]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/dm-crypt.c
block: add a bi_error field to struct bio
[mirror_ubuntu-bionic-kernel.git] / drivers / md / dm-crypt.c
1 /*
2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2015 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
6 *
7 * This file is released under the GPL.
8 */
9
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/bio.h>
16 #include <linux/blkdev.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/crypto.h>
20 #include <linux/workqueue.h>
21 #include <linux/kthread.h>
22 #include <linux/backing-dev.h>
23 #include <linux/atomic.h>
24 #include <linux/scatterlist.h>
25 #include <linux/rbtree.h>
26 #include <asm/page.h>
27 #include <asm/unaligned.h>
28 #include <crypto/hash.h>
29 #include <crypto/md5.h>
30 #include <crypto/algapi.h>
31
32 #include <linux/device-mapper.h>
33
34 #define DM_MSG_PREFIX "crypt"
35
36 /*
37 * context holding the current state of a multi-part conversion
38 */
39 struct convert_context {
40 struct completion restart;
41 struct bio *bio_in;
42 struct bio *bio_out;
43 struct bvec_iter iter_in;
44 struct bvec_iter iter_out;
45 sector_t cc_sector;
46 atomic_t cc_pending;
47 struct ablkcipher_request *req;
48 };
49
50 /*
51 * per bio private data
52 */
53 struct dm_crypt_io {
54 struct crypt_config *cc;
55 struct bio *base_bio;
56 struct work_struct work;
57
58 struct convert_context ctx;
59
60 atomic_t io_pending;
61 int error;
62 sector_t sector;
63
64 struct rb_node rb_node;
65 } CRYPTO_MINALIGN_ATTR;
66
67 struct dm_crypt_request {
68 struct convert_context *ctx;
69 struct scatterlist sg_in;
70 struct scatterlist sg_out;
71 sector_t iv_sector;
72 };
73
74 struct crypt_config;
75
76 struct crypt_iv_operations {
77 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
78 const char *opts);
79 void (*dtr)(struct crypt_config *cc);
80 int (*init)(struct crypt_config *cc);
81 int (*wipe)(struct crypt_config *cc);
82 int (*generator)(struct crypt_config *cc, u8 *iv,
83 struct dm_crypt_request *dmreq);
84 int (*post)(struct crypt_config *cc, u8 *iv,
85 struct dm_crypt_request *dmreq);
86 };
87
88 struct iv_essiv_private {
89 struct crypto_hash *hash_tfm;
90 u8 *salt;
91 };
92
93 struct iv_benbi_private {
94 int shift;
95 };
96
97 #define LMK_SEED_SIZE 64 /* hash + 0 */
98 struct iv_lmk_private {
99 struct crypto_shash *hash_tfm;
100 u8 *seed;
101 };
102
103 #define TCW_WHITENING_SIZE 16
104 struct iv_tcw_private {
105 struct crypto_shash *crc32_tfm;
106 u8 *iv_seed;
107 u8 *whitening;
108 };
109
110 /*
111 * Crypt: maps a linear range of a block device
112 * and encrypts / decrypts at the same time.
113 */
114 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
115 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
116
117 /*
118 * The fields in here must be read only after initialization.
119 */
120 struct crypt_config {
121 struct dm_dev *dev;
122 sector_t start;
123
124 /*
125 * pool for per bio private data, crypto requests and
126 * encryption requeusts/buffer pages
127 */
128 mempool_t *req_pool;
129 mempool_t *page_pool;
130 struct bio_set *bs;
131 struct mutex bio_alloc_lock;
132
133 struct workqueue_struct *io_queue;
134 struct workqueue_struct *crypt_queue;
135
136 struct task_struct *write_thread;
137 wait_queue_head_t write_thread_wait;
138 struct rb_root write_tree;
139
140 char *cipher;
141 char *cipher_string;
142
143 struct crypt_iv_operations *iv_gen_ops;
144 union {
145 struct iv_essiv_private essiv;
146 struct iv_benbi_private benbi;
147 struct iv_lmk_private lmk;
148 struct iv_tcw_private tcw;
149 } iv_gen_private;
150 sector_t iv_offset;
151 unsigned int iv_size;
152
153 /* ESSIV: struct crypto_cipher *essiv_tfm */
154 void *iv_private;
155 struct crypto_ablkcipher **tfms;
156 unsigned tfms_count;
157
158 /*
159 * Layout of each crypto request:
160 *
161 * struct ablkcipher_request
162 * context
163 * padding
164 * struct dm_crypt_request
165 * padding
166 * IV
167 *
168 * The padding is added so that dm_crypt_request and the IV are
169 * correctly aligned.
170 */
171 unsigned int dmreq_start;
172
173 unsigned int per_bio_data_size;
174
175 unsigned long flags;
176 unsigned int key_size;
177 unsigned int key_parts; /* independent parts in key buffer */
178 unsigned int key_extra_size; /* additional keys length */
179 u8 key[0];
180 };
181
182 #define MIN_IOS 16
183
184 static void clone_init(struct dm_crypt_io *, struct bio *);
185 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
186 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
187
188 /*
189 * Use this to access cipher attributes that are the same for each CPU.
190 */
191 static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
192 {
193 return cc->tfms[0];
194 }
195
196 /*
197 * Different IV generation algorithms:
198 *
199 * plain: the initial vector is the 32-bit little-endian version of the sector
200 * number, padded with zeros if necessary.
201 *
202 * plain64: the initial vector is the 64-bit little-endian version of the sector
203 * number, padded with zeros if necessary.
204 *
205 * essiv: "encrypted sector|salt initial vector", the sector number is
206 * encrypted with the bulk cipher using a salt as key. The salt
207 * should be derived from the bulk cipher's key via hashing.
208 *
209 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
210 * (needed for LRW-32-AES and possible other narrow block modes)
211 *
212 * null: the initial vector is always zero. Provides compatibility with
213 * obsolete loop_fish2 devices. Do not use for new devices.
214 *
215 * lmk: Compatible implementation of the block chaining mode used
216 * by the Loop-AES block device encryption system
217 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
218 * It operates on full 512 byte sectors and uses CBC
219 * with an IV derived from the sector number, the data and
220 * optionally extra IV seed.
221 * This means that after decryption the first block
222 * of sector must be tweaked according to decrypted data.
223 * Loop-AES can use three encryption schemes:
224 * version 1: is plain aes-cbc mode
225 * version 2: uses 64 multikey scheme with lmk IV generator
226 * version 3: the same as version 2 with additional IV seed
227 * (it uses 65 keys, last key is used as IV seed)
228 *
229 * tcw: Compatible implementation of the block chaining mode used
230 * by the TrueCrypt device encryption system (prior to version 4.1).
231 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
232 * It operates on full 512 byte sectors and uses CBC
233 * with an IV derived from initial key and the sector number.
234 * In addition, whitening value is applied on every sector, whitening
235 * is calculated from initial key, sector number and mixed using CRC32.
236 * Note that this encryption scheme is vulnerable to watermarking attacks
237 * and should be used for old compatible containers access only.
