]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/dm-crypt.c
357387fa10ca4dace114a278b8d7d037107b893b
[mirror_ubuntu-bionic-kernel.git] / drivers / md / dm-crypt.c
1 /*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/crypto.h>
18 #include <linux/workqueue.h>
19 #include <linux/backing-dev.h>
20 #include <asm/atomic.h>
21 #include <linux/scatterlist.h>
22 #include <asm/page.h>
23 #include <asm/unaligned.h>
24
25 #include "dm.h"
26
27 #define DM_MSG_PREFIX "crypt"
28 #define MESG_STR(x) x, sizeof(x)
29
30 /*
31 * per bio private data
32 */
33 struct dm_crypt_io {
34 struct dm_target *target;
35 struct bio *base_bio;
36 struct work_struct work;
37 atomic_t pending;
38 int error;
39 };
40
41 /*
42 * context holding the current state of a multi-part conversion
43 */
44 struct convert_context {
45 struct bio *bio_in;
46 struct bio *bio_out;
47 unsigned int offset_in;
48 unsigned int offset_out;
49 unsigned int idx_in;
50 unsigned int idx_out;
51 sector_t sector;
52 int write;
53 };
54
55 struct crypt_config;
56
57 struct crypt_iv_operations {
58 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
59 const char *opts);
60 void (*dtr)(struct crypt_config *cc);
61 const char *(*status)(struct crypt_config *cc);
62 int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
63 };
64
65 /*
66 * Crypt: maps a linear range of a block device
67 * and encrypts / decrypts at the same time.
68 */
69 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
70 struct crypt_config {
71 struct dm_dev *dev;
72 sector_t start;
73
74 /*
75 * pool for per bio private data and
76 * for encryption buffer pages
77 */
78 mempool_t *io_pool;
79 mempool_t *page_pool;
80 struct bio_set *bs;
81
82 struct workqueue_struct *io_queue;
83 struct workqueue_struct *crypt_queue;
84 /*
85 * crypto related data
86 */
87 struct crypt_iv_operations *iv_gen_ops;
88 char *iv_mode;
89 union {
90 struct crypto_cipher *essiv_tfm;
91 int benbi_shift;
92 } iv_gen_private;
93 sector_t iv_offset;
94 unsigned int iv_size;
95
96 char cipher[CRYPTO_MAX_ALG_NAME];
97 char chainmode[CRYPTO_MAX_ALG_NAME];
98 struct crypto_blkcipher *tfm;
99 unsigned long flags;
100 unsigned int key_size;
101 u8 key[0];
102 };
103
104 #define MIN_IOS 16
105 #define MIN_POOL_PAGES 32
106 #define MIN_BIO_PAGES 8
107
108 static struct kmem_cache *_crypt_io_pool;
109
110 static void clone_init(struct dm_crypt_io *, struct bio *);
111
112 /*
113 * Different IV generation algorithms:
114 *
115 * plain: the initial vector is the 32-bit little-endian version of the sector
116 * number, padded with zeros if neccessary.
117 *
118 * essiv: "encrypted sector|salt initial vector", the sector number is
119 * encrypted with the bulk cipher using a salt as key. The salt
120 * should be derived from the bulk cipher's key via hashing.
121 *
122 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
123 * (needed for LRW-32-AES and possible other narrow block modes)
124 *
125 * null: the initial vector is always zero. Provides compatibility with
126 * obsolete loop_fish2 devices. Do not use for new devices.
