]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/dm-crypt.c
block: switch bios to blk_status_t
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm-crypt.c
1 /*
2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2017 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013-2017 Milan Broz <gmazyland@gmail.com>
6 *
7 * This file is released under the GPL.
8 */
9
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/key.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/crypto.h>
21 #include <linux/workqueue.h>
22 #include <linux/kthread.h>
23 #include <linux/backing-dev.h>
24 #include <linux/atomic.h>
25 #include <linux/scatterlist.h>
26 #include <linux/rbtree.h>
27 #include <linux/ctype.h>
28 #include <asm/page.h>
29 #include <asm/unaligned.h>
30 #include <crypto/hash.h>
31 #include <crypto/md5.h>
32 #include <crypto/algapi.h>
33 #include <crypto/skcipher.h>
34 #include <crypto/aead.h>
35 #include <crypto/authenc.h>
36 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
37 #include <keys/user-type.h>
38
39 #include <linux/device-mapper.h>
40
41 #define DM_MSG_PREFIX "crypt"
42
43 /*
44 * context holding the current state of a multi-part conversion
45 */
46 struct convert_context {
47 struct completion restart;
48 struct bio *bio_in;
49 struct bio *bio_out;
50 struct bvec_iter iter_in;
51 struct bvec_iter iter_out;
52 sector_t cc_sector;
53 atomic_t cc_pending;
54 union {
55 struct skcipher_request *req;
56 struct aead_request *req_aead;
57 } r;
58
59 };
60
61 /*
62 * per bio private data
63 */
64 struct dm_crypt_io {
65 struct crypt_config *cc;
66 struct bio *base_bio;
67 u8 *integrity_metadata;
68 bool integrity_metadata_from_pool;
69 struct work_struct work;
70
71 struct convert_context ctx;
72
73 atomic_t io_pending;
74 blk_status_t error;
75 sector_t sector;
76
77 struct rb_node rb_node;
78 } CRYPTO_MINALIGN_ATTR;
79
80 struct dm_crypt_request {
81 struct convert_context *ctx;
82 struct scatterlist sg_in[4];
83 struct scatterlist sg_out[4];
84 sector_t iv_sector;
85 };
86
87 struct crypt_config;
88
89 struct crypt_iv_operations {
90 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
91 const char *opts);
92 void (*dtr)(struct crypt_config *cc);
93 int (*init)(struct crypt_config *cc);
94 int (*wipe)(struct crypt_config *cc);
95 int (*generator)(struct crypt_config *cc, u8 *iv,
96 struct dm_crypt_request *dmreq);
97 int (*post)(struct crypt_config *cc, u8 *iv,
98 struct dm_crypt_request *dmreq);
99 };
100
101 struct iv_essiv_private {
102 struct crypto_ahash *hash_tfm;
103 u8 *salt;
104 };
105
106 struct iv_benbi_private {
107 int shift;
108 };
109
110 #define LMK_SEED_SIZE 64 /* hash + 0 */
111 struct iv_lmk_private {
112 struct crypto_shash *hash_tfm;
113 u8 *seed;
114 };
115
116 #define TCW_WHITENING_SIZE 16
117 struct iv_tcw_private {
118 struct crypto_shash *crc32_tfm;
119 u8 *iv_seed;
120 u8 *whitening;
121 };
122
123 /*
124 * Crypt: maps a linear range of a block device
125 * and encrypts / decrypts at the same time.
126 */
127 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
128 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
129
130 enum cipher_flags {
131 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cihper */
132 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */
133 };
134
135 /*
136 * The fields in here must be read only after initialization.
137 */
138 struct crypt_config {
139 struct dm_dev *dev;
140 sector_t start;
141
142 /*
143 * pool for per bio private data, crypto requests,
144 * encryption requeusts/buffer pages and integrity tags
145 */
146 mempool_t *req_pool;
147 mempool_t *page_pool;
148 mempool_t *tag_pool;
149 unsigned tag_pool_max_sectors;
150
151 struct bio_set *bs;
152 struct mutex bio_alloc_lock;
153
154 struct workqueue_struct *io_queue;
155 struct workqueue_struct *crypt_queue;
156
157 struct task_struct *write_thread;
158 wait_queue_head_t write_thread_wait;
159 struct rb_root write_tree;
160
161 char *cipher;
162 char *cipher_string;
163 char *cipher_auth;
164 char *key_string;
165
166 const struct crypt_iv_operations *iv_gen_ops;
167 union {
168 struct iv_essiv_private essiv;
169 struct iv_benbi_private benbi;
170 struct iv_lmk_private lmk;
171 struct iv_tcw_private tcw;
172 } iv_gen_private;
173 sector_t iv_offset;
174 unsigned int iv_size;
175 unsigned short int sector_size;
176 unsigned char sector_shift;
177
178 /* ESSIV: struct crypto_cipher *essiv_tfm */
179 void *iv_private;
180 union {
181 struct crypto_skcipher **tfms;
182 struct crypto_aead **tfms_aead;
183 } cipher_tfm;
184 unsigned tfms_count;
185 unsigned long cipher_flags;
186
187 /*
188 * Layout of each crypto request:
189 *
190 * struct skcipher_request
191 * context
192 * padding
193 * struct dm_crypt_request
194 * padding
195 * IV
196 *
197 * The padding is added so that dm_crypt_request and the IV are
198 * correctly aligned.
199 */
200 unsigned int dmreq_start;
201
202 unsigned int per_bio_data_size;
203
204 unsigned long flags;
205 unsigned int key_size;
206 unsigned int key_parts; /* independent parts in key buffer */
207 unsigned int key_extra_size; /* additional keys length */
208 unsigned int key_mac_size; /* MAC key size for authenc(...) */
209
210 unsigned int integrity_tag_size;
211 unsigned int integrity_iv_size;
212 unsigned int on_disk_tag_size;
213
214 u8 *authenc_key; /* space for keys in authenc() format (if used) */
215 u8 key[0];
216 };
217
218 #define MIN_IOS 64
219 #define MAX_TAG_SIZE 480
220 #define POOL_ENTRY_SIZE 512
221
222 static void clone_init(struct dm_crypt_io *, struct bio *);
223 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
224 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
225 struct scatterlist *sg);
226
227 /*
228 * Use this to access cipher attributes that are independent of the key.
229 */
230 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
231 {
232 return cc->cipher_tfm.tfms[0];
233 }
234
235 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
236 {
237 return cc->cipher_tfm.tfms_aead[0];
238 }
239
240 /*
241 * Different IV generation algorithms:
242 *
243 * plain: the initial vector is the 32-bit little-endian version of the sector
244 * number, padded with zeros if necessary.
245 *
246 * plain64: the initial vector is the 64-bit little-endian version of the sector
247 * number, padded with zeros if necessary.
248 *
249 * essiv: "encrypted sector|salt initial vector", the sector number is
250 * encrypted with the bulk cipher using a salt as key. The salt
251 * should be derived from the bulk cipher's key via hashing.
252 *
253 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
254 * (needed for LRW-32-AES and possible other narrow block modes)
255 *
256 * null: the initial vector is always zero. Provides compatibility with
257 * obsolete loop_fish2 devices. Do not use for new devices.
258 *
259 * lmk: Compatible implementation of the block chaining mode used
260 * by the Loop-AES block device encryption system
261 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
262 * It operates on full 512 byte sectors and uses CBC
263 * with an IV derived from the sector number, the data and
264 * optionally extra IV seed.
265 * This means that after decryption the first block
266 * of sector must be tweaked according to decrypted data.
267 * Loop-AES can use three encryption schemes:
268 * version 1: is plain aes-cbc mode
269 * version 2: uses 64 multikey scheme with lmk IV generator
270 * version 3: the same as version 2 with additional IV seed
271 * (it uses 65 keys, last key is used as IV seed)
272 *
273 * tcw: Compatible implementation of the block chaining mode used
274 * by the TrueCrypt device encryption system (prior to version 4.1).
275 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
276 * It operates on full 512 byte sectors and uses CBC
277 * with an IV derived from initial key and the sector number.
278 * In addition, whitening value is applied on every sector, whitening
279 * is calculated from initial key, sector number and mixed using CRC32.
280 * Note that this encryption scheme is vulnerable to watermarking attacks
281 * and should be used for old compatible containers access only.
