]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/dm-integrity.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm-integrity.c
1 /*
2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3 * Copyright (C) 2016-2017 Milan Broz
4 * Copyright (C) 2016-2017 Mikulas Patocka
5 *
6 * This file is released under the GPL.
7 */
8
9 #include <linux/module.h>
10 #include <linux/device-mapper.h>
11 #include <linux/dm-io.h>
12 #include <linux/vmalloc.h>
13 #include <linux/sort.h>
14 #include <linux/rbtree.h>
15 #include <linux/delay.h>
16 #include <linux/random.h>
17 #include <crypto/hash.h>
18 #include <crypto/skcipher.h>
19 #include <linux/async_tx.h>
20 #include "dm-bufio.h"
21
22 #define DM_MSG_PREFIX "integrity"
23
24 #define DEFAULT_INTERLEAVE_SECTORS 32768
25 #define DEFAULT_JOURNAL_SIZE_FACTOR 7
26 #define DEFAULT_BUFFER_SECTORS 128
27 #define DEFAULT_JOURNAL_WATERMARK 50
28 #define DEFAULT_SYNC_MSEC 10000
29 #define DEFAULT_MAX_JOURNAL_SECTORS 131072
30 #define MIN_LOG2_INTERLEAVE_SECTORS 3
31 #define MAX_LOG2_INTERLEAVE_SECTORS 31
32 #define METADATA_WORKQUEUE_MAX_ACTIVE 16
33
34 /*
35 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
36 * so it should not be enabled in the official kernel
37 */
38 //#define DEBUG_PRINT
39 //#define INTERNAL_VERIFY
40
41 /*
42 * On disk structures
43 */
44
45 #define SB_MAGIC "integrt"
46 #define SB_VERSION 1
47 #define SB_SECTORS 8
48 #define MAX_SECTORS_PER_BLOCK 8
49
50 struct superblock {
51 __u8 magic[8];
52 __u8 version;
53 __u8 log2_interleave_sectors;
54 __u16 integrity_tag_size;
55 __u32 journal_sections;
56 __u64 provided_data_sectors; /* userspace uses this value */
57 __u32 flags;
58 __u8 log2_sectors_per_block;
59 };
60
61 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1
62
63 #define JOURNAL_ENTRY_ROUNDUP 8
64
65 typedef __u64 commit_id_t;
66 #define JOURNAL_MAC_PER_SECTOR 8
67
68 struct journal_entry {
69 union {
70 struct {
71 __u32 sector_lo;
72 __u32 sector_hi;
73 } s;
74 __u64 sector;
75 } u;
76 commit_id_t last_bytes[0];
77 /* __u8 tag[0]; */
78 };
79
80 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
81
82 #if BITS_PER_LONG == 64
83 #define journal_entry_set_sector(je, x) do { smp_wmb(); ACCESS_ONCE((je)->u.sector) = cpu_to_le64(x); } while (0)
84 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
85 #elif defined(CONFIG_LBDAF)
86 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); ACCESS_ONCE((je)->u.s.sector_hi) = cpu_to_le32((x) >> 32); } while (0)
87 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
88 #else
89 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); ACCESS_ONCE((je)->u.s.sector_hi) = cpu_to_le32(0); } while (0)
90 #define journal_entry_get_sector(je) le32_to_cpu((je)->u.s.sector_lo)
91 #endif
92 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
93 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
94 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
95 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
96
97 #define JOURNAL_BLOCK_SECTORS 8
98 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
99 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
100
101 struct journal_sector {
102 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
103 __u8 mac[JOURNAL_MAC_PER_SECTOR];
104 commit_id_t commit_id;
105 };
106
107 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
108
109 #define METADATA_PADDING_SECTORS 8
110
111 #define N_COMMIT_IDS 4
112
113 static unsigned char prev_commit_seq(unsigned char seq)
114 {
115 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
116 }
117
118 static unsigned char next_commit_seq(unsigned char seq)
119 {
120 return (seq + 1) % N_COMMIT_IDS;
121 }
122
123 /*
124 * In-memory structures
125 */
126
127 struct journal_node {
128 struct rb_node node;
129 sector_t sector;
130 };
131
132 struct alg_spec {
133 char *alg_string;
134 char *key_string;
135 __u8 *key;
136 unsigned key_size;
137 };
138
139 struct dm_integrity_c {
140 struct dm_dev *dev;
141 unsigned tag_size;
142 __s8 log2_tag_size;
143 sector_t start;
144 mempool_t *journal_io_mempool;
145 struct dm_io_client *io;
146 struct dm_bufio_client *bufio;
147 struct workqueue_struct *metadata_wq;
148 struct superblock *sb;
149 unsigned journal_pages;
150 struct page_list *journal;
151 struct page_list *journal_io;
152 struct page_list *journal_xor;
153
154 struct crypto_skcipher *journal_crypt;
