]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/dm-crypt.c
Merge tag 'befs-v4.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/luisbg...
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm-crypt.c
1 /*
2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2017 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013-2017 Milan Broz <gmazyland@gmail.com>
6 *
7 * This file is released under the GPL.
8 */
9
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/key.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/crypto.h>
21 #include <linux/workqueue.h>
22 #include <linux/kthread.h>
23 #include <linux/backing-dev.h>
24 #include <linux/atomic.h>
25 #include <linux/scatterlist.h>
26 #include <linux/rbtree.h>
27 #include <linux/ctype.h>
28 #include <asm/page.h>
29 #include <asm/unaligned.h>
30 #include <crypto/hash.h>
31 #include <crypto/md5.h>
32 #include <crypto/algapi.h>
33 #include <crypto/skcipher.h>
34 #include <crypto/aead.h>
35 #include <crypto/authenc.h>
36 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
37 #include <keys/user-type.h>
38
39 #include <linux/device-mapper.h>
40
41 #define DM_MSG_PREFIX "crypt"
42
43 /*
44 * context holding the current state of a multi-part conversion
45 */
46 struct convert_context {
47 struct completion restart;
48 struct bio *bio_in;
49 struct bio *bio_out;
50 struct bvec_iter iter_in;
51 struct bvec_iter iter_out;
52 sector_t cc_sector;
53 atomic_t cc_pending;
54 union {
55 struct skcipher_request *req;
56 struct aead_request *req_aead;
57 } r;
58
59 };
60
61 /*
62 * per bio private data
63 */
64 struct dm_crypt_io {
65 struct crypt_config *cc;
66 struct bio *base_bio;
67 u8 *integrity_metadata;
68 bool integrity_metadata_from_pool;
69 struct work_struct work;
70
71 struct convert_context ctx;
72
73 atomic_t io_pending;
74 blk_status_t error;
75 sector_t sector;
76
77 struct rb_node rb_node;
78 } CRYPTO_MINALIGN_ATTR;
79
80 struct dm_crypt_request {
81 struct convert_context *ctx;
82 struct scatterlist sg_in[4];
83 struct scatterlist sg_out[4];
84 sector_t iv_sector;
85 };
86
87 struct crypt_config;
88
89 struct crypt_iv_operations {
90 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
91 const char *opts);
92 void (*dtr)(struct crypt_config *cc);
93 int (*init)(struct crypt_config *cc);
94 int (*wipe)(struct crypt_config *cc);
95 int (*generator)(struct crypt_config *cc, u8 *iv,
96 struct dm_crypt_request *dmreq);
97 int (*post)(struct crypt_config *cc, u8 *iv,
98 struct dm_crypt_request *dmreq);
99 };
100
101 struct iv_essiv_private {
102 struct crypto_ahash *hash_tfm;
103 u8 *salt;
104 };
105
106 struct iv_benbi_private {
107 int shift;
108 };
109
110 #define LMK_SEED_SIZE 64 /* hash + 0 */
111 struct iv_lmk_private {
112 struct crypto_shash *hash_tfm;
113 u8 *seed;
114 };
115
116 #define TCW_WHITENING_SIZE 16
117 struct iv_tcw_private {
118 struct crypto_shash *crc32_tfm;
119 u8 *iv_seed;
120 u8 *whitening;
121 };
122
123 /*
124 * Crypt: maps a linear range of a block device
125 * and encrypts / decrypts at the same time.
126 */
127 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
128 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
129
130 enum cipher_flags {
131 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cihper */
132 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */
133 };
134
135 /*
136 * The fields in here must be read only after initialization.
137 */
138 struct crypt_config {
139 struct dm_dev *dev;
140 sector_t start;
141
142 /*
143 * pool for per bio private data, crypto requests,
144 * encryption requeusts/buffer pages and integrity tags
145 */
146 mempool_t *req_pool;
147 mempool_t *page_pool;
148 mempool_t *tag_pool;
149 unsigned tag_pool_max_sectors;
150
151 struct bio_set *bs;
152 struct mutex bio_alloc_lock;
153
154 struct workqueue_struct *io_queue;
155 struct workqueue_struct *crypt_queue;
156
157 struct task_struct *write_thread;
158 wait_queue_head_t write_thread_wait;
159 struct rb_root write_tree;
160
161 char *cipher;
162 char *cipher_string;
163 char *cipher_auth;
164 char *key_string;
165
166 const struct crypt_iv_operations *iv_gen_ops;
167 union {
168 struct iv_essiv_private essiv;
169 struct iv_benbi_private benbi;
170 struct iv_lmk_private lmk;
171 struct iv_tcw_private tcw;
172 } iv_gen_private;
173 sector_t iv_offset;
174 unsigned int iv_size;
175 unsigned short int sector_size;
176 unsigned char sector_shift;
177
178 /* ESSIV: struct crypto_cipher *essiv_tfm */
179 void *iv_private;
180 union {
181 struct crypto_skcipher **tfms;
182 struct crypto_aead **tfms_aead;
183 } cipher_tfm;
184 unsigned tfms_count;
185 unsigned long cipher_flags;
186
187 /*
188 * Layout of each crypto request:
189 *
190 * struct skcipher_request
191 * context
192 * padding
193 * struct dm_crypt_request
194 * padding
195 * IV
196 *
197 * The padding is added so that dm_crypt_request and the IV are
198 * correctly aligned.
199 */
200 unsigned int dmreq_start;
201
202 unsigned int per_bio_data_size;
203
204 unsigned long flags;
205 unsigned int key_size;
206 unsigned int key_parts; /* independent parts in key buffer */
207 unsigned int key_extra_size; /* additional keys length */
208 unsigned int key_mac_size; /* MAC key size for authenc(...) */
209
210 unsigned int integrity_tag_size;
211 unsigned int integrity_iv_size;
212 unsigned int on_disk_tag_size;
213
214 u8 *authenc_key; /* space for keys in authenc() format (if used) */
215 u8 key[0];
216 };
217
218 #define MIN_IOS 64
219 #define MAX_TAG_SIZE 480
220 #define POOL_ENTRY_SIZE 512
221
222 static void clone_init(struct dm_crypt_io *, struct bio *);
223 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
224 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
225 struct scatterlist *sg);
226
227 /*
228 * Use this to access cipher attributes that are independent of the key.
229 */
230 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
231 {
232 return cc->cipher_tfm.tfms[0];
233 }
234
235 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
236 {
237 return cc->cipher_tfm.tfms_aead[0];
238 }
239
240 /*
241 * Different IV generation algorithms:
242 *
243 * plain: the initial vector is the 32-bit little-endian version of the sector
244 * number, padded with zeros if necessary.
245 *
246 * plain64: the initial vector is the 64-bit little-endian version of the sector
247 * number, padded with zeros if necessary.
248 *
249 * plain64be: the initial vector is the 64-bit big-endian version of the sector
250 * number, padded with zeros if necessary.
251 *
252 * essiv: "encrypted sector|salt initial vector", the sector number is
253 * encrypted with the bulk cipher using a salt as key. The salt
254 * should be derived from the bulk cipher's key via hashing.
255 *
256 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
257 * (needed for LRW-32-AES and possible other narrow block modes)
258 *
259 * null: the initial vector is always zero. Provides compatibility with
260 * obsolete loop_fish2 devices. Do not use for new devices.
261 *
262 * lmk: Compatible implementation of the block chaining mode used
263 * by the Loop-AES block device encryption system
264 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
265 * It operates on full 512 byte sectors and uses CBC
266 * with an IV derived from the sector number, the data and
267 * optionally extra IV seed.
268 * This means that after decryption the first block
269 * of sector must be tweaked according to decrypted data.
270 * Loop-AES can use three encryption schemes:
271 * version 1: is plain aes-cbc mode
272 * version 2: uses 64 multikey scheme with lmk IV generator
273 * version 3: the same as version 2 with additional IV seed
274 * (it uses 65 keys, last key is used as IV seed)
275 *
276 * tcw: Compatible implementation of the block chaining mode used
277 * by the TrueCrypt device encryption system (prior to version 4.1).
278 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
279 * It operates on full 512 byte sectors and uses CBC
280 * with an IV derived from initial key and the sector number.
281 * In addition, whitening value is applied on every sector, whitening
282 * is calculated from initial key, sector number and mixed using CRC32.
283 * Note that this encryption scheme is vulnerable to watermarking attacks
284 * and should be used for old compatible containers access only.