282 *
283 * plumb: unimplemented, see:
284 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
285 */
286
287 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
288 struct dm_crypt_request *dmreq)
289 {
290 memset(iv, 0, cc->iv_size);
291 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
292
293 return 0;
294 }
295
296 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
297 struct dm_crypt_request *dmreq)
298 {
299 memset(iv, 0, cc->iv_size);
300 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
301
302 return 0;
303 }
304
305 /* Initialise ESSIV - compute salt but no local memory allocations */
306 static int crypt_iv_essiv_init(struct crypt_config *cc)
307 {
308 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
309 AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
310 struct scatterlist sg;
311 struct crypto_cipher *essiv_tfm;
312 int err;
313
314 sg_init_one(&sg, cc->key, cc->key_size);
315 ahash_request_set_tfm(req, essiv->hash_tfm);
316 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
317 ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size);
318
319 err = crypto_ahash_digest(req);
320 ahash_request_zero(req);
321 if (err)
322 return err;
323
324 essiv_tfm = cc->iv_private;
325
326 err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
327 crypto_ahash_digestsize(essiv->hash_tfm));
328 if (err)
329 return err;
330
331 return 0;
332 }
333
334 /* Wipe salt and reset key derived from volume key */
335 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
336 {
337 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
338 unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
339 struct crypto_cipher *essiv_tfm;
340 int r, err = 0;
341
342 memset(essiv->salt, 0, salt_size);
343
344 essiv_tfm = cc->iv_private;
345 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
346 if (r)
347 err = r;
348
349 return err;
350 }
351
352 /* Allocate the cipher for ESSIV */
353 static struct crypto_cipher *alloc_essiv_cipher(struct crypt_config *cc,
354 struct dm_target *ti,
355 const u8 *salt,
356 unsigned int saltsize)
357 {
358 struct crypto_cipher *essiv_tfm;
359 int err;
360
361 /* Setup the essiv_tfm with the given salt */
362 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
363 if (IS_ERR(essiv_tfm)) {
364 ti->error = "Error allocating crypto tfm for ESSIV";
365 return essiv_tfm;
366 }
367
368 if (crypto_cipher_blocksize(essiv_tfm) != cc->iv_size) {
369 ti->error = "Block size of ESSIV cipher does "
370 "not match IV size of block cipher";
371 crypto_free_cipher(essiv_tfm);
372 return ERR_PTR(-EINVAL);
373 }
374
375 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
376 if (err) {
377 ti->error = "Failed to set key for ESSIV cipher";
378 crypto_free_cipher(essiv_tfm);
379 return ERR_PTR(err);
380 }
381
382 return essiv_tfm;
383 }
384
385 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
386 {
387 struct crypto_cipher *essiv_tfm;
388 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
389
390 crypto_free_ahash(essiv->hash_tfm);
391 essiv->hash_tfm = NULL;
392
393 kzfree(essiv->salt);
394 essiv->salt = NULL;
395
396 essiv_tfm = cc->iv_private;
397
398 if (essiv_tfm)
399 crypto_free_cipher(essiv_tfm);
400
401 cc->iv_private = NULL;
402 }
403
404 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
405 const char *opts)
406 {
407 struct crypto_cipher *essiv_tfm = NULL;
408 struct crypto_ahash *hash_tfm = NULL;
409 u8 *salt = NULL;
410 int err;
411
412 if (!opts) {
413 ti->error = "Digest algorithm missing for ESSIV mode";
414 return -EINVAL;
415 }
416
417 /* Allocate hash algorithm */
418 hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC);
419 if (IS_ERR(hash_tfm)) {
420 ti->error = "Error initializing ESSIV hash";
421 err = PTR_ERR(hash_tfm);
422 goto bad;
423 }
424
425 salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
426 if (!salt) {
427 ti->error = "Error kmallocing salt storage in ESSIV";
428 err = -ENOMEM;
429 goto bad;
430 }
431
432 cc->iv_gen_private.essiv.salt = salt;
433 cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
434
435 essiv_tfm = alloc_essiv_cipher(cc, ti, salt,
436 crypto_ahash_digestsize(hash_tfm));
437 if (IS_ERR(essiv_tfm)) {
438 crypt_iv_essiv_dtr(cc);
439 return PTR_ERR(essiv_tfm);
440 }
441 cc->iv_private = essiv_tfm;
442
443 return 0;
444
445 bad:
446 if (hash_tfm && !IS_ERR(hash_tfm))
447 crypto_free_ahash(hash_tfm);
448 kfree(salt);
449 return err;
450 }
451
452 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
453 struct dm_crypt_request *dmreq)
454 {
455 struct crypto_cipher *essiv_tfm = cc->iv_private;
456
457 memset(iv, 0, cc->iv_size);
458 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
459 crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
460
461 return 0;
462 }
463
464 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
465 const char *opts)
466 {
467 unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
468 int log = ilog2(bs);
469
470 /* we need to calculate how far we must shift the sector count
471 * to get the cipher block count, we use this shift in _gen */
472
473 if (1 << log != bs) {
474 ti->error = "cypher blocksize is not a power of 2";
475 return -EINVAL;
476 }
477
478 if (log > 9) {
479 ti->error = "cypher blocksize is > 512";
480 return -EINVAL;
481 }
482
483 cc->iv_gen_private.benbi.shift = 9 - log;
484
485 return 0;
486 }
487
488 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
489 {
490 }
491
492 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
493 struct dm_crypt_request *dmreq)
494 {
495 __be64 val;
496
497 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
498
499 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
500 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
501
502 return 0;
503 }
504
505 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
506 struct dm_crypt_request *dmreq)
507 {
508 memset(iv, 0, cc->iv_size);
509
510 return 0;
511 }
512
513 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
514 {
515 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
516
517 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
518 crypto_free_shash(lmk->hash_tfm);
519 lmk->hash_tfm = NULL;
520
521 kzfree(lmk->seed);
522 lmk->seed = NULL;
523 }
524
525 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
526 const char *opts)
527 {
528 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
529
530 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
531 ti->error = "Unsupported sector size for LMK";
532 return -EINVAL;
533 }
534
535 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
536 if (IS_ERR(lmk->hash_tfm)) {
537 ti->error = "Error initializing LMK hash";
538 return PTR_ERR(lmk->hash_tfm);
539 }
540
541 /* No seed in LMK version 2 */
542 if (cc->key_parts == cc->tfms_count) {
543 lmk->seed = NULL;
544 return 0;
545 }
546
547 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
548 if (!lmk->seed) {
549 crypt_iv_lmk_dtr(cc);
550 ti->error = "Error kmallocing seed storage in LMK";
551 return -ENOMEM;
552 }
553
554 return 0;
555 }
556
557 static int crypt_iv_lmk_init(struct crypt_config *cc)
558 {
559 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
560 int subkey_size = cc->key_size / cc->key_parts;
561
562 /* LMK seed is on the position of LMK_KEYS + 1 key */
563 if (lmk->seed)
564 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
565 crypto_shash_digestsize(lmk->hash_tfm));
566
567 return 0;
568 }
569
570 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
571 {
572 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
573
574 if (lmk->seed)
575 memset(lmk->seed, 0, LMK_SEED_SIZE);
576
577 return 0;
578 }
579
580 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
581 struct dm_crypt_request *dmreq,
582 u8 *data)
583 {
584 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
585 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
586 struct md5_state md5state;
587 __le32 buf[4];
588 int i, r;
589
590 desc->tfm = lmk->hash_tfm;
591 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
592
593 r = crypto_shash_init(desc);
594 if (r)
595 return r;
596
597 if (lmk->seed) {
598 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
599 if (r)
600 return r;
601 }
602
603 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
604 r = crypto_shash_update(desc, data + 16, 16 * 31);
605 if (r)
606 return r;
607
608 /* Sector is cropped to 56 bits here */
609 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
610 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
611 buf[2] = cpu_to_le32(4024);
612 buf[3] = 0;
613 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
614 if (r)
615 return r;
616
617 /* No MD5 padding here */
618 r = crypto_shash_export(desc, &md5state);
619 if (r)
620 return r;
621
622 for (i = 0; i < MD5_HASH_WORDS; i++)
623 __cpu_to_le32s(&md5state.hash[i]);
624 memcpy(iv, &md5state.hash, cc->iv_size);
625
626 return 0;
627 }
628
629 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
630 struct dm_crypt_request *dmreq)
631 {
632 struct scatterlist *sg;
633 u8 *src;
634 int r = 0;
635
636 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
637 sg = crypt_get_sg_data(cc, dmreq->sg_in);
638 src = kmap_atomic(sg_page(sg));
639 r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
640 kunmap_atomic(src);
641 } else
642 memset(iv, 0, cc->iv_size);
643
644 return r;
645 }
646
647 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
648 struct dm_crypt_request *dmreq)
649 {
650 struct scatterlist *sg;
651 u8 *dst;
652 int r;
653
654 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
655 return 0;
656
657 sg = crypt_get_sg_data(cc, dmreq->sg_out);
658 dst = kmap_atomic(sg_page(sg));
659 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
660
661 /* Tweak the first block of plaintext sector */
662 if (!r)
663 crypto_xor(dst + sg->offset, iv, cc->iv_size);
664
665 kunmap_atomic(dst);
666 return r;
667 }
668
669 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
670 {
671 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
672
673 kzfree(tcw->iv_seed);
674 tcw->iv_seed = NULL;
675 kzfree(tcw->whitening);
676 tcw->whitening = NULL;
677
678 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
679 crypto_free_shash(tcw->crc32_tfm);
680 tcw->crc32_tfm = NULL;
681 }
682
683 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
684 const char *opts)
685 {
686 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
687
688 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
689 ti->error = "Unsupported sector size for TCW";
690 return -EINVAL;
691 }
692
693 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
694 ti->error = "Wrong key size for TCW";
695 return -EINVAL;
696 }
697
698 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
699 if (IS_ERR(tcw->crc32_tfm)) {
700 ti->error = "Error initializing CRC32 in TCW";
701 return PTR_ERR(tcw->crc32_tfm);
702 }
703
704 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
705 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
706 if (!tcw->iv_seed || !tcw->whitening) {
707 crypt_iv_tcw_dtr(cc);
708 ti->error = "Error allocating seed storage in TCW";
709 return -ENOMEM;
710 }
711
712 return 0;
713 }
714
715 static int crypt_iv_tcw_init(struct crypt_config *cc)
716 {
717 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
718 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
719
720 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
721 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
722 TCW_WHITENING_SIZE);
723
724 return 0;
725 }
726
727 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
728 {
729 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
730
731 memset(tcw->iv_seed, 0, cc->iv_size);
732 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
733
734 return 0;
735 }
736
737 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
738 struct dm_crypt_request *dmreq,
739 u8 *data)
740 {
741 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
742 __le64 sector = cpu_to_le64(dmreq->iv_sector);
743 u8 buf[TCW_WHITENING_SIZE];
744 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
745 int i, r;
746
747 /* xor whitening with sector number */
748 memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
749 crypto_xor(buf, (u8 *)&sector, 8);
750 crypto_xor(&buf[8], (u8 *)&sector, 8);
751
752 /* calculate crc32 for every 32bit part and xor it */
753 desc->tfm = tcw->crc32_tfm;
754 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
755 for (i = 0; i < 4; i++) {
756 r = crypto_shash_init(desc);
757 if (r)
758 goto out;
759 r = crypto_shash_update(desc, &buf[i * 4], 4);
760 if (r)
761 goto out;
762 r = crypto_shash_final(desc, &buf[i * 4]);
763 if (r)
764 goto out;
765 }
766 crypto_xor(&buf[0], &buf[12], 4);
767 crypto_xor(&buf[4], &buf[8], 4);
768
769 /* apply whitening (8 bytes) to whole sector */
770 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
771 crypto_xor(data + i * 8, buf, 8);
772 out:
773 memzero_explicit(buf, sizeof(buf));
774 return r;
775 }
776
777 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
778 struct dm_crypt_request *dmreq)
779 {
780 struct scatterlist *sg;
781 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
782 __le64 sector = cpu_to_le64(dmreq->iv_sector);
783 u8 *src;
784 int r = 0;
785
786 /* Remove whitening from ciphertext */
787 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
788 sg = crypt_get_sg_data(cc, dmreq->sg_in);
789 src = kmap_atomic(sg_page(sg));
790 r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
791 kunmap_atomic(src);
792 }
793
794 /* Calculate IV */
795 memcpy(iv, tcw->iv_seed, cc->iv_size);
