]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/dm-crypt.c
bb2e747907b089acb4c1e50d843615b56eab7d6f
[mirror_ubuntu-bionic-kernel.git] / drivers / md / dm-crypt.c
1 /*
2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2017 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013-2017 Milan Broz <gmazyland@gmail.com>
6 *
7 * This file is released under the GPL.
8 */
9
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/key.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/crypto.h>
21 #include <linux/workqueue.h>
22 #include <linux/kthread.h>
23 #include <linux/backing-dev.h>
24 #include <linux/atomic.h>
25 #include <linux/scatterlist.h>
26 #include <linux/rbtree.h>
27 #include <linux/ctype.h>
28 #include <asm/page.h>
29 #include <asm/unaligned.h>
30 #include <crypto/hash.h>
31 #include <crypto/md5.h>
32 #include <crypto/algapi.h>
33 #include <crypto/skcipher.h>
34 #include <crypto/aead.h>
35 #include <crypto/authenc.h>
36 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
37 #include <keys/user-type.h>
38
39 #include <linux/device-mapper.h>
40
41 #define DM_MSG_PREFIX "crypt"
42
43 /*
44 * context holding the current state of a multi-part conversion
45 */
46 struct convert_context {
47 struct completion restart;
48 struct bio *bio_in;
49 struct bio *bio_out;
50 struct bvec_iter iter_in;
51 struct bvec_iter iter_out;
52 sector_t cc_sector;
53 atomic_t cc_pending;
54 union {
55 struct skcipher_request *req;
56 struct aead_request *req_aead;
57 } r;
58
59 };
60
61 /*
62 * per bio private data
63 */
64 struct dm_crypt_io {
65 struct crypt_config *cc;
66 struct bio *base_bio;
67 u8 *integrity_metadata;
68 bool integrity_metadata_from_pool;
69 struct work_struct work;
70
71 struct convert_context ctx;
72
73 atomic_t io_pending;
74 int error;
75 sector_t sector;
76
77 struct rb_node rb_node;
78 } CRYPTO_MINALIGN_ATTR;
79
80 struct dm_crypt_request {
81 struct convert_context *ctx;
82 struct scatterlist sg_in[4];
83 struct scatterlist sg_out[4];
84 sector_t iv_sector;
85 };
86
87 struct crypt_config;
88
89 struct crypt_iv_operations {
90 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
91 const char *opts);
92 void (*dtr)(struct crypt_config *cc);
93 int (*init)(struct crypt_config *cc);
94 int (*wipe)(struct crypt_config *cc);
95 int (*generator)(struct crypt_config *cc, u8 *iv,
96 struct dm_crypt_request *dmreq);
97 int (*post)(struct crypt_config *cc, u8 *iv,
98 struct dm_crypt_request *dmreq);
99 };
100
101 struct iv_essiv_private {
102 struct crypto_ahash *hash_tfm;
103 u8 *salt;
104 };
105
106 struct iv_benbi_private {
107 int shift;
108 };
109
110 #define LMK_SEED_SIZE 64 /* hash + 0 */
111 struct iv_lmk_private {
112 struct crypto_shash *hash_tfm;
113 u8 *seed;
114 };
115
116 #define TCW_WHITENING_SIZE 16
117 struct iv_tcw_private {
118 struct crypto_shash *crc32_tfm;
119 u8 *iv_seed;
120 u8 *whitening;
121 };
122
123 /*
124 * Crypt: maps a linear range of a block device
125 * and encrypts / decrypts at the same time.
126 */
127 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
128 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
129
130 enum cipher_flags {
131 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cihper */
132 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */
133 };
134
135 /*
136 * The fields in here must be read only after initialization.
137 */
138 struct crypt_config {
139 struct dm_dev *dev;
140 sector_t start;
141
142 /*
143 * pool for per bio private data, crypto requests,
144 * encryption requeusts/buffer pages and integrity tags
145 */
146 mempool_t *req_pool;
147 mempool_t *page_pool;
148 mempool_t *tag_pool;
149 unsigned tag_pool_max_sectors;
150
151 struct bio_set *bs;
152 struct mutex bio_alloc_lock;
153
154 struct workqueue_struct *io_queue;
155 struct workqueue_struct *crypt_queue;
156
157 struct task_struct *write_thread;
158 wait_queue_head_t write_thread_wait;
159 struct rb_root write_tree;
160
161 char *cipher;
162 char *cipher_string;
163 char *cipher_auth;
164 char *key_string;
165
166 const struct crypt_iv_operations *iv_gen_ops;
167 union {
168 struct iv_essiv_private essiv;
169 struct iv_benbi_private benbi;
170 struct iv_lmk_private lmk;
171 struct iv_tcw_private tcw;
172 } iv_gen_private;
173 sector_t iv_offset;
174 unsigned int iv_size;
175 unsigned short int sector_size;
176 unsigned char sector_shift;
177
178 /* ESSIV: struct crypto_cipher *essiv_tfm */
179 void *iv_private;
180 union {
181 struct crypto_skcipher **tfms;
182 struct crypto_aead **tfms_aead;
183 } cipher_tfm;
184 unsigned tfms_count;
185 unsigned long cipher_flags;
186
187 /*
188 * Layout of each crypto request:
189 *
190 * struct skcipher_request
191 * context
192 * padding
193 * struct dm_crypt_request
194 * padding
195 * IV
196 *
197 * The padding is added so that dm_crypt_request and the IV are
198 * correctly aligned.
199 */
200 unsigned int dmreq_start;
201
202 unsigned int per_bio_data_size;
203
204 unsigned long flags;
205 unsigned int key_size;
206 unsigned int key_parts; /* independent parts in key buffer */
207 unsigned int key_extra_size; /* additional keys length */
208 unsigned int key_mac_size; /* MAC key size for authenc(...) */
209
210 unsigned int integrity_tag_size;
211 unsigned int integrity_iv_size;
212 unsigned int on_disk_tag_size;
213
214 u8 *authenc_key; /* space for keys in authenc() format (if used) */
215 u8 key[0];
216 };
217
218 #define MIN_IOS 64
219 #define MAX_TAG_SIZE 480
220 #define POOL_ENTRY_SIZE 512
221
222 static void clone_init(struct dm_crypt_io *, struct bio *);
223 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
224 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
225 struct scatterlist *sg);
226
227 /*
228 * Use this to access cipher attributes that are the same for each CPU.
229 */
230 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
231 {
232 return cc->cipher_tfm.tfms[0];
233 }
234
235 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
236 {
237 return cc->cipher_tfm.tfms_aead[0];
238 }
239
240 /*
241 * Different IV generation algorithms:
242 *
243 * plain: the initial vector is the 32-bit little-endian version of the sector
244 * number, padded with zeros if necessary.
245 *
246 * plain64: the initial vector is the 64-bit little-endian version of the sector
247 * number, padded with zeros if necessary.
248 *
249 * essiv: "encrypted sector|salt initial vector", the sector number is
250 * encrypted with the bulk cipher using a salt as key. The salt
251 * should be derived from the bulk cipher's key via hashing.
252 *
253 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
254 * (needed for LRW-32-AES and possible other narrow block modes)
255 *
256 * null: the initial vector is always zero. Provides compatibility with
257 * obsolete loop_fish2 devices. Do not use for new devices.
258 *
259 * lmk: Compatible implementation of the block chaining mode used
260 * by the Loop-AES block device encryption system
261 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
262 * It operates on full 512 byte sectors and uses CBC
263 * with an IV derived from the sector number, the data and
264 * optionally extra IV seed.
265 * This means that after decryption the first block
266 * of sector must be tweaked according to decrypted data.
267 * Loop-AES can use three encryption schemes:
268 * version 1: is plain aes-cbc mode
269 * version 2: uses 64 multikey scheme with lmk IV generator
270 * version 3: the same as version 2 with additional IV seed
271 * (it uses 65 keys, last key is used as IV seed)
272 *
273 * tcw: Compatible implementation of the block chaining mode used
274 * by the TrueCrypt device encryption system (prior to version 4.1).
275 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
276 * It operates on full 512 byte sectors and uses CBC
277 * with an IV derived from initial key and the sector number.
278 * In addition, whitening value is applied on every sector, whitening
279 * is calculated from initial key, sector number and mixed using CRC32.
280 * Note that this encryption scheme is vulnerable to watermarking attacks
281 * and should be used for old compatible containers access only.