285 *
286 * plumb: unimplemented, see:
287 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
288 */
289
290 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
291 struct dm_crypt_request *dmreq)
292 {
293 memset(iv, 0, cc->iv_size);
294 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
295
296 return 0;
297 }
298
299 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
300 struct dm_crypt_request *dmreq)
301 {
302 memset(iv, 0, cc->iv_size);
303 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
304
305 return 0;
306 }
307
308 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
309 struct dm_crypt_request *dmreq)
310 {
311 memset(iv, 0, cc->iv_size);
312 /* iv_size is at least of size u64; usually it is 16 bytes */
313 *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
314
315 return 0;
316 }
317
318 /* Initialise ESSIV - compute salt but no local memory allocations */
319 static int crypt_iv_essiv_init(struct crypt_config *cc)
320 {
321 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
322 AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
323 struct scatterlist sg;
324 struct crypto_cipher *essiv_tfm;
325 int err;
326
327 sg_init_one(&sg, cc->key, cc->key_size);
328 ahash_request_set_tfm(req, essiv->hash_tfm);
329 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
330 ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size);
331
332 err = crypto_ahash_digest(req);
333 ahash_request_zero(req);
334 if (err)
335 return err;
336
337 essiv_tfm = cc->iv_private;
338
339 err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
340 crypto_ahash_digestsize(essiv->hash_tfm));
341 if (err)
342 return err;
343
344 return 0;
345 }
346
347 /* Wipe salt and reset key derived from volume key */
348 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
349 {
350 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
351 unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
352 struct crypto_cipher *essiv_tfm;
353 int r, err = 0;
354
355 memset(essiv->salt, 0, salt_size);
356
357 essiv_tfm = cc->iv_private;
358 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
359 if (r)
360 err = r;
361
362 return err;
363 }
364
365 /* Allocate the cipher for ESSIV */
366 static struct crypto_cipher *alloc_essiv_cipher(struct crypt_config *cc,
367 struct dm_target *ti,
368 const u8 *salt,
369 unsigned int saltsize)
370 {
371 struct crypto_cipher *essiv_tfm;
372 int err;
373
374 /* Setup the essiv_tfm with the given salt */
375 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
376 if (IS_ERR(essiv_tfm)) {
377 ti->error = "Error allocating crypto tfm for ESSIV";
378 return essiv_tfm;
379 }
380
381 if (crypto_cipher_blocksize(essiv_tfm) != cc->iv_size) {
382 ti->error = "Block size of ESSIV cipher does "
383 "not match IV size of block cipher";
384 crypto_free_cipher(essiv_tfm);
385 return ERR_PTR(-EINVAL);
386 }
387
388 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
389 if (err) {
390 ti->error = "Failed to set key for ESSIV cipher";
391 crypto_free_cipher(essiv_tfm);
392 return ERR_PTR(err);
393 }
394
395 return essiv_tfm;
396 }
397
398 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
399 {
400 struct crypto_cipher *essiv_tfm;
401 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
402
403 crypto_free_ahash(essiv->hash_tfm);
404 essiv->hash_tfm = NULL;
405
406 kzfree(essiv->salt);
407 essiv->salt = NULL;
408
409 essiv_tfm = cc->iv_private;
410
411 if (essiv_tfm)
412 crypto_free_cipher(essiv_tfm);
413
414 cc->iv_private = NULL;
415 }
416
417 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
418 const char *opts)
419 {
420 struct crypto_cipher *essiv_tfm = NULL;
421 struct crypto_ahash *hash_tfm = NULL;
422 u8 *salt = NULL;
423 int err;
424
425 if (!opts) {
426 ti->error = "Digest algorithm missing for ESSIV mode";
427 return -EINVAL;
428 }
429
430 /* Allocate hash algorithm */
431 hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC);
432 if (IS_ERR(hash_tfm)) {
433 ti->error = "Error initializing ESSIV hash";
434 err = PTR_ERR(hash_tfm);
435 goto bad;
436 }
437
438 salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
439 if (!salt) {
440 ti->error = "Error kmallocing salt storage in ESSIV";
441 err = -ENOMEM;
442 goto bad;
443 }
444
445 cc->iv_gen_private.essiv.salt = salt;
446 cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
447
448 essiv_tfm = alloc_essiv_cipher(cc, ti, salt,
449 crypto_ahash_digestsize(hash_tfm));
450 if (IS_ERR(essiv_tfm)) {
451 crypt_iv_essiv_dtr(cc);
452 return PTR_ERR(essiv_tfm);
453 }
454 cc->iv_private = essiv_tfm;
455
456 return 0;
457
458 bad:
459 if (hash_tfm && !IS_ERR(hash_tfm))
460 crypto_free_ahash(hash_tfm);
461 kfree(salt);
462 return err;
463 }
464
465 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
466 struct dm_crypt_request *dmreq)
467 {
468 struct crypto_cipher *essiv_tfm = cc->iv_private;
469
470 memset(iv, 0, cc->iv_size);
471 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
472 crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
473
474 return 0;
475 }
476
477 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
478 const char *opts)
479 {
480 unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
481 int log = ilog2(bs);
482
483 /* we need to calculate how far we must shift the sector count
484 * to get the cipher block count, we use this shift in _gen */
485
486 if (1 << log != bs) {
487 ti->error = "cypher blocksize is not a power of 2";
488 return -EINVAL;
489 }
490
491 if (log > 9) {
492 ti->error = "cypher blocksize is > 512";
493 return -EINVAL;
494 }
495
496 cc->iv_gen_private.benbi.shift = 9 - log;
497
498 return 0;
499 }
500
501 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
502 {
503 }
504
505 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
506 struct dm_crypt_request *dmreq)
507 {
508 __be64 val;
509
510 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
511
512 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
513 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
514
515 return 0;
516 }
517
518 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
519 struct dm_crypt_request *dmreq)
520 {
521 memset(iv, 0, cc->iv_size);
522
523 return 0;
524 }
525
526 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
527 {
528 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
529
530 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
531 crypto_free_shash(lmk->hash_tfm);
532 lmk->hash_tfm = NULL;
533
534 kzfree(lmk->seed);
535 lmk->seed = NULL;
536 }
537
538 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
539 const char *opts)
540 {
541 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
542
543 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
544 ti->error = "Unsupported sector size for LMK";
545 return -EINVAL;
546 }
547
548 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
549 if (IS_ERR(lmk->hash_tfm)) {
550 ti->error = "Error initializing LMK hash";
551 return PTR_ERR(lmk->hash_tfm);
552 }
553
554 /* No seed in LMK version 2 */
555 if (cc->key_parts == cc->tfms_count) {
556 lmk->seed = NULL;
557 return 0;
558 }
559
560 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
561 if (!lmk->seed) {
562 crypt_iv_lmk_dtr(cc);
563 ti->error = "Error kmallocing seed storage in LMK";
564 return -ENOMEM;
565 }
566
567 return 0;
568 }
569
570 static int crypt_iv_lmk_init(struct crypt_config *cc)
571 {
572 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
573 int subkey_size = cc->key_size / cc->key_parts;
574
575 /* LMK seed is on the position of LMK_KEYS + 1 key */
576 if (lmk->seed)
577 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
578 crypto_shash_digestsize(lmk->hash_tfm));
579
580 return 0;
581 }
582
583 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
584 {
585 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
586
587 if (lmk->seed)
588 memset(lmk->seed, 0, LMK_SEED_SIZE);
589
590 return 0;
591 }
592
593 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
594 struct dm_crypt_request *dmreq,
595 u8 *data)
596 {
597 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
598 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
599 struct md5_state md5state;
600 __le32 buf[4];
601 int i, r;
602
603 desc->tfm = lmk->hash_tfm;
604 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
605
606 r = crypto_shash_init(desc);
607 if (r)
608 return r;
609
610 if (lmk->seed) {
611 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
612 if (r)
613 return r;
614 }
615
616 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
617 r = crypto_shash_update(desc, data + 16, 16 * 31);
618 if (r)
619 return r;
620
621 /* Sector is cropped to 56 bits here */
622 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
623 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
624 buf[2] = cpu_to_le32(4024);
625 buf[3] = 0;
626 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
627 if (r)
628 return r;
629
630 /* No MD5 padding here */
631 r = crypto_shash_export(desc, &md5state);
632 if (r)
633 return r;
634
635 for (i = 0; i < MD5_HASH_WORDS; i++)
636 __cpu_to_le32s(&md5state.hash[i]);
637 memcpy(iv, &md5state.hash, cc->iv_size);
638
639 return 0;
640 }
641
642 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
643 struct dm_crypt_request *dmreq)
644 {
645 struct scatterlist *sg;
646 u8 *src;
647 int r = 0;
648
649 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
650 sg = crypt_get_sg_data(cc, dmreq->sg_in);
651 src = kmap_atomic(sg_page(sg));
652 r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
653 kunmap_atomic(src);
654 } else
655 memset(iv, 0, cc->iv_size);
656
657 return r;
658 }
659
660 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
661 struct dm_crypt_request *dmreq)
662 {
663 struct scatterlist *sg;
664 u8 *dst;
665 int r;
666
667 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
668 return 0;
669
670 sg = crypt_get_sg_data(cc, dmreq->sg_out);
671 dst = kmap_atomic(sg_page(sg));
672 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
673
674 /* Tweak the first block of plaintext sector */
675 if (!r)
676 crypto_xor(dst + sg->offset, iv, cc->iv_size);
677
678 kunmap_atomic(dst);
679 return r;
680 }
681
682 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
683 {
684 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
685
686 kzfree(tcw->iv_seed);
687 tcw->iv_seed = NULL;
688 kzfree(tcw->whitening);
689 tcw->whitening = NULL;
690
691 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
692 crypto_free_shash(tcw->crc32_tfm);
693 tcw->crc32_tfm = NULL;
694 }
695
696 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
697 const char *opts)
698 {
699 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
700
701 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
702 ti->error = "Unsupported sector size for TCW";
703 return -EINVAL;
704 }
705
706 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
707 ti->error = "Wrong key size for TCW";
708 return -EINVAL;
709 }
710
711 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
712 if (IS_ERR(tcw->crc32_tfm)) {
713 ti->error = "Error initializing CRC32 in TCW";
714 return PTR_ERR(tcw->crc32_tfm);
715 }
716
717 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
718 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
719 if (!tcw->iv_seed || !tcw->whitening) {
720 crypt_iv_tcw_dtr(cc);
721 ti->error = "Error allocating seed storage in TCW";
722 return -ENOMEM;
723 }
724
725 return 0;
726 }
727
728 static int crypt_iv_tcw_init(struct crypt_config *cc)
729 {
730 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
731 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
732
733 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
734 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
735 TCW_WHITENING_SIZE);
736
737 return 0;
738 }
739
740 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
741 {
742 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
743
744 memset(tcw->iv_seed, 0, cc->iv_size);
745 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
746
747 return 0;
748 }
749
750 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
751 struct dm_crypt_request *dmreq,
752 u8 *data)
753 {
754 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
755 __le64 sector = cpu_to_le64(dmreq->iv_sector);
756 u8 buf[TCW_WHITENING_SIZE];
757 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
758 int i, r;
759
760 /* xor whitening with sector number */
761 memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
762 crypto_xor(buf, (u8 *)&sector, 8);
763 crypto_xor(&buf[8], (u8 *)&sector, 8);
764
765 /* calculate crc32 for every 32bit part and xor it */
766 desc->tfm = tcw->crc32_tfm;
767 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
768 for (i = 0; i < 4; i++) {
769 r = crypto_shash_init(desc);
770 if (r)
771 goto out;
772 r = crypto_shash_update(desc, &buf[i * 4], 4);
773 if (r)
774 goto out;
775 r = crypto_shash_final(desc, &buf[i * 4]);
776 if (r)
777 goto out;
778 }
779 crypto_xor(&buf[0], &buf[12], 4);
780 crypto_xor(&buf[4], &buf[8], 4);
781
782 /* apply whitening (8 bytes) to whole sector */
783 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
784 crypto_xor(data + i * 8, buf, 8);
785 out:
786 memzero_explicit(buf, sizeof(buf));
787 return r;
788 }
789
790 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
791 struct dm_crypt_request *dmreq)
792 {
793 struct scatterlist *sg;
794 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
795 __le64 sector = cpu_to_le64(dmreq->iv_sector);
796 u8 *src;
797 int r = 0;
798
799 /* Remove whitening from ciphertext */
800 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
801 sg = crypt_get_sg_data(cc, dmreq->sg_in);
802 src = kmap_atomic(sg_page(sg));
803 r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