796 crypto_xor(iv, (u8 *)&sector, 8);
797 if (cc->iv_size > 8)
798 crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
799
800 return r;
801 }
802
803 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
804 struct dm_crypt_request *dmreq)
805 {
806 struct scatterlist *sg;
807 u8 *dst;
808 int r;
809
810 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
811 return 0;
812
813 /* Apply whitening on ciphertext */
814 sg = crypt_get_sg_data(cc, dmreq->sg_out);
815 dst = kmap_atomic(sg_page(sg));
816 r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
817 kunmap_atomic(dst);
818
819 return r;
820 }
821
822 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
823 struct dm_crypt_request *dmreq)
824 {
825 /* Used only for writes, there must be an additional space to store IV */
826 get_random_bytes(iv, cc->iv_size);
827 return 0;
828 }
829
830 static const struct crypt_iv_operations crypt_iv_plain_ops = {
831 .generator = crypt_iv_plain_gen
832 };
833
834 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
835 .generator = crypt_iv_plain64_gen
836 };
837
838 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
839 .ctr = crypt_iv_essiv_ctr,
840 .dtr = crypt_iv_essiv_dtr,
841 .init = crypt_iv_essiv_init,
842 .wipe = crypt_iv_essiv_wipe,
843 .generator = crypt_iv_essiv_gen
844 };
845
846 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
847 .ctr = crypt_iv_benbi_ctr,
848 .dtr = crypt_iv_benbi_dtr,
849 .generator = crypt_iv_benbi_gen
850 };
851
852 static const struct crypt_iv_operations crypt_iv_null_ops = {
853 .generator = crypt_iv_null_gen
854 };
855
856 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
857 .ctr = crypt_iv_lmk_ctr,
858 .dtr = crypt_iv_lmk_dtr,
859 .init = crypt_iv_lmk_init,
860 .wipe = crypt_iv_lmk_wipe,
861 .generator = crypt_iv_lmk_gen,
862 .post = crypt_iv_lmk_post
863 };
864
865 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
866 .ctr = crypt_iv_tcw_ctr,
867 .dtr = crypt_iv_tcw_dtr,
868 .init = crypt_iv_tcw_init,
869 .wipe = crypt_iv_tcw_wipe,
870 .generator = crypt_iv_tcw_gen,
871 .post = crypt_iv_tcw_post
872 };
873
874 static struct crypt_iv_operations crypt_iv_random_ops = {
875 .generator = crypt_iv_random_gen
876 };
877
878 /*
879 * Integrity extensions
880 */
881 static bool crypt_integrity_aead(struct crypt_config *cc)
882 {
883 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
884 }
885
886 static bool crypt_integrity_hmac(struct crypt_config *cc)
887 {
888 return crypt_integrity_aead(cc) && cc->key_mac_size;
889 }
890
891 /* Get sg containing data */
892 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
893 struct scatterlist *sg)
894 {
895 if (unlikely(crypt_integrity_aead(cc)))
896 return &sg[2];
897
898 return sg;
899 }
900
901 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
902 {
903 struct bio_integrity_payload *bip;
904 unsigned int tag_len;
905 int ret;
906
907 if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
908 return 0;
909
910 bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
911 if (IS_ERR(bip))
912 return PTR_ERR(bip);
913
914 tag_len = io->cc->on_disk_tag_size * bio_sectors(bio);
915
916 bip->bip_iter.bi_size = tag_len;
917 bip->bip_iter.bi_sector = io->cc->start + io->sector;
918
919 /* We own the metadata, do not let bio_free to release it */
920 bip->bip_flags &= ~BIP_BLOCK_INTEGRITY;
921
922 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
923 tag_len, offset_in_page(io->integrity_metadata));
924 if (unlikely(ret != tag_len))
925 return -ENOMEM;
926
927 return 0;
928 }
929
930 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
931 {
932 #ifdef CONFIG_BLK_DEV_INTEGRITY
933 struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
934
935 /* From now we require underlying device with our integrity profile */
936 if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
937 ti->error = "Integrity profile not supported.";
938 return -EINVAL;
939 }
940
941 if (bi->tag_size != cc->on_disk_tag_size ||
942 bi->tuple_size != cc->on_disk_tag_size) {
943 ti->error = "Integrity profile tag size mismatch.";
944 return -EINVAL;
945 }
946 if (1 << bi->interval_exp != cc->sector_size) {
947 ti->error = "Integrity profile sector size mismatch.";
948 return -EINVAL;
949 }
950
951 if (crypt_integrity_aead(cc)) {
952 cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
953 DMINFO("Integrity AEAD, tag size %u, IV size %u.",
954 cc->integrity_tag_size, cc->integrity_iv_size);
955
956 if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
957 ti->error = "Integrity AEAD auth tag size is not supported.";
958 return -EINVAL;
959 }
960 } else if (cc->integrity_iv_size)
961 DMINFO("Additional per-sector space %u bytes for IV.",
962 cc->integrity_iv_size);
963
964 if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
965 ti->error = "Not enough space for integrity tag in the profile.";
966 return -EINVAL;
967 }
968
969 return 0;
970 #else
971 ti->error = "Integrity profile not supported.";
972 return -EINVAL;
973 #endif
974 }
975
976 static void crypt_convert_init(struct crypt_config *cc,
977 struct convert_context *ctx,
978 struct bio *bio_out, struct bio *bio_in,
979 sector_t sector)
980 {
981 ctx->bio_in = bio_in;
982 ctx->bio_out = bio_out;
983 if (bio_in)
984 ctx->iter_in = bio_in->bi_iter;
985 if (bio_out)
986 ctx->iter_out = bio_out->bi_iter;
987 ctx->cc_sector = sector + cc->iv_offset;
988 init_completion(&ctx->restart);
989 }
990
991 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
992 void *req)
993 {
994 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
995 }
996
997 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
998 {
999 return (void *)((char *)dmreq - cc->dmreq_start);
1000 }
1001
1002 static u8 *iv_of_dmreq(struct crypt_config *cc,
1003 struct dm_crypt_request *dmreq)
1004 {
1005 if (crypt_integrity_aead(cc))
1006 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1007 crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1008 else
1009 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1010 crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1011 }
1012
1013 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1014 struct dm_crypt_request *dmreq)
1015 {
1016 return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1017 }
1018
1019 static uint64_t *org_sector_of_dmreq(struct crypt_config *cc,
1020 struct dm_crypt_request *dmreq)
1021 {
1022 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1023 return (uint64_t*) ptr;
1024 }
1025
1026 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1027 struct dm_crypt_request *dmreq)
1028 {
1029 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1030 cc->iv_size + sizeof(uint64_t);
1031 return (unsigned int*)ptr;
1032 }
1033
1034 static void *tag_from_dmreq(struct crypt_config *cc,
1035 struct dm_crypt_request *dmreq)
1036 {
1037 struct convert_context *ctx = dmreq->ctx;
1038 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1039
1040 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1041 cc->on_disk_tag_size];
1042 }
1043
1044 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1045 struct dm_crypt_request *dmreq)
1046 {
1047 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1048 }
1049
1050 static int crypt_convert_block_aead(struct crypt_config *cc,
1051 struct convert_context *ctx,
1052 struct aead_request *req,
1053 unsigned int tag_offset)
1054 {
1055 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1056 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1057 struct dm_crypt_request *dmreq;
1058 u8 *iv, *org_iv, *tag_iv, *tag;
1059 uint64_t *sector;
1060 int r = 0;
1061
1062 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1063
1064 /* Reject unexpected unaligned bio. */
1065 if (unlikely(bv_in.bv_offset & (cc->sector_size - 1)))
1066 return -EIO;
1067
1068 dmreq = dmreq_of_req(cc, req);
1069 dmreq->iv_sector = ctx->cc_sector;
1070 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1071 dmreq->iv_sector >>= cc->sector_shift;
1072 dmreq->ctx = ctx;
1073
1074 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1075
1076 sector = org_sector_of_dmreq(cc, dmreq);
1077 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1078
1079 iv = iv_of_dmreq(cc, dmreq);
1080 org_iv = org_iv_of_dmreq(cc, dmreq);
1081 tag = tag_from_dmreq(cc, dmreq);
1082 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1083
1084 /* AEAD request:
1085 * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1086 * | (authenticated) | (auth+encryption) | |
1087 * | sector_LE | IV | sector in/out | tag in/out |
1088 */
1089 sg_init_table(dmreq->sg_in, 4);
1090 sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1091 sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1092 sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1093 sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1094
1095 sg_init_table(dmreq->sg_out, 4);
1096 sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1097 sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1098 sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1099 sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1100
1101 if (cc->iv_gen_ops) {
1102 /* For READs use IV stored in integrity metadata */
1103 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1104 memcpy(org_iv, tag_iv, cc->iv_size);
1105 } else {
1106 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1107 if (r < 0)
1108 return r;
1109 /* Store generated IV in integrity metadata */
1110 if (cc->integrity_iv_size)
1111 memcpy(tag_iv, org_iv, cc->iv_size);
1112 }
1113 /* Working copy of IV, to be modified in crypto API */
1114 memcpy(iv, org_iv, cc->iv_size);
1115 }
1116
1117 aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1118 if (bio_data_dir(ctx->bio_in) == WRITE) {
1119 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1120 cc->sector_size, iv);
1121 r = crypto_aead_encrypt(req);
1122 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1123 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1124 cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1125 } else {
1126 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1127 cc->sector_size + cc->integrity_tag_size, iv);
1128 r = crypto_aead_decrypt(req);
1129 }
1130
1131 if (r == -EBADMSG)
1132 DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1133 (unsigned long long)le64_to_cpu(*sector));
1134
1135 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1136 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1137
1138 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1139 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1140
1141 return r;
1142 }
1143
1144 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1145 struct convert_context *ctx,
1146 struct skcipher_request *req,
1147 unsigned int tag_offset)
1148 {
1149 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1150 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1151 struct scatterlist *sg_in, *sg_out;
1152 struct dm_crypt_request *dmreq;
1153 u8 *iv, *org_iv, *tag_iv;
1154 uint64_t *sector;
1155 int r = 0;
1156
1157 /* Reject unexpected unaligned bio. */
1158 if (unlikely(bv_in.bv_offset & (cc->sector_size - 1)))
1159 return -EIO;
1160
1161 dmreq = dmreq_of_req(cc, req);
1162 dmreq->iv_sector = ctx->cc_sector;
1163 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1164 dmreq->iv_sector >>= cc->sector_shift;
1165 dmreq->ctx = ctx;
1166
1167 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1168
1169 iv = iv_of_dmreq(cc, dmreq);
1170 org_iv = org_iv_of_dmreq(cc, dmreq);
1171 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1172
1173 sector = org_sector_of_dmreq(cc, dmreq);
1174 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1175
1176 /* For skcipher we use only the first sg item */
1177 sg_in = &dmreq->sg_in[0];
1178 sg_out = &dmreq->sg_out[0];
1179
1180 sg_init_table(sg_in, 1);
1181 sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1182
1183 sg_init_table(sg_out, 1);
1184 sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1185
1186 if (cc->iv_gen_ops) {
1187 /* For READs use IV stored in integrity metadata */
1188 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1189 memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1190 } else {
1191 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1192 if (r < 0)
1193 return r;
1194 /* Store generated IV in integrity metadata */
1195 if (cc->integrity_iv_size)
1196 memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1197 }
1198 /* Working copy of IV, to be modified in crypto API */
1199 memcpy(iv, org_iv, cc->iv_size);
1200 }
1201
1202 skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1203
1204 if (bio_data_dir(ctx->bio_in) == WRITE)
1205 r = crypto_skcipher_encrypt(req);
1206 else
1207 r = crypto_skcipher_decrypt(req);
1208
1209 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1210 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1211
1212 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1213 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1214
1215 return r;
1216 }
1217
1218 static void kcryptd_async_done(struct crypto_async_request *async_req,
1219 int error);
1220
1221 static void crypt_alloc_req_skcipher(struct crypt_config *cc,
1222 struct convert_context *ctx)
1223 {
1224 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1225
1226 if (!ctx->r.req)
1227 ctx->r.req = mempool_alloc(cc->req_pool, GFP_NOIO);
1228
1229 skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1230
1231 /*
1232 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1233 * requests if driver request queue is full.