127 *
128 * plumb: unimplemented, see:
129 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
130 */
131
132 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
133 {
134 memset(iv, 0, cc->iv_size);
135 *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
136
137 return 0;
138 }
139
140 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
141 const char *opts)
142 {
143 struct crypto_cipher *essiv_tfm;
144 struct crypto_hash *hash_tfm;
145 struct hash_desc desc;
146 struct scatterlist sg;
147 unsigned int saltsize;
148 u8 *salt;
149 int err;
150
151 if (opts == NULL) {
152 ti->error = "Digest algorithm missing for ESSIV mode";
153 return -EINVAL;
154 }
155
156 /* Hash the cipher key with the given hash algorithm */
157 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
158 if (IS_ERR(hash_tfm)) {
159 ti->error = "Error initializing ESSIV hash";
160 return PTR_ERR(hash_tfm);
161 }
162
163 saltsize = crypto_hash_digestsize(hash_tfm);
164 salt = kmalloc(saltsize, GFP_KERNEL);
165 if (salt == NULL) {
166 ti->error = "Error kmallocing salt storage in ESSIV";
167 crypto_free_hash(hash_tfm);
168 return -ENOMEM;
169 }
170
171 sg_set_buf(&sg, cc->key, cc->key_size);
172 desc.tfm = hash_tfm;
173 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
174 err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
175 crypto_free_hash(hash_tfm);
176
177 if (err) {
178 ti->error = "Error calculating hash in ESSIV";
179 kfree(salt);
180 return err;
181 }
182
183 /* Setup the essiv_tfm with the given salt */
184 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
185 if (IS_ERR(essiv_tfm)) {
186 ti->error = "Error allocating crypto tfm for ESSIV";
187 kfree(salt);
188 return PTR_ERR(essiv_tfm);
189 }
190 if (crypto_cipher_blocksize(essiv_tfm) !=
191 crypto_blkcipher_ivsize(cc->tfm)) {
192 ti->error = "Block size of ESSIV cipher does "
193 "not match IV size of block cipher";
194 crypto_free_cipher(essiv_tfm);
195 kfree(salt);
196 return -EINVAL;
197 }
198 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
199 if (err) {
200 ti->error = "Failed to set key for ESSIV cipher";
201 crypto_free_cipher(essiv_tfm);
202 kfree(salt);
203 return err;
204 }
205 kfree(salt);
206
207 cc->iv_gen_private.essiv_tfm = essiv_tfm;
208 return 0;
209 }
210
211 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
212 {
213 crypto_free_cipher(cc->iv_gen_private.essiv_tfm);
214 cc->iv_gen_private.essiv_tfm = NULL;
215 }
216
217 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
218 {
219 memset(iv, 0, cc->iv_size);
220 *(u64 *)iv = cpu_to_le64(sector);
221 crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv);
222 return 0;
223 }
224
225 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
226 const char *opts)
227 {
228 unsigned int bs = crypto_blkcipher_blocksize(cc->tfm);
229 int log = ilog2(bs);
230
231 /* we need to calculate how far we must shift the sector count
232 * to get the cipher block count, we use this shift in _gen */
233
234 if (1 << log != bs) {
235 ti->error = "cypher blocksize is not a power of 2";
236 return -EINVAL;
237 }
238
239 if (log > 9) {
240 ti->error = "cypher blocksize is > 512";
241 return -EINVAL;
242 }
243
244 cc->iv_gen_private.benbi_shift = 9 - log;
245
246 return 0;
247 }
248
249 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
250 {
251 }
252
253 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
254 {
255 __be64 val;
256
257 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
258
259 val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1);
260 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
261
262 return 0;
263 }
264
265 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
266 {
267 memset(iv, 0, cc->iv_size);
268
269 return 0;
270 }
271
272 static struct crypt_iv_operations crypt_iv_plain_ops = {
273 .generator = crypt_iv_plain_gen
274 };
275
276 static struct crypt_iv_operations crypt_iv_essiv_ops = {
277 .ctr = crypt_iv_essiv_ctr,
278 .dtr = crypt_iv_essiv_dtr,
279 .generator = crypt_iv_essiv_gen
280 };
281
282 static struct crypt_iv_operations crypt_iv_benbi_ops = {
283 .ctr = crypt_iv_benbi_ctr,
284 .dtr = crypt_iv_benbi_dtr,
285 .generator = crypt_iv_benbi_gen
286 };
287
288 static struct crypt_iv_operations crypt_iv_null_ops = {
289 .generator = crypt_iv_null_gen
290 };
291
292 static int
293 crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out,