804 kunmap_atomic(src);
805 }
806
807 /* Calculate IV */
808 memcpy(iv, tcw->iv_seed, cc->iv_size);
809 crypto_xor(iv, (u8 *)&sector, 8);
810 if (cc->iv_size > 8)
811 crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
812
813 return r;
814 }
815
816 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
817 struct dm_crypt_request *dmreq)
818 {
819 struct scatterlist *sg;
820 u8 *dst;
821 int r;
822
823 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
824 return 0;
825
826 /* Apply whitening on ciphertext */
827 sg = crypt_get_sg_data(cc, dmreq->sg_out);
828 dst = kmap_atomic(sg_page(sg));
829 r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
830 kunmap_atomic(dst);
831
832 return r;
833 }
834
835 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
836 struct dm_crypt_request *dmreq)
837 {
838 /* Used only for writes, there must be an additional space to store IV */
839 get_random_bytes(iv, cc->iv_size);
840 return 0;
841 }
842
843 static const struct crypt_iv_operations crypt_iv_plain_ops = {
844 .generator = crypt_iv_plain_gen
845 };
846
847 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
848 .generator = crypt_iv_plain64_gen
849 };
850
851 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
852 .generator = crypt_iv_plain64be_gen
853 };
854
855 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
856 .ctr = crypt_iv_essiv_ctr,
857 .dtr = crypt_iv_essiv_dtr,
858 .init = crypt_iv_essiv_init,
859 .wipe = crypt_iv_essiv_wipe,
860 .generator = crypt_iv_essiv_gen
861 };
862
863 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
864 .ctr = crypt_iv_benbi_ctr,
865 .dtr = crypt_iv_benbi_dtr,
866 .generator = crypt_iv_benbi_gen
867 };
868
869 static const struct crypt_iv_operations crypt_iv_null_ops = {
870 .generator = crypt_iv_null_gen
871 };
872
873 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
874 .ctr = crypt_iv_lmk_ctr,
875 .dtr = crypt_iv_lmk_dtr,
876 .init = crypt_iv_lmk_init,
877 .wipe = crypt_iv_lmk_wipe,
878 .generator = crypt_iv_lmk_gen,
879 .post = crypt_iv_lmk_post
880 };
881
882 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
883 .ctr = crypt_iv_tcw_ctr,
884 .dtr = crypt_iv_tcw_dtr,
885 .init = crypt_iv_tcw_init,
886 .wipe = crypt_iv_tcw_wipe,
887 .generator = crypt_iv_tcw_gen,
888 .post = crypt_iv_tcw_post
889 };
890
891 static struct crypt_iv_operations crypt_iv_random_ops = {
892 .generator = crypt_iv_random_gen
893 };
894
895 /*
896 * Integrity extensions
897 */
898 static bool crypt_integrity_aead(struct crypt_config *cc)
899 {
900 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
901 }
902
903 static bool crypt_integrity_hmac(struct crypt_config *cc)
904 {
905 return crypt_integrity_aead(cc) && cc->key_mac_size;
906 }
907
908 /* Get sg containing data */
909 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
910 struct scatterlist *sg)
911 {
912 if (unlikely(crypt_integrity_aead(cc)))
913 return &sg[2];
914
915 return sg;
916 }
917
918 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
919 {
920 struct bio_integrity_payload *bip;
921 unsigned int tag_len;
922 int ret;
923
924 if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
925 return 0;
926
927 bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
928 if (IS_ERR(bip))
929 return PTR_ERR(bip);
930
931 tag_len = io->cc->on_disk_tag_size * bio_sectors(bio);
932
933 bip->bip_iter.bi_size = tag_len;
934 bip->bip_iter.bi_sector = io->cc->start + io->sector;
935
936 /* We own the metadata, do not let bio_free to release it */
937 bip->bip_flags &= ~BIP_BLOCK_INTEGRITY;
938
939 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
940 tag_len, offset_in_page(io->integrity_metadata));
941 if (unlikely(ret != tag_len))
942 return -ENOMEM;
943
944 return 0;
945 }
946
947 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
948 {
949 #ifdef CONFIG_BLK_DEV_INTEGRITY
950 struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
951
952 /* From now we require underlying device with our integrity profile */
953 if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
954 ti->error = "Integrity profile not supported.";
955 return -EINVAL;
956 }
957
958 if (bi->tag_size != cc->on_disk_tag_size ||
959 bi->tuple_size != cc->on_disk_tag_size) {
960 ti->error = "Integrity profile tag size mismatch.";
961 return -EINVAL;
962 }
963 if (1 << bi->interval_exp != cc->sector_size) {
964 ti->error = "Integrity profile sector size mismatch.";
965 return -EINVAL;
966 }
967
968 if (crypt_integrity_aead(cc)) {
969 cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
970 DMINFO("Integrity AEAD, tag size %u, IV size %u.",
971 cc->integrity_tag_size, cc->integrity_iv_size);
972
973 if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
974 ti->error = "Integrity AEAD auth tag size is not supported.";
975 return -EINVAL;
976 }
977 } else if (cc->integrity_iv_size)
978 DMINFO("Additional per-sector space %u bytes for IV.",
979 cc->integrity_iv_size);
980
981 if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
982 ti->error = "Not enough space for integrity tag in the profile.";
983 return -EINVAL;
984 }
985
986 return 0;
987 #else
988 ti->error = "Integrity profile not supported.";
989 return -EINVAL;
990 #endif
991 }
992
993 static void crypt_convert_init(struct crypt_config *cc,
994 struct convert_context *ctx,
995 struct bio *bio_out, struct bio *bio_in,
996 sector_t sector)
997 {
998 ctx->bio_in = bio_in;
999 ctx->bio_out = bio_out;
1000 if (bio_in)
1001 ctx->iter_in = bio_in->bi_iter;
1002 if (bio_out)
1003 ctx->iter_out = bio_out->bi_iter;
1004 ctx->cc_sector = sector + cc->iv_offset;
1005 init_completion(&ctx->restart);
1006 }
1007
1008 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1009 void *req)
1010 {
1011 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1012 }
1013
1014 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1015 {
1016 return (void *)((char *)dmreq - cc->dmreq_start);
1017 }
1018
1019 static u8 *iv_of_dmreq(struct crypt_config *cc,
1020 struct dm_crypt_request *dmreq)
1021 {
1022 if (crypt_integrity_aead(cc))
1023 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1024 crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1025 else
1026 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1027 crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1028 }
1029
1030 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1031 struct dm_crypt_request *dmreq)
1032 {
1033 return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1034 }
1035
1036 static uint64_t *org_sector_of_dmreq(struct crypt_config *cc,
1037 struct dm_crypt_request *dmreq)
1038 {
1039 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1040 return (uint64_t*) ptr;
1041 }
1042
1043 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1044 struct dm_crypt_request *dmreq)
1045 {
1046 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1047 cc->iv_size + sizeof(uint64_t);
1048 return (unsigned int*)ptr;
1049 }
1050
1051 static void *tag_from_dmreq(struct crypt_config *cc,
1052 struct dm_crypt_request *dmreq)
1053 {
1054 struct convert_context *ctx = dmreq->ctx;
1055 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1056
1057 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1058 cc->on_disk_tag_size];
1059 }
1060
1061 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1062 struct dm_crypt_request *dmreq)
1063 {
1064 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1065 }
1066
1067 static int crypt_convert_block_aead(struct crypt_config *cc,
1068 struct convert_context *ctx,
1069 struct aead_request *req,
1070 unsigned int tag_offset)
1071 {
1072 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1073 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1074 struct dm_crypt_request *dmreq;
1075 u8 *iv, *org_iv, *tag_iv, *tag;
1076 uint64_t *sector;
1077 int r = 0;
1078
1079 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1080
1081 /* Reject unexpected unaligned bio. */
1082 if (unlikely(bv_in.bv_offset & (cc->sector_size - 1)))
1083 return -EIO;
1084
1085 dmreq = dmreq_of_req(cc, req);
1086 dmreq->iv_sector = ctx->cc_sector;
1087 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1088 dmreq->iv_sector >>= cc->sector_shift;
1089 dmreq->ctx = ctx;
1090
1091 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1092
1093 sector = org_sector_of_dmreq(cc, dmreq);
1094 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1095
1096 iv = iv_of_dmreq(cc, dmreq);
1097 org_iv = org_iv_of_dmreq(cc, dmreq);
1098 tag = tag_from_dmreq(cc, dmreq);
1099 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1100
1101 /* AEAD request:
1102 * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1103 * | (authenticated) | (auth+encryption) | |
1104 * | sector_LE | IV | sector in/out | tag in/out |
1105 */
1106 sg_init_table(dmreq->sg_in, 4);
1107 sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1108 sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1109 sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1110 sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1111
1112 sg_init_table(dmreq->sg_out, 4);
1113 sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1114 sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1115 sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1116 sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1117
1118 if (cc->iv_gen_ops) {
1119 /* For READs use IV stored in integrity metadata */
1120 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1121 memcpy(org_iv, tag_iv, cc->iv_size);
1122 } else {
1123 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1124 if (r < 0)
1125 return r;
1126 /* Store generated IV in integrity metadata */
1127 if (cc->integrity_iv_size)
1128 memcpy(tag_iv, org_iv, cc->iv_size);
1129 }
1130 /* Working copy of IV, to be modified in crypto API */
1131 memcpy(iv, org_iv, cc->iv_size);
1132 }
1133
1134 aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1135 if (bio_data_dir(ctx->bio_in) == WRITE) {
1136 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1137 cc->sector_size, iv);
1138 r = crypto_aead_encrypt(req);
1139 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1140 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1141 cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1142 } else {
1143 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1144 cc->sector_size + cc->integrity_tag_size, iv);
1145 r = crypto_aead_decrypt(req);
1146 }
1147
1148 if (r == -EBADMSG)
1149 DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1150 (unsigned long long)le64_to_cpu(*sector));
1151
1152 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1153 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1154
1155 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1156 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1157
1158 return r;
1159 }
1160
1161 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1162 struct convert_context *ctx,
1163 struct skcipher_request *req,
1164 unsigned int tag_offset)
1165 {
1166 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1167 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1168 struct scatterlist *sg_in, *sg_out;
1169 struct dm_crypt_request *dmreq;
1170 u8 *iv, *org_iv, *tag_iv;
1171 uint64_t *sector;
1172 int r = 0;
1173
1174 /* Reject unexpected unaligned bio. */
1175 if (unlikely(bv_in.bv_offset & (cc->sector_size - 1)))
1176 return -EIO;
1177
1178 dmreq = dmreq_of_req(cc, req);
1179 dmreq->iv_sector = ctx->cc_sector;
1180 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1181 dmreq->iv_sector >>= cc->sector_shift;
1182 dmreq->ctx = ctx;
1183
1184 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1185
1186 iv = iv_of_dmreq(cc, dmreq);
1187 org_iv = org_iv_of_dmreq(cc, dmreq);
1188 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1189
1190 sector = org_sector_of_dmreq(cc, dmreq);
1191 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1192
1193 /* For skcipher we use only the first sg item */
1194 sg_in = &dmreq->sg_in[0];
1195 sg_out = &dmreq->sg_out[0];
1196
1197 sg_init_table(sg_in, 1);
1198 sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1199
1200 sg_init_table(sg_out, 1);
1201 sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1202
1203 if (cc->iv_gen_ops) {
1204 /* For READs use IV stored in integrity metadata */
1205 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1206 memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1207 } else {
1208 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1209 if (r < 0)
1210 return r;
1211 /* Store generated IV in integrity metadata */
1212 if (cc->integrity_iv_size)
1213 memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1214 }
1215 /* Working copy of IV, to be modified in crypto API */
1216 memcpy(iv, org_iv, cc->iv_size);
1217 }
1218
1219 skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1220
1221 if (bio_data_dir(ctx->bio_in) == WRITE)
1222 r = crypto_skcipher_encrypt(req);
1223 else
1224 r = crypto_skcipher_decrypt(req);
1225
1226 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1227 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1228
1229 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1230 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1231
1232 return r;
1233 }
1234
1235 static void kcryptd_async_done(struct crypto_async_request *async_req,
1236 int error);
1237
1238 static void crypt_alloc_req_skcipher(struct crypt_config *cc,
1239 struct convert_context *ctx)
1240 {
1241 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1242
1243 if (!ctx->r.req)
1244 ctx->r.req = mempool_alloc(cc->req_pool, GFP_NOIO);
1245
1246 skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1247
1248 /*
1249 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1250 * requests if driver request queue is full.