1234 */
1235 skcipher_request_set_callback(ctx->r.req,
1236 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
1237 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1238 }
1239
1240 static void crypt_alloc_req_aead(struct crypt_config *cc,
1241 struct convert_context *ctx)
1242 {
1243 if (!ctx->r.req_aead)
1244 ctx->r.req_aead = mempool_alloc(cc->req_pool, GFP_NOIO);
1245
1246 aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1247
1248 /*
1249 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1250 * requests if driver request queue is full.
1251 */
1252 aead_request_set_callback(ctx->r.req_aead,
1253 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
1254 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1255 }
1256
1257 static void crypt_alloc_req(struct crypt_config *cc,
1258 struct convert_context *ctx)
1259 {
1260 if (crypt_integrity_aead(cc))
1261 crypt_alloc_req_aead(cc, ctx);
1262 else
1263 crypt_alloc_req_skcipher(cc, ctx);
1264 }
1265
1266 static void crypt_free_req_skcipher(struct crypt_config *cc,
1267 struct skcipher_request *req, struct bio *base_bio)
1268 {
1269 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1270
1271 if ((struct skcipher_request *)(io + 1) != req)
1272 mempool_free(req, cc->req_pool);
1273 }
1274
1275 static void crypt_free_req_aead(struct crypt_config *cc,
1276 struct aead_request *req, struct bio *base_bio)
1277 {
1278 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1279
1280 if ((struct aead_request *)(io + 1) != req)
1281 mempool_free(req, cc->req_pool);
1282 }
1283
1284 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1285 {
1286 if (crypt_integrity_aead(cc))
1287 crypt_free_req_aead(cc, req, base_bio);
1288 else
1289 crypt_free_req_skcipher(cc, req, base_bio);
1290 }
1291
1292 /*
1293 * Encrypt / decrypt data from one bio to another one (can be the same one)
1294 */
1295 static blk_status_t crypt_convert(struct crypt_config *cc,
1296 struct convert_context *ctx)
1297 {
1298 unsigned int tag_offset = 0;
1299 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1300 int r;
1301
1302 atomic_set(&ctx->cc_pending, 1);
1303
1304 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1305
1306 crypt_alloc_req(cc, ctx);
1307 atomic_inc(&ctx->cc_pending);
1308
1309 if (crypt_integrity_aead(cc))
1310 r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1311 else
1312 r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1313
1314 switch (r) {
1315 /*
1316 * The request was queued by a crypto driver
1317 * but the driver request queue is full, let's wait.
1318 */
1319 case -EBUSY:
1320 wait_for_completion(&ctx->restart);
1321 reinit_completion(&ctx->restart);
1322 /* fall through */
1323 /*
1324 * The request is queued and processed asynchronously,
1325 * completion function kcryptd_async_done() will be called.
1326 */
1327 case -EINPROGRESS:
1328 ctx->r.req = NULL;
1329 ctx->cc_sector += sector_step;
1330 tag_offset++;
1331 continue;
1332 /*
1333 * The request was already processed (synchronously).
1334 */
1335 case 0:
1336 atomic_dec(&ctx->cc_pending);
1337 ctx->cc_sector += sector_step;
1338 tag_offset++;
1339 cond_resched();
1340 continue;
1341 /*
1342 * There was a data integrity error.
1343 */
1344 case -EBADMSG:
1345 atomic_dec(&ctx->cc_pending);
1346 return BLK_STS_PROTECTION;
1347 /*
1348 * There was an error while processing the request.
1349 */
1350 default:
1351 atomic_dec(&ctx->cc_pending);
1352 return BLK_STS_IOERR;
1353 }
1354 }
1355
1356 return 0;
1357 }
1358
1359 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1360
1361 /*
1362 * Generate a new unfragmented bio with the given size
1363 * This should never violate the device limitations (but only because
1364 * max_segment_size is being constrained to PAGE_SIZE).
1365 *
1366 * This function may be called concurrently. If we allocate from the mempool
1367 * concurrently, there is a possibility of deadlock. For example, if we have
1368 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1369 * the mempool concurrently, it may deadlock in a situation where both processes
1370 * have allocated 128 pages and the mempool is exhausted.
1371 *
1372 * In order to avoid this scenario we allocate the pages under a mutex.
1373 *
1374 * In order to not degrade performance with excessive locking, we try
1375 * non-blocking allocations without a mutex first but on failure we fallback
1376 * to blocking allocations with a mutex.
1377 */
1378 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1379 {
1380 struct crypt_config *cc = io->cc;
1381 struct bio *clone;
1382 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1383 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1384 unsigned i, len, remaining_size;
1385 struct page *page;
1386
1387 retry:
1388 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1389 mutex_lock(&cc->bio_alloc_lock);
1390
1391 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1392 if (!clone)
1393 goto out;
1394
1395 clone_init(io, clone);
1396
1397 remaining_size = size;
1398
1399 for (i = 0; i < nr_iovecs; i++) {
1400 page = mempool_alloc(cc->page_pool, gfp_mask);
1401 if (!page) {
1402 crypt_free_buffer_pages(cc, clone);
1403 bio_put(clone);
1404 gfp_mask |= __GFP_DIRECT_RECLAIM;
1405 goto retry;
1406 }
1407
1408 len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1409
1410 bio_add_page(clone, page, len, 0);
1411
1412 remaining_size -= len;
1413 }
1414
1415 /* Allocate space for integrity tags */
1416 if (dm_crypt_integrity_io_alloc(io, clone)) {
1417 crypt_free_buffer_pages(cc, clone);
1418 bio_put(clone);
1419 clone = NULL;
1420 }
1421 out:
1422 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1423 mutex_unlock(&cc->bio_alloc_lock);
1424
1425 return clone;
1426 }
1427
1428 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1429 {
1430 unsigned int i;
1431 struct bio_vec *bv;
1432
1433 bio_for_each_segment_all(bv, clone, i) {
1434 BUG_ON(!bv->bv_page);
1435 mempool_free(bv->bv_page, cc->page_pool);
1436 bv->bv_page = NULL;
1437 }
1438 }
1439
1440 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1441 struct bio *bio, sector_t sector)
1442 {
1443 io->cc = cc;
1444 io->base_bio = bio;
1445 io->sector = sector;
1446 io->error = 0;
1447 io->ctx.r.req = NULL;
1448 io->integrity_metadata = NULL;
1449 io->integrity_metadata_from_pool = false;
1450 atomic_set(&io->io_pending, 0);
1451 }
1452
1453 static void crypt_inc_pending(struct dm_crypt_io *io)
1454 {
1455 atomic_inc(&io->io_pending);
1456 }
1457
1458 /*
1459 * One of the bios was finished. Check for completion of
1460 * the whole request and correctly clean up the buffer.
1461 */
1462 static void crypt_dec_pending(struct dm_crypt_io *io)
1463 {
1464 struct crypt_config *cc = io->cc;
1465 struct bio *base_bio = io->base_bio;
1466 blk_status_t error = io->error;
1467
1468 if (!atomic_dec_and_test(&io->io_pending))
1469 return;
1470
1471 if (io->ctx.r.req)
1472 crypt_free_req(cc, io->ctx.r.req, base_bio);
1473
1474 if (unlikely(io->integrity_metadata_from_pool))
1475 mempool_free(io->integrity_metadata, io->cc->tag_pool);
1476 else
1477 kfree(io->integrity_metadata);
1478
1479 base_bio->bi_status = error;
1480 bio_endio(base_bio);
1481 }
1482
1483 /*
1484 * kcryptd/kcryptd_io:
1485 *
1486 * Needed because it would be very unwise to do decryption in an
1487 * interrupt context.
1488 *
1489 * kcryptd performs the actual encryption or decryption.
1490 *
1491 * kcryptd_io performs the IO submission.
1492 *
1493 * They must be separated as otherwise the final stages could be
1494 * starved by new requests which can block in the first stages due
1495 * to memory allocation.
1496 *
1497 * The work is done per CPU global for all dm-crypt instances.
1498 * They should not depend on each other and do not block.
1499 */
1500 static void crypt_endio(struct bio *clone)
1501 {
1502 struct dm_crypt_io *io = clone->bi_private;
1503 struct crypt_config *cc = io->cc;
1504 unsigned rw = bio_data_dir(clone);
1505 blk_status_t error;
1506
1507 /*
1508 * free the processed pages
1509 */
1510 if (rw == WRITE)
1511 crypt_free_buffer_pages(cc, clone);
1512
1513 error = clone->bi_status;
1514 bio_put(clone);
1515
1516 if (rw == READ && !error) {
1517 kcryptd_queue_crypt(io);
1518 return;
1519 }
1520
1521 if (unlikely(error))
1522 io->error = error;
1523
1524 crypt_dec_pending(io);
1525 }
1526
1527 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1528 {
1529 struct crypt_config *cc = io->cc;
1530
1531 clone->bi_private = io;
1532 clone->bi_end_io = crypt_endio;
1533 clone->bi_bdev = cc->dev->bdev;
1534 clone->bi_opf = io->base_bio->bi_opf;
1535 }
1536
1537 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1538 {
1539 struct crypt_config *cc = io->cc;
1540 struct bio *clone;
1541
1542 /*
1543 * We need the original biovec array in order to decrypt
1544 * the whole bio data *afterwards* -- thanks to immutable
1545 * biovecs we don't need to worry about the block layer
1546 * modifying the biovec array; so leverage bio_clone_fast().
