]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/md/dm-crypt.c
UBUNTU: Ubuntu-raspi2-4.10.0-1002.4
[mirror_ubuntu-zesty-kernel.git] / drivers / md / dm-crypt.c
1 /*
2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2015 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
6 *
7 * This file is released under the GPL.
8 */
9
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/key.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/crypto.h>
21 #include <linux/workqueue.h>
22 #include <linux/kthread.h>
23 #include <linux/backing-dev.h>
24 #include <linux/atomic.h>
25 #include <linux/scatterlist.h>
26 #include <linux/rbtree.h>
27 #include <linux/ctype.h>
28 #include <asm/page.h>
29 #include <asm/unaligned.h>
30 #include <crypto/hash.h>
31 #include <crypto/md5.h>
32 #include <crypto/algapi.h>
33 #include <crypto/skcipher.h>
34 #include <keys/user-type.h>
35
36 #include <linux/device-mapper.h>
37
38 #define DM_MSG_PREFIX "crypt"
39
40 /*
41 * context holding the current state of a multi-part conversion
42 */
43 struct convert_context {
44 struct completion restart;
45 struct bio *bio_in;
46 struct bio *bio_out;
47 struct bvec_iter iter_in;
48 struct bvec_iter iter_out;
49 sector_t cc_sector;
50 atomic_t cc_pending;
51 struct skcipher_request *req;
52 };
53
54 /*
55 * per bio private data
56 */
57 struct dm_crypt_io {
58 struct crypt_config *cc;
59 struct bio *base_bio;
60 struct work_struct work;
61
62 struct convert_context ctx;
63
64 atomic_t io_pending;
65 int error;
66 sector_t sector;
67
68 struct rb_node rb_node;
69 } CRYPTO_MINALIGN_ATTR;
70
71 struct dm_crypt_request {
72 struct convert_context *ctx;
73 struct scatterlist sg_in;
74 struct scatterlist sg_out;
75 sector_t iv_sector;
76 };
77
78 struct crypt_config;
79
80 struct crypt_iv_operations {
81 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
82 const char *opts);
83 void (*dtr)(struct crypt_config *cc);
84 int (*init)(struct crypt_config *cc);
85 int (*wipe)(struct crypt_config *cc);
86 int (*generator)(struct crypt_config *cc, u8 *iv,
87 struct dm_crypt_request *dmreq);
88 int (*post)(struct crypt_config *cc, u8 *iv,
89 struct dm_crypt_request *dmreq);
90 };
91
92 struct iv_essiv_private {
93 struct crypto_ahash *hash_tfm;
94 u8 *salt;
95 };
96
97 struct iv_benbi_private {
98 int shift;
99 };
100
101 #define LMK_SEED_SIZE 64 /* hash + 0 */
102 struct iv_lmk_private {
103 struct crypto_shash *hash_tfm;
104 u8 *seed;
105 };
106
107 #define TCW_WHITENING_SIZE 16
108 struct iv_tcw_private {
109 struct crypto_shash *crc32_tfm;
110 u8 *iv_seed;
111 u8 *whitening;
112 };
113
114 /*
115 * Crypt: maps a linear range of a block device
116 * and encrypts / decrypts at the same time.
117 */
118 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
119 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
120
121 /*
122 * The fields in here must be read only after initialization.
123 */
124 struct crypt_config {
125 struct dm_dev *dev;
126 sector_t start;
127
128 /*
129 * pool for per bio private data, crypto requests and
130 * encryption requeusts/buffer pages
131 */
132 mempool_t *req_pool;
133 mempool_t *page_pool;
134 struct bio_set *bs;
135 struct mutex bio_alloc_lock;
136
137 struct workqueue_struct *io_queue;
138 struct workqueue_struct *crypt_queue;
139
140 struct task_struct *write_thread;
141 wait_queue_head_t write_thread_wait;
142 struct rb_root write_tree;
143
144 char *cipher;
145 char *cipher_string;
146 char *key_string;
147
148 const struct crypt_iv_operations *iv_gen_ops;
149 union {
150 struct iv_essiv_private essiv;
151 struct iv_benbi_private benbi;
152 struct iv_lmk_private lmk;
153 struct iv_tcw_private tcw;
154 } iv_gen_private;
155 sector_t iv_offset;
156 unsigned int iv_size;
157
158 /* ESSIV: struct crypto_cipher *essiv_tfm */
159 void *iv_private;
160 struct crypto_skcipher **tfms;
161 unsigned tfms_count;
162
163 /*
164 * Layout of each crypto request:
165 *
166 * struct skcipher_request
167 * context
168 * padding
169 * struct dm_crypt_request
170 * padding
171 * IV
172 *
173 * The padding is added so that dm_crypt_request and the IV are
174 * correctly aligned.
175 */
176 unsigned int dmreq_start;
177
178 unsigned int per_bio_data_size;
179
180 unsigned long flags;
181 unsigned int key_size;
182 unsigned int key_parts; /* independent parts in key buffer */
183 unsigned int key_extra_size; /* additional keys length */
184 u8 key[0];
185 };
186
187 #define MIN_IOS 64
188
189 static void clone_init(struct dm_crypt_io *, struct bio *);
190 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
191 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
192
193 /*
194 * Use this to access cipher attributes that are the same for each CPU.
195 */
196 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
197 {
198 return cc->tfms[0];
199 }
200
201 /*
202 * Different IV generation algorithms:
203 *
204 * plain: the initial vector is the 32-bit little-endian version of the sector
205 * number, padded with zeros if necessary.
206 *
207 * plain64: the initial vector is the 64-bit little-endian version of the sector
208 * number, padded with zeros if necessary.
209 *
210 * essiv: "encrypted sector|salt initial vector", the sector number is
211 * encrypted with the bulk cipher using a salt as key. The salt
212 * should be derived from the bulk cipher's key via hashing.
213 *
214 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
215 * (needed for LRW-32-AES and possible other narrow block modes)
216 *
217 * null: the initial vector is always zero. Provides compatibility with
218 * obsolete loop_fish2 devices. Do not use for new devices.
219 *
220 * lmk: Compatible implementation of the block chaining mode used
221 * by the Loop-AES block device encryption system
222 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
223 * It operates on full 512 byte sectors and uses CBC
224 * with an IV derived from the sector number, the data and
225 * optionally extra IV seed.
226 * This means that after decryption the first block
227 * of sector must be tweaked according to decrypted data.
228 * Loop-AES can use three encryption schemes:
229 * version 1: is plain aes-cbc mode
230 * version 2: uses 64 multikey scheme with lmk IV generator
231 * version 3: the same as version 2 with additional IV seed
232 * (it uses 65 keys, last key is used as IV seed)
233 *
234 * tcw: Compatible implementation of the block chaining mode used
235 * by the TrueCrypt device encryption system (prior to version 4.1).
236 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
237 * It operates on full 512 byte sectors and uses CBC
238 * with an IV derived from initial key and the sector number.
239 * In addition, whitening value is applied on every sector, whitening
240 * is calculated from initial key, sector number and mixed using CRC32.
241 * Note that this encryption scheme is vulnerable to watermarking attacks
242 * and should be used for old compatible containers access only.