1251 */
1252 skcipher_request_set_callback(ctx->r.req,
1253 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
1254 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1255 }
1256
1257 static void crypt_alloc_req_aead(struct crypt_config *cc,
1258 struct convert_context *ctx)
1259 {
1260 if (!ctx->r.req_aead)
1261 ctx->r.req_aead = mempool_alloc(cc->req_pool, GFP_NOIO);
1262
1263 aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1264
1265 /*
1266 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1267 * requests if driver request queue is full.
1268 */
1269 aead_request_set_callback(ctx->r.req_aead,
1270 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
1271 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1272 }
1273
1274 static void crypt_alloc_req(struct crypt_config *cc,
1275 struct convert_context *ctx)
1276 {
1277 if (crypt_integrity_aead(cc))
1278 crypt_alloc_req_aead(cc, ctx);
1279 else
1280 crypt_alloc_req_skcipher(cc, ctx);
1281 }
1282
1283 static void crypt_free_req_skcipher(struct crypt_config *cc,
1284 struct skcipher_request *req, struct bio *base_bio)
1285 {
1286 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1287
1288 if ((struct skcipher_request *)(io + 1) != req)
1289 mempool_free(req, cc->req_pool);
1290 }
1291
1292 static void crypt_free_req_aead(struct crypt_config *cc,
1293 struct aead_request *req, struct bio *base_bio)
1294 {
1295 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1296
1297 if ((struct aead_request *)(io + 1) != req)
1298 mempool_free(req, cc->req_pool);
1299 }
1300
1301 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1302 {
1303 if (crypt_integrity_aead(cc))
1304 crypt_free_req_aead(cc, req, base_bio);
1305 else
1306 crypt_free_req_skcipher(cc, req, base_bio);
1307 }
1308
1309 /*
1310 * Encrypt / decrypt data from one bio to another one (can be the same one)
1311 */
1312 static blk_status_t crypt_convert(struct crypt_config *cc,
1313 struct convert_context *ctx)
1314 {
1315 unsigned int tag_offset = 0;
1316 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1317 int r;
1318
1319 atomic_set(&ctx->cc_pending, 1);
1320
1321 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1322
1323 crypt_alloc_req(cc, ctx);
1324 atomic_inc(&ctx->cc_pending);
1325
1326 if (crypt_integrity_aead(cc))
1327 r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1328 else
1329 r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1330
1331 switch (r) {
1332 /*
1333 * The request was queued by a crypto driver
1334 * but the driver request queue is full, let's wait.
1335 */
1336 case -EBUSY:
1337 wait_for_completion(&ctx->restart);
1338 reinit_completion(&ctx->restart);
1339 /* fall through */
1340 /*
1341 * The request is queued and processed asynchronously,
1342 * completion function kcryptd_async_done() will be called.
1343 */
1344 case -EINPROGRESS:
1345 ctx->r.req = NULL;
1346 ctx->cc_sector += sector_step;
1347 tag_offset++;
1348 continue;
1349 /*
1350 * The request was already processed (synchronously).
1351 */
1352 case 0:
1353 atomic_dec(&ctx->cc_pending);
1354 ctx->cc_sector += sector_step;
1355 tag_offset++;
1356 cond_resched();
1357 continue;
1358 /*
1359 * There was a data integrity error.
1360 */
1361 case -EBADMSG:
1362 atomic_dec(&ctx->cc_pending);
1363 return BLK_STS_PROTECTION;
1364 /*
1365 * There was an error while processing the request.
1366 */
1367 default:
1368 atomic_dec(&ctx->cc_pending);
1369 return BLK_STS_IOERR;
1370 }
1371 }
1372
1373 return 0;
1374 }
1375
1376 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1377
1378 /*
1379 * Generate a new unfragmented bio with the given size
1380 * This should never violate the device limitations (but only because
1381 * max_segment_size is being constrained to PAGE_SIZE).
1382 *
1383 * This function may be called concurrently. If we allocate from the mempool
1384 * concurrently, there is a possibility of deadlock. For example, if we have
1385 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1386 * the mempool concurrently, it may deadlock in a situation where both processes
1387 * have allocated 128 pages and the mempool is exhausted.
1388 *
1389 * In order to avoid this scenario we allocate the pages under a mutex.
1390 *
1391 * In order to not degrade performance with excessive locking, we try
1392 * non-blocking allocations without a mutex first but on failure we fallback
1393 * to blocking allocations with a mutex.
1394 */
1395 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1396 {
1397 struct crypt_config *cc = io->cc;
1398 struct bio *clone;
1399 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1400 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1401 unsigned i, len, remaining_size;
1402 struct page *page;
1403
1404 retry:
1405 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1406 mutex_lock(&cc->bio_alloc_lock);
1407
1408 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1409 if (!clone)
1410 goto out;
1411
1412 clone_init(io, clone);
1413
1414 remaining_size = size;
1415
1416 for (i = 0; i < nr_iovecs; i++) {
1417 page = mempool_alloc(cc->page_pool, gfp_mask);
1418 if (!page) {
1419 crypt_free_buffer_pages(cc, clone);
1420 bio_put(clone);
1421 gfp_mask |= __GFP_DIRECT_RECLAIM;
1422 goto retry;
1423 }
1424
1425 len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1426
1427 bio_add_page(clone, page, len, 0);
1428
1429 remaining_size -= len;
1430 }
1431
1432 /* Allocate space for integrity tags */
1433 if (dm_crypt_integrity_io_alloc(io, clone)) {
1434 crypt_free_buffer_pages(cc, clone);
1435 bio_put(clone);
1436 clone = NULL;
1437 }
1438 out:
1439 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1440 mutex_unlock(&cc->bio_alloc_lock);
1441
1442 return clone;
1443 }
1444
1445 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1446 {
1447 unsigned int i;
1448 struct bio_vec *bv;
1449
1450 bio_for_each_segment_all(bv, clone, i) {
1451 BUG_ON(!bv->bv_page);
1452 mempool_free(bv->bv_page, cc->page_pool);
1453 bv->bv_page = NULL;
1454 }
1455 }
1456
1457 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1458 struct bio *bio, sector_t sector)
1459 {
1460 io->cc = cc;
1461 io->base_bio = bio;
1462 io->sector = sector;
1463 io->error = 0;
1464 io->ctx.r.req = NULL;
1465 io->integrity_metadata = NULL;
1466 io->integrity_metadata_from_pool = false;
1467 atomic_set(&io->io_pending, 0);
1468 }
1469
1470 static void crypt_inc_pending(struct dm_crypt_io *io)
1471 {
1472 atomic_inc(&io->io_pending);
1473 }
1474
1475 /*
1476 * One of the bios was finished. Check for completion of
1477 * the whole request and correctly clean up the buffer.
1478 */
1479 static void crypt_dec_pending(struct dm_crypt_io *io)
1480 {
1481 struct crypt_config *cc = io->cc;
1482 struct bio *base_bio = io->base_bio;
1483 blk_status_t error = io->error;
1484
1485 if (!atomic_dec_and_test(&io->io_pending))
1486 return;
1487
1488 if (io->ctx.r.req)
1489 crypt_free_req(cc, io->ctx.r.req, base_bio);
1490
1491 if (unlikely(io->integrity_metadata_from_pool))
1492 mempool_free(io->integrity_metadata, io->cc->tag_pool);
1493 else
1494 kfree(io->integrity_metadata);
1495
1496 base_bio->bi_status = error;
1497 bio_endio(base_bio);
1498 }
1499
1500 /*
1501 * kcryptd/kcryptd_io:
1502 *
1503 * Needed because it would be very unwise to do decryption in an
1504 * interrupt context.
1505 *
1506 * kcryptd performs the actual encryption or decryption.
1507 *
1508 * kcryptd_io performs the IO submission.
1509 *
1510 * They must be separated as otherwise the final stages could be
1511 * starved by new requests which can block in the first stages due
1512 * to memory allocation.
1513 *
1514 * The work is done per CPU global for all dm-crypt instances.
1515 * They should not depend on each other and do not block.
1516 */
1517 static void crypt_endio(struct bio *clone)
1518 {
1519 struct dm_crypt_io *io = clone->bi_private;
1520 struct crypt_config *cc = io->cc;
1521 unsigned rw = bio_data_dir(clone);
1522 blk_status_t error;
1523
1524 /*
1525 * free the processed pages
1526 */
1527 if (rw == WRITE)
1528 crypt_free_buffer_pages(cc, clone);
1529
1530 error = clone->bi_status;
1531 bio_put(clone);
1532
1533 if (rw == READ && !error) {
1534 kcryptd_queue_crypt(io);
1535 return;
1536 }
1537
1538 if (unlikely(error))
1539 io->error = error;
1540
1541 crypt_dec_pending(io);
1542 }
1543
1544 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1545 {
1546 struct crypt_config *cc = io->cc;
1547
1548 clone->bi_private = io;
1549 clone->bi_end_io = crypt_endio;
1550 clone->bi_bdev = cc->dev->bdev;
1551 clone->bi_opf = io->base_bio->bi_opf;
1552 }
1553
1554 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1555 {
1556 struct crypt_config *cc = io->cc;
1557 struct bio *clone;
1558
1559 /*
1560 * We need the original biovec array in order to decrypt
1561 * the whole bio data *afterwards* -- thanks to immutable
1562 * biovecs we don't need to worry about the block layer
1563 * modifying the biovec array; so leverage bio_clone_fast().