1547 */
1548 clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1549 if (!clone)
1550 return 1;
1551
1552 crypt_inc_pending(io);
1553
1554 clone_init(io, clone);
1555 clone->bi_iter.bi_sector = cc->start + io->sector;
1556
1557 if (dm_crypt_integrity_io_alloc(io, clone)) {
1558 crypt_dec_pending(io);
1559 bio_put(clone);
1560 return 1;
1561 }
1562
1563 generic_make_request(clone);
1564 return 0;
1565 }
1566
1567 static void kcryptd_io_read_work(struct work_struct *work)
1568 {
1569 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1570
1571 crypt_inc_pending(io);
1572 if (kcryptd_io_read(io, GFP_NOIO))
1573 io->error = BLK_STS_RESOURCE;
1574 crypt_dec_pending(io);
1575 }
1576
1577 static void kcryptd_queue_read(struct dm_crypt_io *io)
1578 {
1579 struct crypt_config *cc = io->cc;
1580
1581 INIT_WORK(&io->work, kcryptd_io_read_work);
1582 queue_work(cc->io_queue, &io->work);
1583 }
1584
1585 static void kcryptd_io_write(struct dm_crypt_io *io)
1586 {
1587 struct bio *clone = io->ctx.bio_out;
1588
1589 generic_make_request(clone);
1590 }
1591
1592 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1593
1594 static int dmcrypt_write(void *data)
1595 {
1596 struct crypt_config *cc = data;
1597 struct dm_crypt_io *io;
1598
1599 while (1) {
1600 struct rb_root write_tree;
1601 struct blk_plug plug;
1602
1603 DECLARE_WAITQUEUE(wait, current);
1604
1605 spin_lock_irq(&cc->write_thread_wait.lock);
1606 continue_locked:
1607
1608 if (!RB_EMPTY_ROOT(&cc->write_tree))
1609 goto pop_from_list;
1610
1611 set_current_state(TASK_INTERRUPTIBLE);
1612 __add_wait_queue(&cc->write_thread_wait, &wait);
1613
1614 spin_unlock_irq(&cc->write_thread_wait.lock);
1615
1616 if (unlikely(kthread_should_stop())) {
1617 set_current_state(TASK_RUNNING);
1618 remove_wait_queue(&cc->write_thread_wait, &wait);
1619 break;
1620 }
1621
1622 schedule();
1623
1624 set_current_state(TASK_RUNNING);
1625 spin_lock_irq(&cc->write_thread_wait.lock);
1626 __remove_wait_queue(&cc->write_thread_wait, &wait);
1627 goto continue_locked;
1628
1629 pop_from_list:
1630 write_tree = cc->write_tree;
1631 cc->write_tree = RB_ROOT;
1632 spin_unlock_irq(&cc->write_thread_wait.lock);
1633
1634 BUG_ON(rb_parent(write_tree.rb_node));
1635
1636 /*
1637 * Note: we cannot walk the tree here with rb_next because
1638 * the structures may be freed when kcryptd_io_write is called.
1639 */
1640 blk_start_plug(&plug);
1641 do {
1642 io = crypt_io_from_node(rb_first(&write_tree));
1643 rb_erase(&io->rb_node, &write_tree);
1644 kcryptd_io_write(io);
1645 } while (!RB_EMPTY_ROOT(&write_tree));
1646 blk_finish_plug(&plug);
1647 }
1648 return 0;
1649 }
1650
1651 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1652 {
1653 struct bio *clone = io->ctx.bio_out;
1654 struct crypt_config *cc = io->cc;
1655 unsigned long flags;
1656 sector_t sector;
1657 struct rb_node **rbp, *parent;
1658
1659 if (unlikely(io->error)) {
1660 crypt_free_buffer_pages(cc, clone);
1661 bio_put(clone);
1662 crypt_dec_pending(io);
1663 return;
1664 }
1665
1666 /* crypt_convert should have filled the clone bio */
1667 BUG_ON(io->ctx.iter_out.bi_size);
1668
1669 clone->bi_iter.bi_sector = cc->start + io->sector;
1670
1671 if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1672 generic_make_request(clone);
1673 return;
1674 }
1675
1676 spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1677 rbp = &cc->write_tree.rb_node;
1678 parent = NULL;
1679 sector = io->sector;
1680 while (*rbp) {
1681 parent = *rbp;
1682 if (sector < crypt_io_from_node(parent)->sector)
1683 rbp = &(*rbp)->rb_left;
1684 else
1685 rbp = &(*rbp)->rb_right;
1686 }
1687 rb_link_node(&io->rb_node, parent, rbp);
1688 rb_insert_color(&io->rb_node, &cc->write_tree);
1689
1690 wake_up_locked(&cc->write_thread_wait);
1691 spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1692 }
1693
1694 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1695 {
1696 struct crypt_config *cc = io->cc;
1697 struct bio *clone;
1698 int crypt_finished;
1699 sector_t sector = io->sector;
1700 blk_status_t r;
1701
1702 /*
1703 * Prevent io from disappearing until this function completes.
1704 */
1705 crypt_inc_pending(io);
1706 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1707
1708 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1709 if (unlikely(!clone)) {
1710 io->error = BLK_STS_IOERR;
1711 goto dec;
1712 }
1713
1714 io->ctx.bio_out = clone;
1715 io->ctx.iter_out = clone->bi_iter;
1716
1717 sector += bio_sectors(clone);
1718
1719 crypt_inc_pending(io);
1720 r = crypt_convert(cc, &io->ctx);
1721 if (r)
1722 io->error = r;
1723 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1724
1725 /* Encryption was already finished, submit io now */
1726 if (crypt_finished) {
1727 kcryptd_crypt_write_io_submit(io, 0);
1728 io->sector = sector;
1729 }
1730
1731 dec:
1732 crypt_dec_pending(io);
1733 }
1734
1735 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1736 {
1737 crypt_dec_pending(io);
1738 }
1739
1740 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1741 {
1742 struct crypt_config *cc = io->cc;
1743 blk_status_t r;
1744
1745 crypt_inc_pending(io);
1746
1747 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1748 io->sector);
1749
1750 r = crypt_convert(cc, &io->ctx);
1751 if (r)
1752 io->error = r;
1753
1754 if (atomic_dec_and_test(&io->ctx.cc_pending))
1755 kcryptd_crypt_read_done(io);
1756
1757 crypt_dec_pending(io);
1758 }
1759
1760 static void kcryptd_async_done(struct crypto_async_request *async_req,
1761 int error)
1762 {
1763 struct dm_crypt_request *dmreq = async_req->data;
1764 struct convert_context *ctx = dmreq->ctx;
1765 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1766 struct crypt_config *cc = io->cc;
1767
1768 /*
1769 * A request from crypto driver backlog is going to be processed now,
1770 * finish the completion and continue in crypt_convert().
1771 * (Callback will be called for the second time for this request.)
1772 */
1773 if (error == -EINPROGRESS) {
1774 complete(&ctx->restart);
1775 return;
1776 }
1777
1778 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1779 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
1780
1781 if (error == -EBADMSG) {
1782 DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1783 (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
1784 io->error = BLK_STS_PROTECTION;
1785 } else if (error < 0)
1786 io->error = BLK_STS_IOERR;
1787
1788 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1789
1790 if (!atomic_dec_and_test(&ctx->cc_pending))
1791 return;
1792
1793 if (bio_data_dir(io->base_bio) == READ)
1794 kcryptd_crypt_read_done(io);
1795 else
1796 kcryptd_crypt_write_io_submit(io, 1);
1797 }
1798
1799 static void kcryptd_crypt(struct work_struct *work)
1800 {
1801 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1802
1803 if (bio_data_dir(io->base_bio) == READ)
1804 kcryptd_crypt_read_convert(io);
1805 else
1806 kcryptd_crypt_write_convert(io);
1807 }
1808
1809 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1810 {
1811 struct crypt_config *cc = io->cc;
1812
1813 INIT_WORK(&io->work, kcryptd_crypt);
1814 queue_work(cc->crypt_queue, &io->work);
1815 }
1816
1817 static void crypt_free_tfms_aead(struct crypt_config *cc)
1818 {
1819 if (!cc->cipher_tfm.tfms_aead)
1820 return;
1821
1822 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1823 crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
1824 cc->cipher_tfm.tfms_aead[0] = NULL;
1825 }
1826
1827 kfree(cc->cipher_tfm.tfms_aead);
1828 cc->cipher_tfm.tfms_aead = NULL;
1829 }
1830
1831 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
1832 {
1833 unsigned i;
1834
1835 if (!cc->cipher_tfm.tfms)
1836 return;
1837
1838 for (i = 0; i < cc->tfms_count; i++)
1839 if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
1840 crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
1841 cc->cipher_tfm.tfms[i] = NULL;
1842 }
1843
1844 kfree(cc->cipher_tfm.tfms);
1845 cc->cipher_tfm.tfms = NULL;
1846 }
1847
1848 static void crypt_free_tfms(struct crypt_config *cc)
1849 {
1850 if (crypt_integrity_aead(cc))
1851 crypt_free_tfms_aead(cc);
1852 else
1853 crypt_free_tfms_skcipher(cc);
1854 }
1855
1856 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
1857 {
1858 unsigned i;
1859 int err;
1860
1861 cc->cipher_tfm.tfms = kzalloc(cc->tfms_count *
1862 sizeof(struct crypto_skcipher *), GFP_KERNEL);
1863 if (!cc->cipher_tfm.tfms)
1864 return -ENOMEM;
1865
1866 for (i = 0; i < cc->tfms_count; i++) {
1867 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1868 if (IS_ERR(cc->cipher_tfm.tfms[i])) {
1869 err = PTR_ERR(cc->cipher_tfm.tfms[i]);
1870 crypt_free_tfms(cc);
1871 return err;
1872 }
1873 }
1874
1875 return 0;
1876 }
1877
1878 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
1879 {
1880 int err;
1881
1882 cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
1883 if (!cc->cipher_tfm.tfms)
1884 return -ENOMEM;
1885
1886 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 0);
1887 if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1888 err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
1889 crypt_free_tfms(cc);
1890 return err;
1891 }
1892
1893 return 0;
1894 }
1895
1896 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1897 {
1898 if (crypt_integrity_aead(cc))
1899 return crypt_alloc_tfms_aead(cc, ciphermode);
1900 else
1901 return crypt_alloc_tfms_skcipher(cc, ciphermode);
1902 }
1903
1904 static unsigned crypt_subkey_size(struct crypt_config *cc)
1905 {
1906 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1907 }
1908
1909 static unsigned crypt_authenckey_size(struct crypt_config *cc)
1910 {
1911 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
1912 }
1913
1914 /*
1915 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
1916 * the key must be for some reason in special format.
1917 * This funcion converts cc->key to this special format.