294 struct scatterlist *in, unsigned int length,
295 int write, sector_t sector)
296 {
297 u8 iv[cc->iv_size] __attribute__ ((aligned(__alignof__(u64))));
298 struct blkcipher_desc desc = {
299 .tfm = cc->tfm,
300 .info = iv,
301 .flags = CRYPTO_TFM_REQ_MAY_SLEEP,
302 };
303 int r;
304
305 if (cc->iv_gen_ops) {
306 r = cc->iv_gen_ops->generator(cc, iv, sector);
307 if (r < 0)
308 return r;
309
310 if (write)
311 r = crypto_blkcipher_encrypt_iv(&desc, out, in, length);
312 else
313 r = crypto_blkcipher_decrypt_iv(&desc, out, in, length);
314 } else {
315 if (write)
316 r = crypto_blkcipher_encrypt(&desc, out, in, length);
317 else
318 r = crypto_blkcipher_decrypt(&desc, out, in, length);
319 }
320
321 return r;
322 }
323
324 static void
325 crypt_convert_init(struct crypt_config *cc, struct convert_context *ctx,
326 struct bio *bio_out, struct bio *bio_in,
327 sector_t sector, int write)
328 {
329 ctx->bio_in = bio_in;
330 ctx->bio_out = bio_out;
331 ctx->offset_in = 0;
332 ctx->offset_out = 0;
333 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
334 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
335 ctx->sector = sector + cc->iv_offset;
336 ctx->write = write;
337 }
338
339 /*
340 * Encrypt / decrypt data from one bio to another one (can be the same one)
341 */
342 static int crypt_convert(struct crypt_config *cc,
343 struct convert_context *ctx)
344 {
345 int r = 0;
346
347 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
348 ctx->idx_out < ctx->bio_out->bi_vcnt) {
349 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
350 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
351 struct scatterlist sg_in = {
352 .page = bv_in->bv_page,
353 .offset = bv_in->bv_offset + ctx->offset_in,
354 .length = 1 << SECTOR_SHIFT
355 };
356 struct scatterlist sg_out = {
357 .page = bv_out->bv_page,
358 .offset = bv_out->bv_offset + ctx->offset_out,
359 .length = 1 << SECTOR_SHIFT
360 };
361
362 ctx->offset_in += sg_in.length;
363 if (ctx->offset_in >= bv_in->bv_len) {
364 ctx->offset_in = 0;
365 ctx->idx_in++;
366 }
367
368 ctx->offset_out += sg_out.length;
369 if (ctx->offset_out >= bv_out->bv_len) {
370 ctx->offset_out = 0;
371 ctx->idx_out++;
372 }
373
374 r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length,
375 ctx->write, ctx->sector);
376 if (r < 0)
377 break;
378
379 ctx->sector++;
380 }
381
382 return r;
383 }
384
385 static void dm_crypt_bio_destructor(struct bio *bio)
386 {
387 struct dm_crypt_io *io = bio->bi_private;
388 struct crypt_config *cc = io->target->private;
389
390 bio_free(bio, cc->bs);
391 }
392
393 /*
394 * Generate a new unfragmented bio with the given size
395 * This should never violate the device limitations
396 * May return a smaller bio when running out of pages
397 */
398 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
399 {
400 struct crypt_config *cc = io->target->private;
401 struct bio *clone;
402 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
403 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
404 unsigned int i;
405
406 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
407 if (!clone)
408 return NULL;
409
410 clone_init(io, clone);
411
412 for (i = 0; i < nr_iovecs; i++) {
413 struct bio_vec *bv = bio_iovec_idx(clone, i);
414
415 bv->bv_page = mempool_alloc(cc->page_pool, gfp_mask);
416 if (!bv->bv_page)
417 break;
418
419 /*
420 * if additional pages cannot be allocated without waiting,
421 * return a partially allocated bio, the caller will then try
422 * to allocate additional bios while submitting this partial bio
423 */
424 if (i == (MIN_BIO_PAGES - 1))
425 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
426
427 bv->bv_offset = 0;
428 if (size > PAGE_SIZE)
429 bv->bv_len = PAGE_SIZE;
430 else
431 bv->bv_len = size;
432
433 clone->bi_size += bv->bv_len;
434 clone->bi_vcnt++;
435 size -= bv->bv_len;
436 }
437
438 if (!clone->bi_size) {
439 bio_put(clone);
440 return NULL;
441 }
442
443 return clone;
444 }
445
446 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
447 {
448 unsigned int i;
449 struct bio_vec *bv;
450
451 for (i = 0; i < clone->bi_vcnt; i++) {
452 bv = bio_iovec_idx(clone, i);
453 BUG_ON(!bv->bv_page);
454 mempool_free(bv->bv_page, cc->page_pool);
455 bv->bv_page = NULL;
456 }
457 }
458
459 /*
460 * One of the bios was finished. Check for completion of
461 * the whole request and correctly clean up the buffer.