238 *
239 * plumb: unimplemented, see:
240 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
241 */
242
243 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
244 struct dm_crypt_request *dmreq)
245 {
246 memset(iv, 0, cc->iv_size);
247 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
248
249 return 0;
250 }
251
252 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
253 struct dm_crypt_request *dmreq)
254 {
255 memset(iv, 0, cc->iv_size);
256 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
257
258 return 0;
259 }
260
261 /* Initialise ESSIV - compute salt but no local memory allocations */
262 static int crypt_iv_essiv_init(struct crypt_config *cc)
263 {
264 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
265 struct hash_desc desc;
266 struct scatterlist sg;
267 struct crypto_cipher *essiv_tfm;
268 int err;
269
270 sg_init_one(&sg, cc->key, cc->key_size);
271 desc.tfm = essiv->hash_tfm;
272 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
273
274 err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
275 if (err)
276 return err;
277
278 essiv_tfm = cc->iv_private;
279
280 err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
281 crypto_hash_digestsize(essiv->hash_tfm));
282 if (err)
283 return err;
284
285 return 0;
286 }
287
288 /* Wipe salt and reset key derived from volume key */
289 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
290 {
291 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
292 unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
293 struct crypto_cipher *essiv_tfm;
294 int r, err = 0;
295
296 memset(essiv->salt, 0, salt_size);
297
298 essiv_tfm = cc->iv_private;
299 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
300 if (r)
301 err = r;
302
303 return err;
304 }
305
306 /* Set up per cpu cipher state */
307 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
308 struct dm_target *ti,
309 u8 *salt, unsigned saltsize)
310 {
311 struct crypto_cipher *essiv_tfm;
312 int err;
313
314 /* Setup the essiv_tfm with the given salt */
315 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
316 if (IS_ERR(essiv_tfm)) {
317 ti->error = "Error allocating crypto tfm for ESSIV";
318 return essiv_tfm;
319 }
320
321 if (crypto_cipher_blocksize(essiv_tfm) !=
322 crypto_ablkcipher_ivsize(any_tfm(cc))) {
323 ti->error = "Block size of ESSIV cipher does "
324 "not match IV size of block cipher";
325 crypto_free_cipher(essiv_tfm);
326 return ERR_PTR(-EINVAL);
327 }
328
329 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
330 if (err) {
331 ti->error = "Failed to set key for ESSIV cipher";
332 crypto_free_cipher(essiv_tfm);
333 return ERR_PTR(err);
334 }
335
336 return essiv_tfm;
337 }
338
339 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
340 {
341 struct crypto_cipher *essiv_tfm;
342 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
343
344 crypto_free_hash(essiv->hash_tfm);
345 essiv->hash_tfm = NULL;
346
347 kzfree(essiv->salt);
348 essiv->salt = NULL;
349
350 essiv_tfm = cc->iv_private;
351
352 if (essiv_tfm)
353 crypto_free_cipher(essiv_tfm);
354
355 cc->iv_private = NULL;
356 }
357
358 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
359 const char *opts)
360 {
361 struct crypto_cipher *essiv_tfm = NULL;
362 struct crypto_hash *hash_tfm = NULL;
363 u8 *salt = NULL;
364 int err;
365
366 if (!opts) {
367 ti->error = "Digest algorithm missing for ESSIV mode";
368 return -EINVAL;
369 }
370
371 /* Allocate hash algorithm */
372 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
373 if (IS_ERR(hash_tfm)) {
374 ti->error = "Error initializing ESSIV hash";
375 err = PTR_ERR(hash_tfm);
376 goto bad;
377 }
378
379 salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
380 if (!salt) {
381 ti->error = "Error kmallocing salt storage in ESSIV";
382 err = -ENOMEM;
383 goto bad;
384 }
385
386 cc->iv_gen_private.essiv.salt = salt;
387 cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
388
389 essiv_tfm = setup_essiv_cpu(cc, ti, salt,
390 crypto_hash_digestsize(hash_tfm));
391 if (IS_ERR(essiv_tfm)) {
392 crypt_iv_essiv_dtr(cc);
393 return PTR_ERR(essiv_tfm);
394 }
395 cc->iv_private = essiv_tfm;
396
397 return 0;
398
399 bad:
400 if (hash_tfm && !IS_ERR(hash_tfm))
401 crypto_free_hash(hash_tfm);
402 kfree(salt);
403 return err;
404 }
405
406 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
407 struct dm_crypt_request *dmreq)
408 {
409 struct crypto_cipher *essiv_tfm = cc->iv_private;
410
411 memset(iv, 0, cc->iv_size);
412 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
413 crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
414
415 return 0;
416 }
417
418 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
419 const char *opts)
420 {
421 unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
422 int log = ilog2(bs);
423
424 /* we need to calculate how far we must shift the sector count
425 * to get the cipher block count, we use this shift in _gen */
426
427 if (1 << log != bs) {
428 ti->error = "cypher blocksize is not a power of 2";
429 return -EINVAL;
430 }
431
432 if (log > 9) {
433 ti->error = "cypher blocksize is > 512";
434 return -EINVAL;
435 }
436
437 cc->iv_gen_private.benbi.shift = 9 - log;
438
439 return 0;
440 }
441
442 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
443 {
444 }
445
446 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
447 struct dm_crypt_request *dmreq)
448 {
449 __be64 val;
450
451 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
452
453 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
454 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
455
456 return 0;
457 }
458
459 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
460 struct dm_crypt_request *dmreq)
461 {
462 memset(iv, 0, cc->iv_size);
463
464 return 0;
465 }
466
467 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
468 {
469 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
470
471 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
472 crypto_free_shash(lmk->hash_tfm);
473 lmk->hash_tfm = NULL;
474
475 kzfree(lmk->seed);
476 lmk->seed = NULL;
477 }
478
479 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
480 const char *opts)
481 {
482 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
483
484 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
485 if (IS_ERR(lmk->hash_tfm)) {
486 ti->error = "Error initializing LMK hash";
487 return PTR_ERR(lmk->hash_tfm);
488 }
489
490 /* No seed in LMK version 2 */
491 if (cc->key_parts == cc->tfms_count) {
492 lmk->seed = NULL;
493 return 0;
494 }
495
496 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
497 if (!lmk->seed) {
498 crypt_iv_lmk_dtr(cc);
499 ti->error = "Error kmallocing seed storage in LMK";
500 return -ENOMEM;
501 }
502
503 return 0;
504 }
505
506 static int crypt_iv_lmk_init(struct crypt_config *cc)
507 {
508 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
509 int subkey_size = cc->key_size / cc->key_parts;
510
511 /* LMK seed is on the position of LMK_KEYS + 1 key */
512 if (lmk->seed)
513 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
514 crypto_shash_digestsize(lmk->hash_tfm));
515
516 return 0;
517 }
518
519 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
520 {
521 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
522
523 if (lmk->seed)
524 memset(lmk->seed, 0, LMK_SEED_SIZE);
525
526 return 0;
527 }
528
529 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
530 struct dm_crypt_request *dmreq,
531 u8 *data)
532 {
533 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
534 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
535 struct md5_state md5state;
536 __le32 buf[4];
537 int i, r;
538
539 desc->tfm = lmk->hash_tfm;
540 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
541
542 r = crypto_shash_init(desc);
543 if (r)
544 return r;
545
546 if (lmk->seed) {
547 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
548 if (r)
549 return r;
550 }
551
552 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
553 r = crypto_shash_update(desc, data + 16, 16 * 31);
554 if (r)
555 return r;
556
557 /* Sector is cropped to 56 bits here */
558 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
559 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
560 buf[2] = cpu_to_le32(4024);
561 buf[3] = 0;
562 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
563 if (r)
564 return r;
565
566 /* No MD5 padding here */
567 r = crypto_shash_export(desc, &md5state);
568 if (r)
569 return r;
570
571 for (i = 0; i < MD5_HASH_WORDS; i++)
572 __cpu_to_le32s(&md5state.hash[i]);
573 memcpy(iv, &md5state.hash, cc->iv_size);
574
575 return 0;
576 }
577
578 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
579 struct dm_crypt_request *dmreq)
580 {
581 u8 *src;
582 int r = 0;
583
584 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