155 struct scatterlist **journal_scatterlist;
156 struct scatterlist **journal_io_scatterlist;
157 struct skcipher_request **sk_requests;
158
159 struct crypto_shash *journal_mac;
160
161 struct journal_node *journal_tree;
162 struct rb_root journal_tree_root;
163
164 sector_t provided_data_sectors;
165
166 unsigned short journal_entry_size;
167 unsigned char journal_entries_per_sector;
168 unsigned char journal_section_entries;
169 unsigned short journal_section_sectors;
170 unsigned journal_sections;
171 unsigned journal_entries;
172 sector_t device_sectors;
173 unsigned initial_sectors;
174 unsigned metadata_run;
175 __s8 log2_metadata_run;
176 __u8 log2_buffer_sectors;
177 __u8 sectors_per_block;
178
179 unsigned char mode;
180 bool suspending;
181
182 int failed;
183
184 struct crypto_shash *internal_hash;
185
186 /* these variables are locked with endio_wait.lock */
187 struct rb_root in_progress;
188 wait_queue_head_t endio_wait;
189 struct workqueue_struct *wait_wq;
190
191 unsigned char commit_seq;
192 commit_id_t commit_ids[N_COMMIT_IDS];
193
194 unsigned committed_section;
195 unsigned n_committed_sections;
196
197 unsigned uncommitted_section;
198 unsigned n_uncommitted_sections;
199
200 unsigned free_section;
201 unsigned char free_section_entry;
202 unsigned free_sectors;
203
204 unsigned free_sectors_threshold;
205
206 struct workqueue_struct *commit_wq;
207 struct work_struct commit_work;
208
209 struct workqueue_struct *writer_wq;
210 struct work_struct writer_work;
211
212 struct bio_list flush_bio_list;
213
214 unsigned long autocommit_jiffies;
215 struct timer_list autocommit_timer;
216 unsigned autocommit_msec;
217
218 wait_queue_head_t copy_to_journal_wait;
219
220 struct completion crypto_backoff;
221
222 bool journal_uptodate;
223 bool just_formatted;
224
225 struct alg_spec internal_hash_alg;
226 struct alg_spec journal_crypt_alg;
227 struct alg_spec journal_mac_alg;
228 };
229
230 struct dm_integrity_range {
231 sector_t logical_sector;
232 unsigned n_sectors;
233 struct rb_node node;
234 };
235
236 struct dm_integrity_io {
237 struct work_struct work;
238
239 struct dm_integrity_c *ic;
240 bool write;
241 bool fua;
242
243 struct dm_integrity_range range;
244
245 sector_t metadata_block;
246 unsigned metadata_offset;
247
248 atomic_t in_flight;
249 blk_status_t bi_status;
250
251 struct completion *completion;
252
253 struct block_device *orig_bi_bdev;
254 bio_end_io_t *orig_bi_end_io;
255 struct bio_integrity_payload *orig_bi_integrity;
256 struct bvec_iter orig_bi_iter;
257 };
258
259 struct journal_completion {
260 struct dm_integrity_c *ic;
261 atomic_t in_flight;
262 struct completion comp;
263 };
264
265 struct journal_io {
266 struct dm_integrity_range range;
267 struct journal_completion *comp;
268 };
269
270 static struct kmem_cache *journal_io_cache;
271
272 #define JOURNAL_IO_MEMPOOL 32
273
274 #ifdef DEBUG_PRINT
275 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
276 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
277 {
278 va_list args;
279 va_start(args, msg);
280 vprintk(msg, args);
281 va_end(args);
282 if (len)
283 pr_cont(":");
284 while (len) {
285 pr_cont(" %02x", *bytes);
286 bytes++;
287 len--;
288 }
289 pr_cont("\n");
290 }
291 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
292 #else
293 #define DEBUG_print(x, ...) do { } while (0)
294 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
295 #endif
296
297 /*
298 * DM Integrity profile, protection is performed layer above (dm-crypt)
299 */
300 static struct blk_integrity_profile dm_integrity_profile = {
301 .name = "DM-DIF-EXT-TAG",
302 .generate_fn = NULL,
303 .verify_fn = NULL,
304 };
305
306 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
307 static void integrity_bio_wait(struct work_struct *w);
308 static void dm_integrity_dtr(struct dm_target *ti);
309
310 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
311 {
312 if (!cmpxchg(&ic->failed, 0, err))
313 DMERR("Error on %s: %d", msg, err);
314 }
315
316 static int dm_integrity_failed(struct dm_integrity_c *ic)
317 {
318 return ACCESS_ONCE(ic->failed);
319 }
320
321 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
322 unsigned j, unsigned char seq)
323 {
324 /*
325 * Xor the number with section and sector, so that if a piece of
326 * journal is written at wrong place, it is detected.