462 */
463 static void dec_pending(struct dm_crypt_io *io, int error)
464 {
465 struct crypt_config *cc = (struct crypt_config *) io->target->private;
466
467 if (error < 0)
468 io->error = error;
469
470 if (!atomic_dec_and_test(&io->pending))
471 return;
472
473 bio_endio(io->base_bio, io->error);
474
475 mempool_free(io, cc->io_pool);
476 }
477
478 /*
479 * kcryptd/kcryptd_io:
480 *
481 * Needed because it would be very unwise to do decryption in an
482 * interrupt context.
483 *
484 * kcryptd performs the actual encryption or decryption.
485 *
486 * kcryptd_io performs the IO submission.
487 *
488 * They must be separated as otherwise the final stages could be
489 * starved by new requests which can block in the first stages due
490 * to memory allocation.
491 */
492 static void kcryptd_do_work(struct work_struct *work);
493 static void kcryptd_do_crypt(struct work_struct *work);
494
495 static void kcryptd_queue_io(struct dm_crypt_io *io)
496 {
497 struct crypt_config *cc = io->target->private;
498
499 INIT_WORK(&io->work, kcryptd_do_work);
500 queue_work(cc->io_queue, &io->work);
501 }
502
503 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
504 {
505 struct crypt_config *cc = io->target->private;
506
507 INIT_WORK(&io->work, kcryptd_do_crypt);
508 queue_work(cc->crypt_queue, &io->work);
509 }
510
511 static void crypt_endio(struct bio *clone, int error)
512 {
513 struct dm_crypt_io *io = clone->bi_private;
514 struct crypt_config *cc = io->target->private;
515 unsigned read_io = bio_data_dir(clone) == READ;
516
517 /*
518 * free the processed pages
519 */
520 if (!read_io) {
521 crypt_free_buffer_pages(cc, clone);
522 goto out;
523 }
524
525 if (unlikely(!bio_flagged(clone, BIO_UPTODATE))) {
526 error = -EIO;
527 goto out;
528 }
529
530 bio_put(clone);
531 kcryptd_queue_crypt(io);
532 return;
533
534 out:
535 bio_put(clone);
536 dec_pending(io, error);
537 }
538
539 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
540 {
541 struct crypt_config *cc = io->target->private;
542
543 clone->bi_private = io;
544 clone->bi_end_io = crypt_endio;
545 clone->bi_bdev = cc->dev->bdev;
546 clone->bi_rw = io->base_bio->bi_rw;
547 clone->bi_destructor = dm_crypt_bio_destructor;
548 }
549
550 static void process_read(struct dm_crypt_io *io)
551 {
552 struct crypt_config *cc = io->target->private;
553 struct bio *base_bio = io->base_bio;
554 struct bio *clone;
555 sector_t sector = base_bio->bi_sector - io->target->begin;
556
557 atomic_inc(&io->pending);
558
559 /*
560 * The block layer might modify the bvec array, so always
561 * copy the required bvecs because we need the original
562 * one in order to decrypt the whole bio data *afterwards*.