1564 */
1565 clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1566 if (!clone)
1567 return 1;
1568
1569 crypt_inc_pending(io);
1570
1571 clone_init(io, clone);
1572 clone->bi_iter.bi_sector = cc->start + io->sector;
1573
1574 if (dm_crypt_integrity_io_alloc(io, clone)) {
1575 crypt_dec_pending(io);
1576 bio_put(clone);
1577 return 1;
1578 }
1579
1580 generic_make_request(clone);
1581 return 0;
1582 }
1583
1584 static void kcryptd_io_read_work(struct work_struct *work)
1585 {
1586 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1587
1588 crypt_inc_pending(io);
1589 if (kcryptd_io_read(io, GFP_NOIO))
1590 io->error = BLK_STS_RESOURCE;
1591 crypt_dec_pending(io);
1592 }
1593
1594 static void kcryptd_queue_read(struct dm_crypt_io *io)
1595 {
1596 struct crypt_config *cc = io->cc;
1597
1598 INIT_WORK(&io->work, kcryptd_io_read_work);
1599 queue_work(cc->io_queue, &io->work);
1600 }
1601
1602 static void kcryptd_io_write(struct dm_crypt_io *io)
1603 {
1604 struct bio *clone = io->ctx.bio_out;
1605
1606 generic_make_request(clone);
1607 }
1608
1609 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1610
1611 static int dmcrypt_write(void *data)
1612 {
1613 struct crypt_config *cc = data;
1614 struct dm_crypt_io *io;
1615
1616 while (1) {
1617 struct rb_root write_tree;
1618 struct blk_plug plug;
1619
1620 DECLARE_WAITQUEUE(wait, current);
1621
1622 spin_lock_irq(&cc->write_thread_wait.lock);
1623 continue_locked:
1624
1625 if (!RB_EMPTY_ROOT(&cc->write_tree))
1626 goto pop_from_list;
1627
1628 set_current_state(TASK_INTERRUPTIBLE);
1629 __add_wait_queue(&cc->write_thread_wait, &wait);
1630
1631 spin_unlock_irq(&cc->write_thread_wait.lock);
1632
1633 if (unlikely(kthread_should_stop())) {
1634 set_current_state(TASK_RUNNING);
1635 remove_wait_queue(&cc->write_thread_wait, &wait);
1636 break;
1637 }
1638
1639 schedule();
1640
1641 set_current_state(TASK_RUNNING);
1642 spin_lock_irq(&cc->write_thread_wait.lock);
1643 __remove_wait_queue(&cc->write_thread_wait, &wait);
1644 goto continue_locked;
1645
1646 pop_from_list:
1647 write_tree = cc->write_tree;
1648 cc->write_tree = RB_ROOT;
1649 spin_unlock_irq(&cc->write_thread_wait.lock);
1650
1651 BUG_ON(rb_parent(write_tree.rb_node));
1652
1653 /*
1654 * Note: we cannot walk the tree here with rb_next because
1655 * the structures may be freed when kcryptd_io_write is called.
1656 */
1657 blk_start_plug(&plug);
1658 do {
1659 io = crypt_io_from_node(rb_first(&write_tree));
1660 rb_erase(&io->rb_node, &write_tree);
1661 kcryptd_io_write(io);
1662 } while (!RB_EMPTY_ROOT(&write_tree));
1663 blk_finish_plug(&plug);
1664 }
1665 return 0;
1666 }
1667
1668 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1669 {
1670 struct bio *clone = io->ctx.bio_out;
1671 struct crypt_config *cc = io->cc;
1672 unsigned long flags;
1673 sector_t sector;
1674 struct rb_node **rbp, *parent;
1675
1676 if (unlikely(io->error)) {
1677 crypt_free_buffer_pages(cc, clone);
1678 bio_put(clone);
1679 crypt_dec_pending(io);
1680 return;
1681 }
1682
1683 /* crypt_convert should have filled the clone bio */
1684 BUG_ON(io->ctx.iter_out.bi_size);
1685
1686 clone->bi_iter.bi_sector = cc->start + io->sector;
1687
1688 if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1689 generic_make_request(clone);
1690 return;
1691 }
1692
1693 spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1694 rbp = &cc->write_tree.rb_node;
1695 parent = NULL;
1696 sector = io->sector;
1697 while (*rbp) {
1698 parent = *rbp;
1699 if (sector < crypt_io_from_node(parent)->sector)
1700 rbp = &(*rbp)->rb_left;
1701 else
1702 rbp = &(*rbp)->rb_right;
1703 }
1704 rb_link_node(&io->rb_node, parent, rbp);
1705 rb_insert_color(&io->rb_node, &cc->write_tree);
1706
1707 wake_up_locked(&cc->write_thread_wait);
1708 spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1709 }
1710
1711 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1712 {
1713 struct crypt_config *cc = io->cc;
1714 struct bio *clone;
1715 int crypt_finished;
1716 sector_t sector = io->sector;
1717 blk_status_t r;
1718
1719 /*
1720 * Prevent io from disappearing until this function completes.
1721 */
1722 crypt_inc_pending(io);
1723 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1724
1725 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1726 if (unlikely(!clone)) {
1727 io->error = BLK_STS_IOERR;
1728 goto dec;
1729 }
1730
1731 io->ctx.bio_out = clone;
1732 io->ctx.iter_out = clone->bi_iter;
1733
1734 sector += bio_sectors(clone);
1735
1736 crypt_inc_pending(io);
1737 r = crypt_convert(cc, &io->ctx);
1738 if (r)
1739 io->error = r;
1740 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1741
1742 /* Encryption was already finished, submit io now */
1743 if (crypt_finished) {
1744 kcryptd_crypt_write_io_submit(io, 0);
1745 io->sector = sector;
1746 }
1747
1748 dec:
1749 crypt_dec_pending(io);
1750 }
1751
1752 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1753 {
1754 crypt_dec_pending(io);
1755 }
1756
1757 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1758 {
1759 struct crypt_config *cc = io->cc;
1760 blk_status_t r;
1761
1762 crypt_inc_pending(io);
1763
1764 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1765 io->sector);
1766
1767 r = crypt_convert(cc, &io->ctx);
1768 if (r)
1769 io->error = r;
1770
1771 if (atomic_dec_and_test(&io->ctx.cc_pending))
1772 kcryptd_crypt_read_done(io);
1773
1774 crypt_dec_pending(io);
1775 }
1776
1777 static void kcryptd_async_done(struct crypto_async_request *async_req,
1778 int error)
1779 {
1780 struct dm_crypt_request *dmreq = async_req->data;
1781 struct convert_context *ctx = dmreq->ctx;
1782 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1783 struct crypt_config *cc = io->cc;
1784
1785 /*
1786 * A request from crypto driver backlog is going to be processed now,
1787 * finish the completion and continue in crypt_convert().
1788 * (Callback will be called for the second time for this request.)
1789 */
1790 if (error == -EINPROGRESS) {
1791 complete(&ctx->restart);
1792 return;
1793 }
1794
1795 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1796 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
1797
1798 if (error == -EBADMSG) {
1799 DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1800 (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
1801 io->error = BLK_STS_PROTECTION;
1802 } else if (error < 0)
1803 io->error = BLK_STS_IOERR;
1804
1805 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1806
1807 if (!atomic_dec_and_test(&ctx->cc_pending))
1808 return;
1809
1810 if (bio_data_dir(io->base_bio) == READ)
1811 kcryptd_crypt_read_done(io);
1812 else
1813 kcryptd_crypt_write_io_submit(io, 1);
1814 }
1815
1816 static void kcryptd_crypt(struct work_struct *work)
1817 {
1818 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1819
1820 if (bio_data_dir(io->base_bio) == READ)
1821 kcryptd_crypt_read_convert(io);
1822 else
1823 kcryptd_crypt_write_convert(io);
1824 }
1825
1826 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1827 {
1828 struct crypt_config *cc = io->cc;
1829
1830 INIT_WORK(&io->work, kcryptd_crypt);
1831 queue_work(cc->crypt_queue, &io->work);
1832 }
1833
1834 static void crypt_free_tfms_aead(struct crypt_config *cc)
1835 {
1836 if (!cc->cipher_tfm.tfms_aead)
1837 return;
1838
1839 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1840 crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
1841 cc->cipher_tfm.tfms_aead[0] = NULL;
1842 }
1843
1844 kfree(cc->cipher_tfm.tfms_aead);
1845 cc->cipher_tfm.tfms_aead = NULL;
1846 }
1847
1848 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
1849 {
1850 unsigned i;
1851
1852 if (!cc->cipher_tfm.tfms)
1853 return;
1854
1855 for (i = 0; i < cc->tfms_count; i++)
1856 if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
1857 crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
1858 cc->cipher_tfm.tfms[i] = NULL;
1859 }
1860
1861 kfree(cc->cipher_tfm.tfms);
1862 cc->cipher_tfm.tfms = NULL;
1863 }
1864
1865 static void crypt_free_tfms(struct crypt_config *cc)
1866 {
1867 if (crypt_integrity_aead(cc))
1868 crypt_free_tfms_aead(cc);
1869 else
1870 crypt_free_tfms_skcipher(cc);
1871 }
1872
1873 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
1874 {
1875 unsigned i;
1876 int err;
1877
1878 cc->cipher_tfm.tfms = kzalloc(cc->tfms_count *
1879 sizeof(struct crypto_skcipher *), GFP_KERNEL);
1880 if (!cc->cipher_tfm.tfms)
1881 return -ENOMEM;
1882
1883 for (i = 0; i < cc->tfms_count; i++) {
1884 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1885 if (IS_ERR(cc->cipher_tfm.tfms[i])) {
1886 err = PTR_ERR(cc->cipher_tfm.tfms[i]);
1887 crypt_free_tfms(cc);
1888 return err;
1889 }
1890 }
1891
1892 return 0;
1893 }
1894
1895 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
1896 {
1897 int err;
1898
1899 cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
1900 if (!cc->cipher_tfm.tfms)
1901 return -ENOMEM;
1902
1903 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 0);
1904 if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1905 err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
1906 crypt_free_tfms(cc);
1907 return err;
1908 }
1909
1910 return 0;
1911 }
1912
1913 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1914 {
1915 if (crypt_integrity_aead(cc))
1916 return crypt_alloc_tfms_aead(cc, ciphermode);
1917 else
1918 return crypt_alloc_tfms_skcipher(cc, ciphermode);
1919 }
1920
1921 static unsigned crypt_subkey_size(struct crypt_config *cc)
1922 {
1923 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1924 }
1925
1926 static unsigned crypt_authenckey_size(struct crypt_config *cc)
1927 {
1928 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
1929 }
1930
1931 /*
1932 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
1933 * the key must be for some reason in special format.
1934 * This funcion converts cc->key to this special format.