585 src = kmap_atomic(sg_page(&dmreq->sg_in));
586 r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
587 kunmap_atomic(src);
588 } else
589 memset(iv, 0, cc->iv_size);
590
591 return r;
592 }
593
594 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
595 struct dm_crypt_request *dmreq)
596 {
597 u8 *dst;
598 int r;
599
600 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
601 return 0;
602
603 dst = kmap_atomic(sg_page(&dmreq->sg_out));
604 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
605
606 /* Tweak the first block of plaintext sector */
607 if (!r)
608 crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
609
610 kunmap_atomic(dst);
611 return r;
612 }
613
614 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
615 {
616 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
617
618 kzfree(tcw->iv_seed);
619 tcw->iv_seed = NULL;
620 kzfree(tcw->whitening);
621 tcw->whitening = NULL;
622
623 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
624 crypto_free_shash(tcw->crc32_tfm);
625 tcw->crc32_tfm = NULL;
626 }
627
628 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
629 const char *opts)
630 {
631 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
632
633 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
634 ti->error = "Wrong key size for TCW";
635 return -EINVAL;
636 }
637
638 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
639 if (IS_ERR(tcw->crc32_tfm)) {
640 ti->error = "Error initializing CRC32 in TCW";
641 return PTR_ERR(tcw->crc32_tfm);
642 }
643
644 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
645 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
646 if (!tcw->iv_seed || !tcw->whitening) {
647 crypt_iv_tcw_dtr(cc);
648 ti->error = "Error allocating seed storage in TCW";
649 return -ENOMEM;
650 }
651
652 return 0;
653 }
654
655 static int crypt_iv_tcw_init(struct crypt_config *cc)
656 {
657 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
658 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
659
660 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
661 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
662 TCW_WHITENING_SIZE);
663
664 return 0;
665 }
666
667 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
668 {
669 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
670
671 memset(tcw->iv_seed, 0, cc->iv_size);
672 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
673
674 return 0;
675 }
676
677 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
678 struct dm_crypt_request *dmreq,
679 u8 *data)
680 {
681 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
682 u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
683 u8 buf[TCW_WHITENING_SIZE];
684 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
685 int i, r;
686
687 /* xor whitening with sector number */
688 memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
689 crypto_xor(buf, (u8 *)&sector, 8);
690 crypto_xor(&buf[8], (u8 *)&sector, 8);
691
692 /* calculate crc32 for every 32bit part and xor it */
693 desc->tfm = tcw->crc32_tfm;
694 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
695 for (i = 0; i < 4; i++) {
696 r = crypto_shash_init(desc);
697 if (r)
698 goto out;
699 r = crypto_shash_update(desc, &buf[i * 4], 4);
700 if (r)
701 goto out;
702 r = crypto_shash_final(desc, &buf[i * 4]);
703 if (r)
704 goto out;
705 }
706 crypto_xor(&buf[0], &buf[12], 4);
707 crypto_xor(&buf[4], &buf[8], 4);
708
709 /* apply whitening (8 bytes) to whole sector */
710 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
711 crypto_xor(data + i * 8, buf, 8);
712 out:
713 memzero_explicit(buf, sizeof(buf));
714 return r;
715 }
716
717 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
718 struct dm_crypt_request *dmreq)
719 {
720 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
721 u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
722 u8 *src;
723 int r = 0;
724
725 /* Remove whitening from ciphertext */
726 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
727 src = kmap_atomic(sg_page(&dmreq->sg_in));
728 r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
729 kunmap_atomic(src);
730 }
731
732 /* Calculate IV */
733 memcpy(iv, tcw->iv_seed, cc->iv_size);
734 crypto_xor(iv, (u8 *)&sector, 8);
735 if (cc->iv_size > 8)
736 crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
737
738 return r;
739 }
740
741 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
742 struct dm_crypt_request *dmreq)
743 {
744 u8 *dst;
745 int r;
746
747 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
748 return 0;
749
750 /* Apply whitening on ciphertext */
751 dst = kmap_atomic(sg_page(&dmreq->sg_out));
752 r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
753 kunmap_atomic(dst);
754
755 return r;
756 }
757
758 static struct crypt_iv_operations crypt_iv_plain_ops = {
759 .generator = crypt_iv_plain_gen
760 };
761
762 static struct crypt_iv_operations crypt_iv_plain64_ops = {
763 .generator = crypt_iv_plain64_gen
764 };
765
766 static struct crypt_iv_operations crypt_iv_essiv_ops = {
767 .ctr = crypt_iv_essiv_ctr,
768 .dtr = crypt_iv_essiv_dtr,
769 .init = crypt_iv_essiv_init,
770 .wipe = crypt_iv_essiv_wipe,
771 .generator = crypt_iv_essiv_gen
772 };
773
774 static struct crypt_iv_operations crypt_iv_benbi_ops = {
775 .ctr = crypt_iv_benbi_ctr,
776 .dtr = crypt_iv_benbi_dtr,
777 .generator = crypt_iv_benbi_gen
778 };
779
780 static struct crypt_iv_operations crypt_iv_null_ops = {
781 .generator = crypt_iv_null_gen
782 };
783
784 static struct crypt_iv_operations crypt_iv_lmk_ops = {
785 .ctr = crypt_iv_lmk_ctr,
786 .dtr = crypt_iv_lmk_dtr,
787 .init = crypt_iv_lmk_init,
788 .wipe = crypt_iv_lmk_wipe,
789 .generator = crypt_iv_lmk_gen,
790 .post = crypt_iv_lmk_post
791 };
792
793 static struct crypt_iv_operations crypt_iv_tcw_ops = {
794 .ctr = crypt_iv_tcw_ctr,
795 .dtr = crypt_iv_tcw_dtr,
796 .init = crypt_iv_tcw_init,
797 .wipe = crypt_iv_tcw_wipe,
798 .generator = crypt_iv_tcw_gen,
799 .post = crypt_iv_tcw_post
800 };
801
802 static void crypt_convert_init(struct crypt_config *cc,
803 struct convert_context *ctx,
804 struct bio *bio_out, struct bio *bio_in,
805 sector_t sector)
806 {
807 ctx->bio_in = bio_in;
808 ctx->bio_out = bio_out;
809 if (bio_in)
810 ctx->iter_in = bio_in->bi_iter;
811 if (bio_out)
812 ctx->iter_out = bio_out->bi_iter;
813 ctx->cc_sector = sector + cc->iv_offset;
814 init_completion(&ctx->restart);
815 }
816
817 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
818 struct ablkcipher_request *req)
819 {
820 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
821 }
822
823 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
824 struct dm_crypt_request *dmreq)
825 {
826 return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
827 }
828
829 static u8 *iv_of_dmreq(struct crypt_config *cc,
830 struct dm_crypt_request *dmreq)
831 {
832 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
833 crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
834 }
835
836 static int crypt_convert_block(struct crypt_config *cc,
837 struct convert_context *ctx,
838 struct ablkcipher_request *req)
839 {
840 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
841 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
842 struct dm_crypt_request *dmreq;
843 u8 *iv;
844 int r;
845
846 dmreq = dmreq_of_req(cc, req);
847 iv = iv_of_dmreq(cc, dmreq);
848
849 dmreq->iv_sector = ctx->cc_sector;
850 dmreq->ctx = ctx;
851 sg_init_table(&dmreq->sg_in, 1);
852 sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
853 bv_in.bv_offset);
854
855 sg_init_table(&dmreq->sg_out, 1);
856 sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
857 bv_out.bv_offset);
858
859 bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
860 bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
861
862 if (cc->iv_gen_ops) {
863 r = cc->iv_gen_ops->generator(cc, iv, dmreq);
864 if (r < 0)
865 return r;
866 }
867
868 ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
869 1 << SECTOR_SHIFT, iv);
870
871 if (bio_data_dir(ctx->bio_in) == WRITE)
872 r = crypto_ablkcipher_encrypt(req);
873 else
874 r = crypto_ablkcipher_decrypt(req);
875
876 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
877 r = cc->iv_gen_ops->post(cc, iv, dmreq);
878
879 return r;
880 }
881
882 static void kcryptd_async_done(struct crypto_async_request *async_req,
883 int error);
884
885 static void crypt_alloc_req(struct crypt_config *cc,
886 struct convert_context *ctx)
887 {
888 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
889
890 if (!ctx->req)
891 ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
892
893 ablkcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
894
895 /*
896 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
897 * requests if driver request queue is full.
