DMEMIT("2 metadata2 ");
3241 else
3242 DMEMIT("1 ");
3243
3244 if (writethrough_mode(&cache->features))
3245 DMEMIT("writethrough ");
3246
3247 else if (passthrough_mode(&cache->features))
3248 DMEMIT("passthrough ");
3249
3250 else if (writeback_mode(&cache->features))
3251 DMEMIT("writeback ");
3252
3253 else {
3254 DMERR("%s: internal error: unknown io mode: %d",
3255 cache_device_name(cache), (int) cache->features.io_mode);
3256 goto err;
3257 }
3258
3259 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3260
3261 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3262 if (sz < maxlen) {
3263 r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3264 if (r)
3265 DMERR("%s: policy_emit_config_values returned %d",
3266 cache_device_name(cache), r);
3267 }
3268
3269 if (get_cache_mode(cache) == CM_READ_ONLY)
3270 DMEMIT("ro ");
3271 else
3272 DMEMIT("rw ");
3273
3274 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3275
3276 if (r || needs_check)
3277 DMEMIT("needs_check ");
3278 else
3279 DMEMIT("- ");
3280
3281 break;
3282
3283 case STATUSTYPE_TABLE:
3284 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3285 DMEMIT("%s ", buf);
3286 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3287 DMEMIT("%s ", buf);
3288 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3289 DMEMIT("%s", buf);
3290
3291 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3292 DMEMIT(" %s", cache->ctr_args[i]);
3293 if (cache->nr_ctr_args)
3294 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3295 }
3296
3297 return;
3298
3299 err:
3300 DMEMIT("Error");
3301 }
3302
3303 /*
3304 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
3305 * the one-past-the-end value.
3306 */
3307 struct cblock_range {
3308 dm_cblock_t begin;
3309 dm_cblock_t end;
3310 };
3311
3312 /*
3313 * A cache block range can take two forms:
3314 *
3315 * i) A single cblock, eg. '3456'
3316 * ii) A begin and end cblock with a dash between, eg. 123-234
3317 */
3318 static int parse_cblock_range(struct cache *cache, const char *str,
3319 struct cblock_range *result)
3320 {
3321 char dummy;
3322 uint64_t b, e;
3323 int r;
3324
3325 /*
3326 * Try and parse form (ii) first.
3327 */
3328 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3329 if (r < 0)
3330 return r;
3331
3332 if (r == 2) {
3333 result->begin = to_cblock(b);
3334 result->end = to_cblock(e);
3335 return 0;
3336 }
3337
3338 /*
3339 * That didn't work, try form (i).
3340 */
3341 r = sscanf(str, "%llu%c", &b, &dummy);
3342 if (r < 0)
3343 return r;
3344
3345 if (r == 1) {
3346 result->begin = to_cblock(b);
3347 result->end = to_cblock(from_cblock(result->begin) + 1u);
3348 return 0;
3349 }
3350
3351 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3352 return -EINVAL;
3353 }
3354
3355 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3356 {
3357 uint64_t b = from_cblock(range->begin);
3358 uint64_t e = from_cblock(range->end);
3359 uint64_t n = from_cblock(cache->cache_size);
3360
3361 if (b >= n) {
3362 DMERR("%s: begin cblock out of range: %llu >= %llu",
3363 cache_device_name(cache), b, n);
3364 return -EINVAL;
3365 }
3366
3367 if (e > n) {
3368 DMERR("%s: end cblock out of range: %llu > %llu",
3369 cache_device_name(cache), e, n);
3370 return -EINVAL;
3371 }
3372
3373 if (b >= e) {
3374 DMERR("%s: invalid cblock range: %llu >= %llu",
3375 cache_device_name(cache), b, e);
3376 return -EINVAL;
3377 }
3378
3379 return 0;
3380 }
3381
3382 static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3383 {
3384 return to_cblock(from_cblock(b) + 1);
3385 }
3386
3387 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3388 {
3389 int r = 0;
3390
3391 /*
3392 * We don't need to do any locking here because we know we're in
3393 * passthrough mode. There's is potential for a race between an
3394 * invalidation triggered by an io and an invalidation message. This
3395 * is harmless, we must not worry if the policy call fails.