563 */
564 clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
565 if (unlikely(!clone)) {
566 dec_pending(io, -ENOMEM);
567 return;
568 }
569
570 clone_init(io, clone);
571 clone->bi_idx = 0;
572 clone->bi_vcnt = bio_segments(base_bio);
573 clone->bi_size = base_bio->bi_size;
574 clone->bi_sector = cc->start + sector;
575 memcpy(clone->bi_io_vec, bio_iovec(base_bio),
576 sizeof(struct bio_vec) * clone->bi_vcnt);
577
578 generic_make_request(clone);
579 }
580
581 static void process_write(struct dm_crypt_io *io)
582 {
583 struct crypt_config *cc = io->target->private;
584 struct bio *base_bio = io->base_bio;
585 struct bio *clone;
586 struct convert_context ctx;
587 unsigned remaining = base_bio->bi_size;
588 sector_t sector = base_bio->bi_sector - io->target->begin;
589
590 atomic_inc(&io->pending);
591
592 crypt_convert_init(cc, &ctx, NULL, base_bio, sector, 1);
593
594 /*
595 * The allocated buffers can be smaller than the whole bio,
596 * so repeat the whole process until all the data can be handled.
597 */
598 while (remaining) {
599 clone = crypt_alloc_buffer(io, remaining);
600 if (unlikely(!clone)) {
601 dec_pending(io, -ENOMEM);
602 return;
603 }
604
605 ctx.bio_out = clone;
606 ctx.idx_out = 0;
607
608 if (unlikely(crypt_convert(cc, &ctx) < 0)) {
609 crypt_free_buffer_pages(cc, clone);
610 bio_put(clone);
611 dec_pending(io, -EIO);
612 return;
613 }
614
615 /* crypt_convert should have filled the clone bio */
616 BUG_ON(ctx.idx_out < clone->bi_vcnt);
617
618 clone->bi_sector = cc->start + sector;
619 remaining -= clone->bi_size;
620 sector += bio_sectors(clone);
621
622 /* Grab another reference to the io struct
623 * before we kick off the request */
624 if (remaining)
625 atomic_inc(&io->pending);
626
627 generic_make_request(clone);
628
629 /* Do not reference clone after this - it
630 * may be gone already. */
631
632 /* out of memory -> run queues */
633 if (remaining)
634 congestion_wait(WRITE, HZ/100);
635 }
636 }
637
638 static void process_read_endio(struct dm_crypt_io *io)
639 {
640 struct crypt_config *cc = io->target->private;
641 struct convert_context ctx;
642
643 crypt_convert_init(cc, &ctx, io->base_bio, io->base_bio,
644 io->base_bio->bi_sector - io->target->begin, 0);
645
646 dec_pending(io, crypt_convert(cc, &ctx));
647 }
648
649 static void kcryptd_do_work(struct work_struct *work)
650 {
651 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
652
653 if (bio_data_dir(io->base_bio) == READ)
654 process_read(io);
655 }
656
657 static void kcryptd_do_crypt(struct work_struct *work)
658 {
659 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
660
661 if (bio_data_dir(io->base_bio) == READ)
662 process_read_endio(io);
663 else
664 process_write(io);
665 }
666
667 /*
668 * Decode key from its hex representation
669 */
670 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
671 {
672 char buffer[3];
673 char *endp;
674 unsigned int i;
675
676 buffer[2] = '\0';
677
678 for (i = 0; i < size; i++) {
679 buffer[0] = *hex++;
680 buffer[1] = *hex++;
681
682 key[i] = (u8)simple_strtoul(buffer, &endp, 16);
683
684 if (endp != &buffer[2])
685 return -EINVAL;
686 }
687
688 if (*hex != '\0')
689 return -EINVAL;
690
691 return 0;
692 }
693
694 /*
695 * Encode key into its hex representation
696 */
697 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
698 {
699 unsigned int i;
700
701 for (i = 0; i < size; i++) {
702 sprintf(hex, "%02x", *key);
703 hex += 2;
704 key++;
705 }
706 }
707