1918 */
1919 static void crypt_copy_authenckey(char *p, const void *key,
1920 unsigned enckeylen, unsigned authkeylen)
1921 {
1922 struct crypto_authenc_key_param *param;
1923 struct rtattr *rta;
1924
1925 rta = (struct rtattr *)p;
1926 param = RTA_DATA(rta);
1927 param->enckeylen = cpu_to_be32(enckeylen);
1928 rta->rta_len = RTA_LENGTH(sizeof(*param));
1929 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
1930 p += RTA_SPACE(sizeof(*param));
1931 memcpy(p, key + enckeylen, authkeylen);
1932 p += authkeylen;
1933 memcpy(p, key, enckeylen);
1934 }
1935
1936 static int crypt_setkey(struct crypt_config *cc)
1937 {
1938 unsigned subkey_size;
1939 int err = 0, i, r;
1940
1941 /* Ignore extra keys (which are used for IV etc) */
1942 subkey_size = crypt_subkey_size(cc);
1943
1944 if (crypt_integrity_hmac(cc))
1945 crypt_copy_authenckey(cc->authenc_key, cc->key,
1946 subkey_size - cc->key_mac_size,
1947 cc->key_mac_size);
1948 for (i = 0; i < cc->tfms_count; i++) {
1949 if (crypt_integrity_hmac(cc))
1950 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1951 cc->authenc_key, crypt_authenckey_size(cc));
1952 else if (crypt_integrity_aead(cc))
1953 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1954 cc->key + (i * subkey_size),
1955 subkey_size);
1956 else
1957 r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
1958 cc->key + (i * subkey_size),
1959 subkey_size);
1960 if (r)
1961 err = r;
1962 }
1963
1964 if (crypt_integrity_hmac(cc))
1965 memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
1966
1967 return err;
1968 }
1969
1970 #ifdef CONFIG_KEYS
1971
1972 static bool contains_whitespace(const char *str)
1973 {
1974 while (*str)
1975 if (isspace(*str++))
1976 return true;
1977 return false;
1978 }
1979
1980 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
1981 {
1982 char *new_key_string, *key_desc;
1983 int ret;
1984 struct key *key;
1985 const struct user_key_payload *ukp;
1986
1987 /*
1988 * Reject key_string with whitespace. dm core currently lacks code for
1989 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
1990 */
1991 if (contains_whitespace(key_string)) {
1992 DMERR("whitespace chars not allowed in key string");
1993 return -EINVAL;
1994 }
1995
1996 /* look for next ':' separating key_type from key_description */
1997 key_desc = strpbrk(key_string, ":");
1998 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
1999 return -EINVAL;
2000
2001 if (strncmp(key_string, "logon:", key_desc - key_string + 1) &&
2002 strncmp(key_string, "user:", key_desc - key_string + 1))
2003 return -EINVAL;
2004
2005 new_key_string = kstrdup(key_string, GFP_KERNEL);
2006 if (!new_key_string)
2007 return -ENOMEM;
2008
2009 key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user,
2010 key_desc + 1, NULL);
2011 if (IS_ERR(key)) {
2012 kzfree(new_key_string);
2013 return PTR_ERR(key);
2014 }
2015
2016 down_read(&key->sem);
2017
2018 ukp = user_key_payload_locked(key);
2019 if (!ukp) {
2020 up_read(&key->sem);
2021 key_put(key);
2022 kzfree(new_key_string);
2023 return -EKEYREVOKED;
2024 }
2025
2026 if (cc->key_size != ukp->datalen) {
2027 up_read(&key->sem);
2028 key_put(key);
2029 kzfree(new_key_string);
2030 return -EINVAL;
2031 }
2032
2033 memcpy(cc->key, ukp->data, cc->key_size);
2034
2035 up_read(&key->sem);
2036 key_put(key);
2037
2038 /* clear the flag since following operations may invalidate previously valid key */
2039 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2040
2041 ret = crypt_setkey(cc);
2042
2043 /* wipe the kernel key payload copy in each case */
2044 memset(cc->key, 0, cc->key_size * sizeof(u8));
2045
2046 if (!ret) {
2047 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2048 kzfree(cc->key_string);
2049 cc->key_string = new_key_string;
2050 } else
2051 kzfree(new_key_string);
2052
2053 return ret;
2054 }
2055
2056 static int get_key_size(char **key_string)
2057 {
2058 char *colon, dummy;
2059 int ret;
2060
2061 if (*key_string[0] != ':')
2062 return strlen(*key_string) >> 1;
2063
2064 /* look for next ':' in key string */
2065 colon = strpbrk(*key_string + 1, ":");
2066 if (!colon)
2067 return -EINVAL;
2068
2069 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2070 return -EINVAL;
2071
2072 *key_string = colon;
2073
2074 /* remaining key string should be :<logon|user>:<key_desc> */
2075
2076 return ret;
2077 }
2078
2079 #else
2080
2081 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2082 {
2083 return -EINVAL;
2084 }
2085
2086 static int get_key_size(char **key_string)
2087 {
2088 return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2089 }
2090
2091 #endif
2092
2093 static int crypt_set_key(struct crypt_config *cc, char *key)
2094 {
2095 int r = -EINVAL;
2096 int key_string_len = strlen(key);
2097
2098 /* Hyphen (which gives a key_size of zero) means there is no key. */
2099 if (!cc->key_size && strcmp(key, "-"))
2100 goto out;
2101
2102 /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2103 if (key[0] == ':') {
2104 r = crypt_set_keyring_key(cc, key + 1);
2105 goto out;
2106 }
2107
2108 /* clear the flag since following operations may invalidate previously valid key */
2109 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2110
2111 /* wipe references to any kernel keyring key */
2112 kzfree(cc->key_string);
2113 cc->key_string = NULL;
2114
2115 /* Decode key from its hex representation. */
2116 if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2117 goto out;
2118
2119 r = crypt_setkey(cc);
2120 if (!r)
2121 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2122
2123 out:
2124 /* Hex key string not needed after here, so wipe it. */
2125 memset(key, '0', key_string_len);
2126
2127 return r;
2128 }
2129
2130 static int crypt_wipe_key(struct crypt_config *cc)
2131 {
2132 int r;
2133
2134 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2135 get_random_bytes(&cc->key, cc->key_size);
2136 kzfree(cc->key_string);
2137 cc->key_string = NULL;
2138 r = crypt_setkey(cc);
2139 memset(&cc->key, 0, cc->key_size * sizeof(u8));
2140
2141 return r;
2142 }
2143
2144 static void crypt_dtr(struct dm_target *ti)
2145 {
2146 struct crypt_config *cc = ti->private;
2147
2148 ti->private = NULL;
2149
2150 if (!cc)
2151 return;
2152
2153 if (cc->write_thread)
2154 kthread_stop(cc->write_thread);
2155
2156 if (cc->io_queue)
2157 destroy_workqueue(cc->io_queue);
2158 if (cc->crypt_queue)
2159 destroy_workqueue(cc->crypt_queue);
2160
2161 crypt_free_tfms(cc);
2162
2163 if (cc->bs)
2164 bioset_free(cc->bs);
2165
2166 mempool_destroy(cc->page_pool);
2167 mempool_destroy(cc->req_pool);
2168 mempool_destroy(cc->tag_pool);
2169
2170 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2171 cc->iv_gen_ops->dtr(cc);
2172
2173 if (cc->dev)
2174 dm_put_device(ti, cc->dev);
2175
2176 kzfree(cc->cipher);
2177 kzfree(cc->cipher_string);
2178 kzfree(cc->key_string);
2179 kzfree(cc->cipher_auth);
2180 kzfree(cc->authenc_key);
2181
2182 /* Must zero key material before freeing */
2183 kzfree(cc);
2184 }
2185
2186 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2187 {
2188 struct crypt_config *cc = ti->private;
2189
2190 if (crypt_integrity_aead(cc))
2191 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2192 else
2193 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2194
2195 if (cc->iv_size)
2196 /* at least a 64 bit sector number should fit in our buffer */
2197 cc->iv_size = max(cc->iv_size,
2198 (unsigned int)(sizeof(u64) / sizeof(u8)));
2199 else if (ivmode) {
2200 DMWARN("Selected cipher does not support IVs");
2201 ivmode = NULL;
2202 }
2203
2204 /* Choose ivmode, see comments at iv code. */
2205 if (ivmode == NULL)
2206 cc->iv_gen_ops = NULL;
2207 else if (strcmp(ivmode, "plain") == 0)
2208 cc->iv_gen_ops = &crypt_iv_plain_ops;
2209 else if (strcmp(ivmode, "plain64") == 0)
2210 cc->iv_gen_ops = &crypt_iv_plain64_ops;
2211 else if (strcmp(ivmode, "essiv") == 0)
2212 cc->iv_gen_ops = &crypt_iv_essiv_ops;
2213 else if (strcmp(ivmode, "benbi") == 0)
2214 cc->iv_gen_ops = &crypt_iv_benbi_ops;
2215 else if (strcmp(ivmode, "null") == 0)
2216 cc->iv_gen_ops = &crypt_iv_null_ops;
2217 else if (strcmp(ivmode, "lmk") == 0) {
2218 cc->iv_gen_ops = &crypt_iv_lmk_ops;
2219 /*
2220 * Version 2 and 3 is recognised according
2221 * to length of provided multi-key string.
2222 * If present (version 3), last key is used as IV seed.
2223 * All keys (including IV seed) are always the same size.
2224 */
2225 if (cc->key_size % cc->key_parts) {
2226 cc->key_parts++;
2227 cc->key_extra_size = cc->key_size / cc->key_parts;
2228 }
2229 } else if (strcmp(ivmode, "tcw") == 0) {
2230 cc->iv_gen_ops = &crypt_iv_tcw_ops;
2231 cc->key_parts += 2; /* IV + whitening */
2232 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2233 } else if (strcmp(ivmode, "random") == 0) {
2234 cc->iv_gen_ops = &crypt_iv_random_ops;
2235 /* Need storage space in integrity fields. */
2236 cc->integrity_iv_size = cc->iv_size;
2237 } else {
2238 ti->error = "Invalid IV mode";
2239 return -EINVAL;
2240 }
2241
2242 return 0;
2243 }
2244
2245 /*
2246 * Workaround to parse cipher algorithm from crypto API spec.
2247 * The cc->cipher is currently used only in ESSIV.
2248 * This should be probably done by crypto-api calls (once available...)
2249 */
2250 static int crypt_ctr_blkdev_cipher(struct crypt_config *cc)
2251 {
2252 const char *alg_name = NULL;
2253 char *start, *end;
2254
2255 if (crypt_integrity_aead(cc)) {
2256 alg_name = crypto_tfm_alg_name(crypto_aead_tfm(any_tfm_aead(cc)));
2257 if (!alg_name)
2258 return -EINVAL;
2259 if (crypt_integrity_hmac(cc)) {
2260 alg_name = strchr(alg_name, ',');
2261 if (!alg_name)
2262 return -EINVAL;
2263 }
2264 alg_name++;
2265 } else {
2266 alg_name = crypto_tfm_alg_name(crypto_skcipher_tfm(any_tfm(cc)));
2267 if (!alg_name)
2268 return -EINVAL;
2269 }
2270
2271 start = strchr(alg_name, '(');
2272 end = strchr(alg_name, ')');
2273
2274 if (!start && !end) {
2275 cc->cipher = kstrdup(alg_name, GFP_KERNEL);
2276 return cc->cipher ? 0 : -ENOMEM;
2277 }
2278
2279 if (!start || !end || ++start >= end)
2280 return -EINVAL;
2281
2282 cc->cipher = kzalloc(end - start + 1, GFP_KERNEL);
2283 if (!cc->cipher)
2284 return -ENOMEM;
2285
2286 strncpy(cc->cipher, start, end - start);
2287
2288 return 0;
2289 }
2290
2291 /*
2292 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2293 * The HMAC is needed to calculate tag size (HMAC digest size).