243 *
244 * plumb: unimplemented, see:
245 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
246 */
247
248 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
249 struct dm_crypt_request *dmreq)
250 {
251 memset(iv, 0, cc->iv_size);
252 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
253
254 return 0;
255 }
256
257 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
258 struct dm_crypt_request *dmreq)
259 {
260 memset(iv, 0, cc->iv_size);
261 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
262
263 return 0;
264 }
265
266 /* Initialise ESSIV - compute salt but no local memory allocations */
267 static int crypt_iv_essiv_init(struct crypt_config *cc)
268 {
269 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
270 AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
271 struct scatterlist sg;
272 struct crypto_cipher *essiv_tfm;
273 int err;
274
275 sg_init_one(&sg, cc->key, cc->key_size);
276 ahash_request_set_tfm(req, essiv->hash_tfm);
277 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
278 ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size);
279
280 err = crypto_ahash_digest(req);
281 ahash_request_zero(req);
282 if (err)
283 return err;
284
285 essiv_tfm = cc->iv_private;
286
287 err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
288 crypto_ahash_digestsize(essiv->hash_tfm));
289 if (err)
290 return err;
291
292 return 0;
293 }
294
295 /* Wipe salt and reset key derived from volume key */
296 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
297 {
298 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
299 unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
300 struct crypto_cipher *essiv_tfm;
301 int r, err = 0;
302
303 memset(essiv->salt, 0, salt_size);
304
305 essiv_tfm = cc->iv_private;
306 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
307 if (r)
308 err = r;
309
310 return err;
311 }
312
313 /* Set up per cpu cipher state */
314 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
315 struct dm_target *ti,
316 u8 *salt, unsigned saltsize)
317 {
318 struct crypto_cipher *essiv_tfm;
319 int err;
320
321 /* Setup the essiv_tfm with the given salt */
322 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
323 if (IS_ERR(essiv_tfm)) {
324 ti->error = "Error allocating crypto tfm for ESSIV";
325 return essiv_tfm;
326 }
327
328 if (crypto_cipher_blocksize(essiv_tfm) !=
329 crypto_skcipher_ivsize(any_tfm(cc))) {
330 ti->error = "Block size of ESSIV cipher does "
331 "not match IV size of block cipher";
332 crypto_free_cipher(essiv_tfm);
333 return ERR_PTR(-EINVAL);
334 }
335
336 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
337 if (err) {
338 ti->error = "Failed to set key for ESSIV cipher";
339 crypto_free_cipher(essiv_tfm);
340 return ERR_PTR(err);
341 }
342
343 return essiv_tfm;
344 }
345
346 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
347 {
348 struct crypto_cipher *essiv_tfm;
349 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
350
351 crypto_free_ahash(essiv->hash_tfm);
352 essiv->hash_tfm = NULL;
353
354 kzfree(essiv->salt);
355 essiv->salt = NULL;
356
357 essiv_tfm = cc->iv_private;
358
359 if (essiv_tfm)
360 crypto_free_cipher(essiv_tfm);
361
362 cc->iv_private = NULL;
363 }
364
365 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
366 const char *opts)
367 {
368 struct crypto_cipher *essiv_tfm = NULL;
369 struct crypto_ahash *hash_tfm = NULL;
370 u8 *salt = NULL;
371 int err;
372
373 if (!opts) {
374 ti->error = "Digest algorithm missing for ESSIV mode";
375 return -EINVAL;
376 }
377
378 /* Allocate hash algorithm */
379 hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC);
380 if (IS_ERR(hash_tfm)) {
381 ti->error = "Error initializing ESSIV hash";
382 err = PTR_ERR(hash_tfm);
383 goto bad;
384 }
385
386 salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
387 if (!salt) {
388 ti->error = "Error kmallocing salt storage in ESSIV";
389 err = -ENOMEM;
390 goto bad;
391 }
392
393 cc->iv_gen_private.essiv.salt = salt;
394 cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
395
396 essiv_tfm = setup_essiv_cpu(cc, ti, salt,
397 crypto_ahash_digestsize(hash_tfm));
398 if (IS_ERR(essiv_tfm)) {
399 crypt_iv_essiv_dtr(cc);
400 return PTR_ERR(essiv_tfm);
401 }
402 cc->iv_private = essiv_tfm;
403
404 return 0;
405
406 bad:
407 if (hash_tfm && !IS_ERR(hash_tfm))
408 crypto_free_ahash(hash_tfm);
409 kfree(salt);
410 return err;
411 }
412
413 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
414 struct dm_crypt_request *dmreq)
415 {
416 struct crypto_cipher *essiv_tfm = cc->iv_private;
417
418 memset(iv, 0, cc->iv_size);
419 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
420 crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
421
422 return 0;
423 }
424
425 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
426 const char *opts)
427 {
428 unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
429 int log = ilog2(bs);
430
431 /* we need to calculate how far we must shift the sector count
432 * to get the cipher block count, we use this shift in _gen */
433
434 if (1 << log != bs) {
435 ti->error = "cypher blocksize is not a power of 2";
436 return -EINVAL;
437 }
438
439 if (log > 9) {
440 ti->error = "cypher blocksize is > 512";
441 return -EINVAL;
442 }
443
444 cc->iv_gen_private.benbi.shift = 9 - log;
445
446 return 0;
447 }
448
449 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
450 {
451 }
452
453 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
454 struct dm_crypt_request *dmreq)
455 {
456 __be64 val;
457
458 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
459
460 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
461 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
462
463 return 0;
464 }
465
466 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
467 struct dm_crypt_request *dmreq)
468 {
469 memset(iv, 0, cc->iv_size);
470
471 return 0;
472 }
473
474 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
475 {
476 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
477
478 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
479 crypto_free_shash(lmk->hash_tfm);
480 lmk->hash_tfm = NULL;
481
482 kzfree(lmk->seed);
483 lmk->seed = NULL;
484 }
485
486 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
487 const char *opts)
488 {
489 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
490
491 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
492 if (IS_ERR(lmk->hash_tfm)) {
493 ti->error = "Error initializing LMK hash";
494 return PTR_ERR(lmk->hash_tfm);
495 }
496
497 /* No seed in LMK version 2 */
498 if (cc->key_parts == cc->tfms_count) {
499 lmk->seed = NULL;
500 return 0;
501 }
502
503 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
504 if (!lmk->seed) {
505 crypt_iv_lmk_dtr(cc);
506 ti->error = "Error kmallocing seed storage in LMK";
507 return -ENOMEM;
508 }
509
510 return 0;
511 }
512
513 static int crypt_iv_lmk_init(struct crypt_config *cc)
514 {
515 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
516 int subkey_size = cc->key_size / cc->key_parts;
517
518 /* LMK seed is on the position of LMK_KEYS + 1 key */
519 if (lmk->seed)
520 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
521 crypto_shash_digestsize(lmk->hash_tfm));
522
523 return 0;
524 }
525
526 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
527 {
528 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
529
530 if (lmk->seed)
531 memset(lmk->seed, 0, LMK_SEED_SIZE);
532
533 return 0;
534 }
535
536 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
537 struct dm_crypt_request *dmreq,
538 u8 *data)
539 {
540 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
541 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
542 struct md5_state md5state;
543 __le32 buf[4];
544 int i, r;
545
546 desc->tfm = lmk->hash_tfm;
547 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
548
549 r = crypto_shash_init(desc);
550 if (r)
551 return r;
552
553 if (lmk->seed) {
554 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
555 if (r)
556 return r;
557 }
558
559 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
560 r = crypto_shash_update(desc, data + 16, 16 * 31);
561 if (r)
562 return r;
563
564 /* Sector is cropped to 56 bits here */
565 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
566 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
567 buf[2] = cpu_to_le32(4024);
568 buf[3] = 0;
569 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
570 if (r)
571 return r;
572
573 /* No MD5 padding here */
574 r = crypto_shash_export(desc, &md5state);
575 if (r)
576 return r;
577
578 for (i = 0; i < MD5_HASH_WORDS; i++)
579 __cpu_to_le32s(&md5state.hash[i]);
580 memcpy(iv, &md5state.hash, cc->iv_size);
581
582 return 0;
583 }
584
585 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
586 struct dm_crypt_request *dmreq)
587 {
588 u8 *src;