327 */
328 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
329 }
330
331 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
332 sector_t *area, sector_t *offset)
333 {
334 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
335
336 *area = data_sector >> log2_interleave_sectors;
337 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
338 }
339
340 #define sector_to_block(ic, n) \
341 do { \
342 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \
343 (n) >>= (ic)->sb->log2_sectors_per_block; \
344 } while (0)
345
346 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
347 sector_t offset, unsigned *metadata_offset)
348 {
349 __u64 ms;
350 unsigned mo;
351
352 ms = area << ic->sb->log2_interleave_sectors;
353 if (likely(ic->log2_metadata_run >= 0))
354 ms += area << ic->log2_metadata_run;
355 else
356 ms += area * ic->metadata_run;
357 ms >>= ic->log2_buffer_sectors;
358
359 sector_to_block(ic, offset);
360
361 if (likely(ic->log2_tag_size >= 0)) {
362 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
363 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
364 } else {
365 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
366 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
367 }
368 *metadata_offset = mo;
369 return ms;
370 }
371
372 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
373 {
374 sector_t result;
375
376 result = area << ic->sb->log2_interleave_sectors;
377 if (likely(ic->log2_metadata_run >= 0))
378 result += (area + 1) << ic->log2_metadata_run;
379 else
380 result += (area + 1) * ic->metadata_run;
381
382 result += (sector_t)ic->initial_sectors + offset;
383 return result;
384 }
385
386 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
387 {
388 if (unlikely(*sec_ptr >= ic->journal_sections))
389 *sec_ptr -= ic->journal_sections;
390 }
391
392 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
393 {
394 struct dm_io_request io_req;
395 struct dm_io_region io_loc;
396
397 io_req.bi_op = op;
398 io_req.bi_op_flags = op_flags;
399 io_req.mem.type = DM_IO_KMEM;
400 io_req.mem.ptr.addr = ic->sb;
401 io_req.notify.fn = NULL;
402 io_req.client = ic->io;
403 io_loc.bdev = ic->dev->bdev;
404 io_loc.sector = ic->start;
405 io_loc.count = SB_SECTORS;
406
407 return dm_io(&io_req, 1, &io_loc, NULL);
408 }
409
410 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
411 bool e, const char *function)
412 {
413 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
414 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
415
416 if (unlikely(section >= ic->journal_sections) ||
417 unlikely(offset >= limit)) {
418 printk(KERN_CRIT "%s: invalid access at (%u,%u), limit (%u,%u)\n",
419 function, section, offset, ic->journal_sections, limit);
420 BUG();
421 }
422 #endif
423 }
424
425 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
426 unsigned *pl_index, unsigned *pl_offset)
427 {
428 unsigned sector;
429
430 access_journal_check(ic, section, offset, false, "page_list_location");
431
432 sector = section * ic->journal_section_sectors + offset;
433
434 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
435 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
436 }
437
438 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
439 unsigned section, unsigned offset, unsigned *n_sectors)
440 {
441 unsigned pl_index, pl_offset;
442 char *va;
443
444 page_list_location(ic, section, offset, &pl_index, &pl_offset);
445
446 if (n_sectors)
447 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
448
449 va = lowmem_page_address(pl[pl_index].page);
450
451 return (struct journal_sector *)(va + pl_offset);
452 }
453
454 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
455 {
456 return access_page_list(ic, ic->journal, section, offset, NULL);
457 }
458
459 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
460 {
461 unsigned rel_sector, offset;
462 struct journal_sector *js;
463
464 access_journal_check(ic, section, n, true, "access_journal_entry");
465
466 rel_sector = n % JOURNAL_BLOCK_SECTORS;
467 offset = n / JOURNAL_BLOCK_SECTORS;
468
469 js = access_journal(ic, section, rel_sector);
470 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
471 }
472
473 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
474 {
475 n <<= ic->sb->log2_sectors_per_block;
476
477 n += JOURNAL_BLOCK_SECTORS;
478
479 access_journal_check(ic, section, n, false, "access_journal_data");
480
481 return access_journal(ic, section, n);
482 }
483
484 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
485 {
486 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
487 int r;
488 unsigned j, size;
489
490 desc->tfm = ic->journal_mac;
491 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
492
493 r = crypto_shash_init(desc);
494 if (unlikely(r)) {
495 dm_integrity_io_error(ic, "crypto_shash_init", r);
496 goto err;
497 }
498
499 for (j = 0; j < ic->journal_section_entries; j++) {
500 struct journal_entry *je = access_journal_entry(ic, section, j);
501 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
502 if (unlikely(r)) {
503 dm_integrity_io_error(ic, "crypto_shash_update", r);
504 goto err;
505 }
506 }
507
508 size = crypto_shash_digestsize(ic->journal_mac);
509
510 if (likely(size <= JOURNAL_MAC_SIZE)) {
511 r = crypto_shash_final(desc, result);