282 *
283 * plumb: unimplemented, see:
284 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
285 */
286
287 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
288 struct dm_crypt_request *dmreq)
289 {
290 memset(iv, 0, cc->iv_size);
291 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
292
293 return 0;
294 }
295
296 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
297 struct dm_crypt_request *dmreq)
298 {
299 memset(iv, 0, cc->iv_size);
300 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
301
302 return 0;
303 }
304
305 /* Initialise ESSIV - compute salt but no local memory allocations */
306 static int crypt_iv_essiv_init(struct crypt_config *cc)
307 {
308 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
309 AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
310 struct scatterlist sg;
311 struct crypto_cipher *essiv_tfm;
312 int err;
313
314 sg_init_one(&sg, cc->key, cc->key_size);
315 ahash_request_set_tfm(req, essiv->hash_tfm);
316 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
317 ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size);
318
319 err = crypto_ahash_digest(req);
320 ahash_request_zero(req);
321 if (err)
322 return err;
323
324 essiv_tfm = cc->iv_private;
325
326 err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
327 crypto_ahash_digestsize(essiv->hash_tfm));
328 if (err)
329 return err;
330
331 return 0;
332 }
333
334 /* Wipe salt and reset key derived from volume key */
335 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
336 {
337 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
338 unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
339 struct crypto_cipher *essiv_tfm;
340 int r, err = 0;
341
342 memset(essiv->salt, 0, salt_size);
343
344 essiv_tfm = cc->iv_private;
345 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
346 if (r)
347 err = r;
348
349 return err;
350 }
351
352 /* Set up per cpu cipher state */
353 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
354 struct dm_target *ti,
355 u8 *salt, unsigned saltsize)
356 {
357 struct crypto_cipher *essiv_tfm;
358 int err;
359
360 /* Setup the essiv_tfm with the given salt */
361 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
362 if (IS_ERR(essiv_tfm)) {
363 ti->error = "Error allocating crypto tfm for ESSIV";
364 return essiv_tfm;
365 }
366
367 if (crypto_cipher_blocksize(essiv_tfm) != cc->iv_size) {
368 ti->error = "Block size of ESSIV cipher does "
369 "not match IV size of block cipher";
370 crypto_free_cipher(essiv_tfm);
371 return ERR_PTR(-EINVAL);
372 }
373
374 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
375 if (err) {
376 ti->error = "Failed to set key for ESSIV cipher";
377 crypto_free_cipher(essiv_tfm);
378 return ERR_PTR(err);
379 }
380
381 return essiv_tfm;
382 }
383
384 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
385 {
386 struct crypto_cipher *essiv_tfm;
387 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
388
389 crypto_free_ahash(essiv->hash_tfm);
390 essiv->hash_tfm = NULL;
391
392 kzfree(essiv->salt);
393 essiv->salt = NULL;
394
395 essiv_tfm = cc->iv_private;
396
397 if (essiv_tfm)
398 crypto_free_cipher(essiv_tfm);
399
400 cc->iv_private = NULL;
401 }
402
403 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
404 const char *opts)
405 {
406 struct crypto_cipher *essiv_tfm = NULL;
407 struct crypto_ahash *hash_tfm = NULL;
408 u8 *salt = NULL;
409 int err;
410
411 if (!opts) {
412 ti->error = "Digest algorithm missing for ESSIV mode";
413 return -EINVAL;
414 }
415
416 /* Allocate hash algorithm */
417 hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC);
418 if (IS_ERR(hash_tfm)) {
419 ti->error = "Error initializing ESSIV hash";
420 err = PTR_ERR(hash_tfm);
421 goto bad;
422 }
423
424 salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
425 if (!salt) {
426 ti->error = "Error kmallocing salt storage in ESSIV";
427 err = -ENOMEM;
428 goto bad;
429 }
430
431 cc->iv_gen_private.essiv.salt = salt;
432 cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
433
434 essiv_tfm = setup_essiv_cpu(cc, ti, salt,
435 crypto_ahash_digestsize(hash_tfm));
436
437 if (IS_ERR(essiv_tfm)) {
438 crypt_iv_essiv_dtr(cc);
439 return PTR_ERR(essiv_tfm);
440 }
441 cc->iv_private = essiv_tfm;
442
443 return 0;
444
445 bad:
446 if (hash_tfm && !IS_ERR(hash_tfm))
447 crypto_free_ahash(hash_tfm);
448 kfree(salt);
449 return err;
450 }
451
452 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
453 struct dm_crypt_request *dmreq)
454 {
455 struct crypto_cipher *essiv_tfm = cc->iv_private;
456
457 memset(iv, 0, cc->iv_size);
458 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
459 crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
460
461 return 0;
462 }
463
464 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
465 const char *opts)
466 {
467 unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
468 int log = ilog2(bs);
469
470 /* we need to calculate how far we must shift the sector count
471 * to get the cipher block count, we use this shift in _gen */
472
473 if (1 << log != bs) {
474 ti->error = "cypher blocksize is not a power of 2";
475 return -EINVAL;
476 }
477
478 if (log > 9) {
479 ti->error = "cypher blocksize is > 512";
480 return -EINVAL;
481 }
482
483 cc->iv_gen_private.benbi.shift = 9 - log;
484
485 return 0;
486 }
487
488 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
489 {
490 }
491
492 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
493 struct dm_crypt_request *dmreq)
494 {
495 __be64 val;
496
497 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
498
499 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
500 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
501
502 return 0;
503 }
504
505 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
506 struct dm_crypt_request *dmreq)
507 {
508 memset(iv, 0, cc->iv_size);
509
510 return 0;
511 }
512
513 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
514 {
515 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
516
517 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
518 crypto_free_shash(lmk->hash_tfm);
519 lmk->hash_tfm = NULL;
520
521 kzfree(lmk->seed);
522 lmk->seed = NULL;
523 }
524
525 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
526 const char *opts)
527 {
528 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
529
530 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
531 ti->error = "Unsupported sector size for LMK";
532 return -EINVAL;
533 }
534
535 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
536 if (IS_ERR(lmk->hash_tfm)) {
537 ti->error = "Error initializing LMK hash";
538 return PTR_ERR(lmk->hash_tfm);
539 }
540
541 /* No seed in LMK version 2 */
542 if (cc->key_parts == cc->tfms_count) {
543 lmk->seed = NULL;
544 return 0;
545 }
546
547 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
548 if (!lmk->seed) {
549 crypt_iv_lmk_dtr(cc);
550 ti->error = "Error kmallocing seed storage in LMK";
551 return -ENOMEM;
552 }
553
554 return 0;
555 }
556
557 static int crypt_iv_lmk_init(struct crypt_config *cc)
558 {
559 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
560 int subkey_size = cc->key_size / cc->key_parts;
561
562 /* LMK seed is on the position of LMK_KEYS + 1 key */
563 if (lmk->seed)
564 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
565 crypto_shash_digestsize(lmk->hash_tfm));
566
567 return 0;
568 }
569
570 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
571 {
572 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
573
574 if (lmk->seed)
575 memset(lmk->seed, 0, LMK_SEED_SIZE);
576
577 return 0;
578 }
579
580 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
581 struct dm_crypt_request *dmreq,
582 u8 *data)
583 {
584 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
585 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
586 struct md5_state md5state;
587 __le32 buf[4];
588 int i, r;
589
590 desc->tfm = lmk->hash_tfm;
591 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
592
593 r = crypto_shash_init(desc);
594 if (r)
595 return r;
596
597 if (lmk->seed) {
598 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
599 if (r)
600 return r;
601 }
602
603 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
604 r = crypto_shash_update(desc, data + 16, 16 * 31);
605 if (r)
606 return r;
607
608 /* Sector is cropped to 56 bits here */
609 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
610 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
611 buf[2] = cpu_to_le32(4024);
612 buf[3] = 0;
613 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
614 if (r)
615 return r;
616
617 /* No MD5 padding here */
618 r = crypto_shash_export(desc, &md5state);
619 if (r)
620 return r;
621
622 for (i = 0; i < MD5_HASH_WORDS; i++)
623 __cpu_to_le32s(&md5state.hash[i]);
624 memcpy(iv, &md5state.hash, cc->iv_size);
625
626 return 0;
627 }
628
629 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
630 struct dm_crypt_request *dmreq)
631 {
632 struct scatterlist *sg;
633 u8 *src;
634 int r = 0;
635
636 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
637 sg = crypt_get_sg_data(cc, dmreq->sg_in);
638 src = kmap_atomic(sg_page(sg));
639 r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
640 kunmap_atomic(src);
641 } else
642 memset(iv, 0, cc->iv_size);
643
644 return r;
645 }
646
647 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
648 struct dm_crypt_request *dmreq)
649 {
650 struct scatterlist *sg;
651 u8 *dst;
652 int r;
653
654 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
655 return 0;
656
657 sg = crypt_get_sg_data(cc, dmreq->sg_out);
658 dst = kmap_atomic(sg_page(sg));
659 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
660
661 /* Tweak the first block of plaintext sector */
662 if (!r)
663 crypto_xor(dst + sg->offset, iv, cc->iv_size);
664
665 kunmap_atomic(dst);
666 return r;
667 }
668
669 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
670 {
671 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
672
673 kzfree(tcw->iv_seed);
674 tcw->iv_seed = NULL;
675 kzfree(tcw->whitening);
676 tcw->whitening = NULL;
677
678 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
679 crypto_free_shash(tcw->crc32_tfm);
680 tcw->crc32_tfm = NULL;
681 }
682
683 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
684 const char *opts)
685 {
686 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
687
688 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
689 ti->error = "Unsupported sector size for TCW";
690 return -EINVAL;
691 }
692
693 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
694 ti->error = "Wrong key size for TCW";
695 return -EINVAL;
696 }
697
698 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
699 if (IS_ERR(tcw->crc32_tfm)) {
700 ti->error = "Error initializing CRC32 in TCW";
701 return PTR_ERR(tcw->crc32_tfm);
702 }
703
704 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
705 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
706 if (!tcw->iv_seed || !tcw->whitening) {
707 crypt_iv_tcw_dtr(cc);
708 ti->error = "Error allocating seed storage in TCW";
709 return -ENOMEM;
710 }
711
712 return 0;
713 }
714
715 static int crypt_iv_tcw_init(struct crypt_config *cc)
716 {
717 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
718 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
719
720 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
721 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
722 TCW_WHITENING_SIZE);
723
724 return 0;
725 }
726
727 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
728 {
729 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
730
731 memset(tcw->iv_seed, 0, cc->iv_size);
732 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
733
734 return 0;
735 }
736
737 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
738 struct dm_crypt_request *dmreq,
739 u8 *data)
740 {
741 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
742 __le64 sector = cpu_to_le64(dmreq->iv_sector);
743 u8 buf[TCW_WHITENING_SIZE];
744 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
745 int i, r;
746
747 /* xor whitening with sector number */
748 memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
749 crypto_xor(buf, (u8 *)&sector, 8);
750 crypto_xor(&buf[8], (u8 *)&sector, 8);
751
752 /* calculate crc32 for every 32bit part and xor it */
753 desc->tfm = tcw->crc32_tfm;
754 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
755 for (i = 0; i < 4; i++) {
756 r = crypto_shash_init(desc);
757 if (r)
758 goto out;
759 r = crypto_shash_update(desc, &buf[i * 4], 4);
760 if (r)
761 goto out;
762 r = crypto_shash_final(desc, &buf[i * 4]);
763 if (r)
764 goto out;
765 }
766 crypto_xor(&buf[0], &buf[12], 4);
767 crypto_xor(&buf[4], &buf[8], 4);
768
769 /* apply whitening (8 bytes) to whole sector */
770 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
771 crypto_xor(data + i * 8, buf, 8);
772 out:
773 memzero_explicit(buf, sizeof(buf));
774 return r;
775 }
776
777 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
778 struct dm_crypt_request *dmreq)
779 {
780 struct scatterlist *sg;
781 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
782 __le64 sector = cpu_to_le64(dmreq->iv_sector);
783 u8 *src;
784 int r = 0;
785
786 /* Remove whitening from ciphertext */
787 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
788 sg = crypt_get_sg_data(cc, dmreq->sg_in);
789 src = kmap_atomic(sg_page(sg));
790 r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
791 kunmap_atomic(src);
792 }
793
794 /* Calculate IV */
795 memcpy(iv, tcw->iv_seed, cc->iv_size);