589 int r = 0;
590
591 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
592 src = kmap_atomic(sg_page(&dmreq->sg_in));
593 r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
594 kunmap_atomic(src);
595 } else
596 memset(iv, 0, cc->iv_size);
597
598 return r;
599 }
600
601 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
602 struct dm_crypt_request *dmreq)
603 {
604 u8 *dst;
605 int r;
606
607 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
608 return 0;
609
610 dst = kmap_atomic(sg_page(&dmreq->sg_out));
611 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
612
613 /* Tweak the first block of plaintext sector */
614 if (!r)
615 crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
616
617 kunmap_atomic(dst);
618 return r;
619 }
620
621 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
622 {
623 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
624
625 kzfree(tcw->iv_seed);
626 tcw->iv_seed = NULL;
627 kzfree(tcw->whitening);
628 tcw->whitening = NULL;
629
630 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
631 crypto_free_shash(tcw->crc32_tfm);
632 tcw->crc32_tfm = NULL;
633 }
634
635 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
636 const char *opts)
637 {
638 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
639
640 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
641 ti->error = "Wrong key size for TCW";
642 return -EINVAL;
643 }
644
645 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
646 if (IS_ERR(tcw->crc32_tfm)) {
647 ti->error = "Error initializing CRC32 in TCW";
648 return PTR_ERR(tcw->crc32_tfm);
649 }
650
651 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
652 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
653 if (!tcw->iv_seed || !tcw->whitening) {
654 crypt_iv_tcw_dtr(cc);
655 ti->error = "Error allocating seed storage in TCW";
656 return -ENOMEM;
657 }
658
659 return 0;
660 }
661
662 static int crypt_iv_tcw_init(struct crypt_config *cc)
663 {
664 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
665 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
666
667 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
668 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
669 TCW_WHITENING_SIZE);
670
671 return 0;
672 }
673
674 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
675 {
676 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
677
678 memset(tcw->iv_seed, 0, cc->iv_size);
679 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
680
681 return 0;
682 }
683
684 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
685 struct dm_crypt_request *dmreq,
686 u8 *data)
687 {
688 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
689 __le64 sector = cpu_to_le64(dmreq->iv_sector);
690 u8 buf[TCW_WHITENING_SIZE];
691 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
692 int i, r;
693
694 /* xor whitening with sector number */
695 memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
696 crypto_xor(buf, (u8 *)&sector, 8);
697 crypto_xor(&buf[8], (u8 *)&sector, 8);
698
699 /* calculate crc32 for every 32bit part and xor it */
700 desc->tfm = tcw->crc32_tfm;
701 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
702 for (i = 0; i < 4; i++) {
703 r = crypto_shash_init(desc);
704 if (r)
705 goto out;
706 r = crypto_shash_update(desc, &buf[i * 4], 4);
707 if (r)
708 goto out;
709 r = crypto_shash_final(desc, &buf[i * 4]);
710 if (r)
711 goto out;
712 }
713 crypto_xor(&buf[0], &buf[12], 4);
714 crypto_xor(&buf[4], &buf[8], 4);
715
716 /* apply whitening (8 bytes) to whole sector */
717 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
718 crypto_xor(data + i * 8, buf, 8);
719 out:
720 memzero_explicit(buf, sizeof(buf));
721 return r;
722 }
723
724 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
725 struct dm_crypt_request *dmreq)
726 {
727 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
728 __le64 sector = cpu_to_le64(dmreq->iv_sector);
729 u8 *src;
730 int r = 0;
731
732 /* Remove whitening from ciphertext */
733 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
734 src = kmap_atomic(sg_page(&dmreq->sg_in));
735 r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
736 kunmap_atomic(src);
737 }
738
739 /* Calculate IV */
740 memcpy(iv, tcw->iv_seed, cc->iv_size);
741 crypto_xor(iv, (u8 *)&sector, 8);
742 if (cc->iv_size > 8)
743 crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
744
745 return r;
746 }
747
748 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
749 struct dm_crypt_request *dmreq)
750 {
751 u8 *dst;
752 int r;
753
754 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
755 return 0;
756
757 /* Apply whitening on ciphertext */
758 dst = kmap_atomic(sg_page(&dmreq->sg_out));
759 r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
760 kunmap_atomic(dst);
761
762 return r;
763 }
764
765 static const struct crypt_iv_operations crypt_iv_plain_ops = {
766 .generator = crypt_iv_plain_gen
767 };
768
769 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
770 .generator = crypt_iv_plain64_gen
771 };
772
773 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
774 .ctr = crypt_iv_essiv_ctr,
775 .dtr = crypt_iv_essiv_dtr,
776 .init = crypt_iv_essiv_init,
777 .wipe = crypt_iv_essiv_wipe,
778 .generator = crypt_iv_essiv_gen
779 };
780
781 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
782 .ctr = crypt_iv_benbi_ctr,
783 .dtr = crypt_iv_benbi_dtr,
784 .generator = crypt_iv_benbi_gen
785 };
786
787 static const struct crypt_iv_operations crypt_iv_null_ops = {
788 .generator = crypt_iv_null_gen
789 };
790
791 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
792 .ctr = crypt_iv_lmk_ctr,
793 .dtr = crypt_iv_lmk_dtr,
794 .init = crypt_iv_lmk_init,
795 .wipe = crypt_iv_lmk_wipe,
796 .generator = crypt_iv_lmk_gen,
797 .post = crypt_iv_lmk_post
798 };
799
800 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
801 .ctr = crypt_iv_tcw_ctr,
802 .dtr = crypt_iv_tcw_dtr,
803 .init = crypt_iv_tcw_init,
804 .wipe = crypt_iv_tcw_wipe,
805 .generator = crypt_iv_tcw_gen,
806 .post = crypt_iv_tcw_post
807 };
808
809 static void crypt_convert_init(struct crypt_config *cc,
810 struct convert_context *ctx,
811 struct bio *bio_out, struct bio *bio_in,
812 sector_t sector)
813 {
814 ctx->bio_in = bio_in;
815 ctx->bio_out = bio_out;
816 if (bio_in)
817 ctx->iter_in = bio_in->bi_iter;
818 if (bio_out)
819 ctx->iter_out = bio_out->bi_iter;
820 ctx->cc_sector = sector + cc->iv_offset;
821 init_completion(&ctx->restart);
822 }
823
824 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
825 struct skcipher_request *req)
826 {
827 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
828 }
829
830 static struct skcipher_request *req_of_dmreq(struct crypt_config *cc,
831 struct dm_crypt_request *dmreq)
832 {
833 return (struct skcipher_request *)((char *)dmreq - cc->dmreq_start);
834 }
835
836 static u8 *iv_of_dmreq(struct crypt_config *cc,
837 struct dm_crypt_request *dmreq)
838 {
839 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
840 crypto_skcipher_alignmask(any_tfm(cc)) + 1);
841 }
842
843 static int crypt_convert_block(struct crypt_config *cc,
844 struct convert_context *ctx,
845 struct skcipher_request *req)
846 {
847 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
848 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
849 struct dm_crypt_request *dmreq;
850 u8 *iv;
851 int r;
852
853 dmreq = dmreq_of_req(cc, req);
854 iv = iv_of_dmreq(cc, dmreq);
855
856 dmreq->iv_sector = ctx->cc_sector;
857 dmreq->ctx = ctx;
858 sg_init_table(&dmreq->sg_in, 1);
859 sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
860 bv_in.bv_offset);
861
862 sg_init_table(&dmreq->sg_out, 1);
863 sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
864 bv_out.bv_offset);
865
866 bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
867 bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
868
869 if (cc->iv_gen_ops) {
870 r = cc->iv_gen_ops->generator(cc, iv, dmreq);
871 if (r < 0)
872 return r;
873 }
874
875 skcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
876 1 << SECTOR_SHIFT, iv);
877
878 if (bio_data_dir(ctx->bio_in) == WRITE)
879 r = crypto_skcipher_encrypt(req);
880 else
881 r = crypto_skcipher_decrypt(req);
882
883 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
884 r = cc->iv_gen_ops->post(cc, iv, dmreq);
885
886 return r;
887 }
888
889 static void kcryptd_async_done(struct crypto_async_request *async_req,
890 int error);
891
892 static void crypt_alloc_req(struct crypt_config *cc,
893 struct convert_context *ctx)
894 {
895 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
896
897 if (!ctx->req)
898 ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
899
900 skcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
901
902 /*
903 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
904 * requests if driver request queue is full.