512 if (unlikely(r)) {
513 dm_integrity_io_error(ic, "crypto_shash_final", r);
514 goto err;
515 }
516 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
517 } else {
518 __u8 digest[size];
519 r = crypto_shash_final(desc, digest);
520 if (unlikely(r)) {
521 dm_integrity_io_error(ic, "crypto_shash_final", r);
522 goto err;
523 }
524 memcpy(result, digest, JOURNAL_MAC_SIZE);
525 }
526
527 return;
528 err:
529 memset(result, 0, JOURNAL_MAC_SIZE);
530 }
531
532 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
533 {
534 __u8 result[JOURNAL_MAC_SIZE];
535 unsigned j;
536
537 if (!ic->journal_mac)
538 return;
539
540 section_mac(ic, section, result);
541
542 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
543 struct journal_sector *js = access_journal(ic, section, j);
544
545 if (likely(wr))
546 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
547 else {
548 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
549 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
550 }
551 }
552 }
553
554 static void complete_journal_op(void *context)
555 {
556 struct journal_completion *comp = context;
557 BUG_ON(!atomic_read(&comp->in_flight));
558 if (likely(atomic_dec_and_test(&comp->in_flight)))
559 complete(&comp->comp);
560 }
561
562 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
563 unsigned n_sections, struct journal_completion *comp)
564 {
565 struct async_submit_ctl submit;
566 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
567 unsigned pl_index, pl_offset, section_index;
568 struct page_list *source_pl, *target_pl;
569
570 if (likely(encrypt)) {
571 source_pl = ic->journal;
572 target_pl = ic->journal_io;
573 } else {
574 source_pl = ic->journal_io;
575 target_pl = ic->journal;
576 }
577
578 page_list_location(ic, section, 0, &pl_index, &pl_offset);
579
580 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
581
582 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
583
584 section_index = pl_index;
585
586 do {
587 size_t this_step;
588 struct page *src_pages[2];
589 struct page *dst_page;
590
591 while (unlikely(pl_index == section_index)) {
592 unsigned dummy;
593 if (likely(encrypt))
594 rw_section_mac(ic, section, true);
595 section++;
596 n_sections--;
597 if (!n_sections)
598 break;
599 page_list_location(ic, section, 0, &section_index, &dummy);
600 }
601
602 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
603 dst_page = target_pl[pl_index].page;
604 src_pages[0] = source_pl[pl_index].page;
605 src_pages[1] = ic->journal_xor[pl_index].page;
606
607 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
608
609 pl_index++;
610 pl_offset = 0;
611 n_bytes -= this_step;
612 } while (n_bytes);
613
614 BUG_ON(n_sections);
615
616 async_tx_issue_pending_all();
617 }
618
619 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
620 {
621 struct journal_completion *comp = req->data;
622 if (unlikely(err)) {
623 if (likely(err == -EINPROGRESS)) {
624 complete(&comp->ic->crypto_backoff);
625 return;
626 }
627 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
628 }
629 complete_journal_op(comp);
630 }
631
632 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
633 {
634 int r;
635 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
636 complete_journal_encrypt, comp);
637 if (likely(encrypt))
638 r = crypto_skcipher_encrypt(req);
639 else
640 r = crypto_skcipher_decrypt(req);
641 if (likely(!r))
642 return false;
643 if (likely(r == -EINPROGRESS))
644 return true;
645 if (likely(r == -EBUSY)) {
646 wait_for_completion(&comp->ic->crypto_backoff);
647 reinit_completion(&comp->ic->crypto_backoff);
648 return true;
649 }
650 dm_integrity_io_error(comp->ic, "encrypt", r);
651 return false;
652 }
653
654 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
655 unsigned n_sections, struct journal_completion *comp)
656 {
657 struct scatterlist **source_sg;
658 struct scatterlist **target_sg;
659
660 atomic_add(2, &comp->in_flight);
661
662 if (likely(encrypt)) {
663 source_sg = ic->journal_scatterlist;
664 target_sg = ic->journal_io_scatterlist;
665 } else {
666 source_sg = ic->journal_io_scatterlist;
667 target_sg = ic->journal_scatterlist;
668 }
669
670 do {
671 struct skcipher_request *req;
672 unsigned ivsize;
673 char *iv;
674
675 if (likely(encrypt))
676 rw_section_mac(ic, section, true);
677
678 req = ic->sk_requests[section];
679 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
680 iv = req->iv;
681
682 memcpy(iv, iv + ivsize, ivsize);
683
684 req->src = source_sg[section];
685 req->dst = target_sg[section];
686
687 if (unlikely(do_crypt(encrypt, req, comp)))
688 atomic_inc(&comp->in_flight);
689
690 section++;
691 n_sections--;
692 } while (n_sections);
693
694 atomic_dec(&comp->in_flight);
695 complete_journal_op(comp);
696 }
697
698 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
699 unsigned n_sections, struct journal_completion *comp)
700 {
701 if (ic->journal_xor)
702 return xor_journal(ic, encrypt, section, n_sections, comp);
703 else
704 return crypt_journal(ic, encrypt, section, n_sections, comp);
705 }
706
707 static void complete_journal_io(unsigned long error, void *context)
708 {
709 struct journal_completion *comp = context;
710 if (unlikely(error != 0))
711 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