796 crypto_xor(iv, (u8 *)&sector, 8);
797 if (cc->iv_size > 8)
798 crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
799
800 return r;
801 }
802
803 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
804 struct dm_crypt_request *dmreq)
805 {
806 struct scatterlist *sg;
807 u8 *dst;
808 int r;
809
810 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
811 return 0;
812
813 /* Apply whitening on ciphertext */
814 sg = crypt_get_sg_data(cc, dmreq->sg_out);
815 dst = kmap_atomic(sg_page(sg));
816 r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
817 kunmap_atomic(dst);
818
819 return r;
820 }
821
822 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
823 struct dm_crypt_request *dmreq)
824 {
825 /* Used only for writes, there must be an additional space to store IV */
826 get_random_bytes(iv, cc->iv_size);
827 return 0;
828 }
829
830 static const struct crypt_iv_operations crypt_iv_plain_ops = {
831 .generator = crypt_iv_plain_gen
832 };
833
834 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
835 .generator = crypt_iv_plain64_gen
836 };
837
838 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
839 .ctr = crypt_iv_essiv_ctr,
840 .dtr = crypt_iv_essiv_dtr,
841 .init = crypt_iv_essiv_init,
842 .wipe = crypt_iv_essiv_wipe,
843 .generator = crypt_iv_essiv_gen
844 };
845
846 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
847 .ctr = crypt_iv_benbi_ctr,
848 .dtr = crypt_iv_benbi_dtr,
849 .generator = crypt_iv_benbi_gen
850 };
851
852 static const struct crypt_iv_operations crypt_iv_null_ops = {
853 .generator = crypt_iv_null_gen
854 };
855
856 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
857 .ctr = crypt_iv_lmk_ctr,
858 .dtr = crypt_iv_lmk_dtr,
859 .init = crypt_iv_lmk_init,
860 .wipe = crypt_iv_lmk_wipe,
861 .generator = crypt_iv_lmk_gen,
862 .post = crypt_iv_lmk_post
863 };
864
865 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
866 .ctr = crypt_iv_tcw_ctr,
867 .dtr = crypt_iv_tcw_dtr,
868 .init = crypt_iv_tcw_init,
869 .wipe = crypt_iv_tcw_wipe,
870 .generator = crypt_iv_tcw_gen,
871 .post = crypt_iv_tcw_post
872 };
873
874 static struct crypt_iv_operations crypt_iv_random_ops = {
875 .generator = crypt_iv_random_gen
876 };
877
878 /*
879 * Integrity extensions
880 */
881 static bool crypt_integrity_aead(struct crypt_config *cc)
882 {
883 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
884 }
885
886 static bool crypt_integrity_hmac(struct crypt_config *cc)
887 {
888 return crypt_integrity_aead(cc) && cc->key_mac_size;
889 }
890
891 /* Get sg containing data */
892 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
893 struct scatterlist *sg)
894 {
895 if (unlikely(crypt_integrity_aead(cc)))
896 return &sg[2];
897
898 return sg;
899 }
900
901 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
902 {
903 struct bio_integrity_payload *bip;
904 unsigned int tag_len;
905 int ret;
906
907 if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
908 return 0;
909
910 bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
911 if (IS_ERR(bip))
912 return PTR_ERR(bip);
913
914 tag_len = io->cc->on_disk_tag_size * bio_sectors(bio);
915
916 bip->bip_iter.bi_size = tag_len;
917 bip->bip_iter.bi_sector = io->cc->start + io->sector;
918
919 /* We own the metadata, do not let bio_free to release it */
920 bip->bip_flags &= ~BIP_BLOCK_INTEGRITY;
921
922 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
923 tag_len, offset_in_page(io->integrity_metadata));
924 if (unlikely(ret != tag_len))
925 return -ENOMEM;
926
927 return 0;
928 }
929
930 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
931 {
932 #ifdef CONFIG_BLK_DEV_INTEGRITY
933 struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
934
935 /* From now we require underlying device with our integrity profile */
936 if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
937 ti->error = "Integrity profile not supported.";
938 return -EINVAL;
939 }
940
941 if (bi->tag_size != cc->on_disk_tag_size ||
942 bi->tuple_size != cc->on_disk_tag_size) {
943 ti->error = "Integrity profile tag size mismatch.";
944 return -EINVAL;
945 }
946 if (1 << bi->interval_exp != cc->sector_size) {
947 ti->error = "Integrity profile sector size mismatch.";
948 return -EINVAL;
949 }
950
951 if (crypt_integrity_aead(cc)) {
952 cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
953 DMINFO("Integrity AEAD, tag size %u, IV size %u.",
954 cc->integrity_tag_size, cc->integrity_iv_size);
955
956 if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
957 ti->error = "Integrity AEAD auth tag size is not supported.";
958 return -EINVAL;
959 }
960 } else if (cc->integrity_iv_size)
961 DMINFO("Additional per-sector space %u bytes for IV.",
962 cc->integrity_iv_size);
963
964 if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
965 ti->error = "Not enough space for integrity tag in the profile.";
966 return -EINVAL;
967 }
968
969 return 0;
970 #else
971 ti->error = "Integrity profile not supported.";
972 return -EINVAL;
973 #endif
974 }
975
976 static void crypt_convert_init(struct crypt_config *cc,
977 struct convert_context *ctx,
978 struct bio *bio_out, struct bio *bio_in,
979 sector_t sector)
980 {
981 ctx->bio_in = bio_in;
982 ctx->bio_out = bio_out;
983 if (bio_in)
984 ctx->iter_in = bio_in->bi_iter;
985 if (bio_out)
986 ctx->iter_out = bio_out->bi_iter;
987 ctx->cc_sector = sector + cc->iv_offset;
988 init_completion(&ctx->restart);
989 }
990
991 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
992 void *req)
993 {
994 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
995 }
996
997 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
998 {
999 return (void *)((char *)dmreq - cc->dmreq_start);
1000 }
1001
1002 static u8 *iv_of_dmreq(struct crypt_config *cc,
1003 struct dm_crypt_request *dmreq)
1004 {
1005 if (crypt_integrity_aead(cc))
1006 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1007 crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1008 else
1009 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1010 crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1011 }
1012
1013 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1014 struct dm_crypt_request *dmreq)
1015 {
1016 return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1017 }
1018
1019 static uint64_t *org_sector_of_dmreq(struct crypt_config *cc,
1020 struct dm_crypt_request *dmreq)
1021 {
1022 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1023 return (uint64_t*) ptr;
1024 }
1025
1026 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1027 struct dm_crypt_request *dmreq)
1028 {
1029 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1030 cc->iv_size + sizeof(uint64_t);
1031 return (unsigned int*)ptr;
1032 }
1033
1034 static void *tag_from_dmreq(struct crypt_config *cc,
1035 struct dm_crypt_request *dmreq)
1036 {
1037 struct convert_context *ctx = dmreq->ctx;
1038 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1039
1040 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1041 cc->on_disk_tag_size];
1042 }
1043
1044 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1045 struct dm_crypt_request *dmreq)
1046 {
1047 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1048 }
1049
1050 static int crypt_convert_block_aead(struct crypt_config *cc,
1051 struct convert_context *ctx,
1052 struct aead_request *req,
1053 unsigned int tag_offset)
1054 {
1055 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1056 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1057 struct dm_crypt_request *dmreq;
1058 u8 *iv, *org_iv, *tag_iv, *tag;
1059 uint64_t *sector;
1060 int r = 0;
1061
1062 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1063
1064 /* Reject unexpected unaligned bio. */
1065 if (unlikely(bv_in.bv_offset & (cc->sector_size - 1)))
1066 return -EIO;
1067
1068 dmreq = dmreq_of_req(cc, req);
1069 dmreq->iv_sector = ctx->cc_sector;
1070 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1071 dmreq->iv_sector >>= cc->sector_shift;
1072 dmreq->ctx = ctx;
1073
1074 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1075
1076 sector = org_sector_of_dmreq(cc, dmreq);
1077 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1078
1079 iv = iv_of_dmreq(cc, dmreq);
1080 org_iv = org_iv_of_dmreq(cc, dmreq);
1081 tag = tag_from_dmreq(cc, dmreq);
1082 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1083
1084 /* AEAD request:
1085 * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1086 * | (authenticated) | (auth+encryption) | |
1087 * | sector_LE | IV | sector in/out | tag in/out |
1088 */
1089 sg_init_table(dmreq->sg_in, 4);
1090 sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1091 sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1092 sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1093 sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1094
1095 sg_init_table(dmreq->sg_out, 4);
1096 sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1097 sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1098 sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1099 sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1100
1101 if (cc->iv_gen_ops) {
1102 /* For READs use IV stored in integrity metadata */
1103 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1104 memcpy(org_iv, tag_iv, cc->iv_size);
1105 } else {
1106 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1107 if (r < 0)
1108 return r;
1109 /* Store generated IV in integrity metadata */
1110 if (cc->integrity_iv_size)
1111 memcpy(tag_iv, org_iv, cc->iv_size);
1112 }
1113 /* Working copy of IV, to be modified in crypto API */
1114 memcpy(iv, org_iv, cc->iv_size);
1115 }
1116
1117 aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1118 if (bio_data_dir(ctx->bio_in) == WRITE) {
1119 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1120 cc->sector_size, iv);
1121 r = crypto_aead_encrypt(req);
1122 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1123 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1124 cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1125 } else {
1126 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1127 cc->sector_size + cc->integrity_tag_size, iv);
1128 r = crypto_aead_decrypt(req);
1129 }
1130
1131 if (r == -EBADMSG)
1132 DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1133 (unsigned long long)le64_to_cpu(*sector));
1134
1135 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1136 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1137
1138 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1139 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1140
1141 return r;
1142 }
1143
1144 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1145 struct convert_context *ctx,
1146 struct skcipher_request *req,
1147 unsigned int tag_offset)
1148 {
1149 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1150 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1151 struct scatterlist *sg_in, *sg_out;
1152 struct dm_crypt_request *dmreq;
1153 u8 *iv, *org_iv, *tag_iv;
1154 uint64_t *sector;
1155 int r = 0;
1156
1157 /* Reject unexpected unaligned bio. */
1158 if (unlikely(bv_in.bv_offset & (cc->sector_size - 1)))
1159 return -EIO;
1160
1161 dmreq = dmreq_of_req(cc, req);
1162 dmreq->iv_sector = ctx->cc_sector;
1163 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1164 dmreq->iv_sector >>= cc->sector_shift;
1165 dmreq->ctx = ctx;
1166
1167 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1168
1169 iv = iv_of_dmreq(cc, dmreq);
1170 org_iv = org_iv_of_dmreq(cc, dmreq);
1171 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1172
1173 sector = org_sector_of_dmreq(cc, dmreq);
1174 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1175
1176 /* For skcipher we use only the first sg item */
1177 sg_in = &dmreq->sg_in[0];
1178 sg_out = &dmreq->sg_out[0];
1179
1180 sg_init_table(sg_in, 1);
1181 sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1182
1183 sg_init_table(sg_out, 1);
1184 sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1185
1186 if (cc->iv_gen_ops) {
1187 /* For READs use IV stored in integrity metadata */
1188 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1189 memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1190 } else {
1191 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1192 if (r < 0)
1193 return r;
1194 /* Store generated IV in integrity metadata */
1195 if (cc->integrity_iv_size)
1196 memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1197 }
1198 /* Working copy of IV, to be modified in crypto API */
1199 memcpy(iv, org_iv, cc->iv_size);
1200 }
1201
1202 skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1203
1204 if (bio_data_dir(ctx->bio_in) == WRITE)
1205 r = crypto_skcipher_encrypt(req);
1206 else
1207 r = crypto_skcipher_decrypt(req);
1208
1209 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1210 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1211
1212 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1213 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1214
1215 return r;
1216 }
1217
1218 static void kcryptd_async_done(struct crypto_async_request *async_req,
1219 int error);
1220
1221 static void crypt_alloc_req_skcipher(struct crypt_config *cc,
1222 struct convert_context *ctx)
1223 {
1224 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1225
1226 if (!ctx->r.req)
1227 ctx->r.req = mempool_alloc(cc->req_pool, GFP_NOIO);
1228
1229 skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1230
1231 /*
1232 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1233 * requests if driver request queue is full.