905 */
906 skcipher_request_set_callback(ctx->req,
907 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
908 kcryptd_async_done, dmreq_of_req(cc, ctx->req));
909 }
910
911 static void crypt_free_req(struct crypt_config *cc,
912 struct skcipher_request *req, struct bio *base_bio)
913 {
914 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
915
916 if ((struct skcipher_request *)(io + 1) != req)
917 mempool_free(req, cc->req_pool);
918 }
919
920 /*
921 * Encrypt / decrypt data from one bio to another one (can be the same one)
922 */
923 static int crypt_convert(struct crypt_config *cc,
924 struct convert_context *ctx)
925 {
926 int r;
927
928 atomic_set(&ctx->cc_pending, 1);
929
930 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
931
932 crypt_alloc_req(cc, ctx);
933
934 atomic_inc(&ctx->cc_pending);
935
936 r = crypt_convert_block(cc, ctx, ctx->req);
937
938 switch (r) {
939 /*
940 * The request was queued by a crypto driver
941 * but the driver request queue is full, let's wait.
942 */
943 case -EBUSY:
944 wait_for_completion(&ctx->restart);
945 reinit_completion(&ctx->restart);
946 /* fall through */
947 /*
948 * The request is queued and processed asynchronously,
949 * completion function kcryptd_async_done() will be called.
950 */
951 case -EINPROGRESS:
952 ctx->req = NULL;
953 ctx->cc_sector++;
954 continue;
955 /*
956 * The request was already processed (synchronously).
957 */
958 case 0:
959 atomic_dec(&ctx->cc_pending);
960 ctx->cc_sector++;
961 cond_resched();
962 continue;
963
964 /* There was an error while processing the request. */
965 default:
966 atomic_dec(&ctx->cc_pending);
967 return r;
968 }
969 }
970
971 return 0;
972 }
973
974 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
975
976 /*
977 * Generate a new unfragmented bio with the given size
978 * This should never violate the device limitations (but only because
979 * max_segment_size is being constrained to PAGE_SIZE).
980 *
981 * This function may be called concurrently. If we allocate from the mempool
982 * concurrently, there is a possibility of deadlock. For example, if we have
983 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
984 * the mempool concurrently, it may deadlock in a situation where both processes
985 * have allocated 128 pages and the mempool is exhausted.
986 *
987 * In order to avoid this scenario we allocate the pages under a mutex.
988 *
989 * In order to not degrade performance with excessive locking, we try
990 * non-blocking allocations without a mutex first but on failure we fallback
991 * to blocking allocations with a mutex.
992 */
993 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
994 {
995 struct crypt_config *cc = io->cc;
996 struct bio *clone;
997 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
998 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
999 unsigned i, len, remaining_size;
1000 struct page *page;
1001
1002 retry:
1003 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1004 mutex_lock(&cc->bio_alloc_lock);
1005
1006 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1007 if (!clone)
1008 goto return_clone;
1009
1010 clone_init(io, clone);
1011
1012 remaining_size = size;
1013
1014 for (i = 0; i < nr_iovecs; i++) {
1015 page = mempool_alloc(cc->page_pool, gfp_mask);
1016 if (!page) {
1017 crypt_free_buffer_pages(cc, clone);
1018 bio_put(clone);
1019 gfp_mask |= __GFP_DIRECT_RECLAIM;
1020 goto retry;
1021 }
1022
1023 len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1024
1025 bio_add_page(clone, page, len, 0);
1026
1027 remaining_size -= len;
1028 }
1029
1030 return_clone:
1031 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1032 mutex_unlock(&cc->bio_alloc_lock);
1033
1034 return clone;
1035 }
1036
1037 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1038 {
1039 unsigned int i;
1040 struct bio_vec *bv;
1041
1042 bio_for_each_segment_all(bv, clone, i) {
1043 BUG_ON(!bv->bv_page);
1044 mempool_free(bv->bv_page, cc->page_pool);
1045 bv->bv_page = NULL;
1046 }
1047 }
1048
1049 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1050 struct bio *bio, sector_t sector)
1051 {
1052 io->cc = cc;
1053 io->base_bio = bio;
1054 io->sector = sector;
1055 io->error = 0;
1056 io->ctx.req = NULL;
1057 atomic_set(&io->io_pending, 0);
1058 }
1059
1060 static void crypt_inc_pending(struct dm_crypt_io *io)
1061 {
1062 atomic_inc(&io->io_pending);
1063 }
1064
1065 /*
1066 * One of the bios was finished. Check for completion of
1067 * the whole request and correctly clean up the buffer.
1068 */
1069 static void crypt_dec_pending(struct dm_crypt_io *io)
1070 {
1071 struct crypt_config *cc = io->cc;
1072 struct bio *base_bio = io->base_bio;
1073 int error = io->error;
1074
1075 if (!atomic_dec_and_test(&io->io_pending))
1076 return;
1077
1078 if (io->ctx.req)
1079 crypt_free_req(cc, io->ctx.req, base_bio);
1080
1081 base_bio->bi_error = error;
1082 bio_endio(base_bio);
1083 }
1084
1085 /*
1086 * kcryptd/kcryptd_io:
1087 *
1088 * Needed because it would be very unwise to do decryption in an
1089 * interrupt context.
1090 *
1091 * kcryptd performs the actual encryption or decryption.
1092 *
1093 * kcryptd_io performs the IO submission.
1094 *
1095 * They must be separated as otherwise the final stages could be
1096 * starved by new requests which can block in the first stages due
1097 * to memory allocation.
1098 *
1099 * The work is done per CPU global for all dm-crypt instances.
1100 * They should not depend on each other and do not block.
1101 */
1102 static void crypt_endio(struct bio *clone)
1103 {
1104 struct dm_crypt_io *io = clone->bi_private;
1105 struct crypt_config *cc = io->cc;
1106 unsigned rw = bio_data_dir(clone);
1107 int error;
1108
1109 /*
1110 * free the processed pages
1111 */
1112 if (rw == WRITE)
1113 crypt_free_buffer_pages(cc, clone);
1114
1115 error = clone->bi_error;
1116 bio_put(clone);
1117
1118 if (rw == READ && !error) {
1119 kcryptd_queue_crypt(io);
1120 return;
1121 }
1122
1123 if (unlikely(error))
1124 io->error = error;
1125
1126 crypt_dec_pending(io);
1127 }
1128
1129 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1130 {
1131 struct crypt_config *cc = io->cc;
1132
1133 clone->bi_private = io;
1134 clone->bi_end_io = crypt_endio;
1135 clone->bi_bdev = cc->dev->bdev;
1136 clone->bi_opf = io->base_bio->bi_opf;
1137 }
1138
1139 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1140 {
1141 struct crypt_config *cc = io->cc;
1142 struct bio *clone;
1143
1144 /*
1145 * We need the original biovec array in order to decrypt
1146 * the whole bio data *afterwards* -- thanks to immutable
1147 * biovecs we don't need to worry about the block layer
1148 * modifying the biovec array; so leverage bio_clone_fast().