712 complete_journal_op(comp);
713 }
714
715 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
716 unsigned n_sections, struct journal_completion *comp)
717 {
718 struct dm_io_request io_req;
719 struct dm_io_region io_loc;
720 unsigned sector, n_sectors, pl_index, pl_offset;
721 int r;
722
723 if (unlikely(dm_integrity_failed(ic))) {
724 if (comp)
725 complete_journal_io(-1UL, comp);
726 return;
727 }
728
729 sector = section * ic->journal_section_sectors;
730 n_sectors = n_sections * ic->journal_section_sectors;
731
732 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
733 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
734
735 io_req.bi_op = op;
736 io_req.bi_op_flags = op_flags;
737 io_req.mem.type = DM_IO_PAGE_LIST;
738 if (ic->journal_io)
739 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
740 else
741 io_req.mem.ptr.pl = &ic->journal[pl_index];
742 io_req.mem.offset = pl_offset;
743 if (likely(comp != NULL)) {
744 io_req.notify.fn = complete_journal_io;
745 io_req.notify.context = comp;
746 } else {
747 io_req.notify.fn = NULL;
748 }
749 io_req.client = ic->io;
750 io_loc.bdev = ic->dev->bdev;
751 io_loc.sector = ic->start + SB_SECTORS + sector;
752 io_loc.count = n_sectors;
753
754 r = dm_io(&io_req, 1, &io_loc, NULL);
755 if (unlikely(r)) {
756 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
757 if (comp) {
758 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
759 complete_journal_io(-1UL, comp);
760 }
761 }
762 }
763
764 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
765 {
766 struct journal_completion io_comp;
767 struct journal_completion crypt_comp_1;
768 struct journal_completion crypt_comp_2;
769 unsigned i;
770
771 io_comp.ic = ic;
772 io_comp.comp = COMPLETION_INITIALIZER_ONSTACK(io_comp.comp);
773
774 if (commit_start + commit_sections <= ic->journal_sections) {
775 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
776 if (ic->journal_io) {
777 crypt_comp_1.ic = ic;
778 crypt_comp_1.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp_1.comp);
779 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
780 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
781 wait_for_completion_io(&crypt_comp_1.comp);
782 } else {
783 for (i = 0; i < commit_sections; i++)
784 rw_section_mac(ic, commit_start + i, true);
785 }
786 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
787 commit_sections, &io_comp);
788 } else {
789 unsigned to_end;
790 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
791 to_end = ic->journal_sections - commit_start;
792 if (ic->journal_io) {
793 crypt_comp_1.ic = ic;
794 crypt_comp_1.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp_1.comp);
795 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
796 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
797 if (try_wait_for_completion(&crypt_comp_1.comp)) {
798 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
799 crypt_comp_1.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp_1.comp);
800 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
801 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
802 wait_for_completion_io(&crypt_comp_1.comp);
803 } else {
804 crypt_comp_2.ic = ic;
805 crypt_comp_2.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp_2.comp);
806 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
807 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
808 wait_for_completion_io(&crypt_comp_1.comp);
809 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
810 wait_for_completion_io(&crypt_comp_2.comp);
811 }
812 } else {
813 for (i = 0; i < to_end; i++)
814 rw_section_mac(ic, commit_start + i, true);
815 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
816 for (i = 0; i < commit_sections - to_end; i++)
817 rw_section_mac(ic, i, true);
818 }
819 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
820 }
821
822 wait_for_completion_io(&io_comp.comp);
823 }
824
825 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
826 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
827 {
828 struct dm_io_request io_req;
829 struct dm_io_region io_loc;
830 int r;
831 unsigned sector, pl_index, pl_offset;
832
833 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
834
835 if (unlikely(dm_integrity_failed(ic))) {
836 fn(-1UL, data);
837 return;
838 }
839
840 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
841
842 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
843 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
844
845 io_req.bi_op = REQ_OP_WRITE;
846 io_req.bi_op_flags = 0;
847 io_req.mem.type = DM_IO_PAGE_LIST;
848 io_req.mem.ptr.pl = &ic->journal[pl_index];
849 io_req.mem.offset = pl_offset;
850 io_req.notify.fn = fn;
851 io_req.notify.context = data;
852 io_req.client = ic->io;
853 io_loc.bdev = ic->dev->bdev;
854 io_loc.sector = ic->start + target;
855 io_loc.count = n_sectors;
856
857 r = dm_io(&io_req, 1, &io_loc, NULL);
858 if (unlikely(r)) {
859 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
860 fn(-1UL, data);
861 }
862 }
863
864 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
865 {
866 struct rb_node **n = &ic->in_progress.rb_node;
867 struct rb_node *parent;
868
869 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
870
871 parent = NULL;
872
873 while (*n) {