898 */
899 ablkcipher_request_set_callback(ctx->req,
900 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
901 kcryptd_async_done, dmreq_of_req(cc, ctx->req));
902 }
903
904 static void crypt_free_req(struct crypt_config *cc,
905 struct ablkcipher_request *req, struct bio *base_bio)
906 {
907 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
908
909 if ((struct ablkcipher_request *)(io + 1) != req)
910 mempool_free(req, cc->req_pool);
911 }
912
913 /*
914 * Encrypt / decrypt data from one bio to another one (can be the same one)
915 */
916 static int crypt_convert(struct crypt_config *cc,
917 struct convert_context *ctx)
918 {
919 int r;
920
921 atomic_set(&ctx->cc_pending, 1);
922
923 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
924
925 crypt_alloc_req(cc, ctx);
926
927 atomic_inc(&ctx->cc_pending);
928
929 r = crypt_convert_block(cc, ctx, ctx->req);
930
931 switch (r) {
932 /*
933 * The request was queued by a crypto driver
934 * but the driver request queue is full, let's wait.
935 */
936 case -EBUSY:
937 wait_for_completion(&ctx->restart);
938 reinit_completion(&ctx->restart);
939 /* fall through */
940 /*
941 * The request is queued and processed asynchronously,
942 * completion function kcryptd_async_done() will be called.
943 */
944 case -EINPROGRESS:
945 ctx->req = NULL;
946 ctx->cc_sector++;
947 continue;
948 /*
949 * The request was already processed (synchronously).
950 */
951 case 0:
952 atomic_dec(&ctx->cc_pending);
953 ctx->cc_sector++;
954 cond_resched();
955 continue;
956
957 /* There was an error while processing the request. */
958 default:
959 atomic_dec(&ctx->cc_pending);
960 return r;
961 }
962 }
963
964 return 0;
965 }
966
967 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
968
969 /*
970 * Generate a new unfragmented bio with the given size
971 * This should never violate the device limitations
972 *
973 * This function may be called concurrently. If we allocate from the mempool
974 * concurrently, there is a possibility of deadlock. For example, if we have
975 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
976 * the mempool concurrently, it may deadlock in a situation where both processes
977 * have allocated 128 pages and the mempool is exhausted.
978 *
979 * In order to avoid this scenario we allocate the pages under a mutex.
980 *
981 * In order to not degrade performance with excessive locking, we try
982 * non-blocking allocations without a mutex first but on failure we fallback
983 * to blocking allocations with a mutex.
984 */
985 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
986 {
987 struct crypt_config *cc = io->cc;
988 struct bio *clone;
989 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
990 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
991 unsigned i, len, remaining_size;
992 struct page *page;
993 struct bio_vec *bvec;
994
995 retry:
996 if (unlikely(gfp_mask & __GFP_WAIT))
997 mutex_lock(&cc->bio_alloc_lock);
998
999 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1000 if (!clone)
1001 goto return_clone;
1002
1003 clone_init(io, clone);
1004
1005 remaining_size = size;
1006
1007 for (i = 0; i < nr_iovecs; i++) {
1008 page = mempool_alloc(cc->page_pool, gfp_mask);
1009 if (!page) {
1010 crypt_free_buffer_pages(cc, clone);
1011 bio_put(clone);
1012 gfp_mask |= __GFP_WAIT;
1013 goto retry;
1014 }
1015
1016 len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1017
1018 bvec = &clone->bi_io_vec[clone->bi_vcnt++];
1019 bvec->bv_page = page;
1020 bvec->bv_len = len;
1021 bvec->bv_offset = 0;
1022
1023 clone->bi_iter.bi_size += len;
1024
1025 remaining_size -= len;
1026 }
1027
1028 return_clone:
1029 if (unlikely(gfp_mask & __GFP_WAIT))
1030 mutex_unlock(&cc->bio_alloc_lock);
1031
1032 return clone;
1033 }
1034
1035 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1036 {
1037 unsigned int i;
1038 struct bio_vec *bv;
1039
1040 bio_for_each_segment_all(bv, clone, i) {
1041 BUG_ON(!bv->bv_page);
1042 mempool_free(bv->bv_page, cc->page_pool);
1043 bv->bv_page = NULL;
1044 }
1045 }
1046
1047 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1048 struct bio *bio, sector_t sector)
1049 {
1050 io->cc = cc;
1051 io->base_bio = bio;
1052 io->sector = sector;
1053 io->error = 0;
1054 io->ctx.req = NULL;
1055 atomic_set(&io->io_pending, 0);
1056 }
1057
1058 static void crypt_inc_pending(struct dm_crypt_io *io)
1059 {
1060 atomic_inc(&io->io_pending);
1061 }
1062
1063 /*
1064 * One of the bios was finished. Check for completion of
1065 * the whole request and correctly clean up the buffer.
1066 */
1067 static void crypt_dec_pending(struct dm_crypt_io *io)
1068 {
1069 struct crypt_config *cc = io->cc;
1070 struct bio *base_bio = io->base_bio;
1071 int error = io->error;
1072
1073 if (!atomic_dec_and_test(&io->io_pending))
1074 return;
1075
1076 if (io->ctx.req)
1077 crypt_free_req(cc, io->ctx.req, base_bio);
1078
1079 base_bio->bi_error = error;
1080 bio_endio(base_bio);
1081 }
1082
1083 /*
1084 * kcryptd/kcryptd_io:
1085 *
1086 * Needed because it would be very unwise to do decryption in an
1087 * interrupt context.
1088 *
1089 * kcryptd performs the actual encryption or decryption.
1090 *
1091 * kcryptd_io performs the IO submission.
1092 *
1093 * They must be separated as otherwise the final stages could be
1094 * starved by new requests which can block in the first stages due
1095 * to memory allocation.
1096 *
1097 * The work is done per CPU global for all dm-crypt instances.
1098 * They should not depend on each other and do not block.