708 static int crypt_set_key(struct crypt_config *cc, char *key)
709 {
710 unsigned key_size = strlen(key) >> 1;
711
712 if (cc->key_size && cc->key_size != key_size)
713 return -EINVAL;
714
715 cc->key_size = key_size; /* initial settings */
716
717 if ((!key_size && strcmp(key, "-")) ||
718 (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
719 return -EINVAL;
720
721 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
722
723 return 0;
724 }
725
726 static int crypt_wipe_key(struct crypt_config *cc)
727 {
728 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
729 memset(&cc->key, 0, cc->key_size * sizeof(u8));
730 return 0;
731 }
732
733 /*
734 * Construct an encryption mapping:
735 * <cipher> <key> <iv_offset> <dev_path> <start>
736 */
737 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
738 {
739 struct crypt_config *cc;
740 struct crypto_blkcipher *tfm;
741 char *tmp;
742 char *cipher;
743 char *chainmode;
744 char *ivmode;
745 char *ivopts;
746 unsigned int key_size;
747 unsigned long long tmpll;
748
749 if (argc != 5) {
750 ti->error = "Not enough arguments";
751 return -EINVAL;
752 }
753
754 tmp = argv[0];
755 cipher = strsep(&tmp, "-");
756 chainmode = strsep(&tmp, "-");
757 ivopts = strsep(&tmp, "-");
758 ivmode = strsep(&ivopts, ":");
759
760 if (tmp)
761 DMWARN("Unexpected additional cipher options");
762
763 key_size = strlen(argv[1]) >> 1;
764
765 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
766 if (cc == NULL) {
767 ti->error =
768 "Cannot allocate transparent encryption context";
769 return -ENOMEM;
770 }
771
772 if (crypt_set_key(cc, argv[1])) {
773 ti->error = "Error decoding key";
774 goto bad1;
775 }
776
777 /* Compatiblity mode for old dm-crypt cipher strings */
778 if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
779 chainmode = "cbc";
780 ivmode = "plain";
781 }
782
783 if (strcmp(chainmode, "ecb") && !ivmode) {
784 ti->error = "This chaining mode requires an IV mechanism";
785 goto bad1;
786 }
787
788 if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)", chainmode,
789 cipher) >= CRYPTO_MAX_ALG_NAME) {
790 ti->error = "Chain mode + cipher name is too long";
791 goto bad1;
792 }
793
794 tfm = crypto_alloc_blkcipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
795 if (IS_ERR(tfm)) {
796 ti->error = "Error allocating crypto tfm";
797 goto bad1;
798 }
799
800 strcpy(cc->cipher, cipher);
801 strcpy(cc->chainmode, chainmode);
802 cc->tfm = tfm;
803
804 /*
805 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
806 * See comments at iv code
807 */
808
809 if (ivmode == NULL)
810 cc->iv_gen_ops = NULL;
811 else if (strcmp(ivmode, "plain") == 0)
812 cc->iv_gen_ops = &crypt_iv_plain_ops;
813 else if (strcmp(ivmode, "essiv") == 0)
814 cc->iv_gen_ops = &crypt_iv_essiv_ops;
815 else if (strcmp(ivmode, "benbi") == 0)
816 cc->iv_gen_ops = &crypt_iv_benbi_ops;
817 else if (strcmp(ivmode, "null") == 0)
818 cc->iv_gen_ops = &crypt_iv_null_ops;
819 else {
820 ti->error = "Invalid IV mode";
821 goto bad2;
822 }
823
824 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
825 cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
826 goto bad2;
827
828 cc->iv_size = crypto_blkcipher_ivsize(tfm);
829 if (cc->iv_size)
830 /* at least a 64 bit sector number should fit in our buffer */
831 cc->iv_size = max(cc->iv_size,
832 (unsigned int)(sizeof(u64) / sizeof(u8)));
833 else {
834 if (cc->iv_gen_ops) {
835 DMWARN("Selected cipher does not support IVs");