874 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
875
876 parent = *n;
877 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
878 n = &range->node.rb_left;
879 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
880 n = &range->node.rb_right;
881 } else {
882 return false;
883 }
884 }
885
886 rb_link_node(&new_range->node, parent, n);
887 rb_insert_color(&new_range->node, &ic->in_progress);
888
889 return true;
890 }
891
892 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
893 {
894 rb_erase(&range->node, &ic->in_progress);
895 wake_up_locked(&ic->endio_wait);
896 }
897
898 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
899 {
900 unsigned long flags;
901
902 spin_lock_irqsave(&ic->endio_wait.lock, flags);
903 remove_range_unlocked(ic, range);
904 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
905 }
906
907 static void init_journal_node(struct journal_node *node)
908 {
909 RB_CLEAR_NODE(&node->node);
910 node->sector = (sector_t)-1;
911 }
912
913 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
914 {
915 struct rb_node **link;
916 struct rb_node *parent;
917
918 node->sector = sector;
919 BUG_ON(!RB_EMPTY_NODE(&node->node));
920
921 link = &ic->journal_tree_root.rb_node;
922 parent = NULL;
923
924 while (*link) {
925 struct journal_node *j;
926 parent = *link;
927 j = container_of(parent, struct journal_node, node);
928 if (sector < j->sector)
929 link = &j->node.rb_left;
930 else
931 link = &j->node.rb_right;
932 }
933
934 rb_link_node(&node->node, parent, link);
935 rb_insert_color(&node->node, &ic->journal_tree_root);
936 }
937
938 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
939 {
940 BUG_ON(RB_EMPTY_NODE(&node->node));
941 rb_erase(&node->node, &ic->journal_tree_root);
942 init_journal_node(node);
943 }
944
945 #define NOT_FOUND (-1U)
946
947 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
948 {
949 struct rb_node *n = ic->journal_tree_root.rb_node;
950 unsigned found = NOT_FOUND;
951 *next_sector = (sector_t)-1;
952 while (n) {
953 struct journal_node *j = container_of(n, struct journal_node, node);
954 if (sector == j->sector) {
955 found = j - ic->journal_tree;
956 }
957 if (sector < j->sector) {
958 *next_sector = j->sector;
959 n = j->node.rb_left;
960 } else {
961 n = j->node.rb_right;
962 }
963 }
964
965 return found;
966 }
967
968 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
969 {
970 struct journal_node *node, *next_node;
971 struct rb_node *next;
972
973 if (unlikely(pos >= ic->journal_entries))
974 return false;
975 node = &ic->journal_tree[pos];
976 if (unlikely(RB_EMPTY_NODE(&node->node)))
977 return false;
978 if (unlikely(node->sector != sector))
979 return false;
980
981 next = rb_next(&node->node);
982 if (unlikely(!next))
983 return true;
984
985 next_node = container_of(next, struct journal_node, node);
986 return next_node->sector != sector;
987 }
988
989 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
990 {
991 struct rb_node *next;
992 struct journal_node *next_node;
993 unsigned next_section;
994
995 BUG_ON(RB_EMPTY_NODE(&node->node));
996
997 next = rb_next(&node->node);
998 if (unlikely(!next))
999 return false;
1000
1001 next_node = container_of(next, struct journal_node, node);
1002
1003 if (next_node->sector != node->sector)
1004 return false;
1005
1006 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1007 if (next_section >= ic->committed_section &&
1008 next_section < ic->committed_section + ic->n_committed_sections)
1009 return true;
1010 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1011 return true;
1012
1013 return false;
1014 }
1015
1016 #define TAG_READ 0
1017 #define TAG_WRITE 1
1018 #define TAG_CMP 2
1019
1020 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1021 unsigned *metadata_offset, unsigned total_size, int op)
1022 {
1023 do {
1024 unsigned char *data, *dp;
1025 struct dm_buffer *b;
1026 unsigned to_copy;
1027 int r;
1028
1029 r = dm_integrity_failed(ic);
1030 if (unlikely(r))
1031 return r;
1032
1033 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1034 if (unlikely(IS_ERR(data)))
1035 return PTR_ERR(data);
1036
1037 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1038 dp = data + *metadata_offset;
1039 if (op == TAG_READ) {
1040 memcpy(tag, dp, to_copy);
1041 } else if (op == TAG_WRITE) {
1042 memcpy(dp, tag, to_copy);
1043 dm_bufio_mark_buffer_dirty(b);
1044 } else {
1045 /* e.g.: op == TAG_CMP */
1046 if (unlikely(memcmp(dp, tag, to_copy))) {
1047 unsigned i;
1048
1049 for (i = 0; i < to_copy; i++) {
1050 if (dp[i] != tag[i])
1051 break;
1052 total_size--;
1053 }
1054 dm_bufio_release(b);
1055 return total_size;
1056 }
1057 }
1058 dm_bufio_release(b);
1059
1060 tag += to_copy;
1061 *metadata_offset += to_copy;
1062 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1063 (*metadata_block)++;
1064 *metadata_offset = 0;
1065 }
1066 total_size -= to_copy;
1067 } while (unlikely(total_size));
1068
1069 return 0;
1070 }
1071
1072 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
1073 {
1074 int r;
1075 r = dm_bufio_write_dirty_buffers(ic->bufio);
1076 if (unlikely(r))
1077 dm_integrity_io_error(ic, "writing tags", r);
1078 }
1079
1080 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1081 {
1082 DECLARE_WAITQUEUE(wait, current);