1935 */
1936 static void crypt_copy_authenckey(char *p, const void *key,
1937 unsigned enckeylen, unsigned authkeylen)
1938 {
1939 struct crypto_authenc_key_param *param;
1940 struct rtattr *rta;
1941
1942 rta = (struct rtattr *)p;
1943 param = RTA_DATA(rta);
1944 param->enckeylen = cpu_to_be32(enckeylen);
1945 rta->rta_len = RTA_LENGTH(sizeof(*param));
1946 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
1947 p += RTA_SPACE(sizeof(*param));
1948 memcpy(p, key + enckeylen, authkeylen);
1949 p += authkeylen;
1950 memcpy(p, key, enckeylen);
1951 }
1952
1953 static int crypt_setkey(struct crypt_config *cc)
1954 {
1955 unsigned subkey_size;
1956 int err = 0, i, r;
1957
1958 /* Ignore extra keys (which are used for IV etc) */
1959 subkey_size = crypt_subkey_size(cc);
1960
1961 if (crypt_integrity_hmac(cc))
1962 crypt_copy_authenckey(cc->authenc_key, cc->key,
1963 subkey_size - cc->key_mac_size,
1964 cc->key_mac_size);
1965 for (i = 0; i < cc->tfms_count; i++) {
1966 if (crypt_integrity_hmac(cc))
1967 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1968 cc->authenc_key, crypt_authenckey_size(cc));
1969 else if (crypt_integrity_aead(cc))
1970 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1971 cc->key + (i * subkey_size),
1972 subkey_size);
1973 else
1974 r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
1975 cc->key + (i * subkey_size),
1976 subkey_size);
1977 if (r)
1978 err = r;
1979 }
1980
1981 if (crypt_integrity_hmac(cc))
1982 memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
1983
1984 return err;
1985 }
1986
1987 #ifdef CONFIG_KEYS
1988
1989 static bool contains_whitespace(const char *str)
1990 {
1991 while (*str)
1992 if (isspace(*str++))
1993 return true;
1994 return false;
1995 }
1996
1997 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
1998 {
1999 char *new_key_string, *key_desc;
2000 int ret;
2001 struct key *key;
2002 const struct user_key_payload *ukp;
2003
2004 /*
2005 * Reject key_string with whitespace. dm core currently lacks code for
2006 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2007 */
2008 if (contains_whitespace(key_string)) {
2009 DMERR("whitespace chars not allowed in key string");
2010 return -EINVAL;
2011 }
2012
2013 /* look for next ':' separating key_type from key_description */
2014 key_desc = strpbrk(key_string, ":");
2015 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2016 return -EINVAL;
2017
2018 if (strncmp(key_string, "logon:", key_desc - key_string + 1) &&
2019 strncmp(key_string, "user:", key_desc - key_string + 1))
2020 return -EINVAL;
2021
2022 new_key_string = kstrdup(key_string, GFP_KERNEL);
2023 if (!new_key_string)
2024 return -ENOMEM;
2025
2026 key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user,
2027 key_desc + 1, NULL);
2028 if (IS_ERR(key)) {
2029 kzfree(new_key_string);
2030 return PTR_ERR(key);
2031 }
2032
2033 down_read(&key->sem);
2034
2035 ukp = user_key_payload_locked(key);
2036 if (!ukp) {
2037 up_read(&key->sem);
2038 key_put(key);
2039 kzfree(new_key_string);
2040 return -EKEYREVOKED;
2041 }
2042
2043 if (cc->key_size != ukp->datalen) {
2044 up_read(&key->sem);
2045 key_put(key);
2046 kzfree(new_key_string);
2047 return -EINVAL;
2048 }
2049
2050 memcpy(cc->key, ukp->data, cc->key_size);
2051
2052 up_read(&key->sem);
2053 key_put(key);
2054
2055 /* clear the flag since following operations may invalidate previously valid key */
2056 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2057
2058 ret = crypt_setkey(cc);
2059
2060 /* wipe the kernel key payload copy in each case */
2061 memset(cc->key, 0, cc->key_size * sizeof(u8));
2062
2063 if (!ret) {
2064 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2065 kzfree(cc->key_string);
2066 cc->key_string = new_key_string;
2067 } else
2068 kzfree(new_key_string);
2069
2070 return ret;
2071 }
2072
2073 static int get_key_size(char **key_string)
2074 {
2075 char *colon, dummy;
2076 int ret;
2077
2078 if (*key_string[0] != ':')
2079 return strlen(*key_string) >> 1;
2080
2081 /* look for next ':' in key string */
2082 colon = strpbrk(*key_string + 1, ":");
2083 if (!colon)
2084 return -EINVAL;
2085
2086 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2087 return -EINVAL;
2088
2089 *key_string = colon;
2090
2091 /* remaining key string should be :<logon|user>:<key_desc> */
2092
2093 return ret;
2094 }
2095
2096 #else
2097
2098 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2099 {
2100 return -EINVAL;
2101 }
2102
2103 static int get_key_size(char **key_string)
2104 {
2105 return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2106 }
2107
2108 #endif
2109
2110 static int crypt_set_key(struct crypt_config *cc, char *key)
2111 {
2112 int r = -EINVAL;
2113 int key_string_len = strlen(key);
2114
2115 /* Hyphen (which gives a key_size of zero) means there is no key. */
2116 if (!cc->key_size && strcmp(key, "-"))
2117 goto out;
2118
2119 /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2120 if (key[0] == ':') {
2121 r = crypt_set_keyring_key(cc, key + 1);
2122 goto out;
2123 }
2124
2125 /* clear the flag since following operations may invalidate previously valid key */
2126 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2127
2128 /* wipe references to any kernel keyring key */
2129 kzfree(cc->key_string);
2130 cc->key_string = NULL;
2131
2132 /* Decode key from its hex representation. */
2133 if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2134 goto out;
2135
2136 r = crypt_setkey(cc);
2137 if (!r)
2138 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2139
2140 out:
2141 /* Hex key string not needed after here, so wipe it. */
2142 memset(key, '0', key_string_len);
2143
2144 return r;
2145 }
2146
2147 static int crypt_wipe_key(struct crypt_config *cc)
2148 {
2149 int r;
2150
2151 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2152 get_random_bytes(&cc->key, cc->key_size);
2153 kzfree(cc->key_string);
2154 cc->key_string = NULL;
2155 r = crypt_setkey(cc);
2156 memset(&cc->key, 0, cc->key_size * sizeof(u8));
2157
2158 return r;
2159 }
2160
2161 static void crypt_dtr(struct dm_target *ti)
2162 {
2163 struct crypt_config *cc = ti->private;
2164
2165 ti->private = NULL;
2166
2167 if (!cc)
2168 return;
2169
2170 if (cc->write_thread)
2171 kthread_stop(cc->write_thread);
2172
2173 if (cc->io_queue)
2174 destroy_workqueue(cc->io_queue);
2175 if (cc->crypt_queue)
2176 destroy_workqueue(cc->crypt_queue);
2177
2178 crypt_free_tfms(cc);
2179
2180 if (cc->bs)
2181 bioset_free(cc->bs);
2182
2183 mempool_destroy(cc->page_pool);
2184 mempool_destroy(cc->req_pool);
2185 mempool_destroy(cc->tag_pool);
2186
2187 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2188 cc->iv_gen_ops->dtr(cc);
2189
2190 if (cc->dev)
2191 dm_put_device(ti, cc->dev);
2192
2193 kzfree(cc->cipher);
2194 kzfree(cc->cipher_string);
2195 kzfree(cc->key_string);
2196 kzfree(cc->cipher_auth);
2197 kzfree(cc->authenc_key);
2198
2199 /* Must zero key material before freeing */
2200 kzfree(cc);
2201 }
2202
2203 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2204 {
2205 struct crypt_config *cc = ti->private;
2206
2207 if (crypt_integrity_aead(cc))
2208 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2209 else
2210 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2211
2212 if (cc->iv_size)
2213 /* at least a 64 bit sector number should fit in our buffer */
2214 cc->iv_size = max(cc->iv_size,
2215 (unsigned int)(sizeof(u64) / sizeof(u8)));
2216 else if (ivmode) {
2217 DMWARN("Selected cipher does not support IVs");
2218 ivmode = NULL;
2219 }
2220
2221 /* Choose ivmode, see comments at iv code. */
2222 if (ivmode == NULL)
2223 cc->iv_gen_ops = NULL;
2224 else if (strcmp(ivmode, "plain") == 0)
2225 cc->iv_gen_ops = &crypt_iv_plain_ops;
2226 else if (strcmp(ivmode, "plain64") == 0)
2227 cc->iv_gen_ops = &crypt_iv_plain64_ops;
2228 else if (strcmp(ivmode, "plain64be") == 0)
2229 cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2230 else if (strcmp(ivmode, "essiv") == 0)
2231 cc->iv_gen_ops = &crypt_iv_essiv_ops;
2232 else if (strcmp(ivmode, "benbi") == 0)
2233 cc->iv_gen_ops = &crypt_iv_benbi_ops;
2234 else if (strcmp(ivmode, "null") == 0)
2235 cc->iv_gen_ops = &crypt_iv_null_ops;
2236 else if (strcmp(ivmode, "lmk") == 0) {
2237 cc->iv_gen_ops = &crypt_iv_lmk_ops;
2238 /*
2239 * Version 2 and 3 is recognised according
2240 * to length of provided multi-key string.
2241 * If present (version 3), last key is used as IV seed.
2242 * All keys (including IV seed) are always the same size.
2243 */
2244 if (cc->key_size % cc->key_parts) {
2245 cc->key_parts++;
2246 cc->key_extra_size = cc->key_size / cc->key_parts;
2247 }
2248 } else if (strcmp(ivmode, "tcw") == 0) {
2249 cc->iv_gen_ops = &crypt_iv_tcw_ops;
2250 cc->key_parts += 2; /* IV + whitening */
2251 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2252 } else if (strcmp(ivmode, "random") == 0) {
2253 cc->iv_gen_ops = &crypt_iv_random_ops;
2254 /* Need storage space in integrity fields. */
2255 cc->integrity_iv_size = cc->iv_size;
2256 } else {
2257 ti->error = "Invalid IV mode";
2258 return -EINVAL;
2259 }
2260
2261 return 0;
2262 }
2263
2264 /*
2265 * Workaround to parse cipher algorithm from crypto API spec.
2266 * The cc->cipher is currently used only in ESSIV.
2267 * This should be probably done by crypto-api calls (once available...)
2268 */
2269 static int crypt_ctr_blkdev_cipher(struct crypt_config *cc)
2270 {
2271 const char *alg_name = NULL;
2272 char *start, *end;
2273
2274 if (crypt_integrity_aead(cc)) {
2275 alg_name = crypto_tfm_alg_name(crypto_aead_tfm(any_tfm_aead(cc)));
2276 if (!alg_name)
2277 return -EINVAL;
2278 if (crypt_integrity_hmac(cc)) {
2279 alg_name = strchr(alg_name, ',');
2280 if (!alg_name)
2281 return -EINVAL;
2282 }
2283 alg_name++;
2284 } else {
2285 alg_name = crypto_tfm_alg_name(crypto_skcipher_tfm(any_tfm(cc)));
2286 if (!alg_name)
2287 return -EINVAL;
2288 }
2289
2290 start = strchr(alg_name, '(');
2291 end = strchr(alg_name, ')');
2292
2293 if (!start && !end) {
2294 cc->cipher = kstrdup(alg_name, GFP_KERNEL);
2295 return cc->cipher ? 0 : -ENOMEM;
2296 }
2297
2298 if (!start || !end || ++start >= end)
2299 return -EINVAL;
2300
2301 cc->cipher = kzalloc(end - start + 1, GFP_KERNEL);
2302 if (!cc->cipher)
2303 return -ENOMEM;
2304
2305 strncpy(cc->cipher, start, end - start);
2306
2307 return 0;
2308 }
2309
2310 /*
2311 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2312 * The HMAC is needed to calculate tag size (HMAC digest size).