1234 */
1235 skcipher_request_set_callback(ctx->r.req,
1236 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
1237 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1238 }
1239
1240 static void crypt_alloc_req_aead(struct crypt_config *cc,
1241 struct convert_context *ctx)
1242 {
1243 if (!ctx->r.req_aead)
1244 ctx->r.req_aead = mempool_alloc(cc->req_pool, GFP_NOIO);
1245
1246 aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1247
1248 /*
1249 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1250 * requests if driver request queue is full.
1251 */
1252 aead_request_set_callback(ctx->r.req_aead,
1253 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
1254 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1255 }
1256
1257 static void crypt_alloc_req(struct crypt_config *cc,
1258 struct convert_context *ctx)
1259 {
1260 if (crypt_integrity_aead(cc))
1261 crypt_alloc_req_aead(cc, ctx);
1262 else
1263 crypt_alloc_req_skcipher(cc, ctx);
1264 }
1265
1266 static void crypt_free_req_skcipher(struct crypt_config *cc,
1267 struct skcipher_request *req, struct bio *base_bio)
1268 {
1269 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1270
1271 if ((struct skcipher_request *)(io + 1) != req)
1272 mempool_free(req, cc->req_pool);
1273 }
1274
1275 static void crypt_free_req_aead(struct crypt_config *cc,
1276 struct aead_request *req, struct bio *base_bio)
1277 {
1278 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1279
1280 if ((struct aead_request *)(io + 1) != req)
1281 mempool_free(req, cc->req_pool);
1282 }
1283
1284 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1285 {
1286 if (crypt_integrity_aead(cc))
1287 crypt_free_req_aead(cc, req, base_bio);
1288 else
1289 crypt_free_req_skcipher(cc, req, base_bio);
1290 }
1291
1292 /*
1293 * Encrypt / decrypt data from one bio to another one (can be the same one)
1294 */
1295 static int crypt_convert(struct crypt_config *cc,
1296 struct convert_context *ctx)
1297 {
1298 unsigned int tag_offset = 0;
1299 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1300 int r;
1301
1302 atomic_set(&ctx->cc_pending, 1);
1303
1304 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1305
1306 crypt_alloc_req(cc, ctx);
1307 atomic_inc(&ctx->cc_pending);
1308
1309 if (crypt_integrity_aead(cc))
1310 r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1311 else
1312 r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1313
1314 switch (r) {
1315 /*
1316 * The request was queued by a crypto driver
1317 * but the driver request queue is full, let's wait.
1318 */
1319 case -EBUSY:
1320 wait_for_completion(&ctx->restart);
1321 reinit_completion(&ctx->restart);
1322 /* fall through */
1323 /*
1324 * The request is queued and processed asynchronously,
1325 * completion function kcryptd_async_done() will be called.
1326 */
1327 case -EINPROGRESS:
1328 ctx->r.req = NULL;
1329 ctx->cc_sector += sector_step;
1330 tag_offset++;
1331 continue;
1332 /*
1333 * The request was already processed (synchronously).
1334 */
1335 case 0:
1336 atomic_dec(&ctx->cc_pending);
1337 ctx->cc_sector += sector_step;
1338 tag_offset++;
1339 cond_resched();
1340 continue;
1341 /*
1342 * There was a data integrity error.
1343 */
1344 case -EBADMSG:
1345 atomic_dec(&ctx->cc_pending);
1346 return -EILSEQ;
1347 /*
1348 * There was an error while processing the request.
1349 */
1350 default:
1351 atomic_dec(&ctx->cc_pending);
1352 return -EIO;
1353 }
1354 }
1355
1356 return 0;
1357 }
1358
1359 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1360
1361 /*
1362 * Generate a new unfragmented bio with the given size
1363 * This should never violate the device limitations (but only because
1364 * max_segment_size is being constrained to PAGE_SIZE).
1365 *
1366 * This function may be called concurrently. If we allocate from the mempool
1367 * concurrently, there is a possibility of deadlock. For example, if we have
1368 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1369 * the mempool concurrently, it may deadlock in a situation where both processes
1370 * have allocated 128 pages and the mempool is exhausted.
1371 *
1372 * In order to avoid this scenario we allocate the pages under a mutex.
1373 *
1374 * In order to not degrade performance with excessive locking, we try
1375 * non-blocking allocations without a mutex first but on failure we fallback
1376 * to blocking allocations with a mutex.
1377 */
1378 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1379 {
1380 struct crypt_config *cc = io->cc;
1381 struct bio *clone;
1382 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1383 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1384 unsigned i, len, remaining_size;
1385 struct page *page;
1386
1387 retry:
1388 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1389 mutex_lock(&cc->bio_alloc_lock);
1390
1391 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1392 if (!clone)
1393 goto out;
1394
1395 clone_init(io, clone);
1396
1397 remaining_size = size;
1398
1399 for (i = 0; i < nr_iovecs; i++) {
1400 page = mempool_alloc(cc->page_pool, gfp_mask);
1401 if (!page) {
1402 crypt_free_buffer_pages(cc, clone);
1403 bio_put(clone);
1404 gfp_mask |= __GFP_DIRECT_RECLAIM;
1405 goto retry;
1406 }
1407
1408 len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1409
1410 bio_add_page(clone, page, len, 0);
1411
1412 remaining_size -= len;
1413 }
1414
1415 /* Allocate space for integrity tags */
1416 if (dm_crypt_integrity_io_alloc(io, clone)) {
1417 crypt_free_buffer_pages(cc, clone);
1418 bio_put(clone);
1419 clone = NULL;
1420 }
1421 out:
1422 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1423 mutex_unlock(&cc->bio_alloc_lock);
1424
1425 return clone;
1426 }
1427
1428 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1429 {
1430 unsigned int i;
1431 struct bio_vec *bv;
1432
1433 bio_for_each_segment_all(bv, clone, i) {
1434 BUG_ON(!bv->bv_page);
1435 mempool_free(bv->bv_page, cc->page_pool);
1436 bv->bv_page = NULL;
1437 }
1438 }
1439
1440 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1441 struct bio *bio, sector_t sector)
1442 {
1443 io->cc = cc;
1444 io->base_bio = bio;
1445 io->sector = sector;
1446 io->error = 0;
1447 io->ctx.r.req = NULL;
1448 io->integrity_metadata = NULL;
1449 io->integrity_metadata_from_pool = false;
1450 atomic_set(&io->io_pending, 0);
1451 }
1452
1453 static void crypt_inc_pending(struct dm_crypt_io *io)
1454 {
1455 atomic_inc(&io->io_pending);
1456 }
1457
1458 /*
1459 * One of the bios was finished. Check for completion of
1460 * the whole request and correctly clean up the buffer.
1461 */
1462 static void crypt_dec_pending(struct dm_crypt_io *io)
1463 {
1464 struct crypt_config *cc = io->cc;
1465 struct bio *base_bio = io->base_bio;
1466 int error = io->error;
1467
1468 if (!atomic_dec_and_test(&io->io_pending))
1469 return;
1470
1471 if (io->ctx.r.req)
1472 crypt_free_req(cc, io->ctx.r.req, base_bio);
1473
1474 if (unlikely(io->integrity_metadata_from_pool))
1475 mempool_free(io->integrity_metadata, io->cc->tag_pool);
1476 else
1477 kfree(io->integrity_metadata);
1478
1479 base_bio->bi_error = error;
1480 bio_endio(base_bio);
1481 }
1482
1483 /*
1484 * kcryptd/kcryptd_io:
1485 *
1486 * Needed because it would be very unwise to do decryption in an
1487 * interrupt context.
1488 *
1489 * kcryptd performs the actual encryption or decryption.
1490 *
1491 * kcryptd_io performs the IO submission.
1492 *
1493 * They must be separated as otherwise the final stages could be
1494 * starved by new requests which can block in the first stages due
1495 * to memory allocation.
1496 *
1497 * The work is done per CPU global for all dm-crypt instances.
1498 * They should not depend on each other and do not block.
1499 */
1500 static void crypt_endio(struct bio *clone)
1501 {
1502 struct dm_crypt_io *io = clone->bi_private;
1503 struct crypt_config *cc = io->cc;
1504 unsigned rw = bio_data_dir(clone);
1505 int error;
1506
1507 /*
1508 * free the processed pages
1509 */
1510 if (rw == WRITE)
1511 crypt_free_buffer_pages(cc, clone);
1512
1513 error = clone->bi_error;
1514 bio_put(clone);
1515
1516 if (rw == READ && !error) {
1517 kcryptd_queue_crypt(io);
1518 return;
1519 }
1520
1521 if (unlikely(error))
1522 io->error = error;
1523
1524 crypt_dec_pending(io);
1525 }
1526
1527 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1528 {
1529 struct crypt_config *cc = io->cc;
1530
1531 clone->bi_private = io;
1532 clone->bi_end_io = crypt_endio;
1533 clone->bi_bdev = cc->dev->bdev;
1534 clone->bi_opf = io->base_bio->bi_opf;
1535 }
1536
1537 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1538 {
1539 struct crypt_config *cc = io->cc;
1540 struct bio *clone;
1541
1542 /*
1543 * We need the original biovec array in order to decrypt
1544 * the whole bio data *afterwards* -- thanks to immutable
1545 * biovecs we don't need to worry about the block layer
1546 * modifying the biovec array; so leverage bio_clone_fast().