1149 */
1150 clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1151 if (!clone)
1152 return 1;
1153
1154 crypt_inc_pending(io);
1155
1156 clone_init(io, clone);
1157 clone->bi_iter.bi_sector = cc->start + io->sector;
1158
1159 generic_make_request(clone);
1160 return 0;
1161 }
1162
1163 static void kcryptd_io_read_work(struct work_struct *work)
1164 {
1165 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1166
1167 crypt_inc_pending(io);
1168 if (kcryptd_io_read(io, GFP_NOIO))
1169 io->error = -ENOMEM;
1170 crypt_dec_pending(io);
1171 }
1172
1173 static void kcryptd_queue_read(struct dm_crypt_io *io)
1174 {
1175 struct crypt_config *cc = io->cc;
1176
1177 INIT_WORK(&io->work, kcryptd_io_read_work);
1178 queue_work(cc->io_queue, &io->work);
1179 }
1180
1181 static void kcryptd_io_write(struct dm_crypt_io *io)
1182 {
1183 struct bio *clone = io->ctx.bio_out;
1184
1185 generic_make_request(clone);
1186 }
1187
1188 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1189
1190 static int dmcrypt_write(void *data)
1191 {
1192 struct crypt_config *cc = data;
1193 struct dm_crypt_io *io;
1194
1195 while (1) {
1196 struct rb_root write_tree;
1197 struct blk_plug plug;
1198
1199 DECLARE_WAITQUEUE(wait, current);
1200
1201 spin_lock_irq(&cc->write_thread_wait.lock);
1202 continue_locked:
1203
1204 if (!RB_EMPTY_ROOT(&cc->write_tree))
1205 goto pop_from_list;
1206
1207 set_current_state(TASK_INTERRUPTIBLE);
1208 __add_wait_queue(&cc->write_thread_wait, &wait);
1209
1210 spin_unlock_irq(&cc->write_thread_wait.lock);
1211
1212 if (unlikely(kthread_should_stop())) {
1213 set_task_state(current, TASK_RUNNING);
1214 remove_wait_queue(&cc->write_thread_wait, &wait);
1215 break;
1216 }
1217
1218 schedule();
1219
1220 set_task_state(current, TASK_RUNNING);
1221 spin_lock_irq(&cc->write_thread_wait.lock);
1222 __remove_wait_queue(&cc->write_thread_wait, &wait);
1223 goto continue_locked;
1224
1225 pop_from_list:
1226 write_tree = cc->write_tree;
1227 cc->write_tree = RB_ROOT;
1228 spin_unlock_irq(&cc->write_thread_wait.lock);
1229
1230 BUG_ON(rb_parent(write_tree.rb_node));
1231
1232 /*
1233 * Note: we cannot walk the tree here with rb_next because
1234 * the structures may be freed when kcryptd_io_write is called.
1235 */
1236 blk_start_plug(&plug);
1237 do {
1238 io = crypt_io_from_node(rb_first(&write_tree));
1239 rb_erase(&io->rb_node, &write_tree);
1240 kcryptd_io_write(io);
1241 } while (!RB_EMPTY_ROOT(&write_tree));
1242 blk_finish_plug(&plug);
1243 }
1244 return 0;
1245 }
1246
1247 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1248 {
1249 struct bio *clone = io->ctx.bio_out;
1250 struct crypt_config *cc = io->cc;
1251 unsigned long flags;
1252 sector_t sector;
1253 struct rb_node **rbp, *parent;
1254
1255 if (unlikely(io->error < 0)) {
1256 crypt_free_buffer_pages(cc, clone);
1257 bio_put(clone);
1258 crypt_dec_pending(io);
1259 return;
1260 }
1261
1262 /* crypt_convert should have filled the clone bio */
1263 BUG_ON(io->ctx.iter_out.bi_size);
1264
1265 clone->bi_iter.bi_sector = cc->start + io->sector;
1266
1267 if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1268 generic_make_request(clone);
1269 return;
1270 }
1271
1272 spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1273 rbp = &cc->write_tree.rb_node;
1274 parent = NULL;
1275 sector = io->sector;
1276 while (*rbp) {
1277 parent = *rbp;
1278 if (sector < crypt_io_from_node(parent)->sector)
1279 rbp = &(*rbp)->rb_left;
1280 else
1281 rbp = &(*rbp)->rb_right;
1282 }
1283 rb_link_node(&io->rb_node, parent, rbp);
1284 rb_insert_color(&io->rb_node, &cc->write_tree);
1285
1286 wake_up_locked(&cc->write_thread_wait);
1287 spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1288 }
1289
1290 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1291 {
1292 struct crypt_config *cc = io->cc;
1293 struct bio *clone;
1294 int crypt_finished;
1295 sector_t sector = io->sector;
1296 int r;
1297
1298 /*
1299 * Prevent io from disappearing until this function completes.
1300 */
1301 crypt_inc_pending(io);
1302 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1303
1304 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1305 if (unlikely(!clone)) {
1306 io->error = -EIO;
1307 goto dec;
1308 }
1309
1310 io->ctx.bio_out = clone;
1311 io->ctx.iter_out = clone->bi_iter;
1312
1313 sector += bio_sectors(clone);
1314
1315 crypt_inc_pending(io);
1316 r = crypt_convert(cc, &io->ctx);
1317 if (r)
1318 io->error = -EIO;
1319 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1320
1321 /* Encryption was already finished, submit io now */
1322 if (crypt_finished) {
1323 kcryptd_crypt_write_io_submit(io, 0);
1324 io->sector = sector;
1325 }
1326
1327 dec:
1328 crypt_dec_pending(io);
1329 }
1330
1331 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1332 {
1333 crypt_dec_pending(io);
1334 }
1335
1336 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1337 {
1338 struct crypt_config *cc = io->cc;
1339 int r = 0;
1340
1341 crypt_inc_pending(io);
1342
1343 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1344 io->sector);
1345
1346 r = crypt_convert(cc, &io->ctx);
1347 if (r < 0)
1348 io->error = -EIO;
1349
1350 if (atomic_dec_and_test(&io->ctx.cc_pending))
1351 kcryptd_crypt_read_done(io);
1352
1353 crypt_dec_pending(io);
1354 }
1355
1356 static void kcryptd_async_done(struct crypto_async_request *async_req,
1357 int error)
1358 {
1359 struct dm_crypt_request *dmreq = async_req->data;
1360 struct convert_context *ctx = dmreq->ctx;
1361 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1362 struct crypt_config *cc = io->cc;
1363
1364 /*
1365 * A request from crypto driver backlog is going to be processed now,
1366 * finish the completion and continue in crypt_convert().
1367 * (Callback will be called for the second time for this request.)