2313 * This should be probably done by crypto-api calls (once available...)
2314 */
2315 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2316 {
2317 char *start, *end, *mac_alg = NULL;
2318 struct crypto_ahash *mac;
2319
2320 if (!strstarts(cipher_api, "authenc("))
2321 return 0;
2322
2323 start = strchr(cipher_api, '(');
2324 end = strchr(cipher_api, ',');
2325 if (!start || !end || ++start > end)
2326 return -EINVAL;
2327
2328 mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2329 if (!mac_alg)
2330 return -ENOMEM;
2331 strncpy(mac_alg, start, end - start);
2332
2333 mac = crypto_alloc_ahash(mac_alg, 0, 0);
2334 kfree(mac_alg);
2335
2336 if (IS_ERR(mac))
2337 return PTR_ERR(mac);
2338
2339 cc->key_mac_size = crypto_ahash_digestsize(mac);
2340 crypto_free_ahash(mac);
2341
2342 cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2343 if (!cc->authenc_key)
2344 return -ENOMEM;
2345
2346 return 0;
2347 }
2348
2349 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2350 char **ivmode, char **ivopts)
2351 {
2352 struct crypt_config *cc = ti->private;
2353 char *tmp, *cipher_api;
2354 int ret = -EINVAL;
2355
2356 cc->tfms_count = 1;
2357
2358 /*
2359 * New format (capi: prefix)
2360 * capi:cipher_api_spec-iv:ivopts
2361 */
2362 tmp = &cipher_in[strlen("capi:")];
2363 cipher_api = strsep(&tmp, "-");
2364 *ivmode = strsep(&tmp, ":");
2365 *ivopts = tmp;
2366
2367 if (*ivmode && !strcmp(*ivmode, "lmk"))
2368 cc->tfms_count = 64;
2369
2370 cc->key_parts = cc->tfms_count;
2371
2372 /* Allocate cipher */
2373 ret = crypt_alloc_tfms(cc, cipher_api);
2374 if (ret < 0) {
2375 ti->error = "Error allocating crypto tfm";
2376 return ret;
2377 }
2378
2379 /* Alloc AEAD, can be used only in new format. */
2380 if (crypt_integrity_aead(cc)) {
2381 ret = crypt_ctr_auth_cipher(cc, cipher_api);
2382 if (ret < 0) {
2383 ti->error = "Invalid AEAD cipher spec";
2384 return -ENOMEM;
2385 }
2386 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2387 } else
2388 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2389
2390 ret = crypt_ctr_blkdev_cipher(cc);
2391 if (ret < 0) {
2392 ti->error = "Cannot allocate cipher string";
2393 return -ENOMEM;
2394 }
2395
2396 return 0;
2397 }
2398
2399 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2400 char **ivmode, char **ivopts)
2401 {
2402 struct crypt_config *cc = ti->private;
2403 char *tmp, *cipher, *chainmode, *keycount;
2404 char *cipher_api = NULL;
2405 int ret = -EINVAL;
2406 char dummy;
2407
2408 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2409 ti->error = "Bad cipher specification";
2410 return -EINVAL;
2411 }
2412
2413 /*
2414 * Legacy dm-crypt cipher specification
2415 * cipher[:keycount]-mode-iv:ivopts
2416 */
2417 tmp = cipher_in;
2418 keycount = strsep(&tmp, "-");
2419 cipher = strsep(&keycount, ":");
2420
2421 if (!keycount)
2422 cc->tfms_count = 1;
2423 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2424 !is_power_of_2(cc->tfms_count)) {
2425 ti->error = "Bad cipher key count specification";
2426 return -EINVAL;
2427 }
2428 cc->key_parts = cc->tfms_count;
2429
2430 cc->cipher = kstrdup(cipher, GFP_KERNEL);
2431 if (!cc->cipher)
2432 goto bad_mem;
2433
2434 chainmode = strsep(&tmp, "-");
2435 *ivopts = strsep(&tmp, "-");
2436 *ivmode = strsep(&*ivopts, ":");
2437
2438 if (tmp)
2439 DMWARN("Ignoring unexpected additional cipher options");
2440
2441 /*
2442 * For compatibility with the original dm-crypt mapping format, if
2443 * only the cipher name is supplied, use cbc-plain.
2444 */
2445 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2446 chainmode = "cbc";
2447 *ivmode = "plain";
2448 }
2449
2450 if (strcmp(chainmode, "ecb") && !*ivmode) {
2451 ti->error = "IV mechanism required";
2452 return -EINVAL;
2453 }
2454
2455 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2456 if (!cipher_api)
2457 goto bad_mem;
2458
2459 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2460 "%s(%s)", chainmode, cipher);
2461 if (ret < 0) {
2462 kfree(cipher_api);
2463 goto bad_mem;
2464 }
2465
2466 /* Allocate cipher */
2467 ret = crypt_alloc_tfms(cc, cipher_api);
2468 if (ret < 0) {
2469 ti->error = "Error allocating crypto tfm";
2470 kfree(cipher_api);
2471 return ret;
2472 }
2473
2474 return 0;
2475 bad_mem:
2476 ti->error = "Cannot allocate cipher strings";
2477 return -ENOMEM;
2478 }
2479
2480 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
2481 {
2482 struct crypt_config *cc = ti->private;
2483 char *ivmode = NULL, *ivopts = NULL;
2484 int ret;
2485
2486 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
2487 if (!cc->cipher_string) {
2488 ti->error = "Cannot allocate cipher strings";
2489 return -ENOMEM;
2490 }
2491
2492 if (strstarts(cipher_in, "capi:"))
2493 ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
2494 else
2495 ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
2496 if (ret)
2497 return ret;
2498
2499 /* Initialize IV */
2500 ret = crypt_ctr_ivmode(ti, ivmode);
2501 if (ret < 0)
2502 return ret;
2503
2504 /* Initialize and set key */
2505 ret = crypt_set_key(cc, key);
2506 if (ret < 0) {
2507 ti->error = "Error decoding and setting key";
2508 return ret;
2509 }
2510
2511 /* Allocate IV */
2512 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
2513 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
2514 if (ret < 0) {
2515 ti->error = "Error creating IV";
2516 return ret;
2517 }
2518 }
2519
2520 /* Initialize IV (set keys for ESSIV etc) */
2521 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
2522 ret = cc->iv_gen_ops->init(cc);
2523 if (ret < 0) {
2524 ti->error = "Error initialising IV";
2525 return ret;
2526 }
2527 }
2528
2529 return ret;
2530 }
2531
2532 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
2533 {
2534 struct crypt_config *cc = ti->private;
2535 struct dm_arg_set as;
2536 static struct dm_arg _args[] = {
2537 {0, 6, "Invalid number of feature args"},
2538 };
2539 unsigned int opt_params, val;
2540 const char *opt_string, *sval;
2541 char dummy;
2542 int ret;
2543
2544 /* Optional parameters */
2545 as.argc = argc;
2546 as.argv = argv;
2547
2548 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2549 if (ret)
2550 return ret;
2551
2552 while (opt_params--) {
2553 opt_string = dm_shift_arg(&as);
2554 if (!opt_string) {
2555 ti->error = "Not enough feature arguments";
2556 return -EINVAL;
2557 }
2558
2559 if (!strcasecmp(opt_string, "allow_discards"))
2560 ti->num_discard_bios = 1;
2561
2562 else if (!strcasecmp(opt_string, "same_cpu_crypt"))
2563 set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2564
2565 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
2566 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2567 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
2568 if (val == 0 || val > MAX_TAG_SIZE) {
2569 ti->error = "Invalid integrity arguments";
2570 return -EINVAL;
2571 }
2572 cc->on_disk_tag_size = val;
2573 sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
2574 if (!strcasecmp(sval, "aead")) {
2575 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
2576 } else if (strcasecmp(sval, "none")) {
2577 ti->error = "Unknown integrity profile";
2578 return -EINVAL;
2579 }
2580
2581 cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
2582 if (!cc->cipher_auth)
2583 return -ENOMEM;
2584 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
2585 if (cc->sector_size < (1 << SECTOR_SHIFT) ||
2586 cc->sector_size > 4096 ||
2587 (cc->sector_size & (cc->sector_size - 1))) {
2588 ti->error = "Invalid feature value for sector_size";
2589 return -EINVAL;
2590 }
2591 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
2592 } else if (!strcasecmp(opt_string, "iv_large_sectors"))
2593 set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2594 else {
2595 ti->error = "Invalid feature arguments";
2596 return -EINVAL;
2597 }
2598 }
2599
2600 return 0;
2601 }
2602
2603 /*
2604 * Construct an encryption mapping:
2605 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
2606 */
2607 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2608 {
2609 struct crypt_config *cc;
2610 int key_size;
2611 unsigned int align_mask;
2612 unsigned long long tmpll;
2613 int ret;
2614 size_t iv_size_padding, additional_req_size;
2615 char dummy;
2616
2617 if (argc < 5) {
2618 ti->error = "Not enough arguments";
2619 return -EINVAL;
2620 }
2621
2622 key_size = get_key_size(&argv[1]);
2623 if (key_size < 0) {
2624 ti->error = "Cannot parse key size";
2625 return -EINVAL;
2626 }
2627
2628 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
2629 if (!cc) {
2630 ti->error = "Cannot allocate encryption context";
2631 return -ENOMEM;
2632 }
2633 cc->key_size = key_size;
2634 cc->sector_size = (1 << SECTOR_SHIFT);
2635 cc->sector_shift = 0;
2636
2637 ti->private = cc;
2638
2639 /* Optional parameters need to be read before cipher constructor */
2640 if (argc > 5) {
2641 ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
2642 if (ret)
2643 goto bad;
2644 }
2645
2646 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
2647 if (ret < 0)
2648 goto bad;
2649
2650 if (crypt_integrity_aead(cc)) {
2651 cc->dmreq_start = sizeof(struct aead_request);
2652 cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
2653 align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
2654 } else {
2655 cc->dmreq_start = sizeof(struct skcipher_request);
2656 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
2657 align_mask = crypto_skcipher_alignmask(any_tfm(cc));
2658 }
2659 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
2660
2661 if (align_mask < CRYPTO_MINALIGN) {
2662 /* Allocate the padding exactly */
2663 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
2664 & align_mask;
2665 } else {
2666 /*
2667 * If the cipher requires greater alignment than kmalloc
2668 * alignment, we don't know the exact position of the
2669 * initialization vector. We must assume worst case.