1547 */
1548 clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1549 if (!clone)
1550 return 1;
1551
1552 crypt_inc_pending(io);
1553
1554 clone_init(io, clone);
1555 clone->bi_iter.bi_sector = cc->start + io->sector;
1556
1557 if (dm_crypt_integrity_io_alloc(io, clone)) {
1558 crypt_dec_pending(io);
1559 bio_put(clone);
1560 return 1;
1561 }
1562
1563 generic_make_request(clone);
1564 return 0;
1565 }
1566
1567 static void kcryptd_io_read_work(struct work_struct *work)
1568 {
1569 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1570
1571 crypt_inc_pending(io);
1572 if (kcryptd_io_read(io, GFP_NOIO))
1573 io->error = -ENOMEM;
1574 crypt_dec_pending(io);
1575 }
1576
1577 static void kcryptd_queue_read(struct dm_crypt_io *io)
1578 {
1579 struct crypt_config *cc = io->cc;
1580
1581 INIT_WORK(&io->work, kcryptd_io_read_work);
1582 queue_work(cc->io_queue, &io->work);
1583 }
1584
1585 static void kcryptd_io_write(struct dm_crypt_io *io)
1586 {
1587 struct bio *clone = io->ctx.bio_out;
1588
1589 generic_make_request(clone);
1590 }
1591
1592 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1593
1594 static int dmcrypt_write(void *data)
1595 {
1596 struct crypt_config *cc = data;
1597 struct dm_crypt_io *io;
1598
1599 while (1) {
1600 struct rb_root write_tree;
1601 struct blk_plug plug;
1602
1603 DECLARE_WAITQUEUE(wait, current);
1604
1605 spin_lock_irq(&cc->write_thread_wait.lock);
1606 continue_locked:
1607
1608 if (!RB_EMPTY_ROOT(&cc->write_tree))
1609 goto pop_from_list;
1610
1611 set_current_state(TASK_INTERRUPTIBLE);
1612 __add_wait_queue(&cc->write_thread_wait, &wait);
1613
1614 spin_unlock_irq(&cc->write_thread_wait.lock);
1615
1616 if (unlikely(kthread_should_stop())) {
1617 set_current_state(TASK_RUNNING);
1618 remove_wait_queue(&cc->write_thread_wait, &wait);
1619 break;
1620 }
1621
1622 schedule();
1623
1624 set_current_state(TASK_RUNNING);
1625 spin_lock_irq(&cc->write_thread_wait.lock);
1626 __remove_wait_queue(&cc->write_thread_wait, &wait);
1627 goto continue_locked;
1628
1629 pop_from_list:
1630 write_tree = cc->write_tree;
1631 cc->write_tree = RB_ROOT;
1632 spin_unlock_irq(&cc->write_thread_wait.lock);
1633
1634 BUG_ON(rb_parent(write_tree.rb_node));
1635
1636 /*
1637 * Note: we cannot walk the tree here with rb_next because
1638 * the structures may be freed when kcryptd_io_write is called.
1639 */
1640 blk_start_plug(&plug);
1641 do {
1642 io = crypt_io_from_node(rb_first(&write_tree));
1643 rb_erase(&io->rb_node, &write_tree);
1644 kcryptd_io_write(io);
1645 } while (!RB_EMPTY_ROOT(&write_tree));
1646 blk_finish_plug(&plug);
1647 }
1648 return 0;
1649 }
1650
1651 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1652 {
1653 struct bio *clone = io->ctx.bio_out;
1654 struct crypt_config *cc = io->cc;
1655 unsigned long flags;
1656 sector_t sector;
1657 struct rb_node **rbp, *parent;
1658
1659 if (unlikely(io->error < 0)) {
1660 crypt_free_buffer_pages(cc, clone);
1661 bio_put(clone);
1662 crypt_dec_pending(io);
1663 return;
1664 }
1665
1666 /* crypt_convert should have filled the clone bio */
1667 BUG_ON(io->ctx.iter_out.bi_size);
1668
1669 clone->bi_iter.bi_sector = cc->start + io->sector;
1670
1671 if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1672 generic_make_request(clone);
1673 return;
1674 }
1675
1676 spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1677 rbp = &cc->write_tree.rb_node;
1678 parent = NULL;
1679 sector = io->sector;
1680 while (*rbp) {
1681 parent = *rbp;
1682 if (sector < crypt_io_from_node(parent)->sector)
1683 rbp = &(*rbp)->rb_left;
1684 else
1685 rbp = &(*rbp)->rb_right;
1686 }
1687 rb_link_node(&io->rb_node, parent, rbp);
1688 rb_insert_color(&io->rb_node, &cc->write_tree);
1689
1690 wake_up_locked(&cc->write_thread_wait);
1691 spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1692 }
1693
1694 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1695 {
1696 struct crypt_config *cc = io->cc;
1697 struct bio *clone;
1698 int crypt_finished;
1699 sector_t sector = io->sector;
1700 int r;
1701
1702 /*
1703 * Prevent io from disappearing until this function completes.
1704 */
1705 crypt_inc_pending(io);
1706 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1707
1708 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1709 if (unlikely(!clone)) {
1710 io->error = -EIO;
1711 goto dec;
1712 }
1713
1714 io->ctx.bio_out = clone;
1715 io->ctx.iter_out = clone->bi_iter;
1716
1717 sector += bio_sectors(clone);
1718
1719 crypt_inc_pending(io);
1720 r = crypt_convert(cc, &io->ctx);
1721 if (r < 0)
1722 io->error = r;
1723 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1724
1725 /* Encryption was already finished, submit io now */
1726 if (crypt_finished) {
1727 kcryptd_crypt_write_io_submit(io, 0);
1728 io->sector = sector;
1729 }
1730
1731 dec:
1732 crypt_dec_pending(io);
1733 }
1734
1735 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1736 {
1737 crypt_dec_pending(io);
1738 }
1739
1740 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1741 {
1742 struct crypt_config *cc = io->cc;
1743 int r = 0;
1744
1745 crypt_inc_pending(io);
1746
1747 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1748 io->sector);
1749
1750 r = crypt_convert(cc, &io->ctx);
1751 if (r < 0)
1752 io->error = r;
1753
1754 if (atomic_dec_and_test(&io->ctx.cc_pending))
1755 kcryptd_crypt_read_done(io);
1756
1757 crypt_dec_pending(io);
1758 }
1759
1760 static void kcryptd_async_done(struct crypto_async_request *async_req,
1761 int error)
1762 {
1763 struct dm_crypt_request *dmreq = async_req->data;
1764 struct convert_context *ctx = dmreq->ctx;
1765 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1766 struct crypt_config *cc = io->cc;
1767
1768 /*
1769 * A request from crypto driver backlog is going to be processed now,
1770 * finish the completion and continue in crypt_convert().
1771 * (Callback will be called for the second time for this request.)
1772 */
1773 if (error == -EINPROGRESS) {
1774 complete(&ctx->restart);
1775 return;
1776 }
1777
1778 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1779 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
1780
1781 if (error == -EBADMSG) {
1782 DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1783 (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
1784 io->error = -EILSEQ;
1785 } else if (error < 0)
1786 io->error = -EIO;
1787
1788 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1789
1790 if (!atomic_dec_and_test(&ctx->cc_pending))
1791 return;
1792
1793 if (bio_data_dir(io->base_bio) == READ)
1794 kcryptd_crypt_read_done(io);
1795 else
1796 kcryptd_crypt_write_io_submit(io, 1);
1797 }
1798
1799 static void kcryptd_crypt(struct work_struct *work)
1800 {
1801 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1802
1803 if (bio_data_dir(io->base_bio) == READ)
1804 kcryptd_crypt_read_convert(io);
1805 else
1806 kcryptd_crypt_write_convert(io);
1807 }
1808
1809 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1810 {
1811 struct crypt_config *cc = io->cc;
1812
1813 INIT_WORK(&io->work, kcryptd_crypt);
1814 queue_work(cc->crypt_queue, &io->work);
1815 }
1816
1817 /*
1818 * Decode key from its hex representation
1819 */
1820 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1821 {
1822 char buffer[3];
1823 unsigned int i;
1824
1825 buffer[2] = '\0';
1826
1827 for (i = 0; i < size; i++) {
1828 buffer[0] = *hex++;
1829 buffer[1] = *hex++;
1830
1831 if (kstrtou8(buffer, 16, &key[i]))
1832 return -EINVAL;
1833 }
1834
1835 if (*hex != '\0')
1836 return -EINVAL;
1837
1838 return 0;
1839 }
1840
1841 static void crypt_free_tfms_aead(struct crypt_config *cc)
1842 {
1843 if (!cc->cipher_tfm.tfms_aead)
1844 return;
1845
1846 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1847 crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
1848 cc->cipher_tfm.tfms_aead[0] = NULL;
1849 }
1850
1851 kfree(cc->cipher_tfm.tfms_aead);
1852 cc->cipher_tfm.tfms_aead = NULL;
1853 }
1854
1855 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
1856 {
1857 unsigned i;
1858
1859 if (!cc->cipher_tfm.tfms)
1860 return;
1861
1862 for (i = 0; i < cc->tfms_count; i++)
1863 if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
1864 crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
1865 cc->cipher_tfm.tfms[i] = NULL;
1866 }
1867
1868 kfree(cc->cipher_tfm.tfms);
1869 cc->cipher_tfm.tfms = NULL;
1870 }
1871
1872 static void crypt_free_tfms(struct crypt_config *cc)
1873 {
1874 if (crypt_integrity_aead(cc))
1875 crypt_free_tfms_aead(cc);
1876 else
1877 crypt_free_tfms_skcipher(cc);
1878 }
1879
1880 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
1881 {
1882 unsigned i;
1883 int err;
1884
1885 cc->cipher_tfm.tfms = kzalloc(cc->tfms_count *
1886 sizeof(struct crypto_skcipher *), GFP_KERNEL);
1887 if (!cc->cipher_tfm.tfms)
1888 return -ENOMEM;
1889
1890 for (i = 0; i < cc->tfms_count; i++) {
1891 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1892 if (IS_ERR(cc->cipher_tfm.tfms[i])) {
1893 err = PTR_ERR(cc->cipher_tfm.tfms[i]);
1894 crypt_free_tfms(cc);
1895 return err;
1896 }
1897 }
1898
1899 return 0;
1900 }
1901
1902 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
1903 {
1904 int err;
1905
1906 cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
1907 if (!cc->cipher_tfm.tfms)
1908 return -ENOMEM;
1909
1910 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 0);
1911 if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1912 err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
1913 crypt_free_tfms(cc);
1914 return err;
1915 }
1916
1917 return 0;
1918 }
1919
1920 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1921 {
1922 if (crypt_integrity_aead(cc))
1923 return crypt_alloc_tfms_aead(cc, ciphermode);
1924 else
1925 return crypt_alloc_tfms_skcipher(cc, ciphermode);
1926 }
1927
1928 static unsigned crypt_subkey_size(struct crypt_config *cc)
1929 {
1930 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1931 }
1932
1933 static unsigned crypt_authenckey_size(struct crypt_config *cc)
1934 {
1935 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
1936 }
1937
1938 /*
1939 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
1940 * the key must be for some reason in special format.
1941 * This funcion converts cc->key to this special format.