1368 */
1369 if (error == -EINPROGRESS) {
1370 complete(&ctx->restart);
1371 return;
1372 }
1373
1374 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1375 error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1376
1377 if (error < 0)
1378 io->error = -EIO;
1379
1380 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1381
1382 if (!atomic_dec_and_test(&ctx->cc_pending))
1383 return;
1384
1385 if (bio_data_dir(io->base_bio) == READ)
1386 kcryptd_crypt_read_done(io);
1387 else
1388 kcryptd_crypt_write_io_submit(io, 1);
1389 }
1390
1391 static void kcryptd_crypt(struct work_struct *work)
1392 {
1393 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1394
1395 if (bio_data_dir(io->base_bio) == READ)
1396 kcryptd_crypt_read_convert(io);
1397 else
1398 kcryptd_crypt_write_convert(io);
1399 }
1400
1401 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1402 {
1403 struct crypt_config *cc = io->cc;
1404
1405 INIT_WORK(&io->work, kcryptd_crypt);
1406 queue_work(cc->crypt_queue, &io->work);
1407 }
1408
1409 /*
1410 * Decode key from its hex representation
1411 */
1412 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1413 {
1414 char buffer[3];
1415 unsigned int i;
1416
1417 buffer[2] = '\0';
1418
1419 for (i = 0; i < size; i++) {
1420 buffer[0] = *hex++;
1421 buffer[1] = *hex++;
1422
1423 if (kstrtou8(buffer, 16, &key[i]))
1424 return -EINVAL;
1425 }
1426
1427 if (*hex != '\0')
1428 return -EINVAL;
1429
1430 return 0;
1431 }
1432
1433 static void crypt_free_tfms(struct crypt_config *cc)
1434 {
1435 unsigned i;
1436
1437 if (!cc->tfms)
1438 return;
1439
1440 for (i = 0; i < cc->tfms_count; i++)
1441 if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1442 crypto_free_skcipher(cc->tfms[i]);
1443 cc->tfms[i] = NULL;
1444 }
1445
1446 kfree(cc->tfms);
1447 cc->tfms = NULL;
1448 }
1449
1450 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1451 {
1452 unsigned i;
1453 int err;
1454
1455 cc->tfms = kzalloc(cc->tfms_count * sizeof(struct crypto_skcipher *),
1456 GFP_KERNEL);
1457 if (!cc->tfms)
1458 return -ENOMEM;
1459
1460 for (i = 0; i < cc->tfms_count; i++) {
1461 cc->tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1462 if (IS_ERR(cc->tfms[i])) {
1463 err = PTR_ERR(cc->tfms[i]);
1464 crypt_free_tfms(cc);
1465 return err;
1466 }
1467 }
1468
1469 return 0;
1470 }
1471
1472 static int crypt_setkey(struct crypt_config *cc)
1473 {
1474 unsigned subkey_size;
1475 int err = 0, i, r;
1476
1477 /* Ignore extra keys (which are used for IV etc) */
1478 subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1479
1480 for (i = 0; i < cc->tfms_count; i++) {
1481 r = crypto_skcipher_setkey(cc->tfms[i],
1482 cc->key + (i * subkey_size),
1483 subkey_size);
1484 if (r)
1485 err = r;
1486 }
1487
1488 return err;
1489 }
1490
1491 #ifdef CONFIG_KEYS
1492
1493 static bool contains_whitespace(const char *str)
1494 {
1495 while (*str)
1496 if (isspace(*str++))
1497 return true;
1498 return false;
1499 }
1500
1501 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
1502 {
1503 char *new_key_string, *key_desc;
1504 int ret;
1505 struct key *key;
1506 const struct user_key_payload *ukp;
1507
1508 /*
1509 * Reject key_string with whitespace. dm core currently lacks code for
1510 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
1511 */
1512 if (contains_whitespace(key_string)) {
1513 DMERR("whitespace chars not allowed in key string");
1514 return -EINVAL;
1515 }
1516
1517 /* look for next ':' separating key_type from key_description */
1518 key_desc = strpbrk(key_string, ":");
1519 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
1520 return -EINVAL;
1521
1522 if (strncmp(key_string, "logon:", key_desc - key_string + 1) &&
1523 strncmp(key_string, "user:", key_desc - key_string + 1))
1524 return -EINVAL;
1525
1526 new_key_string = kstrdup(key_string, GFP_KERNEL);
1527 if (!new_key_string)
1528 return -ENOMEM;
1529
1530 key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user,
1531 key_desc + 1, NULL);
1532 if (IS_ERR(key)) {
1533 kzfree(new_key_string);
1534 return PTR_ERR(key);
1535 }
1536
1537 down_read(&key->sem);
1538
1539 ukp = user_key_payload(key);
1540 if (!ukp) {
1541 up_read(&key->sem);
1542 key_put(key);
1543 kzfree(new_key_string);
1544 return -EKEYREVOKED;
1545 }
1546
1547 if (cc->key_size != ukp->datalen) {
1548 up_read(&key->sem);
1549 key_put(key);
1550 kzfree(new_key_string);
1551 return -EINVAL;
1552 }
1553
1554 memcpy(cc->key, ukp->data, cc->key_size);
1555
1556 up_read(&key->sem);
1557 key_put(key);
1558
1559 /* clear the flag since following operations may invalidate previously valid key */
1560 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1561
1562 ret = crypt_setkey(cc);
1563
1564 /* wipe the kernel key payload copy in each case */
1565 memset(cc->key, 0, cc->key_size * sizeof(u8));
1566
1567 if (!ret) {
1568 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1569 kzfree(cc->key_string);
1570 cc->key_string = new_key_string;
1571 } else
1572 kzfree(new_key_string);
1573
1574 return ret;
1575 }
1576
1577 static int get_key_size(char **key_string)
1578 {
1579 char *colon, dummy;
1580 int ret;
1581
1582 if (*key_string[0] != ':')
1583 return strlen(*key_string) >> 1;
1584
1585 /* look for next ':' in key string */
1586 colon = strpbrk(*key_string + 1, ":");
1587 if (!colon)
1588 return -EINVAL;
1589
1590 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
1591 return -EINVAL;
1592
1593 *key_string = colon;
1594
1595 /* remaining key string should be :<logon|user>:<key_desc> */
1596
1597 return ret;
1598 }
1599
1600 #else
1601
1602 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
1603 {
1604 return -EINVAL;
1605 }
1606
1607 static int get_key_size(char **key_string)
1608 {
1609 return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
1610 }
1611
1612 #endif
1613
1614 static int crypt_set_key(struct crypt_config *cc, char *key)
1615 {
1616 int r = -EINVAL;
1617 int key_string_len = strlen(key);
1618
1619 /* Hyphen (which gives a key_size of zero) means there is no key. */
1620 if (!cc->key_size && strcmp(key, "-"))
1621 goto out;
1622
1623 /* ':' means the key is in kernel keyring, short-circuit normal key processing */
1624 if (key[0] == ':') {
1625 r = crypt_set_keyring_key(cc, key + 1);
1626 goto out;
1627 }
1628
1629 /* clear the flag since following operations may invalidate previously valid key */
1630 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1631
1632 /* wipe references to any kernel keyring key */
1633 kzfree(cc->key_string);
1634 cc->key_string = NULL;
1635
1636 if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1637 goto out;
1638
1639 r = crypt_setkey(cc);
1640 if (!r)
1641 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1642
1643 out:
1644 /* Hex key string not needed after here, so wipe it. */
1645 memset(key, '0', key_string_len);
1646
1647 return r;
1648 }
1649
1650 static int crypt_wipe_key(struct crypt_config *cc)
1651 {
1652 int r;
1653
1654 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1655 get_random_bytes(&cc->key, cc->key_size);
1656 kzfree(cc->key_string);
1657 cc->key_string = NULL;
1658 r = crypt_setkey(cc);
1659 memset(&cc->key, 0, cc->key_size * sizeof(u8));
1660
1661 return r;
1662 }
1663
1664 static void crypt_dtr(struct dm_target *ti)
1665 {
1666 struct crypt_config *cc = ti->private;
1667
1668 ti->private = NULL;
1669
1670 if (!cc)
1671 return;
1672
1673 if (cc->write_thread)
1674 kthread_stop(cc->write_thread);
1675
1676 if (cc->io_queue)
1677 destroy_workqueue(cc->io_queue);
1678 if (cc->crypt_queue)
1679 destroy_workqueue(cc->crypt_queue);
1680
1681 crypt_free_tfms(cc);
1682
1683 if (cc->bs)
1684 bioset_free(cc->bs);
1685
1686 mempool_destroy(cc->page_pool);
1687 mempool_destroy(cc->req_pool);
1688
1689 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1690 cc->iv_gen_ops->dtr(cc);
1691
1692 if (cc->dev)
1693 dm_put_device(ti, cc->dev);
1694
1695 kzfree(cc->cipher);
1696 kzfree(cc->cipher_string);
1697 kzfree(cc->key_string);
1698
1699 /* Must zero key material before freeing */
1700 kzfree(cc);
1701 }
1702
1703 static int crypt_ctr_cipher(struct dm_target *ti,
1704 char *cipher_in, char *key)
1705 {
1706 struct crypt_config *cc = ti->private;
1707 char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1708 char *cipher_api = NULL;
1709 int ret = -EINVAL;
1710 char dummy;
1711
1712 /* Convert to crypto api definition? */
1713 if (strchr(cipher_in, '(')) {
1714 ti->error = "Bad cipher specification";
1715 return -EINVAL;
1716 }
1717
1718 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1719 if (!cc->cipher_string)
1720 goto bad_mem;
1721
1722 /*
1723 * Legacy dm-crypt cipher specification
1724 * cipher[:keycount]-mode-iv:ivopts
1725 */
1726 tmp = cipher_in;
1727 keycount = strsep(&tmp, "-");
1728 cipher = strsep(&keycount, ":");
1729
1730 if (!keycount)
1731 cc->tfms_count = 1;
1732 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1733 !is_power_of_2(cc->tfms_count)) {
1734 ti->error = "Bad cipher key count specification";
1735 return -EINVAL;
1736 }
1737 cc->key_parts = cc->tfms_count;
1738 cc->key_extra_size = 0;
1739
1740 cc->cipher = kstrdup(cipher, GFP_KERNEL);
1741 if (!cc->cipher)
1742 goto bad_mem;
1743
1744 chainmode = strsep(&tmp, "-");
1745 ivopts = strsep(&tmp, "-");
1746 ivmode = strsep(&ivopts, ":");
1747
1748 if (tmp)
1749 DMWARN("Ignoring unexpected additional cipher options");
1750
1751 /*
1752 * For compatibility with the original dm-crypt mapping format, if
1753 * only the cipher name is supplied, use cbc-plain.