2670 */
2671 iv_size_padding = align_mask;
2672 }
2673
2674 ret = -ENOMEM;
2675
2676 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */
2677 additional_req_size = sizeof(struct dm_crypt_request) +
2678 iv_size_padding + cc->iv_size +
2679 cc->iv_size +
2680 sizeof(uint64_t) +
2681 sizeof(unsigned int);
2682
2683 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start + additional_req_size);
2684 if (!cc->req_pool) {
2685 ti->error = "Cannot allocate crypt request mempool";
2686 goto bad;
2687 }
2688
2689 cc->per_bio_data_size = ti->per_io_data_size =
2690 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
2691 ARCH_KMALLOC_MINALIGN);
2692
2693 cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
2694 if (!cc->page_pool) {
2695 ti->error = "Cannot allocate page mempool";
2696 goto bad;
2697 }
2698
2699 cc->bs = bioset_create(MIN_IOS, 0, (BIOSET_NEED_BVECS |
2700 BIOSET_NEED_RESCUER));
2701 if (!cc->bs) {
2702 ti->error = "Cannot allocate crypt bioset";
2703 goto bad;
2704 }
2705
2706 mutex_init(&cc->bio_alloc_lock);
2707
2708 ret = -EINVAL;
2709 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
2710 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
2711 ti->error = "Invalid iv_offset sector";
2712 goto bad;
2713 }
2714 cc->iv_offset = tmpll;
2715
2716 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
2717 if (ret) {
2718 ti->error = "Device lookup failed";
2719 goto bad;
2720 }
2721
2722 ret = -EINVAL;
2723 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
2724 ti->error = "Invalid device sector";
2725 goto bad;
2726 }
2727 cc->start = tmpll;
2728
2729 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
2730 ret = crypt_integrity_ctr(cc, ti);
2731 if (ret)
2732 goto bad;
2733
2734 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
2735 if (!cc->tag_pool_max_sectors)
2736 cc->tag_pool_max_sectors = 1;
2737
2738 cc->tag_pool = mempool_create_kmalloc_pool(MIN_IOS,
2739 cc->tag_pool_max_sectors * cc->on_disk_tag_size);
2740 if (!cc->tag_pool) {
2741 ti->error = "Cannot allocate integrity tags mempool";
2742 goto bad;
2743 }
2744
2745 cc->tag_pool_max_sectors <<= cc->sector_shift;
2746 }
2747
2748 ret = -ENOMEM;
2749 cc->io_queue = alloc_workqueue("kcryptd_io", WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
2750 if (!cc->io_queue) {
2751 ti->error = "Couldn't create kcryptd io queue";
2752 goto bad;
2753 }
2754
2755 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2756 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
2757 else
2758 cc->crypt_queue = alloc_workqueue("kcryptd",
2759 WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
2760 num_online_cpus());
2761 if (!cc->crypt_queue) {
2762 ti->error = "Couldn't create kcryptd queue";
2763 goto bad;
2764 }
2765
2766 init_waitqueue_head(&cc->write_thread_wait);
2767 cc->write_tree = RB_ROOT;
2768
2769 cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
2770 if (IS_ERR(cc->write_thread)) {
2771 ret = PTR_ERR(cc->write_thread);
2772 cc->write_thread = NULL;
2773 ti->error = "Couldn't spawn write thread";
2774 goto bad;
2775 }
2776 wake_up_process(cc->write_thread);
2777
2778 ti->num_flush_bios = 1;
2779
2780 return 0;
2781
2782 bad:
2783 crypt_dtr(ti);
2784 return ret;
2785 }
2786
2787 static int crypt_map(struct dm_target *ti, struct bio *bio)
2788 {
2789 struct dm_crypt_io *io;
2790 struct crypt_config *cc = ti->private;
2791
2792 /*
2793 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
2794 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
2795 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
2796 */
2797 if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
2798 bio_op(bio) == REQ_OP_DISCARD)) {
2799 bio->bi_bdev = cc->dev->bdev;
2800 if (bio_sectors(bio))
2801 bio->bi_iter.bi_sector = cc->start +
2802 dm_target_offset(ti, bio->bi_iter.bi_sector);
2803 return DM_MAPIO_REMAPPED;
2804 }
2805
2806 /*
2807 * Check if bio is too large, split as needed.
2808 */
2809 if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
2810 (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
2811 dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
2812
2813 /*
2814 * Ensure that bio is a multiple of internal sector encryption size
2815 * and is aligned to this size as defined in IO hints.
2816 */
2817 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
2818 return DM_MAPIO_KILL;
2819
2820 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
2821 return DM_MAPIO_KILL;
2822
2823 io = dm_per_bio_data(bio, cc->per_bio_data_size);
2824 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
2825
2826 if (cc->on_disk_tag_size) {
2827 unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
2828
2829 if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
2830 unlikely(!(io->integrity_metadata = kmalloc(tag_len,
2831 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
2832 if (bio_sectors(bio) > cc->tag_pool_max_sectors)
2833 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
2834 io->integrity_metadata = mempool_alloc(cc->tag_pool, GFP_NOIO);
2835 io->integrity_metadata_from_pool = true;
2836 }
2837 }
2838
2839 if (crypt_integrity_aead(cc))
2840 io->ctx.r.req_aead = (struct aead_request *)(io + 1);
2841 else
2842 io->ctx.r.req = (struct skcipher_request *)(io + 1);
2843
2844 if (bio_data_dir(io->base_bio) == READ) {
2845 if (kcryptd_io_read(io, GFP_NOWAIT))
2846 kcryptd_queue_read(io);
2847 } else
2848 kcryptd_queue_crypt(io);
2849
2850 return DM_MAPIO_SUBMITTED;
2851 }
2852
2853 static void crypt_status(struct dm_target *ti, status_type_t type,
2854 unsigned status_flags, char *result, unsigned maxlen)
2855 {
2856 struct crypt_config *cc = ti->private;
2857 unsigned i, sz = 0;
2858 int num_feature_args = 0;
2859
2860 switch (type) {
2861 case STATUSTYPE_INFO:
2862 result[0] = '\0';
2863 break;
2864
2865 case STATUSTYPE_TABLE:
2866 DMEMIT("%s ", cc->cipher_string);
2867
2868 if (cc->key_size > 0) {
2869 if (cc->key_string)
2870 DMEMIT(":%u:%s", cc->key_size, cc->key_string);
2871 else
2872 for (i = 0; i < cc->key_size; i++)
2873 DMEMIT("%02x", cc->key[i]);
2874 } else
2875 DMEMIT("-");
2876
2877 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
2878 cc->dev->name, (unsigned long long)cc->start);
2879
2880 num_feature_args += !!ti->num_discard_bios;
2881 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2882 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2883 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
2884 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2885 if (cc->on_disk_tag_size)
2886 num_feature_args++;
2887 if (num_feature_args) {
2888 DMEMIT(" %d", num_feature_args);
2889 if (ti->num_discard_bios)
2890 DMEMIT(" allow_discards");
2891 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2892 DMEMIT(" same_cpu_crypt");
2893 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
2894 DMEMIT(" submit_from_crypt_cpus");
2895 if (cc->on_disk_tag_size)
2896 DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
2897 if (cc->sector_size != (1 << SECTOR_SHIFT))
2898 DMEMIT(" sector_size:%d", cc->sector_size);
2899 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
2900 DMEMIT(" iv_large_sectors");
2901 }
2902
2903 break;
2904 }
2905 }
2906
2907 static void crypt_postsuspend(struct dm_target *ti)
2908 {
2909 struct crypt_config *cc = ti->private;
2910
2911 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2912 }
2913
2914 static int crypt_preresume(struct dm_target *ti)
2915 {
2916 struct crypt_config *cc = ti->private;
2917
2918 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
2919 DMERR("aborting resume - crypt key is not set.");
2920 return -EAGAIN;
2921 }
2922
2923 return 0;
2924 }
2925
2926 static void crypt_resume(struct dm_target *ti)
2927 {
2928 struct crypt_config *cc = ti->private;
2929
2930 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2931 }
2932
2933 /* Message interface
2934 * key set <key>
2935 * key wipe
2936 */
2937 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
2938 {
2939 struct crypt_config *cc = ti->private;
2940 int key_size, ret = -EINVAL;
2941
2942 if (argc < 2)
2943 goto error;
2944
2945 if (!strcasecmp(argv[0], "key")) {
2946 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2947 DMWARN("not suspended during key manipulation.");
2948 return -EINVAL;
2949 }
2950 if (argc == 3 && !strcasecmp(argv[1], "set")) {
2951 /* The key size may not be changed. */
2952 key_size = get_key_size(&argv[2]);
2953 if (key_size < 0 || cc->key_size != key_size) {
2954 memset(argv[2], '0', strlen(argv[2]));
2955 return -EINVAL;
2956 }
2957
2958 ret = crypt_set_key(cc, argv[2]);
2959 if (ret)
2960 return ret;
2961 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2962 ret = cc->iv_gen_ops->init(cc);
2963 return ret;
2964 }
2965 if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2966 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2967 ret = cc->iv_gen_ops->wipe(cc);
2968 if (ret)
2969 return ret;
2970 }
2971 return crypt_wipe_key(cc);
2972 }
2973 }
2974
2975 error:
2976 DMWARN("unrecognised message received.");
2977 return -EINVAL;
2978 }
2979
2980 static int crypt_iterate_devices(struct dm_target *ti,
2981 iterate_devices_callout_fn fn, void *data)
2982 {
2983 struct crypt_config *cc = ti->private;
2984
2985 return fn(ti, cc->dev, cc->start, ti->len, data);
2986 }
2987
2988 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2989 {
2990 struct crypt_config *cc = ti->private;
2991
2992 /*
2993 * Unfortunate constraint that is required to avoid the potential
2994 * for exceeding underlying device's max_segments limits -- due to
2995 * crypt_alloc_buffer() possibly allocating pages for the encryption
2996 * bio that are not as physically contiguous as the original bio.
2997 */
2998 limits->max_segment_size = PAGE_SIZE;
2999
3000 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
3001 limits->logical_block_size = cc->sector_size;
3002 limits->physical_block_size = cc->sector_size;
3003 blk_limits_io_min(limits, cc->sector_size);
3004 }
3005 }
3006
3007 static struct target_type crypt_target = {
3008 .name = "crypt",
3009 .version = {1, 18, 0},
3010 .module = THIS_MODULE,
3011 .ctr = crypt_ctr,
3012 .dtr = crypt_dtr,
3013 .map = crypt_map,
3014 .status = crypt_status,
3015 .postsuspend = crypt_postsuspend,
3016 .preresume = crypt_preresume,
3017 .resume = crypt_resume,
3018 .message = crypt_message,
3019 .iterate_devices = crypt_iterate_devices,
3020 .io_hints = crypt_io_hints,
3021 };
3022
3023 static int __init dm_crypt_init(void)
3024 {
3025 int r;
3026
3027 r = dm_register_target(&crypt_target);
3028 if (r < 0)
3029 DMERR("register failed %d", r);
3030
3031 return r;
3032 }
3033
3034 static void __exit dm_crypt_exit(void)
3035 {
3036 dm_unregister_target(&crypt_target);
3037 }
3038
3039 module_init(dm_crypt_init);
3040 module_exit(dm_crypt_exit);
3041
3042 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3043 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3044 MODULE_LICENSE("GPL");