1083 __add_wait_queue(&ic->endio_wait, &wait);
1084 __set_current_state(TASK_UNINTERRUPTIBLE);
1085 spin_unlock_irq(&ic->endio_wait.lock);
1086 io_schedule();
1087 spin_lock_irq(&ic->endio_wait.lock);
1088 __remove_wait_queue(&ic->endio_wait, &wait);
1089 }
1090
1091 static void autocommit_fn(unsigned long data)
1092 {
1093 struct dm_integrity_c *ic = (struct dm_integrity_c *)data;
1094
1095 if (likely(!dm_integrity_failed(ic)))
1096 queue_work(ic->commit_wq, &ic->commit_work);
1097 }
1098
1099 static void schedule_autocommit(struct dm_integrity_c *ic)
1100 {
1101 if (!timer_pending(&ic->autocommit_timer))
1102 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1103 }
1104
1105 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1106 {
1107 struct bio *bio;
1108 unsigned long flags;
1109
1110 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1111 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1112 bio_list_add(&ic->flush_bio_list, bio);
1113 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1114
1115 queue_work(ic->commit_wq, &ic->commit_work);
1116 }
1117
1118 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1119 {
1120 int r = dm_integrity_failed(ic);
1121 if (unlikely(r) && !bio->bi_status)
1122 bio->bi_status = errno_to_blk_status(r);
1123 bio_endio(bio);
1124 }
1125
1126 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1127 {
1128 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1129
1130 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1131 submit_flush_bio(ic, dio);
1132 else
1133 do_endio(ic, bio);
1134 }
1135
1136 static void dec_in_flight(struct dm_integrity_io *dio)
1137 {
1138 if (atomic_dec_and_test(&dio->in_flight)) {
1139 struct dm_integrity_c *ic = dio->ic;
1140 struct bio *bio;
1141
1142 remove_range(ic, &dio->range);
1143
1144 if (unlikely(dio->write))
1145 schedule_autocommit(ic);
1146
1147 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1148
1149 if (unlikely(dio->bi_status) && !bio->bi_status)
1150 bio->bi_status = dio->bi_status;
1151 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1152 dio->range.logical_sector += dio->range.n_sectors;
1153 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1154 INIT_WORK(&dio->work, integrity_bio_wait);
1155 queue_work(ic->wait_wq, &dio->work);
1156 return;
1157 }
1158 do_endio_flush(ic, dio);
1159 }
1160 }
1161
1162 static void integrity_end_io(struct bio *bio)
1163 {
1164 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1165
1166 bio->bi_iter = dio->orig_bi_iter;
1167 bio->bi_bdev = dio->orig_bi_bdev;
1168 if (dio->orig_bi_integrity) {
1169 bio->bi_integrity = dio->orig_bi_integrity;
1170 bio->bi_opf |= REQ_INTEGRITY;
1171 }
1172 bio->bi_end_io = dio->orig_bi_end_io;
1173
1174 if (dio->completion)
1175 complete(dio->completion);
1176
1177 dec_in_flight(dio);
1178 }
1179
1180 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1181 const char *data, char *result)
1182 {
1183 __u64 sector_le = cpu_to_le64(sector);
1184 SHASH_DESC_ON_STACK(req, ic->internal_hash);
1185 int r;
1186 unsigned digest_size;
1187
1188 req->tfm = ic->internal_hash;
1189 req->flags = 0;
1190
1191 r = crypto_shash_init(req);
1192 if (unlikely(r < 0)) {
1193 dm_integrity_io_error(ic, "crypto_shash_init", r);
1194 goto failed;
1195 }
1196
1197 r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1198 if (unlikely(r < 0)) {
1199 dm_integrity_io_error(ic, "crypto_shash_update", r);
1200 goto failed;
1201 }
1202
1203 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1204 if (unlikely(r < 0)) {
1205 dm_integrity_io_error(ic, "crypto_shash_update", r);
1206 goto failed;
1207 }
1208
1209 r = crypto_shash_final(req, result);
1210 if (unlikely(r < 0)) {
1211 dm_integrity_io_error(ic, "crypto_shash_final", r);
1212 goto failed;
1213 }
1214
1215 digest_size = crypto_shash_digestsize(ic->internal_hash);
1216 if (unlikely(digest_size < ic->tag_size))
1217 memset(result + digest_size, 0, ic->tag_size - digest_size);
1218
1219 return;
1220
1221 failed:
1222 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1223 get_random_bytes(result, ic->tag_size);
1224 }
1225
1226 static void integrity_metadata(struct work_struct *w)
1227 {
1228 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1229 struct dm_integrity_c *ic = dio->ic;
1230
1231 int r;
1232
1233 if (ic->internal_hash) {
1234 struct bvec_iter iter;
1235 struct bio_vec bv;
1236 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1237 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1238 char *checksums;
1239 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1240 char checksums_onstack[ic->tag_size + extra_space];
1241 unsigned sectors_to_process = dio->range.n_sectors;
1242 sector_t sector = dio->range.logical_sector;
1243
1244 if (unlikely(ic->mode == 'R'))
1245 goto skip_io;
1246
1247 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1248 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1249 if (!checksums)
1250 checksums = checksums_onstack;
1251
1252 __bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) {
1253 unsigned pos;
1254 char *mem, *checksums_ptr;
1255
1256 again:
1257 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1258 pos = 0;
1259 checksums_ptr = checksums;
1260 do {
1261 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1262 checksums_ptr += ic->tag_size;