2294 * This should be probably done by crypto-api calls (once available...)
2295 */
2296 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2297 {
2298 char *start, *end, *mac_alg = NULL;
2299 struct crypto_ahash *mac;
2300
2301 if (!strstarts(cipher_api, "authenc("))
2302 return 0;
2303
2304 start = strchr(cipher_api, '(');
2305 end = strchr(cipher_api, ',');
2306 if (!start || !end || ++start > end)
2307 return -EINVAL;
2308
2309 mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2310 if (!mac_alg)
2311 return -ENOMEM;
2312 strncpy(mac_alg, start, end - start);
2313
2314 mac = crypto_alloc_ahash(mac_alg, 0, 0);
2315 kfree(mac_alg);
2316
2317 if (IS_ERR(mac))
2318 return PTR_ERR(mac);
2319
2320 cc->key_mac_size = crypto_ahash_digestsize(mac);
2321 crypto_free_ahash(mac);
2322
2323 cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2324 if (!cc->authenc_key)
2325 return -ENOMEM;
2326
2327 return 0;
2328 }
2329
2330 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2331 char **ivmode, char **ivopts)
2332 {
2333 struct crypt_config *cc = ti->private;
2334 char *tmp, *cipher_api;
2335 int ret = -EINVAL;
2336
2337 cc->tfms_count = 1;
2338
2339 /*
2340 * New format (capi: prefix)
2341 * capi:cipher_api_spec-iv:ivopts
2342 */
2343 tmp = &cipher_in[strlen("capi:")];
2344 cipher_api = strsep(&tmp, "-");
2345 *ivmode = strsep(&tmp, ":");
2346 *ivopts = tmp;
2347
2348 if (*ivmode && !strcmp(*ivmode, "lmk"))
2349 cc->tfms_count = 64;
2350
2351 cc->key_parts = cc->tfms_count;
2352
2353 /* Allocate cipher */
2354 ret = crypt_alloc_tfms(cc, cipher_api);
2355 if (ret < 0) {
2356 ti->error = "Error allocating crypto tfm";
2357 return ret;
2358 }
2359
2360 /* Alloc AEAD, can be used only in new format. */
2361 if (crypt_integrity_aead(cc)) {
2362 ret = crypt_ctr_auth_cipher(cc, cipher_api);
2363 if (ret < 0) {
2364 ti->error = "Invalid AEAD cipher spec";
2365 return -ENOMEM;
2366 }
2367 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2368 } else
2369 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2370
2371 ret = crypt_ctr_blkdev_cipher(cc);
2372 if (ret < 0) {
2373 ti->error = "Cannot allocate cipher string";
2374 return -ENOMEM;
2375 }
2376
2377 return 0;
2378 }
2379
2380 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2381 char **ivmode, char **ivopts)
2382 {
2383 struct crypt_config *cc = ti->private;
2384 char *tmp, *cipher, *chainmode, *keycount;
2385 char *cipher_api = NULL;
2386 int ret = -EINVAL;
2387 char dummy;
2388
2389 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2390 ti->error = "Bad cipher specification";
2391 return -EINVAL;
2392 }
2393
2394 /*
2395 * Legacy dm-crypt cipher specification
2396 * cipher[:keycount]-mode-iv:ivopts
2397 */
2398 tmp = cipher_in;
2399 keycount = strsep(&tmp, "-");
2400 cipher = strsep(&keycount, ":");
2401
2402 if (!keycount)
2403 cc->tfms_count = 1;
2404 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2405 !is_power_of_2(cc->tfms_count)) {
2406 ti->error = "Bad cipher key count specification";
2407 return -EINVAL;
2408 }
2409 cc->key_parts = cc->tfms_count;
2410
2411 cc->cipher = kstrdup(cipher, GFP_KERNEL);
2412 if (!cc->cipher)
2413 goto bad_mem;
2414
2415 chainmode = strsep(&tmp, "-");
2416 *ivopts = strsep(&tmp, "-");
2417 *ivmode = strsep(&*ivopts, ":");
2418
2419 if (tmp)
2420 DMWARN("Ignoring unexpected additional cipher options");
2421
2422 /*
2423 * For compatibility with the original dm-crypt mapping format, if
2424 * only the cipher name is supplied, use cbc-plain.
2425 */
2426 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2427 chainmode = "cbc";
2428 *ivmode = "plain";
2429 }
2430
2431 if (strcmp(chainmode, "ecb") && !*ivmode) {
2432 ti->error = "IV mechanism required";
2433 return -EINVAL;
2434 }
2435
2436 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2437 if (!cipher_api)
2438 goto bad_mem;
2439
2440 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2441 "%s(%s)", chainmode, cipher);
2442 if (ret < 0) {
2443 kfree(cipher_api);
2444 goto bad_mem;
2445 }
2446
2447 /* Allocate cipher */
2448 ret = crypt_alloc_tfms(cc, cipher_api);
2449 if (ret < 0) {
2450 ti->error = "Error allocating crypto tfm";
2451 kfree(cipher_api);
2452 return ret;
2453 }
2454
2455 return 0;
2456 bad_mem:
2457 ti->error = "Cannot allocate cipher strings";
2458 return -ENOMEM;
2459 }
2460
2461 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
2462 {
2463 struct crypt_config *cc = ti->private;
2464 char *ivmode = NULL, *ivopts = NULL;
2465 int ret;
2466
2467 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
2468 if (!cc->cipher_string) {
2469 ti->error = "Cannot allocate cipher strings";
2470 return -ENOMEM;
2471 }
2472
2473 if (strstarts(cipher_in, "capi:"))
2474 ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
2475 else
2476 ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
2477 if (ret)
2478 return ret;
2479
2480 /* Initialize IV */
2481 ret = crypt_ctr_ivmode(ti, ivmode);
2482 if (ret < 0)
2483 return ret;
2484
2485 /* Initialize and set key */
2486 ret = crypt_set_key(cc, key);
2487 if (ret < 0) {
2488 ti->error = "Error decoding and setting key";
2489 return ret;
2490 }
2491
2492 /* Allocate IV */
2493 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
2494 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
2495 if (ret < 0) {
2496 ti->error = "Error creating IV";
2497 return ret;
2498 }
2499 }
2500
2501 /* Initialize IV (set keys for ESSIV etc) */
2502 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
2503 ret = cc->iv_gen_ops->init(cc);
2504 if (ret < 0) {
2505 ti->error = "Error initialising IV";
2506 return ret;
2507 }
2508 }
2509
2510 return ret;
2511 }
2512
2513 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
2514 {
2515 struct crypt_config *cc = ti->private;
2516 struct dm_arg_set as;
2517 static struct dm_arg _args[] = {
2518 {0, 6, "Invalid number of feature args"},
2519 };
2520 unsigned int opt_params, val;
2521 const char *opt_string, *sval;
2522 char dummy;
2523 int ret;
2524
2525 /* Optional parameters */
2526 as.argc = argc;
2527 as.argv = argv;
2528
2529 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2530 if (ret)
2531 return ret;
2532
2533 while (opt_params--) {
2534 opt_string = dm_shift_arg(&as);
2535 if (!opt_string) {
2536 ti->error = "Not enough feature arguments";
2537 return -EINVAL;
2538 }
2539
2540 if (!strcasecmp(opt_string, "allow_discards"))
2541 ti->num_discard_bios = 1;
2542
2543 else if (!strcasecmp(opt_string, "same_cpu_crypt"))
2544 set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2545
2546 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
2547 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2548 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
2549 if (val == 0 || val > MAX_TAG_SIZE) {
2550 ti->error = "Invalid integrity arguments";
2551 return -EINVAL;
2552 }
2553 cc->on_disk_tag_size = val;
2554 sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
2555 if (!strcasecmp(sval, "aead")) {
2556 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
2557 } else if (strcasecmp(sval, "none")) {
2558 ti->error = "Unknown integrity profile";
2559 return -EINVAL;
2560 }
2561
2562 cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
2563 if (!cc->cipher_auth)
2564 return -ENOMEM;
2565 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
2566 if (cc->sector_size < (1 << SECTOR_SHIFT) ||
2567 cc->sector_size > 4096 ||
2568 (cc->sector_size & (cc->sector_size - 1))) {
2569 ti->error = "Invalid feature value for sector_size";
2570 return -EINVAL;
2571 }
2572 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
2573 } else if (!strcasecmp(opt_string, "iv_large_sectors"))
2574 set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2575 else {
2576 ti->error = "Invalid feature arguments";
2577 return -EINVAL;
2578 }
2579 }
2580
2581 return 0;
2582 }
2583
2584 /*
2585 * Construct an encryption mapping:
2586 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
2587 */
2588 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2589 {
2590 struct crypt_config *cc;
2591 int key_size;
2592 unsigned int align_mask;
2593 unsigned long long tmpll;
2594 int ret;
2595 size_t iv_size_padding, additional_req_size;
2596 char dummy;
2597
2598 if (argc < 5) {
2599 ti->error = "Not enough arguments";
2600 return -EINVAL;
2601 }
2602
2603 key_size = get_key_size(&argv[1]);
2604 if (key_size < 0) {
2605 ti->error = "Cannot parse key size";
2606 return -EINVAL;
2607 }
2608
2609 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
2610 if (!cc) {
2611 ti->error = "Cannot allocate encryption context";
2612 return -ENOMEM;
2613 }
2614 cc->key_size = key_size;
2615 cc->sector_size = (1 << SECTOR_SHIFT);
2616 cc->sector_shift = 0;
2617
2618 ti->private = cc;
2619
2620 /* Optional parameters need to be read before cipher constructor */
2621 if (argc > 5) {
2622 ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
2623 if (ret)
2624 goto bad;
2625 }
2626
2627 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
2628 if (ret < 0)
2629 goto bad;
2630
2631 if (crypt_integrity_aead(cc)) {
2632 cc->dmreq_start = sizeof(struct aead_request);
2633 cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
2634 align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
2635 } else {
2636 cc->dmreq_start = sizeof(struct skcipher_request);
2637 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
2638 align_mask = crypto_skcipher_alignmask(any_tfm(cc));
2639 }
2640 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
2641
2642 if (align_mask < CRYPTO_MINALIGN) {
2643 /* Allocate the padding exactly */
2644 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
2645 & align_mask;
2646 } else {
2647 /*
2648 * If the cipher requires greater alignment than kmalloc
2649 * alignment, we don't know the exact position of the
2650 * initialization vector. We must assume worst case.