1942 */
1943 static void crypt_copy_authenckey(char *p, const void *key,
1944 unsigned enckeylen, unsigned authkeylen)
1945 {
1946 struct crypto_authenc_key_param *param;
1947 struct rtattr *rta;
1948
1949 rta = (struct rtattr *)p;
1950 param = RTA_DATA(rta);
1951 param->enckeylen = cpu_to_be32(enckeylen);
1952 rta->rta_len = RTA_LENGTH(sizeof(*param));
1953 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
1954 p += RTA_SPACE(sizeof(*param));
1955 memcpy(p, key + enckeylen, authkeylen);
1956 p += authkeylen;
1957 memcpy(p, key, enckeylen);
1958 }
1959
1960 static int crypt_setkey(struct crypt_config *cc)
1961 {
1962 unsigned subkey_size;
1963 int err = 0, i, r;
1964
1965 /* Ignore extra keys (which are used for IV etc) */
1966 subkey_size = crypt_subkey_size(cc);
1967
1968 if (crypt_integrity_hmac(cc))
1969 crypt_copy_authenckey(cc->authenc_key, cc->key,
1970 subkey_size - cc->key_mac_size,
1971 cc->key_mac_size);
1972 for (i = 0; i < cc->tfms_count; i++) {
1973 if (crypt_integrity_hmac(cc))
1974 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1975 cc->authenc_key, crypt_authenckey_size(cc));
1976 else if (crypt_integrity_aead(cc))
1977 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1978 cc->key + (i * subkey_size),
1979 subkey_size);
1980 else
1981 r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
1982 cc->key + (i * subkey_size),
1983 subkey_size);
1984 if (r)
1985 err = r;
1986 }
1987
1988 if (crypt_integrity_hmac(cc))
1989 memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
1990
1991 return err;
1992 }
1993
1994 #ifdef CONFIG_KEYS
1995
1996 static bool contains_whitespace(const char *str)
1997 {
1998 while (*str)
1999 if (isspace(*str++))
2000 return true;
2001 return false;
2002 }
2003
2004 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2005 {
2006 char *new_key_string, *key_desc;
2007 int ret;
2008 struct key *key;
2009 const struct user_key_payload *ukp;
2010
2011 /*
2012 * Reject key_string with whitespace. dm core currently lacks code for
2013 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2014 */
2015 if (contains_whitespace(key_string)) {
2016 DMERR("whitespace chars not allowed in key string");
2017 return -EINVAL;
2018 }
2019
2020 /* look for next ':' separating key_type from key_description */
2021 key_desc = strpbrk(key_string, ":");
2022 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2023 return -EINVAL;
2024
2025 if (strncmp(key_string, "logon:", key_desc - key_string + 1) &&
2026 strncmp(key_string, "user:", key_desc - key_string + 1))
2027 return -EINVAL;
2028
2029 new_key_string = kstrdup(key_string, GFP_KERNEL);
2030 if (!new_key_string)
2031 return -ENOMEM;
2032
2033 key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user,
2034 key_desc + 1, NULL);
2035 if (IS_ERR(key)) {
2036 kzfree(new_key_string);
2037 return PTR_ERR(key);
2038 }
2039
2040 down_read(&key->sem);
2041
2042 ukp = user_key_payload_locked(key);
2043 if (!ukp) {
2044 up_read(&key->sem);
2045 key_put(key);
2046 kzfree(new_key_string);
2047 return -EKEYREVOKED;
2048 }
2049
2050 if (cc->key_size != ukp->datalen) {
2051 up_read(&key->sem);
2052 key_put(key);
2053 kzfree(new_key_string);
2054 return -EINVAL;
2055 }
2056
2057 memcpy(cc->key, ukp->data, cc->key_size);
2058
2059 up_read(&key->sem);
2060 key_put(key);
2061
2062 /* clear the flag since following operations may invalidate previously valid key */
2063 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2064
2065 ret = crypt_setkey(cc);
2066
2067 /* wipe the kernel key payload copy in each case */
2068 memset(cc->key, 0, cc->key_size * sizeof(u8));
2069
2070 if (!ret) {
2071 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2072 kzfree(cc->key_string);
2073 cc->key_string = new_key_string;
2074 } else
2075 kzfree(new_key_string);
2076
2077 return ret;
2078 }
2079
2080 static int get_key_size(char **key_string)
2081 {
2082 char *colon, dummy;
2083 int ret;
2084
2085 if (*key_string[0] != ':')
2086 return strlen(*key_string) >> 1;
2087
2088 /* look for next ':' in key string */
2089 colon = strpbrk(*key_string + 1, ":");
2090 if (!colon)
2091 return -EINVAL;
2092
2093 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2094 return -EINVAL;
2095
2096 *key_string = colon;
2097
2098 /* remaining key string should be :<logon|user>:<key_desc> */
2099
2100 return ret;
2101 }
2102
2103 #else
2104
2105 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2106 {
2107 return -EINVAL;
2108 }
2109
2110 static int get_key_size(char **key_string)
2111 {
2112 return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2113 }
2114
2115 #endif
2116
2117 static int crypt_set_key(struct crypt_config *cc, char *key)
2118 {
2119 int r = -EINVAL;
2120 int key_string_len = strlen(key);
2121
2122 /* Hyphen (which gives a key_size of zero) means there is no key. */
2123 if (!cc->key_size && strcmp(key, "-"))
2124 goto out;
2125
2126 /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2127 if (key[0] == ':') {
2128 r = crypt_set_keyring_key(cc, key + 1);
2129 goto out;
2130 }
2131
2132 /* clear the flag since following operations may invalidate previously valid key */
2133 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2134
2135 /* wipe references to any kernel keyring key */
2136 kzfree(cc->key_string);
2137 cc->key_string = NULL;
2138
2139 if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
2140 goto out;
2141
2142 r = crypt_setkey(cc);
2143 if (!r)
2144 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2145
2146 out:
2147 /* Hex key string not needed after here, so wipe it. */
2148 memset(key, '0', key_string_len);
2149
2150 return r;
2151 }
2152
2153 static int crypt_wipe_key(struct crypt_config *cc)
2154 {
2155 int r;
2156
2157 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2158 get_random_bytes(&cc->key, cc->key_size);
2159 kzfree(cc->key_string);
2160 cc->key_string = NULL;
2161 r = crypt_setkey(cc);
2162 memset(&cc->key, 0, cc->key_size * sizeof(u8));
2163
2164 return r;
2165 }
2166
2167 static void crypt_dtr(struct dm_target *ti)
2168 {
2169 struct crypt_config *cc = ti->private;
2170
2171 ti->private = NULL;
2172
2173 if (!cc)
2174 return;
2175
2176 if (cc->write_thread)
2177 kthread_stop(cc->write_thread);
2178
2179 if (cc->io_queue)
2180 destroy_workqueue(cc->io_queue);
2181 if (cc->crypt_queue)
2182 destroy_workqueue(cc->crypt_queue);
2183
2184 crypt_free_tfms(cc);
2185
2186 if (cc->bs)
2187 bioset_free(cc->bs);
2188
2189 mempool_destroy(cc->page_pool);
2190 mempool_destroy(cc->req_pool);
2191 mempool_destroy(cc->tag_pool);
2192
2193 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2194 cc->iv_gen_ops->dtr(cc);
2195
2196 if (cc->dev)
2197 dm_put_device(ti, cc->dev);
2198
2199 kzfree(cc->cipher);
2200 kzfree(cc->cipher_string);
2201 kzfree(cc->key_string);
2202 kzfree(cc->cipher_auth);
2203 kzfree(cc->authenc_key);
2204
2205 /* Must zero key material before freeing */
2206 kzfree(cc);
2207 }
2208
2209 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2210 {
2211 struct crypt_config *cc = ti->private;
2212
2213 if (crypt_integrity_aead(cc))
2214 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2215 else
2216 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2217
2218 if (cc->iv_size)
2219 /* at least a 64 bit sector number should fit in our buffer */
2220 cc->iv_size = max(cc->iv_size,
2221 (unsigned int)(sizeof(u64) / sizeof(u8)));
2222 else if (ivmode) {
2223 DMWARN("Selected cipher does not support IVs");
2224 ivmode = NULL;
2225 }
2226
2227 /* Choose ivmode, see comments at iv code. */
2228 if (ivmode == NULL)
2229 cc->iv_gen_ops = NULL;
2230 else if (strcmp(ivmode, "plain") == 0)
2231 cc->iv_gen_ops = &crypt_iv_plain_ops;
2232 else if (strcmp(ivmode, "plain64") == 0)
2233 cc->iv_gen_ops = &crypt_iv_plain64_ops;
2234 else if (strcmp(ivmode, "essiv") == 0)
2235 cc->iv_gen_ops = &crypt_iv_essiv_ops;
2236 else if (strcmp(ivmode, "benbi") == 0)
2237 cc->iv_gen_ops = &crypt_iv_benbi_ops;
2238 else if (strcmp(ivmode, "null") == 0)
2239 cc->iv_gen_ops = &crypt_iv_null_ops;
2240 else if (strcmp(ivmode, "lmk") == 0) {
2241 cc->iv_gen_ops = &crypt_iv_lmk_ops;
2242 /*
2243 * Version 2 and 3 is recognised according
2244 * to length of provided multi-key string.
2245 * If present (version 3), last key is used as IV seed.
2246 * All keys (including IV seed) are always the same size.
2247 */
2248 if (cc->key_size % cc->key_parts) {
2249 cc->key_parts++;
2250 cc->key_extra_size = cc->key_size / cc->key_parts;
2251 }
2252 } else if (strcmp(ivmode, "tcw") == 0) {
2253 cc->iv_gen_ops = &crypt_iv_tcw_ops;
2254 cc->key_parts += 2; /* IV + whitening */
2255 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2256 } else if (strcmp(ivmode, "random") == 0) {
2257 cc->iv_gen_ops = &crypt_iv_random_ops;
2258 /* Need storage space in integrity fields. */
2259 cc->integrity_iv_size = cc->iv_size;
2260 } else {
2261 ti->error = "Invalid IV mode";
2262 return -EINVAL;
2263 }
2264
2265 return 0;
2266 }
2267
2268 /*
2269 * Workaround to parse cipher algorithm from crypto API spec.
2270 * The cc->cipher is currently used only in ESSIV.
2271 * This should be probably done by crypto-api calls (once available...)
2272 */
2273 static int crypt_ctr_blkdev_cipher(struct crypt_config *cc)
2274 {
2275 const char *alg_name = NULL;
2276 char *start, *end;
2277
2278 if (crypt_integrity_aead(cc)) {
2279 alg_name = crypto_tfm_alg_name(crypto_aead_tfm(any_tfm_aead(cc)));
2280 if (!alg_name)
2281 return -EINVAL;
2282 if (crypt_integrity_hmac(cc)) {
2283 alg_name = strchr(alg_name, ',');
2284 if (!alg_name)
2285 return -EINVAL;
2286 }
2287 alg_name++;
2288 } else {
2289 alg_name = crypto_tfm_alg_name(crypto_skcipher_tfm(any_tfm(cc)));
2290 if (!alg_name)
2291 return -EINVAL;
2292 }
2293
2294 start = strchr(alg_name, '(');
2295 end = strchr(alg_name, ')');
2296
2297 if (!start && !end) {
2298 cc->cipher = kstrdup(alg_name, GFP_KERNEL);
2299 return cc->cipher ? 0 : -ENOMEM;
2300 }
2301
2302 if (!start || !end || ++start >= end)
2303 return -EINVAL;
2304
2305 cc->cipher = kzalloc(end - start + 1, GFP_KERNEL);
2306 if (!cc->cipher)
2307 return -ENOMEM;
2308
2309 strncpy(cc->cipher, start, end - start);
2310
2311 return 0;
2312 }
2313
2314 /*
2315 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2316 * The HMAC is needed to calculate tag size (HMAC digest size).