1099 */
1100 static void crypt_endio(struct bio *clone)
1101 {
1102 struct dm_crypt_io *io = clone->bi_private;
1103 struct crypt_config *cc = io->cc;
1104 unsigned rw = bio_data_dir(clone);
1105
1106 /*
1107 * free the processed pages
1108 */
1109 if (rw == WRITE)
1110 crypt_free_buffer_pages(cc, clone);
1111
1112 bio_put(clone);
1113
1114 if (rw == READ && !clone->bi_error) {
1115 kcryptd_queue_crypt(io);
1116 return;
1117 }
1118
1119 if (unlikely(clone->bi_error))
1120 io->error = clone->bi_error;
1121
1122 crypt_dec_pending(io);
1123 }
1124
1125 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1126 {
1127 struct crypt_config *cc = io->cc;
1128
1129 clone->bi_private = io;
1130 clone->bi_end_io = crypt_endio;
1131 clone->bi_bdev = cc->dev->bdev;
1132 clone->bi_rw = io->base_bio->bi_rw;
1133 }
1134
1135 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1136 {
1137 struct crypt_config *cc = io->cc;
1138 struct bio *clone;
1139
1140 /*
1141 * We need the original biovec array in order to decrypt
1142 * the whole bio data *afterwards* -- thanks to immutable
1143 * biovecs we don't need to worry about the block layer
1144 * modifying the biovec array; so leverage bio_clone_fast().
1145 */
1146 clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1147 if (!clone)
1148 return 1;
1149
1150 crypt_inc_pending(io);
1151
1152 clone_init(io, clone);
1153 clone->bi_iter.bi_sector = cc->start + io->sector;
1154
1155 generic_make_request(clone);
1156 return 0;
1157 }
1158
1159 static void kcryptd_io_read_work(struct work_struct *work)
1160 {
1161 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1162
1163 crypt_inc_pending(io);
1164 if (kcryptd_io_read(io, GFP_NOIO))
1165 io->error = -ENOMEM;
1166 crypt_dec_pending(io);
1167 }
1168
1169 static void kcryptd_queue_read(struct dm_crypt_io *io)
1170 {
1171 struct crypt_config *cc = io->cc;
1172
1173 INIT_WORK(&io->work, kcryptd_io_read_work);
1174 queue_work(cc->io_queue, &io->work);
1175 }
1176
1177 static void kcryptd_io_write(struct dm_crypt_io *io)
1178 {
1179 struct bio *clone = io->ctx.bio_out;
1180
1181 generic_make_request(clone);
1182 }
1183
1184 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1185
1186 static int dmcrypt_write(void *data)
1187 {
1188 struct crypt_config *cc = data;
1189 struct dm_crypt_io *io;
1190
1191 while (1) {
1192 struct rb_root write_tree;
1193 struct blk_plug plug;
1194
1195 DECLARE_WAITQUEUE(wait, current);
1196
1197 spin_lock_irq(&cc->write_thread_wait.lock);
1198 continue_locked:
1199
1200 if (!RB_EMPTY_ROOT(&cc->write_tree))
1201 goto pop_from_list;
1202
1203 __set_current_state(TASK_INTERRUPTIBLE);
1204 __add_wait_queue(&cc->write_thread_wait, &wait);
1205
1206 spin_unlock_irq(&cc->write_thread_wait.lock);
1207
1208 if (unlikely(kthread_should_stop())) {
1209 set_task_state(current, TASK_RUNNING);
1210 remove_wait_queue(&cc->write_thread_wait, &wait);
1211 break;
1212 }
1213
1214 schedule();
1215
1216 set_task_state(current, TASK_RUNNING);
1217 spin_lock_irq(&cc->write_thread_wait.lock);
1218 __remove_wait_queue(&cc->write_thread_wait, &wait);
1219 goto continue_locked;
1220
1221 pop_from_list:
1222 write_tree = cc->write_tree;
1223 cc->write_tree = RB_ROOT;
1224 spin_unlock_irq(&cc->write_thread_wait.lock);
1225
1226 BUG_ON(rb_parent(write_tree.rb_node));
1227
1228 /*
1229 * Note: we cannot walk the tree here with rb_next because
1230 * the structures may be freed when kcryptd_io_write is called.
1231 */
1232 blk_start_plug(&plug);
1233 do {
1234 io = crypt_io_from_node(rb_first(&write_tree));
1235 rb_erase(&io->rb_node, &write_tree);
1236 kcryptd_io_write(io);
1237 } while (!RB_EMPTY_ROOT(&write_tree));
1238 blk_finish_plug(&plug);
1239 }
1240 return 0;
1241 }
1242
1243 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1244 {
1245 struct bio *clone = io->ctx.bio_out;
1246 struct crypt_config *cc = io->cc;
1247 unsigned long flags;
1248 sector_t sector;
1249 struct rb_node **rbp, *parent;
1250
1251 if (unlikely(io->error < 0)) {
1252 crypt_free_buffer_pages(cc, clone);
1253 bio_put(clone);
1254 crypt_dec_pending(io);
1255 return;
1256 }
1257
1258 /* crypt_convert should have filled the clone bio */
1259 BUG_ON(io->ctx.iter_out.bi_size);
1260
1261 clone->bi_iter.bi_sector = cc->start + io->sector;
1262
1263 if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1264 generic_make_request(clone);
1265 return;
1266 }
1267
1268 spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1269 rbp = &cc->write_tree.rb_node;
1270 parent = NULL;
1271 sector = io->sector;
1272 while (*rbp) {
1273 parent = *rbp;
1274 if (sector < crypt_io_from_node(parent)->sector)
1275 rbp = &(*rbp)->rb_left;
1276 else
1277 rbp = &(*rbp)->rb_right;
1278 }
1279 rb_link_node(&io->rb_node, parent, rbp);
1280 rb_insert_color(&io->rb_node, &cc->write_tree);
1281
1282 wake_up_locked(&cc->write_thread_wait);
1283 spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1284 }
1285
1286 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1287 {
1288 struct crypt_config *cc = io->cc;
1289 struct bio *clone;
1290 int crypt_finished;
1291 sector_t sector = io->sector;
1292 int r;
1293
1294 /*
1295 * Prevent io from disappearing until this function completes.
1296 */
1297 crypt_inc_pending(io);
1298 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1299
1300 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1301 if (unlikely(!clone)) {
1302 io->error = -EIO;
1303 goto dec;
1304 }
1305
1306 io->ctx.bio_out = clone;
1307 io->ctx.iter_out = clone->bi_iter;
1308
1309 sector += bio_sectors(clone);
1310
1311 crypt_inc_pending(io);
1312 r = crypt_convert(cc, &io->ctx);
1313 if (r)
1314 io->error = -EIO;
1315 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1316
1317 /* Encryption was already finished, submit io now */
1318 if (crypt_finished) {
1319 kcryptd_crypt_write_io_submit(io, 0);
1320 io->sector = sector;
1321 }
1322
1323 dec:
1324 crypt_dec_pending(io);
1325 }
1326
1327 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1328 {
1329 crypt_dec_pending(io);
1330 }
1331
1332 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1333 {
1334 struct crypt_config *cc = io->cc;
1335 int r = 0;
1336
1337 crypt_inc_pending(io);
1338
1339 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1340 io->sector);
1341
1342 r = crypt_convert(cc, &io->ctx);
1343 if (r < 0)
1344 io->error = -EIO;
1345
1346 if (atomic_dec_and_test(&io->ctx.cc_pending))
1347 kcryptd_crypt_read_done(io);
1348
1349 crypt_dec_pending(io);
1350 }
1351
1352 static void kcryptd_async_done(struct crypto_async_request *async_req,
1353 int error)
1354 {
1355 struct dm_crypt_request *dmreq = async_req->data;
1356 struct convert_context *ctx = dmreq->ctx;
1357 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1358 struct crypt_config *cc = io->cc;
1359
1360 /*
1361 * A request from crypto driver backlog is going to be processed now,
1362 * finish the completion and continue in crypt_convert().