3396 */
3397 while (range->begin != range->end) {
3398 r = invalidate_cblock(cache, range->begin);
3399 if (r)
3400 return r;
3401
3402 range->begin = cblock_succ(range->begin);
3403 }
3404
3405 cache->commit_requested = true;
3406 return r;
3407 }
3408
3409 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3410 const char **cblock_ranges)
3411 {
3412 int r = 0;
3413 unsigned i;
3414 struct cblock_range range;
3415
3416 if (!passthrough_mode(&cache->features)) {
3417 DMERR("%s: cache has to be in passthrough mode for invalidation",
3418 cache_device_name(cache));
3419 return -EPERM;
3420 }
3421
3422 for (i = 0; i < count; i++) {
3423 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3424 if (r)
3425 break;
3426
3427 r = validate_cblock_range(cache, &range);
3428 if (r)
3429 break;
3430
3431 /*
3432 * Pass begin and end origin blocks to the worker and wake it.
3433 */
3434 r = request_invalidation(cache, &range);
3435 if (r)
3436 break;
3437 }
3438
3439 return r;
3440 }
3441
3442 /*
3443 * Supports
3444 * "<key> <value>"
3445 * and
3446 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3447 *
3448 * The key migration_threshold is supported by the cache target core.
3449 */
3450 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3451 {
3452 struct cache *cache = ti->private;
3453
3454 if (!argc)
3455 return -EINVAL;
3456
3457 if (get_cache_mode(cache) >= CM_READ_ONLY) {
3458 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3459 cache_device_name(cache));
3460 return -EOPNOTSUPP;
3461 }
3462
3463 if (!strcasecmp(argv[0], "invalidate_cblocks"))
3464 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3465
3466 if (argc != 2)
3467 return -EINVAL;
3468
3469 return set_config_value(cache, argv[0], argv[1]);
3470 }
3471
3472 static int cache_iterate_devices(struct dm_target *ti,
3473 iterate_devices_callout_fn fn, void *data)
3474 {
3475 int r = 0;
3476 struct cache *cache = ti->private;
3477
3478 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3479 if (!r)
3480 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3481
3482 return r;
3483 }
3484
3485 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3486 {
3487 /*
3488 * FIXME: these limits may be incompatible with the cache device
3489 */
3490 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3491 cache->origin_sectors);
3492 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3493 }
3494
3495 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3496 {
3497 struct cache *cache = ti->private;
3498 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3499
3500 /*
3501 * If the system-determined stacked limits are compatible with the
3502 * cache's blocksize (io_opt is a factor) do not override them.
3503 */
3504 if (io_opt_sectors < cache->sectors_per_block ||
3505 do_div(io_opt_sectors, cache->sectors_per_block)) {
3506 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3507 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3508 }
3509 set_discard_limits(cache, limits);
3510 }
3511
3512 /*----------------------------------------------------------------*/
3513
3514 static struct target_type cache_target = {
3515 .name = "cache",
3516 .version = {2, 0, 0},
3517 .module = THIS_MODULE,
3518 .ctr = cache_ctr,
3519 .dtr = cache_dtr,
3520 .map = cache_map,
3521 .end_io = cache_end_io,
3522 .postsuspend = cache_postsuspend,
3523 .preresume = cache_preresume,
3524 .resume = cache_resume,
3525 .status = cache_status,
3526 .message = cache_message,
3527 .iterate_devices = cache_iterate_devices,
3528 .io_hints = cache_io_hints,
3529 };
3530
3531 static int __init dm_cache_init(void)
3532 {
3533 int r;
3534
3535 r = dm_register_target(&cache_target);
3536 if (r) {
3537 DMERR("cache target registration failed: %d", r);
3538 return r;
3539 }
3540
3541 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3542 if (!migration_cache) {
3543 dm_unregister_target(&cache_target);
3544 return -ENOMEM;
3545 }
3546
3547 return 0;
3548 }
3549
3550 static void __exit dm_cache_exit(void)
3551 {
3552 dm_unregister_target(&cache_target);
3553 kmem_cache_destroy(migration_cache);
3554 }
3555
3556 module_init(dm_cache_init);
3557 module_exit(dm_cache_exit);
3558
3559 MODULE_DESCRIPTION(DM_NAME " cache target");
3560 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3561 MODULE_LICENSE("GPL");