2317 * This should be probably done by crypto-api calls (once available...)
2318 */
2319 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2320 {
2321 char *start, *end, *mac_alg = NULL;
2322 struct crypto_ahash *mac;
2323
2324 if (!strstarts(cipher_api, "authenc("))
2325 return 0;
2326
2327 start = strchr(cipher_api, '(');
2328 end = strchr(cipher_api, ',');
2329 if (!start || !end || ++start > end)
2330 return -EINVAL;
2331
2332 mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2333 if (!mac_alg)
2334 return -ENOMEM;
2335 strncpy(mac_alg, start, end - start);
2336
2337 mac = crypto_alloc_ahash(mac_alg, 0, 0);
2338 kfree(mac_alg);
2339
2340 if (IS_ERR(mac))
2341 return PTR_ERR(mac);
2342
2343 cc->key_mac_size = crypto_ahash_digestsize(mac);
2344 crypto_free_ahash(mac);
2345
2346 cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2347 if (!cc->authenc_key)
2348 return -ENOMEM;
2349
2350 return 0;
2351 }
2352
2353 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2354 char **ivmode, char **ivopts)
2355 {
2356 struct crypt_config *cc = ti->private;
2357 char *tmp, *cipher_api;
2358 int ret = -EINVAL;
2359
2360 cc->tfms_count = 1;
2361
2362 /*
2363 * New format (capi: prefix)
2364 * capi:cipher_api_spec-iv:ivopts
2365 */
2366 tmp = &cipher_in[strlen("capi:")];
2367 cipher_api = strsep(&tmp, "-");
2368 *ivmode = strsep(&tmp, ":");
2369 *ivopts = tmp;
2370
2371 if (*ivmode && !strcmp(*ivmode, "lmk"))
2372 cc->tfms_count = 64;
2373
2374 cc->key_parts = cc->tfms_count;
2375
2376 /* Allocate cipher */
2377 ret = crypt_alloc_tfms(cc, cipher_api);
2378 if (ret < 0) {
2379 ti->error = "Error allocating crypto tfm";
2380 return ret;
2381 }
2382
2383 /* Alloc AEAD, can be used only in new format. */
2384 if (crypt_integrity_aead(cc)) {
2385 ret = crypt_ctr_auth_cipher(cc, cipher_api);
2386 if (ret < 0) {
2387 ti->error = "Invalid AEAD cipher spec";
2388 return -ENOMEM;
2389 }
2390 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2391 } else
2392 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2393
2394 ret = crypt_ctr_blkdev_cipher(cc);
2395 if (ret < 0) {
2396 ti->error = "Cannot allocate cipher string";
2397 return -ENOMEM;
2398 }
2399
2400 return 0;
2401 }
2402
2403 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2404 char **ivmode, char **ivopts)
2405 {
2406 struct crypt_config *cc = ti->private;
2407 char *tmp, *cipher, *chainmode, *keycount;
2408 char *cipher_api = NULL;
2409 int ret = -EINVAL;
2410 char dummy;
2411
2412 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2413 ti->error = "Bad cipher specification";
2414 return -EINVAL;
2415 }
2416
2417 /*
2418 * Legacy dm-crypt cipher specification
2419 * cipher[:keycount]-mode-iv:ivopts
2420 */
2421 tmp = cipher_in;
2422 keycount = strsep(&tmp, "-");
2423 cipher = strsep(&keycount, ":");
2424
2425 if (!keycount)
2426 cc->tfms_count = 1;
2427 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2428 !is_power_of_2(cc->tfms_count)) {
2429 ti->error = "Bad cipher key count specification";
2430 return -EINVAL;
2431 }
2432 cc->key_parts = cc->tfms_count;
2433
2434 cc->cipher = kstrdup(cipher, GFP_KERNEL);
2435 if (!cc->cipher)
2436 goto bad_mem;
2437
2438 chainmode = strsep(&tmp, "-");
2439 *ivopts = strsep(&tmp, "-");
2440 *ivmode = strsep(&*ivopts, ":");
2441
2442 if (tmp)
2443 DMWARN("Ignoring unexpected additional cipher options");
2444
2445 /*
2446 * For compatibility with the original dm-crypt mapping format, if
2447 * only the cipher name is supplied, use cbc-plain.
2448 */
2449 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2450 chainmode = "cbc";
2451 *ivmode = "plain";
2452 }
2453
2454 if (strcmp(chainmode, "ecb") && !*ivmode) {
2455 ti->error = "IV mechanism required";
2456 return -EINVAL;
2457 }
2458
2459 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2460 if (!cipher_api)
2461 goto bad_mem;
2462
2463 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2464 "%s(%s)", chainmode, cipher);
2465 if (ret < 0) {
2466 kfree(cipher_api);
2467 goto bad_mem;
2468 }
2469
2470 /* Allocate cipher */
2471 ret = crypt_alloc_tfms(cc, cipher_api);
2472 if (ret < 0) {
2473 ti->error = "Error allocating crypto tfm";
2474 kfree(cipher_api);
2475 return ret;
2476 }
2477
2478 return 0;
2479 bad_mem:
2480 ti->error = "Cannot allocate cipher strings";
2481 return -ENOMEM;
2482 }
2483
2484 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
2485 {
2486 struct crypt_config *cc = ti->private;
2487 char *ivmode = NULL, *ivopts = NULL;
2488 int ret;
2489
2490 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
2491 if (!cc->cipher_string) {
2492 ti->error = "Cannot allocate cipher strings";
2493 return -ENOMEM;
2494 }
2495
2496 if (strstarts(cipher_in, "capi:"))
2497 ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
2498 else
2499 ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
2500 if (ret)
2501 return ret;
2502
2503 /* Initialize IV */
2504 ret = crypt_ctr_ivmode(ti, ivmode);
2505 if (ret < 0)
2506 return ret;
2507
2508 /* Initialize and set key */
2509 ret = crypt_set_key(cc, key);
2510 if (ret < 0) {
2511 ti->error = "Error decoding and setting key";
2512 return ret;
2513 }
2514
2515 /* Allocate IV */
2516 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
2517 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
2518 if (ret < 0) {
2519 ti->error = "Error creating IV";
2520 return ret;
2521 }
2522 }
2523
2524 /* Initialize IV (set keys for ESSIV etc) */
2525 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
2526 ret = cc->iv_gen_ops->init(cc);
2527 if (ret < 0) {
2528 ti->error = "Error initialising IV";
2529 return ret;
2530 }
2531 }
2532
2533 return ret;
2534 }
2535
2536 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
2537 {
2538 struct crypt_config *cc = ti->private;
2539 struct dm_arg_set as;
2540 static struct dm_arg _args[] = {
2541 {0, 6, "Invalid number of feature args"},
2542 };
2543 unsigned int opt_params, val;
2544 const char *opt_string, *sval;
2545 char dummy;
2546 int ret;
2547
2548 /* Optional parameters */
2549 as.argc = argc;
2550 as.argv = argv;
2551
2552 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2553 if (ret)
2554 return ret;
2555
2556 while (opt_params--) {
2557 opt_string = dm_shift_arg(&as);
2558 if (!opt_string) {
2559 ti->error = "Not enough feature arguments";
2560 return -EINVAL;
2561 }
2562
2563 if (!strcasecmp(opt_string, "allow_discards"))
2564 ti->num_discard_bios = 1;
2565
2566 else if (!strcasecmp(opt_string, "same_cpu_crypt"))
2567 set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2568
2569 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
2570 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2571 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
2572 if (val == 0 || val > MAX_TAG_SIZE) {
2573 ti->error = "Invalid integrity arguments";
2574 return -EINVAL;
2575 }
2576 cc->on_disk_tag_size = val;
2577 sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
2578 if (!strcasecmp(sval, "aead")) {
2579 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
2580 } else if (strcasecmp(sval, "none")) {
2581 ti->error = "Unknown integrity profile";
2582 return -EINVAL;
2583 }
2584
2585 cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
2586 if (!cc->cipher_auth)
2587 return -ENOMEM;
2588 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
2589 if (cc->sector_size < (1 << SECTOR_SHIFT) ||
2590 cc->sector_size > 4096 ||
2591 (cc->sector_size & (cc->sector_size - 1))) {
2592 ti->error = "Invalid feature value for sector_size";
2593 return -EINVAL;
2594 }
2595 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
2596 } else if (!strcasecmp(opt_string, "iv_large_sectors"))
2597 set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2598 else {
2599 ti->error = "Invalid feature arguments";
2600 return -EINVAL;
2601 }
2602 }
2603
2604 return 0;
2605 }
2606
2607 /*
2608 * Construct an encryption mapping:
2609 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
2610 */
2611 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2612 {
2613 struct crypt_config *cc;
2614 int key_size;
2615 unsigned int align_mask;
2616 unsigned long long tmpll;
2617 int ret;
2618 size_t iv_size_padding, additional_req_size;
2619 char dummy;
2620
2621 if (argc < 5) {
2622 ti->error = "Not enough arguments";
2623 return -EINVAL;
2624 }
2625
2626 key_size = get_key_size(&argv[1]);
2627 if (key_size < 0) {
2628 ti->error = "Cannot parse key size";
2629 return -EINVAL;
2630 }
2631
2632 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
2633 if (!cc) {
2634 ti->error = "Cannot allocate encryption context";
2635 return -ENOMEM;
2636 }
2637 cc->key_size = key_size;
2638 cc->sector_size = (1 << SECTOR_SHIFT);
2639 cc->sector_shift = 0;
2640
2641 ti->private = cc;
2642
2643 /* Optional parameters need to be read before cipher constructor */
2644 if (argc > 5) {
2645 ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
2646 if (ret)
2647 goto bad;
2648 }
2649
2650 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
2651 if (ret < 0)
2652 goto bad;
2653
2654 if (crypt_integrity_aead(cc)) {
2655 cc->dmreq_start = sizeof(struct aead_request);
2656 cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
2657 align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
2658 } else {
2659 cc->dmreq_start = sizeof(struct skcipher_request);
2660 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
2661 align_mask = crypto_skcipher_alignmask(any_tfm(cc));
2662 }
2663 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
2664
2665 if (align_mask < CRYPTO_MINALIGN) {
2666 /* Allocate the padding exactly */
2667 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
2668 & align_mask;
2669 } else {
2670 /*
2671 * If the cipher requires greater alignment than kmalloc
2672 * alignment, we don't know the exact position of the
2673 * initialization vector. We must assume worst case.