1754 */
1755 if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1756 chainmode = "cbc";
1757 ivmode = "plain";
1758 }
1759
1760 if (strcmp(chainmode, "ecb") && !ivmode) {
1761 ti->error = "IV mechanism required";
1762 return -EINVAL;
1763 }
1764
1765 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1766 if (!cipher_api)
1767 goto bad_mem;
1768
1769 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1770 "%s(%s)", chainmode, cipher);
1771 if (ret < 0) {
1772 kfree(cipher_api);
1773 goto bad_mem;
1774 }
1775
1776 /* Allocate cipher */
1777 ret = crypt_alloc_tfms(cc, cipher_api);
1778 if (ret < 0) {
1779 ti->error = "Error allocating crypto tfm";
1780 goto bad;
1781 }
1782
1783 /* Initialize IV */
1784 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
1785 if (cc->iv_size)
1786 /* at least a 64 bit sector number should fit in our buffer */
1787 cc->iv_size = max(cc->iv_size,
1788 (unsigned int)(sizeof(u64) / sizeof(u8)));
1789 else if (ivmode) {
1790 DMWARN("Selected cipher does not support IVs");
1791 ivmode = NULL;
1792 }
1793
1794 /* Choose ivmode, see comments at iv code. */
1795 if (ivmode == NULL)
1796 cc->iv_gen_ops = NULL;
1797 else if (strcmp(ivmode, "plain") == 0)
1798 cc->iv_gen_ops = &crypt_iv_plain_ops;
1799 else if (strcmp(ivmode, "plain64") == 0)
1800 cc->iv_gen_ops = &crypt_iv_plain64_ops;
1801 else if (strcmp(ivmode, "essiv") == 0)
1802 cc->iv_gen_ops = &crypt_iv_essiv_ops;
1803 else if (strcmp(ivmode, "benbi") == 0)
1804 cc->iv_gen_ops = &crypt_iv_benbi_ops;
1805 else if (strcmp(ivmode, "null") == 0)
1806 cc->iv_gen_ops = &crypt_iv_null_ops;
1807 else if (strcmp(ivmode, "lmk") == 0) {
1808 cc->iv_gen_ops = &crypt_iv_lmk_ops;
1809 /*
1810 * Version 2 and 3 is recognised according
1811 * to length of provided multi-key string.
1812 * If present (version 3), last key is used as IV seed.
1813 * All keys (including IV seed) are always the same size.
1814 */
1815 if (cc->key_size % cc->key_parts) {
1816 cc->key_parts++;
1817 cc->key_extra_size = cc->key_size / cc->key_parts;
1818 }
1819 } else if (strcmp(ivmode, "tcw") == 0) {
1820 cc->iv_gen_ops = &crypt_iv_tcw_ops;
1821 cc->key_parts += 2; /* IV + whitening */
1822 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1823 } else {
1824 ret = -EINVAL;
1825 ti->error = "Invalid IV mode";
1826 goto bad;
1827 }
1828
1829 /* Initialize and set key */
1830 ret = crypt_set_key(cc, key);
1831 if (ret < 0) {
1832 ti->error = "Error decoding and setting key";
1833 goto bad;
1834 }
1835
1836 /* Allocate IV */
1837 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1838 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1839 if (ret < 0) {
1840 ti->error = "Error creating IV";
1841 goto bad;
1842 }
1843 }
1844
1845 /* Initialize IV (set keys for ESSIV etc) */
1846 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1847 ret = cc->iv_gen_ops->init(cc);
1848 if (ret < 0) {
1849 ti->error = "Error initialising IV";
1850 goto bad;
1851 }
1852 }
1853
1854 ret = 0;
1855 bad:
1856 kfree(cipher_api);
1857 return ret;
1858
1859 bad_mem:
1860 ti->error = "Cannot allocate cipher strings";
1861 return -ENOMEM;
1862 }
1863
1864 /*
1865 * Construct an encryption mapping:
1866 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
1867 */
1868 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1869 {
1870 struct crypt_config *cc;
1871 int key_size;
1872 unsigned int opt_params;
1873 unsigned long long tmpll;
1874 int ret;
1875 size_t iv_size_padding;
1876 struct dm_arg_set as;
1877 const char *opt_string;
1878 char dummy;
1879
1880 static struct dm_arg _args[] = {
1881 {0, 3, "Invalid number of feature args"},
1882 };
1883
1884 if (argc < 5) {
1885 ti->error = "Not enough arguments";
1886 return -EINVAL;
1887 }
1888
1889 key_size = get_key_size(&argv[1]);
1890 if (key_size < 0) {
1891 ti->error = "Cannot parse key size";
1892 return -EINVAL;
1893 }
1894
1895 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1896 if (!cc) {
1897 ti->error = "Cannot allocate encryption context";
1898 return -ENOMEM;
1899 }
1900 cc->key_size = key_size;
1901
1902 ti->private = cc;
1903 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1904 if (ret < 0)
1905 goto bad;
1906
1907 cc->dmreq_start = sizeof(struct skcipher_request);
1908 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
1909 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1910
1911 if (crypto_skcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1912 /* Allocate the padding exactly */
1913 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1914 & crypto_skcipher_alignmask(any_tfm(cc));
1915 } else {
1916 /*
1917 * If the cipher requires greater alignment than kmalloc
1918 * alignment, we don't know the exact position of the
1919 * initialization vector. We must assume worst case.