836 if (cc->iv_gen_ops->dtr)
837 cc->iv_gen_ops->dtr(cc);
838 cc->iv_gen_ops = NULL;
839 }
840 }
841
842 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
843 if (!cc->io_pool) {
844 ti->error = "Cannot allocate crypt io mempool";
845 goto bad3;
846 }
847
848 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
849 if (!cc->page_pool) {
850 ti->error = "Cannot allocate page mempool";
851 goto bad4;
852 }
853
854 cc->bs = bioset_create(MIN_IOS, MIN_IOS);
855 if (!cc->bs) {
856 ti->error = "Cannot allocate crypt bioset";
857 goto bad_bs;
858 }
859
860 if (crypto_blkcipher_setkey(tfm, cc->key, key_size) < 0) {
861 ti->error = "Error setting key";
862 goto bad5;
863 }
864
865 if (sscanf(argv[2], "%llu", &tmpll) != 1) {
866 ti->error = "Invalid iv_offset sector";
867 goto bad5;
868 }
869 cc->iv_offset = tmpll;
870
871 if (sscanf(argv[4], "%llu", &tmpll) != 1) {
872 ti->error = "Invalid device sector";
873 goto bad5;
874 }
875 cc->start = tmpll;
876
877 if (dm_get_device(ti, argv[3], cc->start, ti->len,
878 dm_table_get_mode(ti->table), &cc->dev)) {
879 ti->error = "Device lookup failed";
880 goto bad5;
881 }
882
883 if (ivmode && cc->iv_gen_ops) {
884 if (ivopts)
885 *(ivopts - 1) = ':';
886 cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
887 if (!cc->iv_mode) {
888 ti->error = "Error kmallocing iv_mode string";
889 goto bad_iv_mode;
890 }
891 strcpy(cc->iv_mode, ivmode);
892 } else
893 cc->iv_mode = NULL;
894
895 cc->io_queue = create_singlethread_workqueue("kcryptd_io");
896 if (!cc->io_queue) {
897 ti->error = "Couldn't create kcryptd io queue";
898 goto bad_io_queue;
899 }
900
901 cc->crypt_queue = create_singlethread_workqueue("kcryptd");
902 if (!cc->crypt_queue) {
903 ti->error = "Couldn't create kcryptd queue";
904 goto bad_crypt_queue;
905 }
906
907 ti->private = cc;
908 return 0;
909
910 bad_crypt_queue:
911 destroy_workqueue(cc->io_queue);
912 bad_io_queue:
913 kfree(cc->iv_mode);
914 bad_iv_mode:
915 dm_put_device(ti, cc->dev);
916 bad5:
917 bioset_free(cc->bs);
918 bad_bs:
919 mempool_destroy(cc->page_pool);
920 bad4:
921 mempool_destroy(cc->io_pool);
922 bad3:
923 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
924 cc->iv_gen_ops->dtr(cc);
925 bad2:
926 crypto_free_blkcipher(tfm);
927 bad1:
928 /* Must zero key material before freeing */
929 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
930 kfree(cc);
931 return -EINVAL;
932 }
933
934 static void crypt_dtr(struct dm_target *ti)
935 {
936 struct crypt_config *cc = (struct crypt_config *) ti->private;
937
938 destroy_workqueue(cc->io_queue);
939 destroy_workqueue(cc->crypt_queue);
940
941 bioset_free(cc->bs);
942 mempool_destroy(cc->page_pool);
943 mempool_destroy(cc->io_pool);
944
945 kfree(cc->iv_mode);
946 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
947 cc->iv_gen_ops->dtr(cc);
948 crypto_free_blkcipher(cc->tfm);
949 dm_put_device(ti, cc->dev);
950
951 /* Must zero key material before freeing */
952 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
953 kfree(cc);
954 }
955
956 static int crypt_map(struct dm_target *ti, struct bio *bio,
957 union map_info *map_context)
958 {
959 struct crypt_config *cc = ti->private;
960 struct dm_crypt_io *io;
961
962 io = mempool_alloc(cc->io_pool, GFP_NOIO);
963 io->target = ti;
964 io->base_bio = bio;
965 io->error = 0;
966 atomic_set(&io->pending, 0);
967
968 if (bio_data_dir(io->base_bio) == READ)
969 kcryptd_queue_io(io);
970 else
971 kcryptd_queue_crypt(io);
972
973 return DM_MAPIO_SUBMITTED;