1363 * (Callback will be called for the second time for this request.)
1364 */
1365 if (error == -EINPROGRESS) {
1366 complete(&ctx->restart);
1367 return;
1368 }
1369
1370 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1371 error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1372
1373 if (error < 0)
1374 io->error = -EIO;
1375
1376 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1377
1378 if (!atomic_dec_and_test(&ctx->cc_pending))
1379 return;
1380
1381 if (bio_data_dir(io->base_bio) == READ)
1382 kcryptd_crypt_read_done(io);
1383 else
1384 kcryptd_crypt_write_io_submit(io, 1);
1385 }
1386
1387 static void kcryptd_crypt(struct work_struct *work)
1388 {
1389 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1390
1391 if (bio_data_dir(io->base_bio) == READ)
1392 kcryptd_crypt_read_convert(io);
1393 else
1394 kcryptd_crypt_write_convert(io);
1395 }
1396
1397 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1398 {
1399 struct crypt_config *cc = io->cc;
1400
1401 INIT_WORK(&io->work, kcryptd_crypt);
1402 queue_work(cc->crypt_queue, &io->work);
1403 }
1404
1405 /*
1406 * Decode key from its hex representation
1407 */
1408 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1409 {
1410 char buffer[3];
1411 unsigned int i;
1412
1413 buffer[2] = '\0';
1414
1415 for (i = 0; i < size; i++) {
1416 buffer[0] = *hex++;
1417 buffer[1] = *hex++;
1418
1419 if (kstrtou8(buffer, 16, &key[i]))
1420 return -EINVAL;
1421 }
1422
1423 if (*hex != '\0')
1424 return -EINVAL;
1425
1426 return 0;
1427 }
1428
1429 static void crypt_free_tfms(struct crypt_config *cc)
1430 {
1431 unsigned i;
1432
1433 if (!cc->tfms)
1434 return;
1435
1436 for (i = 0; i < cc->tfms_count; i++)
1437 if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1438 crypto_free_ablkcipher(cc->tfms[i]);
1439 cc->tfms[i] = NULL;
1440 }
1441
1442 kfree(cc->tfms);
1443 cc->tfms = NULL;
1444 }
1445
1446 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1447 {
1448 unsigned i;
1449 int err;
1450
1451 cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *),
1452 GFP_KERNEL);
1453 if (!cc->tfms)
1454 return -ENOMEM;
1455
1456 for (i = 0; i < cc->tfms_count; i++) {
1457 cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1458 if (IS_ERR(cc->tfms[i])) {
1459 err = PTR_ERR(cc->tfms[i]);
1460 crypt_free_tfms(cc);
1461 return err;
1462 }
1463 }
1464
1465 return 0;
1466 }
1467
1468 static int crypt_setkey_allcpus(struct crypt_config *cc)
1469 {
1470 unsigned subkey_size;
1471 int err = 0, i, r;
1472
1473 /* Ignore extra keys (which are used for IV etc) */
1474 subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1475
1476 for (i = 0; i < cc->tfms_count; i++) {
1477 r = crypto_ablkcipher_setkey(cc->tfms[i],
1478 cc->key + (i * subkey_size),
1479 subkey_size);
1480 if (r)
1481 err = r;
1482 }
1483
1484 return err;
1485 }
1486
1487 static int crypt_set_key(struct crypt_config *cc, char *key)
1488 {
1489 int r = -EINVAL;
1490 int key_string_len = strlen(key);
1491
1492 /* The key size may not be changed. */
1493 if (cc->key_size != (key_string_len >> 1))
1494 goto out;
1495
1496 /* Hyphen (which gives a key_size of zero) means there is no key. */
1497 if (!cc->key_size && strcmp(key, "-"))
1498 goto out;
1499
1500 if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1501 goto out;
1502
1503 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1504
1505 r = crypt_setkey_allcpus(cc);
1506
1507 out:
1508 /* Hex key string not needed after here, so wipe it. */
1509 memset(key, '0', key_string_len);
1510
1511 return r;
1512 }
1513
1514 static int crypt_wipe_key(struct crypt_config *cc)
1515 {
1516 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1517 memset(&cc->key, 0, cc->key_size * sizeof(u8));
1518
1519 return crypt_setkey_allcpus(cc);
1520 }
1521
1522 static void crypt_dtr(struct dm_target *ti)
1523 {
1524 struct crypt_config *cc = ti->private;
1525
1526 ti->private = NULL;
1527
1528 if (!cc)
1529 return;
1530
1531 if (cc->write_thread)
1532 kthread_stop(cc->write_thread);
1533
1534 if (cc->io_queue)
1535 destroy_workqueue(cc->io_queue);
1536 if (cc->crypt_queue)
1537 destroy_workqueue(cc->crypt_queue);
1538
1539 crypt_free_tfms(cc);
1540
1541 if (cc->bs)
1542 bioset_free(cc->bs);
1543
1544 if (cc->page_pool)
1545 mempool_destroy(cc->page_pool);
1546 if (cc->req_pool)
1547 mempool_destroy(cc->req_pool);
1548
1549 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1550 cc->iv_gen_ops->dtr(cc);
1551
1552 if (cc->dev)
1553 dm_put_device(ti, cc->dev);
1554
1555 kzfree(cc->cipher);
1556 kzfree(cc->cipher_string);
1557
1558 /* Must zero key material before freeing */
1559 kzfree(cc);
1560 }
1561
1562 static int crypt_ctr_cipher(struct dm_target *ti,
1563 char *cipher_in, char *key)
1564 {
1565 struct crypt_config *cc = ti->private;
1566 char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1567 char *cipher_api = NULL;
1568 int ret = -EINVAL;
1569 char dummy;
1570
1571 /* Convert to crypto api definition? */
1572 if (strchr(cipher_in, '(')) {
1573 ti->error = "Bad cipher specification";
1574 return -EINVAL;
1575 }
1576
1577 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1578 if (!cc->cipher_string)
1579 goto bad_mem;
1580
1581 /*
1582 * Legacy dm-crypt cipher specification
1583 * cipher[:keycount]-mode-iv:ivopts
1584 */
1585 tmp = cipher_in;
1586 keycount = strsep(&tmp, "-");
1587 cipher = strsep(&keycount, ":");
1588
1589 if (!keycount)
1590 cc->tfms_count = 1;
1591 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1592 !is_power_of_2(cc->tfms_count)) {
1593 ti->error = "Bad cipher key count specification";
1594 return -EINVAL;
1595 }
1596 cc->key_parts = cc->tfms_count;
1597 cc->key_extra_size = 0;
1598
1599 cc->cipher = kstrdup(cipher, GFP_KERNEL);
1600 if (!cc->cipher)
1601 goto bad_mem;
1602
1603 chainmode = strsep(&tmp, "-");
1604 ivopts = strsep(&tmp, "-");
1605 ivmode = strsep(&ivopts, ":");
1606
1607 if (tmp)
1608 DMWARN("Ignoring unexpected additional cipher options");
1609
1610 /*
1611 * For compatibility with the original dm-crypt mapping format, if
1612 * only the cipher name is supplied, use cbc-plain.