2651 */
2652 iv_size_padding = align_mask;
2653 }
2654
2655 ret = -ENOMEM;
2656
2657 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */
2658 additional_req_size = sizeof(struct dm_crypt_request) +
2659 iv_size_padding + cc->iv_size +
2660 cc->iv_size +
2661 sizeof(uint64_t) +
2662 sizeof(unsigned int);
2663
2664 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start + additional_req_size);
2665 if (!cc->req_pool) {
2666 ti->error = "Cannot allocate crypt request mempool";
2667 goto bad;
2668 }
2669
2670 cc->per_bio_data_size = ti->per_io_data_size =
2671 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
2672 ARCH_KMALLOC_MINALIGN);
2673
2674 cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
2675 if (!cc->page_pool) {
2676 ti->error = "Cannot allocate page mempool";
2677 goto bad;
2678 }
2679
2680 cc->bs = bioset_create(MIN_IOS, 0);
2681 if (!cc->bs) {
2682 ti->error = "Cannot allocate crypt bioset";
2683 goto bad;
2684 }
2685
2686 mutex_init(&cc->bio_alloc_lock);
2687
2688 ret = -EINVAL;
2689 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
2690 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
2691 ti->error = "Invalid iv_offset sector";
2692 goto bad;
2693 }
2694 cc->iv_offset = tmpll;
2695
2696 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
2697 if (ret) {
2698 ti->error = "Device lookup failed";
2699 goto bad;
2700 }
2701
2702 ret = -EINVAL;
2703 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
2704 ti->error = "Invalid device sector";
2705 goto bad;
2706 }
2707 cc->start = tmpll;
2708
2709 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
2710 ret = crypt_integrity_ctr(cc, ti);
2711 if (ret)
2712 goto bad;
2713
2714 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
2715 if (!cc->tag_pool_max_sectors)
2716 cc->tag_pool_max_sectors = 1;
2717
2718 cc->tag_pool = mempool_create_kmalloc_pool(MIN_IOS,
2719 cc->tag_pool_max_sectors * cc->on_disk_tag_size);
2720 if (!cc->tag_pool) {
2721 ti->error = "Cannot allocate integrity tags mempool";
2722 goto bad;
2723 }
2724
2725 cc->tag_pool_max_sectors <<= cc->sector_shift;
2726 }
2727
2728 ret = -ENOMEM;
2729 cc->io_queue = alloc_workqueue("kcryptd_io", WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
2730 if (!cc->io_queue) {
2731 ti->error = "Couldn't create kcryptd io queue";
2732 goto bad;
2733 }
2734
2735 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2736 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
2737 else
2738 cc->crypt_queue = alloc_workqueue("kcryptd",
2739 WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
2740 num_online_cpus());
2741 if (!cc->crypt_queue) {
2742 ti->error = "Couldn't create kcryptd queue";
2743 goto bad;
2744 }
2745
2746 init_waitqueue_head(&cc->write_thread_wait);
2747 cc->write_tree = RB_ROOT;
2748
2749 cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
2750 if (IS_ERR(cc->write_thread)) {
2751 ret = PTR_ERR(cc->write_thread);
2752 cc->write_thread = NULL;
2753 ti->error = "Couldn't spawn write thread";
2754 goto bad;
2755 }
2756 wake_up_process(cc->write_thread);
2757
2758 ti->num_flush_bios = 1;
2759
2760 return 0;
2761
2762 bad:
2763 crypt_dtr(ti);
2764 return ret;
2765 }
2766
2767 static int crypt_map(struct dm_target *ti, struct bio *bio)
2768 {
2769 struct dm_crypt_io *io;
2770 struct crypt_config *cc = ti->private;
2771
2772 /*
2773 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
2774 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
2775 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
2776 */
2777 if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
2778 bio_op(bio) == REQ_OP_DISCARD)) {
2779 bio->bi_bdev = cc->dev->bdev;
2780 if (bio_sectors(bio))
2781 bio->bi_iter.bi_sector = cc->start +
2782 dm_target_offset(ti, bio->bi_iter.bi_sector);
2783 return DM_MAPIO_REMAPPED;
2784 }
2785
2786 /*
2787 * Check if bio is too large, split as needed.
2788 */
2789 if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
2790 (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
2791 dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
2792
2793 /*
2794 * Ensure that bio is a multiple of internal sector encryption size
2795 * and is aligned to this size as defined in IO hints.
2796 */
2797 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
2798 return DM_MAPIO_KILL;
2799
2800 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
2801 return DM_MAPIO_KILL;
2802
2803 io = dm_per_bio_data(bio, cc->per_bio_data_size);
2804 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
2805
2806 if (cc->on_disk_tag_size) {
2807 unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
2808
2809 if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
2810 unlikely(!(io->integrity_metadata = kmalloc(tag_len,
2811 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
2812 if (bio_sectors(bio) > cc->tag_pool_max_sectors)
2813 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
2814 io->integrity_metadata = mempool_alloc(cc->tag_pool, GFP_NOIO);
2815 io->integrity_metadata_from_pool = true;
2816 }
2817 }
2818
2819 if (crypt_integrity_aead(cc))
2820 io->ctx.r.req_aead = (struct aead_request *)(io + 1);
2821 else
2822 io->ctx.r.req = (struct skcipher_request *)(io + 1);
2823
2824 if (bio_data_dir(io->base_bio) == READ) {
2825 if (kcryptd_io_read(io, GFP_NOWAIT))
2826 kcryptd_queue_read(io);
2827 } else
2828 kcryptd_queue_crypt(io);
2829
2830 return DM_MAPIO_SUBMITTED;
2831 }
2832
2833 static void crypt_status(struct dm_target *ti, status_type_t type,
2834 unsigned status_flags, char *result, unsigned maxlen)
2835 {
2836 struct crypt_config *cc = ti->private;
2837 unsigned i, sz = 0;
2838 int num_feature_args = 0;
2839
2840 switch (type) {
2841 case STATUSTYPE_INFO:
2842 result[0] = '\0';
2843 break;
2844
2845 case STATUSTYPE_TABLE:
2846 DMEMIT("%s ", cc->cipher_string);
2847
2848 if (cc->key_size > 0) {
2849 if (cc->key_string)
2850 DMEMIT(":%u:%s", cc->key_size, cc->key_string);
2851 else
2852 for (i = 0; i < cc->key_size; i++)
2853 DMEMIT("%02x", cc->key[i]);
2854 } else
2855 DMEMIT("-");
2856
2857 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
2858 cc->dev->name, (unsigned long long)cc->start);
2859
2860 num_feature_args += !!ti->num_discard_bios;
2861 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2862 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2863 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
2864 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2865 if (cc->on_disk_tag_size)
2866 num_feature_args++;
2867 if (num_feature_args) {
2868 DMEMIT(" %d", num_feature_args);
2869 if (ti->num_discard_bios)
2870 DMEMIT(" allow_discards");
2871 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2872 DMEMIT(" same_cpu_crypt");
2873 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
2874 DMEMIT(" submit_from_crypt_cpus");
2875 if (cc->on_disk_tag_size)
2876 DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
2877 if (cc->sector_size != (1 << SECTOR_SHIFT))
2878 DMEMIT(" sector_size:%d", cc->sector_size);
2879 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
2880 DMEMIT(" iv_large_sectors");
2881 }
2882
2883 break;
2884 }
2885 }
2886
2887 static void crypt_postsuspend(struct dm_target *ti)
2888 {
2889 struct crypt_config *cc = ti->private;
2890
2891 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2892 }
2893
2894 static int crypt_preresume(struct dm_target *ti)
2895 {
2896 struct crypt_config *cc = ti->private;
2897
2898 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
2899 DMERR("aborting resume - crypt key is not set.");
2900 return -EAGAIN;
2901 }
2902
2903 return 0;
2904 }
2905
2906 static void crypt_resume(struct dm_target *ti)
2907 {
2908 struct crypt_config *cc = ti->private;
2909
2910 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2911 }
2912
2913 /* Message interface
2914 * key set <key>
2915 * key wipe
2916 */
2917 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
2918 {
2919 struct crypt_config *cc = ti->private;
2920 int key_size, ret = -EINVAL;
2921
2922 if (argc < 2)
2923 goto error;
2924
2925 if (!strcasecmp(argv[0], "key")) {
2926 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2927 DMWARN("not suspended during key manipulation.");
2928 return -EINVAL;
2929 }
2930 if (argc == 3 && !strcasecmp(argv[1], "set")) {
2931 /* The key size may not be changed. */
2932 key_size = get_key_size(&argv[2]);
2933 if (key_size < 0 || cc->key_size != key_size) {
2934 memset(argv[2], '0', strlen(argv[2]));
2935 return -EINVAL;
2936 }
2937
2938 ret = crypt_set_key(cc, argv[2]);
2939 if (ret)
2940 return ret;
2941 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2942 ret = cc->iv_gen_ops->init(cc);
2943 return ret;
2944 }
2945 if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2946 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2947 ret = cc->iv_gen_ops->wipe(cc);
2948 if (ret)
2949 return ret;
2950 }
2951 return crypt_wipe_key(cc);
2952 }
2953 }
2954
2955 error:
2956 DMWARN("unrecognised message received.");
2957 return -EINVAL;
2958 }
2959
2960 static int crypt_iterate_devices(struct dm_target *ti,
2961 iterate_devices_callout_fn fn, void *data)
2962 {
2963 struct crypt_config *cc = ti->private;
2964
2965 return fn(ti, cc->dev, cc->start, ti->len, data);
2966 }
2967
2968 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2969 {
2970 struct crypt_config *cc = ti->private;
2971
2972 /*
2973 * Unfortunate constraint that is required to avoid the potential
2974 * for exceeding underlying device's max_segments limits -- due to
2975 * crypt_alloc_buffer() possibly allocating pages for the encryption
2976 * bio that are not as physically contiguous as the original bio.
2977 */
2978 limits->max_segment_size = PAGE_SIZE;
2979
2980 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
2981 limits->logical_block_size = cc->sector_size;
2982 limits->physical_block_size = cc->sector_size;
2983 blk_limits_io_min(limits, cc->sector_size);
2984 }
2985 }
2986
2987 static struct target_type crypt_target = {
2988 .name = "crypt",
2989 .version = {1, 17, 0},
2990 .module = THIS_MODULE,
2991 .ctr = crypt_ctr,
2992 .dtr = crypt_dtr,
2993 .map = crypt_map,
2994 .status = crypt_status,
2995 .postsuspend = crypt_postsuspend,
2996 .preresume = crypt_preresume,
2997 .resume = crypt_resume,
2998 .message = crypt_message,
2999 .iterate_devices = crypt_iterate_devices,
3000 .io_hints = crypt_io_hints,
3001 };
3002
3003 static int __init dm_crypt_init(void)
3004 {
3005 int r;
3006
3007 r = dm_register_target(&crypt_target);
3008 if (r < 0)
3009 DMERR("register failed %d", r);
3010
3011 return r;
3012 }
3013
3014 static void __exit dm_crypt_exit(void)
3015 {
3016 dm_unregister_target(&crypt_target);
3017 }
3018
3019 module_init(dm_crypt_init);
3020 module_exit(dm_crypt_exit);
3021
3022 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3023 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3024 MODULE_LICENSE("GPL");