2674 */
2675 iv_size_padding = align_mask;
2676 }
2677
2678 ret = -ENOMEM;
2679
2680 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */
2681 additional_req_size = sizeof(struct dm_crypt_request) +
2682 iv_size_padding + cc->iv_size +
2683 cc->iv_size +
2684 sizeof(uint64_t) +
2685 sizeof(unsigned int);
2686
2687 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start + additional_req_size);
2688 if (!cc->req_pool) {
2689 ti->error = "Cannot allocate crypt request mempool";
2690 goto bad;
2691 }
2692
2693 cc->per_bio_data_size = ti->per_io_data_size =
2694 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
2695 ARCH_KMALLOC_MINALIGN);
2696
2697 cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
2698 if (!cc->page_pool) {
2699 ti->error = "Cannot allocate page mempool";
2700 goto bad;
2701 }
2702
2703 cc->bs = bioset_create(MIN_IOS, 0);
2704 if (!cc->bs) {
2705 ti->error = "Cannot allocate crypt bioset";
2706 goto bad;
2707 }
2708
2709 mutex_init(&cc->bio_alloc_lock);
2710
2711 ret = -EINVAL;
2712 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
2713 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
2714 ti->error = "Invalid iv_offset sector";
2715 goto bad;
2716 }
2717 cc->iv_offset = tmpll;
2718
2719 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
2720 if (ret) {
2721 ti->error = "Device lookup failed";
2722 goto bad;
2723 }
2724
2725 ret = -EINVAL;
2726 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
2727 ti->error = "Invalid device sector";
2728 goto bad;
2729 }
2730 cc->start = tmpll;
2731
2732 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
2733 ret = crypt_integrity_ctr(cc, ti);
2734 if (ret)
2735 goto bad;
2736
2737 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
2738 if (!cc->tag_pool_max_sectors)
2739 cc->tag_pool_max_sectors = 1;
2740
2741 cc->tag_pool = mempool_create_kmalloc_pool(MIN_IOS,
2742 cc->tag_pool_max_sectors * cc->on_disk_tag_size);
2743 if (!cc->tag_pool) {
2744 ti->error = "Cannot allocate integrity tags mempool";
2745 goto bad;
2746 }
2747
2748 cc->tag_pool_max_sectors <<= cc->sector_shift;
2749 }
2750
2751 ret = -ENOMEM;
2752 cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
2753 if (!cc->io_queue) {
2754 ti->error = "Couldn't create kcryptd io queue";
2755 goto bad;
2756 }
2757
2758 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2759 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
2760 else
2761 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
2762 num_online_cpus());
2763 if (!cc->crypt_queue) {
2764 ti->error = "Couldn't create kcryptd queue";
2765 goto bad;
2766 }
2767
2768 init_waitqueue_head(&cc->write_thread_wait);
2769 cc->write_tree = RB_ROOT;
2770
2771 cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
2772 if (IS_ERR(cc->write_thread)) {
2773 ret = PTR_ERR(cc->write_thread);
2774 cc->write_thread = NULL;
2775 ti->error = "Couldn't spawn write thread";
2776 goto bad;
2777 }
2778 wake_up_process(cc->write_thread);
2779
2780 ti->num_flush_bios = 1;
2781 ti->discard_zeroes_data_unsupported = true;
2782
2783 return 0;
2784
2785 bad:
2786 crypt_dtr(ti);
2787 return ret;
2788 }
2789
2790 static int crypt_map(struct dm_target *ti, struct bio *bio)
2791 {
2792 struct dm_crypt_io *io;
2793 struct crypt_config *cc = ti->private;
2794
2795 /*
2796 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
2797 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
2798 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
2799 */
2800 if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
2801 bio_op(bio) == REQ_OP_DISCARD)) {
2802 bio->bi_bdev = cc->dev->bdev;
2803 if (bio_sectors(bio))
2804 bio->bi_iter.bi_sector = cc->start +
2805 dm_target_offset(ti, bio->bi_iter.bi_sector);
2806 return DM_MAPIO_REMAPPED;
2807 }
2808
2809 /*
2810 * Check if bio is too large, split as needed.
2811 */
2812 if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
2813 (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
2814 dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
2815
2816 /*
2817 * Ensure that bio is a multiple of internal sector encryption size
2818 * and is aligned to this size as defined in IO hints.
2819 */
2820 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
2821 return -EIO;
2822
2823 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
2824 return -EIO;
2825
2826 io = dm_per_bio_data(bio, cc->per_bio_data_size);
2827 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
2828
2829 if (cc->on_disk_tag_size) {
2830 unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
2831
2832 if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
2833 unlikely(!(io->integrity_metadata = kmalloc(tag_len,
2834 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
2835 if (bio_sectors(bio) > cc->tag_pool_max_sectors)
2836 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
2837 io->integrity_metadata = mempool_alloc(cc->tag_pool, GFP_NOIO);
2838 io->integrity_metadata_from_pool = true;
2839 }
2840 }
2841
2842 if (crypt_integrity_aead(cc))
2843 io->ctx.r.req_aead = (struct aead_request *)(io + 1);
2844 else
2845 io->ctx.r.req = (struct skcipher_request *)(io + 1);
2846
2847 if (bio_data_dir(io->base_bio) == READ) {
2848 if (kcryptd_io_read(io, GFP_NOWAIT))
2849 kcryptd_queue_read(io);
2850 } else
2851 kcryptd_queue_crypt(io);
2852
2853 return DM_MAPIO_SUBMITTED;
2854 }
2855
2856 static void crypt_status(struct dm_target *ti, status_type_t type,
2857 unsigned status_flags, char *result, unsigned maxlen)
2858 {
2859 struct crypt_config *cc = ti->private;
2860 unsigned i, sz = 0;
2861 int num_feature_args = 0;
2862
2863 switch (type) {
2864 case STATUSTYPE_INFO:
2865 result[0] = '\0';
2866 break;
2867
2868 case STATUSTYPE_TABLE:
2869 DMEMIT("%s ", cc->cipher_string);
2870
2871 if (cc->key_size > 0) {
2872 if (cc->key_string)
2873 DMEMIT(":%u:%s", cc->key_size, cc->key_string);
2874 else
2875 for (i = 0; i < cc->key_size; i++)
2876 DMEMIT("%02x", cc->key[i]);
2877 } else
2878 DMEMIT("-");
2879
2880 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
2881 cc->dev->name, (unsigned long long)cc->start);
2882
2883 num_feature_args += !!ti->num_discard_bios;
2884 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2885 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2886 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
2887 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2888 if (cc->on_disk_tag_size)
2889 num_feature_args++;
2890 if (num_feature_args) {
2891 DMEMIT(" %d", num_feature_args);
2892 if (ti->num_discard_bios)
2893 DMEMIT(" allow_discards");
2894 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2895 DMEMIT(" same_cpu_crypt");
2896 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
2897 DMEMIT(" submit_from_crypt_cpus");
2898 if (cc->on_disk_tag_size)
2899 DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
2900 if (cc->sector_size != (1 << SECTOR_SHIFT))
2901 DMEMIT(" sector_size:%d", cc->sector_size);
2902 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
2903 DMEMIT(" iv_large_sectors");
2904 }
2905
2906 break;
2907 }
2908 }
2909
2910 static void crypt_postsuspend(struct dm_target *ti)
2911 {
2912 struct crypt_config *cc = ti->private;
2913
2914 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2915 }
2916
2917 static int crypt_preresume(struct dm_target *ti)
2918 {
2919 struct crypt_config *cc = ti->private;
2920
2921 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
2922 DMERR("aborting resume - crypt key is not set.");
2923 return -EAGAIN;
2924 }
2925
2926 return 0;
2927 }
2928
2929 static void crypt_resume(struct dm_target *ti)
2930 {
2931 struct crypt_config *cc = ti->private;
2932
2933 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2934 }
2935
2936 /* Message interface
2937 * key set <key>
2938 * key wipe
2939 */
2940 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
2941 {
2942 struct crypt_config *cc = ti->private;
2943 int key_size, ret = -EINVAL;
2944
2945 if (argc < 2)
2946 goto error;
2947
2948 if (!strcasecmp(argv[0], "key")) {
2949 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2950 DMWARN("not suspended during key manipulation.");
2951 return -EINVAL;
2952 }
2953 if (argc == 3 && !strcasecmp(argv[1], "set")) {
2954 /* The key size may not be changed. */
2955 key_size = get_key_size(&argv[2]);
2956 if (key_size < 0 || cc->key_size != key_size) {
2957 memset(argv[2], '0', strlen(argv[2]));
2958 return -EINVAL;
2959 }
2960
2961 ret = crypt_set_key(cc, argv[2]);
2962 if (ret)
2963 return ret;
2964 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2965 ret = cc->iv_gen_ops->init(cc);
2966 return ret;
2967 }
2968 if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2969 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2970 ret = cc->iv_gen_ops->wipe(cc);
2971 if (ret)
2972 return ret;
2973 }
2974 return crypt_wipe_key(cc);
2975 }
2976 }
2977
2978 error:
2979 DMWARN("unrecognised message received.");
2980 return -EINVAL;
2981 }
2982
2983 static int crypt_iterate_devices(struct dm_target *ti,
2984 iterate_devices_callout_fn fn, void *data)
2985 {
2986 struct crypt_config *cc = ti->private;
2987
2988 return fn(ti, cc->dev, cc->start, ti->len, data);
2989 }
2990
2991 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2992 {
2993 struct crypt_config *cc = ti->private;
2994
2995 /*
2996 * Unfortunate constraint that is required to avoid the potential
2997 * for exceeding underlying device's max_segments limits -- due to
2998 * crypt_alloc_buffer() possibly allocating pages for the encryption
2999 * bio that are not as physically contiguous as the original bio.
3000 */
3001 limits->max_segment_size = PAGE_SIZE;
3002
3003 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
3004 limits->logical_block_size = cc->sector_size;
3005 limits->physical_block_size = cc->sector_size;
3006 blk_limits_io_min(limits, cc->sector_size);
3007 }
3008 }
3009
3010 static struct target_type crypt_target = {
3011 .name = "crypt",
3012 .version = {1, 17, 0},
3013 .module = THIS_MODULE,
3014 .ctr = crypt_ctr,
3015 .dtr = crypt_dtr,
3016 .map = crypt_map,
3017 .status = crypt_status,
3018 .postsuspend = crypt_postsuspend,
3019 .preresume = crypt_preresume,
3020 .resume = crypt_resume,
3021 .message = crypt_message,
3022 .iterate_devices = crypt_iterate_devices,
3023 .io_hints = crypt_io_hints,
3024 };
3025
3026 static int __init dm_crypt_init(void)
3027 {
3028 int r;
3029
3030 r = dm_register_target(&crypt_target);
3031 if (r < 0)
3032 DMERR("register failed %d", r);
3033
3034 return r;
3035 }
3036
3037 static void __exit dm_crypt_exit(void)
3038 {
3039 dm_unregister_target(&crypt_target);
3040 }
3041
3042 module_init(dm_crypt_init);
3043 module_exit(dm_crypt_exit);
3044
3045 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3046 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3047 MODULE_LICENSE("GPL");