974 }
975
976 static int crypt_status(struct dm_target *ti, status_type_t type,
977 char *result, unsigned int maxlen)
978 {
979 struct crypt_config *cc = (struct crypt_config *) ti->private;
980 unsigned int sz = 0;
981
982 switch (type) {
983 case STATUSTYPE_INFO:
984 result[0] = '\0';
985 break;
986
987 case STATUSTYPE_TABLE:
988 if (cc->iv_mode)
989 DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
990 cc->iv_mode);
991 else
992 DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
993
994 if (cc->key_size > 0) {
995 if ((maxlen - sz) < ((cc->key_size << 1) + 1))
996 return -ENOMEM;
997
998 crypt_encode_key(result + sz, cc->key, cc->key_size);
999 sz += cc->key_size << 1;
1000 } else {
1001 if (sz >= maxlen)
1002 return -ENOMEM;
1003 result[sz++] = '-';
1004 }
1005
1006 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1007 cc->dev->name, (unsigned long long)cc->start);
1008 break;
1009 }
1010 return 0;
1011 }
1012
1013 static void crypt_postsuspend(struct dm_target *ti)
1014 {
1015 struct crypt_config *cc = ti->private;
1016
1017 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1018 }
1019
1020 static int crypt_preresume(struct dm_target *ti)
1021 {
1022 struct crypt_config *cc = ti->private;
1023
1024 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1025 DMERR("aborting resume - crypt key is not set.");
1026 return -EAGAIN;
1027 }
1028
1029 return 0;
1030 }
1031
1032 static void crypt_resume(struct dm_target *ti)
1033 {
1034 struct crypt_config *cc = ti->private;
1035
1036 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1037 }
1038
1039 /* Message interface
1040 * key set <key>
1041 * key wipe
1042 */
1043 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1044 {
1045 struct crypt_config *cc = ti->private;
1046
1047 if (argc < 2)
1048 goto error;
1049
1050 if (!strnicmp(argv[0], MESG_STR("key"))) {
1051 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1052 DMWARN("not suspended during key manipulation.");
1053 return -EINVAL;
1054 }
1055 if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
1056 return crypt_set_key(cc, argv[2]);
1057 if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
1058 return crypt_wipe_key(cc);
1059 }
1060
1061 error:
1062 DMWARN("unrecognised message received.");
1063 return -EINVAL;
1064 }
1065
1066 static struct target_type crypt_target = {
1067 .name = "crypt",
1068 .version= {1, 5, 0},
1069 .module = THIS_MODULE,
1070 .ctr = crypt_ctr,
1071 .dtr = crypt_dtr,
1072 .map = crypt_map,
1073 .status = crypt_status,
1074 .postsuspend = crypt_postsuspend,
1075 .preresume = crypt_preresume,
1076 .resume = crypt_resume,
1077 .message = crypt_message,
1078 };
1079
1080 static int __init dm_crypt_init(void)
1081 {
1082 int r;
1083
1084 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1085 if (!_crypt_io_pool)
1086 return -ENOMEM;
1087
1088 r = dm_register_target(&crypt_target);
1089 if (r < 0) {
1090 DMERR("register failed %d", r);
1091 kmem_cache_destroy(_crypt_io_pool);
1092 }
1093
1094 return r;
1095 }
1096
1097 static void __exit dm_crypt_exit(void)
1098 {
1099 int r = dm_unregister_target(&crypt_target);
1100
1101 if (r < 0)
1102 DMERR("unregister failed %d", r);
1103
1104 kmem_cache_destroy(_crypt_io_pool);
1105 }
1106
1107 module_init(dm_crypt_init);
1108 module_exit(dm_crypt_exit);
1109
1110 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1111 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1112 MODULE_LICENSE("GPL");