1613 */
1614 if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1615 chainmode = "cbc";
1616 ivmode = "plain";
1617 }
1618
1619 if (strcmp(chainmode, "ecb") && !ivmode) {
1620 ti->error = "IV mechanism required";
1621 return -EINVAL;
1622 }
1623
1624 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1625 if (!cipher_api)
1626 goto bad_mem;
1627
1628 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1629 "%s(%s)", chainmode, cipher);
1630 if (ret < 0) {
1631 kfree(cipher_api);
1632 goto bad_mem;
1633 }
1634
1635 /* Allocate cipher */
1636 ret = crypt_alloc_tfms(cc, cipher_api);
1637 if (ret < 0) {
1638 ti->error = "Error allocating crypto tfm";
1639 goto bad;
1640 }
1641
1642 /* Initialize IV */
1643 cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1644 if (cc->iv_size)
1645 /* at least a 64 bit sector number should fit in our buffer */
1646 cc->iv_size = max(cc->iv_size,
1647 (unsigned int)(sizeof(u64) / sizeof(u8)));
1648 else if (ivmode) {
1649 DMWARN("Selected cipher does not support IVs");
1650 ivmode = NULL;
1651 }
1652
1653 /* Choose ivmode, see comments at iv code. */
1654 if (ivmode == NULL)
1655 cc->iv_gen_ops = NULL;
1656 else if (strcmp(ivmode, "plain") == 0)
1657 cc->iv_gen_ops = &crypt_iv_plain_ops;
1658 else if (strcmp(ivmode, "plain64") == 0)
1659 cc->iv_gen_ops = &crypt_iv_plain64_ops;
1660 else if (strcmp(ivmode, "essiv") == 0)
1661 cc->iv_gen_ops = &crypt_iv_essiv_ops;
1662 else if (strcmp(ivmode, "benbi") == 0)
1663 cc->iv_gen_ops = &crypt_iv_benbi_ops;
1664 else if (strcmp(ivmode, "null") == 0)
1665 cc->iv_gen_ops = &crypt_iv_null_ops;
1666 else if (strcmp(ivmode, "lmk") == 0) {
1667 cc->iv_gen_ops = &crypt_iv_lmk_ops;
1668 /*
1669 * Version 2 and 3 is recognised according
1670 * to length of provided multi-key string.
1671 * If present (version 3), last key is used as IV seed.
1672 * All keys (including IV seed) are always the same size.
1673 */
1674 if (cc->key_size % cc->key_parts) {
1675 cc->key_parts++;
1676 cc->key_extra_size = cc->key_size / cc->key_parts;
1677 }
1678 } else if (strcmp(ivmode, "tcw") == 0) {
1679 cc->iv_gen_ops = &crypt_iv_tcw_ops;
1680 cc->key_parts += 2; /* IV + whitening */
1681 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1682 } else {
1683 ret = -EINVAL;
1684 ti->error = "Invalid IV mode";
1685 goto bad;
1686 }
1687
1688 /* Initialize and set key */
1689 ret = crypt_set_key(cc, key);
1690 if (ret < 0) {
1691 ti->error = "Error decoding and setting key";
1692 goto bad;
1693 }
1694
1695 /* Allocate IV */
1696 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1697 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1698 if (ret < 0) {
1699 ti->error = "Error creating IV";
1700 goto bad;
1701 }
1702 }
1703
1704 /* Initialize IV (set keys for ESSIV etc) */
1705 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1706 ret = cc->iv_gen_ops->init(cc);
1707 if (ret < 0) {
1708 ti->error = "Error initialising IV";
1709 goto bad;
1710 }
1711 }
1712
1713 ret = 0;
1714 bad:
1715 kfree(cipher_api);
1716 return ret;
1717
1718 bad_mem:
1719 ti->error = "Cannot allocate cipher strings";
1720 return -ENOMEM;
1721 }
1722
1723 /*
1724 * Construct an encryption mapping:
1725 * <cipher> <key> <iv_offset> <dev_path> <start>
1726 */
1727 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1728 {
1729 struct crypt_config *cc;
1730 unsigned int key_size, opt_params;
1731 unsigned long long tmpll;
1732 int ret;
1733 size_t iv_size_padding;
1734 struct dm_arg_set as;
1735 const char *opt_string;
1736 char dummy;
1737
1738 static struct dm_arg _args[] = {
1739 {0, 3, "Invalid number of feature args"},
1740 };
1741
1742 if (argc < 5) {
1743 ti->error = "Not enough arguments";
1744 return -EINVAL;
1745 }
1746
1747 key_size = strlen(argv[1]) >> 1;
1748
1749 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1750 if (!cc) {
1751 ti->error = "Cannot allocate encryption context";
1752 return -ENOMEM;
1753 }
1754 cc->key_size = key_size;
1755
1756 ti->private = cc;
1757 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1758 if (ret < 0)
1759 goto bad;
1760
1761 cc->dmreq_start = sizeof(struct ablkcipher_request);
1762 cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1763 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1764
1765 if (crypto_ablkcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1766 /* Allocate the padding exactly */
1767 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1768 & crypto_ablkcipher_alignmask(any_tfm(cc));
1769 } else {
1770 /*
1771 * If the cipher requires greater alignment than kmalloc
1772 * alignment, we don't know the exact position of the
1773 * initialization vector. We must assume worst case.