1920 */
1921 iv_size_padding = crypto_skcipher_alignmask(any_tfm(cc));
1922 }
1923
1924 ret = -ENOMEM;
1925 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1926 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1927 if (!cc->req_pool) {
1928 ti->error = "Cannot allocate crypt request mempool";
1929 goto bad;
1930 }
1931
1932 cc->per_bio_data_size = ti->per_io_data_size =
1933 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1934 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1935 ARCH_KMALLOC_MINALIGN);
1936
1937 cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
1938 if (!cc->page_pool) {
1939 ti->error = "Cannot allocate page mempool";
1940 goto bad;
1941 }
1942
1943 cc->bs = bioset_create(MIN_IOS, 0);
1944 if (!cc->bs) {
1945 ti->error = "Cannot allocate crypt bioset";
1946 goto bad;
1947 }
1948
1949 mutex_init(&cc->bio_alloc_lock);
1950
1951 ret = -EINVAL;
1952 if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1953 ti->error = "Invalid iv_offset sector";
1954 goto bad;
1955 }
1956 cc->iv_offset = tmpll;
1957
1958 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
1959 if (ret) {
1960 ti->error = "Device lookup failed";
1961 goto bad;
1962 }
1963
1964 ret = -EINVAL;
1965 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1966 ti->error = "Invalid device sector";
1967 goto bad;
1968 }
1969 cc->start = tmpll;
1970
1971 argv += 5;
1972 argc -= 5;
1973
1974 /* Optional parameters */
1975 if (argc) {
1976 as.argc = argc;
1977 as.argv = argv;
1978
1979 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1980 if (ret)
1981 goto bad;
1982
1983 ret = -EINVAL;
1984 while (opt_params--) {
1985 opt_string = dm_shift_arg(&as);
1986 if (!opt_string) {
1987 ti->error = "Not enough feature arguments";
1988 goto bad;
1989 }
1990
1991 if (!strcasecmp(opt_string, "allow_discards"))
1992 ti->num_discard_bios = 1;
1993
1994 else if (!strcasecmp(opt_string, "same_cpu_crypt"))
1995 set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1996
1997 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
1998 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1999
2000 else {
2001 ti->error = "Invalid feature arguments";
2002 goto bad;
2003 }
2004 }
2005 }
2006
2007 ret = -ENOMEM;
2008 cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
2009 if (!cc->io_queue) {
2010 ti->error = "Couldn't create kcryptd io queue";
2011 goto bad;
2012 }
2013
2014 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2015 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
2016 else
2017 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
2018 num_online_cpus());
2019 if (!cc->crypt_queue) {
2020 ti->error = "Couldn't create kcryptd queue";
2021 goto bad;
2022 }
2023
2024 init_waitqueue_head(&cc->write_thread_wait);
2025 cc->write_tree = RB_ROOT;
2026
2027 cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
2028 if (IS_ERR(cc->write_thread)) {
2029 ret = PTR_ERR(cc->write_thread);
2030 cc->write_thread = NULL;
2031 ti->error = "Couldn't spawn write thread";
2032 goto bad;
2033 }
2034 wake_up_process(cc->write_thread);
2035
2036 ti->num_flush_bios = 1;
2037 ti->discard_zeroes_data_unsupported = true;
2038
2039 return 0;
2040
2041 bad:
2042 crypt_dtr(ti);
2043 return ret;
2044 }
2045
2046 static int crypt_map(struct dm_target *ti, struct bio *bio)
2047 {
2048 struct dm_crypt_io *io;
2049 struct crypt_config *cc = ti->private;
2050
2051 /*
2052 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
2053 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
2054 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
2055 */
2056 if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
2057 bio_op(bio) == REQ_OP_DISCARD)) {
2058 bio->bi_bdev = cc->dev->bdev;
2059 if (bio_sectors(bio))
2060 bio->bi_iter.bi_sector = cc->start +
2061 dm_target_offset(ti, bio->bi_iter.bi_sector);
2062 return DM_MAPIO_REMAPPED;
2063 }
2064
2065 /*
2066 * Check if bio is too large, split as needed.
2067 */
2068 if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
2069 bio_data_dir(bio) == WRITE)
2070 dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
2071
2072 io = dm_per_bio_data(bio, cc->per_bio_data_size);
2073 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
2074 io->ctx.req = (struct skcipher_request *)(io + 1);
2075
2076 if (bio_data_dir(io->base_bio) == READ) {
2077 if (kcryptd_io_read(io, GFP_NOWAIT))
2078 kcryptd_queue_read(io);
2079 } else
2080 kcryptd_queue_crypt(io);
2081
2082 return DM_MAPIO_SUBMITTED;
2083 }
2084
2085 static void crypt_status(struct dm_target *ti, status_type_t type,
2086 unsigned status_flags, char *result, unsigned maxlen)
2087 {
2088 struct crypt_config *cc = ti->private;
2089 unsigned i, sz = 0;
2090 int num_feature_args = 0;
2091
2092 switch (type) {
2093 case STATUSTYPE_INFO:
2094 result[0] = '\0';
2095 break;
2096
2097 case STATUSTYPE_TABLE:
2098 DMEMIT("%s ", cc->cipher_string);
2099
2100 if (cc->key_size > 0) {
2101 if (cc->key_string)
2102 DMEMIT(":%u:%s", cc->key_size, cc->key_string);
2103 else
2104 for (i = 0; i < cc->key_size; i++)
2105 DMEMIT("%02x", cc->key[i]);
2106 } else
2107 DMEMIT("-");
2108
2109 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
2110 cc->dev->name, (unsigned long long)cc->start);
2111
2112 num_feature_args += !!ti->num_discard_bios;
2113 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2114 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2115 if (num_feature_args) {
2116 DMEMIT(" %d", num_feature_args);
2117 if (ti->num_discard_bios)
2118 DMEMIT(" allow_discards");
2119 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2120 DMEMIT(" same_cpu_crypt");
2121 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
2122 DMEMIT(" submit_from_crypt_cpus");
2123 }
2124
2125 break;
2126 }
2127 }
2128
2129 static void crypt_postsuspend(struct dm_target *ti)
2130 {
2131 struct crypt_config *cc = ti->private;
2132
2133 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2134 }
2135
2136 static int crypt_preresume(struct dm_target *ti)
2137 {
2138 struct crypt_config *cc = ti->private;
2139
2140 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
2141 DMERR("aborting resume - crypt key is not set.");
2142 return -EAGAIN;
2143 }
2144
2145 return 0;
2146 }
2147
2148 static void crypt_resume(struct dm_target *ti)
2149 {
2150 struct crypt_config *cc = ti->private;
2151
2152 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2153 }
2154
2155 /* Message interface
2156 * key set <key>
2157 * key wipe
2158 */
2159 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
2160 {
2161 struct crypt_config *cc = ti->private;
2162 int key_size, ret = -EINVAL;
2163
2164 if (argc < 2)
2165 goto error;
2166
2167 if (!strcasecmp(argv[0], "key")) {
2168 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2169 DMWARN("not suspended during key manipulation.");
2170 return -EINVAL;
2171 }
2172 if (argc == 3 && !strcasecmp(argv[1], "set")) {
2173 /* The key size may not be changed. */
2174 key_size = get_key_size(&argv[2]);
2175 if (key_size < 0 || cc->key_size != key_size) {
2176 memset(argv[2], '0', strlen(argv[2]));
2177 return -EINVAL;
2178 }
2179
2180 ret = crypt_set_key(cc, argv[2]);
2181 if (ret)
2182 return ret;
2183 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2184 ret = cc->iv_gen_ops->init(cc);
2185 return ret;
2186 }
2187 if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2188 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2189 ret = cc->iv_gen_ops->wipe(cc);
2190 if (ret)
2191 return ret;
2192 }
2193 return crypt_wipe_key(cc);
2194 }
2195 }
2196
2197 error:
2198 DMWARN("unrecognised message received.");
2199 return -EINVAL;
2200 }
2201
2202 static int crypt_iterate_devices(struct dm_target *ti,
2203 iterate_devices_callout_fn fn, void *data)
2204 {
2205 struct crypt_config *cc = ti->private;
2206
2207 return fn(ti, cc->dev, cc->start, ti->len, data);
2208 }
2209
2210 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2211 {
2212 /*
2213 * Unfortunate constraint that is required to avoid the potential
2214 * for exceeding underlying device's max_segments limits -- due to
2215 * crypt_alloc_buffer() possibly allocating pages for the encryption
2216 * bio that are not as physically contiguous as the original bio.
2217 */
2218 limits->max_segment_size = PAGE_SIZE;
2219 }
2220
2221 static struct target_type crypt_target = {
2222 .name = "crypt",
2223 .version = {1, 15, 0},
2224 .module = THIS_MODULE,
2225 .ctr = crypt_ctr,
2226 .dtr = crypt_dtr,
2227 .map = crypt_map,
2228 .status = crypt_status,
2229 .postsuspend = crypt_postsuspend,
2230 .preresume = crypt_preresume,
2231 .resume = crypt_resume,
2232 .message = crypt_message,
2233 .iterate_devices = crypt_iterate_devices,
2234 .io_hints = crypt_io_hints,
2235 };
2236
2237 static int __init dm_crypt_init(void)
2238 {
2239 int r;
2240
2241 r = dm_register_target(&crypt_target);
2242 if (r < 0)
2243 DMERR("register failed %d", r);
2244
2245 return r;
2246 }
2247
2248 static void __exit dm_crypt_exit(void)
2249 {
2250 dm_unregister_target(&crypt_target);
2251 }
2252
2253 module_init(dm_crypt_init);
2254 module_exit(dm_crypt_exit);
2255
2256 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2257 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2258 MODULE_LICENSE("GPL");