1774 */
1775 iv_size_padding = crypto_ablkcipher_alignmask(any_tfm(cc));
1776 }
1777
1778 ret = -ENOMEM;
1779 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1780 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1781 if (!cc->req_pool) {
1782 ti->error = "Cannot allocate crypt request mempool";
1783 goto bad;
1784 }
1785
1786 cc->per_bio_data_size = ti->per_bio_data_size =
1787 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1788 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1789 ARCH_KMALLOC_MINALIGN);
1790
1791 cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
1792 if (!cc->page_pool) {
1793 ti->error = "Cannot allocate page mempool";
1794 goto bad;
1795 }
1796
1797 cc->bs = bioset_create(MIN_IOS, 0);
1798 if (!cc->bs) {
1799 ti->error = "Cannot allocate crypt bioset";
1800 goto bad;
1801 }
1802
1803 mutex_init(&cc->bio_alloc_lock);
1804
1805 ret = -EINVAL;
1806 if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1807 ti->error = "Invalid iv_offset sector";
1808 goto bad;
1809 }
1810 cc->iv_offset = tmpll;
1811
1812 if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1813 ti->error = "Device lookup failed";
1814 goto bad;
1815 }
1816
1817 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1818 ti->error = "Invalid device sector";
1819 goto bad;
1820 }
1821 cc->start = tmpll;
1822
1823 argv += 5;
1824 argc -= 5;
1825
1826 /* Optional parameters */
1827 if (argc) {
1828 as.argc = argc;
1829 as.argv = argv;
1830
1831 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1832 if (ret)
1833 goto bad;
1834
1835 ret = -EINVAL;
1836 while (opt_params--) {
1837 opt_string = dm_shift_arg(&as);
1838 if (!opt_string) {
1839 ti->error = "Not enough feature arguments";
1840 goto bad;
1841 }
1842
1843 if (!strcasecmp(opt_string, "allow_discards"))
1844 ti->num_discard_bios = 1;
1845
1846 else if (!strcasecmp(opt_string, "same_cpu_crypt"))
1847 set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1848
1849 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
1850 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1851
1852 else {
1853 ti->error = "Invalid feature arguments";
1854 goto bad;
1855 }
1856 }
1857 }
1858
1859 ret = -ENOMEM;
1860 cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1861 if (!cc->io_queue) {
1862 ti->error = "Couldn't create kcryptd io queue";
1863 goto bad;
1864 }
1865
1866 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1867 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1868 else
1869 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
1870 num_online_cpus());
1871 if (!cc->crypt_queue) {
1872 ti->error = "Couldn't create kcryptd queue";
1873 goto bad;
1874 }
1875
1876 init_waitqueue_head(&cc->write_thread_wait);
1877 cc->write_tree = RB_ROOT;
1878
1879 cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
1880 if (IS_ERR(cc->write_thread)) {
1881 ret = PTR_ERR(cc->write_thread);
1882 cc->write_thread = NULL;
1883 ti->error = "Couldn't spawn write thread";
1884 goto bad;
1885 }
1886 wake_up_process(cc->write_thread);
1887
1888 ti->num_flush_bios = 1;
1889 ti->discard_zeroes_data_unsupported = true;
1890
1891 return 0;
1892
1893 bad:
1894 crypt_dtr(ti);
1895 return ret;
1896 }
1897
1898 static int crypt_map(struct dm_target *ti, struct bio *bio)
1899 {
1900 struct dm_crypt_io *io;
1901 struct crypt_config *cc = ti->private;
1902
1903 /*
1904 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1905 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1906 * - for REQ_DISCARD caller must use flush if IO ordering matters
1907 */
1908 if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1909 bio->bi_bdev = cc->dev->bdev;
1910 if (bio_sectors(bio))
1911 bio->bi_iter.bi_sector = cc->start +
1912 dm_target_offset(ti, bio->bi_iter.bi_sector);
1913 return DM_MAPIO_REMAPPED;
1914 }
1915
1916 io = dm_per_bio_data(bio, cc->per_bio_data_size);
1917 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
1918 io->ctx.req = (struct ablkcipher_request *)(io + 1);
1919
1920 if (bio_data_dir(io->base_bio) == READ) {
1921 if (kcryptd_io_read(io, GFP_NOWAIT))
1922 kcryptd_queue_read(io);
1923 } else
1924 kcryptd_queue_crypt(io);
1925
1926 return DM_MAPIO_SUBMITTED;
1927 }
1928
1929 static void crypt_status(struct dm_target *ti, status_type_t type,
1930 unsigned status_flags, char *result, unsigned maxlen)
1931 {
1932 struct crypt_config *cc = ti->private;
1933 unsigned i, sz = 0;
1934 int num_feature_args = 0;
1935
1936 switch (type) {
1937 case STATUSTYPE_INFO:
1938 result[0] = '\0';
1939 break;
1940
1941 case STATUSTYPE_TABLE:
1942 DMEMIT("%s ", cc->cipher_string);
1943
1944 if (cc->key_size > 0)
1945 for (i = 0; i < cc->key_size; i++)
1946 DMEMIT("%02x", cc->key[i]);
1947 else
1948 DMEMIT("-");
1949
1950 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1951 cc->dev->name, (unsigned long long)cc->start);
1952
1953 num_feature_args += !!ti->num_discard_bios;
1954 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1955 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1956 if (num_feature_args) {
1957 DMEMIT(" %d", num_feature_args);
1958 if (ti->num_discard_bios)
1959 DMEMIT(" allow_discards");
1960 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1961 DMEMIT(" same_cpu_crypt");
1962 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
1963 DMEMIT(" submit_from_crypt_cpus");
1964 }
1965
1966 break;
1967 }
1968 }
1969
1970 static void crypt_postsuspend(struct dm_target *ti)
1971 {
1972 struct crypt_config *cc = ti->private;
1973
1974 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1975 }
1976
1977 static int crypt_preresume(struct dm_target *ti)
1978 {
1979 struct crypt_config *cc = ti->private;
1980
1981 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1982 DMERR("aborting resume - crypt key is not set.");
1983 return -EAGAIN;
1984 }
1985
1986 return 0;
1987 }
1988
1989 static void crypt_resume(struct dm_target *ti)
1990 {
1991 struct crypt_config *cc = ti->private;
1992
1993 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1994 }
1995
1996 /* Message interface
1997 * key set <key>
1998 * key wipe
1999 */
2000 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
2001 {
2002 struct crypt_config *cc = ti->private;
2003 int ret = -EINVAL;
2004
2005 if (argc < 2)
2006 goto error;
2007
2008 if (!strcasecmp(argv[0], "key")) {
2009 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2010 DMWARN("not suspended during key manipulation.");
2011 return -EINVAL;
2012 }
2013 if (argc == 3 && !strcasecmp(argv[1], "set")) {
2014 ret = crypt_set_key(cc, argv[2]);
2015 if (ret)
2016 return ret;
2017 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2018 ret = cc->iv_gen_ops->init(cc);
2019 return ret;
2020 }
2021 if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2022 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2023 ret = cc->iv_gen_ops->wipe(cc);
2024 if (ret)
2025 return ret;
2026 }
2027 return crypt_wipe_key(cc);
2028 }
2029 }
2030
2031 error:
2032 DMWARN("unrecognised message received.");
2033 return -EINVAL;
2034 }
2035
2036 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2037 struct bio_vec *biovec, int max_size)
2038 {
2039 struct crypt_config *cc = ti->private;
2040 struct request_queue *q = bdev_get_queue(cc->dev->bdev);
2041
2042 if (!q->merge_bvec_fn)
2043 return max_size;
2044
2045 bvm->bi_bdev = cc->dev->bdev;
2046 bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
2047
2048 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2049 }
2050
2051 static int crypt_iterate_devices(struct dm_target *ti,
2052 iterate_devices_callout_fn fn, void *data)
2053 {
2054 struct crypt_config *cc = ti->private;
2055
2056 return fn(ti, cc->dev, cc->start, ti->len, data);
2057 }
2058
2059 static struct target_type crypt_target = {
2060 .name = "crypt",
2061 .version = {1, 14, 0},
2062 .module = THIS_MODULE,
2063 .ctr = crypt_ctr,
2064 .dtr = crypt_dtr,
2065 .map = crypt_map,
2066 .status = crypt_status,
2067 .postsuspend = crypt_postsuspend,
2068 .preresume = crypt_preresume,
2069 .resume = crypt_resume,
2070 .message = crypt_message,
2071 .merge = crypt_merge,
2072 .iterate_devices = crypt_iterate_devices,
2073 };
2074
2075 static int __init dm_crypt_init(void)
2076 {
2077 int r;
2078
2079 r = dm_register_target(&crypt_target);
2080 if (r < 0)
2081 DMERR("register failed %d", r);
2082
2083 return r;
2084 }
2085
2086 static void __exit dm_crypt_exit(void)
2087 {
2088 dm_unregister_target(&crypt_target);
2089 }
2090
2091 module_init(dm_crypt_init);
2092 module_exit(dm_crypt_exit);
2093
2094 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2095 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2096 MODULE_LICENSE("GPL");