1263 sectors_to_process -= ic->sectors_per_block;
1264 pos += ic->sectors_per_block << SECTOR_SHIFT;
1265 sector += ic->sectors_per_block;
1266 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1267 kunmap_atomic(mem);
1268
1269 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1270 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
1271 if (unlikely(r)) {
1272 if (r > 0) {
1273 DMERR("Checksum failed at sector 0x%llx",
1274 (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1275 r = -EILSEQ;
1276 }
1277 if (likely(checksums != checksums_onstack))
1278 kfree(checksums);
1279 goto error;
1280 }
1281
1282 if (!sectors_to_process)
1283 break;
1284
1285 if (unlikely(pos < bv.bv_len)) {
1286 bv.bv_offset += pos;
1287 bv.bv_len -= pos;
1288 goto again;
1289 }
1290 }
1291
1292 if (likely(checksums != checksums_onstack))
1293 kfree(checksums);
1294 } else {
1295 struct bio_integrity_payload *bip = dio->orig_bi_integrity;
1296
1297 if (bip) {
1298 struct bio_vec biv;
1299 struct bvec_iter iter;
1300 unsigned data_to_process = dio->range.n_sectors;
1301 sector_to_block(ic, data_to_process);
1302 data_to_process *= ic->tag_size;
1303
1304 bip_for_each_vec(biv, bip, iter) {
1305 unsigned char *tag;
1306 unsigned this_len;
1307
1308 BUG_ON(PageHighMem(biv.bv_page));
1309 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1310 this_len = min(biv.bv_len, data_to_process);
1311 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1312 this_len, !dio->write ? TAG_READ : TAG_WRITE);
1313 if (unlikely(r))
1314 goto error;
1315 data_to_process -= this_len;
1316 if (!data_to_process)
1317 break;
1318 }
1319 }
1320 }
1321 skip_io:
1322 dec_in_flight(dio);
1323 return;
1324 error:
1325 dio->bi_status = errno_to_blk_status(r);
1326 dec_in_flight(dio);
1327 }
1328
1329 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1330 {
1331 struct dm_integrity_c *ic = ti->private;
1332 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1333 struct bio_integrity_payload *bip;
1334
1335 sector_t area, offset;
1336
1337 dio->ic = ic;
1338 dio->bi_status = 0;
1339
1340 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1341 submit_flush_bio(ic, dio);
1342 return DM_MAPIO_SUBMITTED;
1343 }
1344
1345 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1346 dio->write = bio_op(bio) == REQ_OP_WRITE;
1347 dio->fua = dio->write && bio->bi_opf & REQ_FUA;
1348 if (unlikely(dio->fua)) {
1349 /*
1350 * Don't pass down the FUA flag because we have to flush
1351 * disk cache anyway.
1352 */
1353 bio->bi_opf &= ~REQ_FUA;
1354 }
1355 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1356 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1357 (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
1358 (unsigned long long)ic->provided_data_sectors);
1359 return DM_MAPIO_KILL;
1360 }
1361 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1362 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1363 ic->sectors_per_block,
1364 (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
1365 return DM_MAPIO_KILL;
1366 }
1367
1368 if (ic->sectors_per_block > 1) {
1369 struct bvec_iter iter;
1370 struct bio_vec bv;
1371 bio_for_each_segment(bv, bio, iter) {
1372 if (unlikely((bv.bv_offset | bv.bv_len) & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1373 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1374 bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1375 return DM_MAPIO_KILL;
1376 }
1377 }
1378 }
1379
1380 bip = bio_integrity(bio);
1381 if (!ic->internal_hash) {
1382 if (bip) {
1383 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1384 if (ic->log2_tag_size >= 0)
1385 wanted_tag_size <<= ic->log2_tag_size;
1386 else
1387 wanted_tag_size *= ic->tag_size;
1388 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1389 DMERR("Invalid integrity data size %u, expected %u", bip->bip_iter.bi_size, wanted_tag_size);
1390 return DM_MAPIO_KILL;
1391 }
1392 }
1393 } else {
1394 if (unlikely(bip != NULL)) {
1395 DMERR("Unexpected integrity data when using internal hash");
1396 return DM_MAPIO_KILL;
1397 }
1398 }
1399
1400 if (unlikely(ic->mode == 'R') && unlikely(dio->write))
1401 return DM_MAPIO_KILL;
1402
1403 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1404 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1405 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1406
1407 dm_integrity_map_continue(dio, true);
1408 return DM_MAPIO_SUBMITTED;
1409 }
1410
1411 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1412 unsigned journal_section, unsigned journal_entry)
1413 {
1414 struct dm_integrity_c *ic = dio->ic;
1415 sector_t logical_sector;
1416 unsigned n_sectors;
1417
1418 logical_sector = dio->range.logical_sector;
1419 n_sectors = dio->range.n_sectors;
1420 do {
1421 struct bio_vec bv = bio_iovec(bio);
1422 char *mem;
1423
1424 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1425 bv.bv_len = n_sectors << SECTOR_SHIFT;
1426 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1427 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1428 retry_kmap:
1429 mem = kmap_atomic(bv.bv_page);
1430 if (likely(dio->write))
1431 flush_dcache_page(bv.bv_page);
1432
1433 do {
1434 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1435
1436 if (unlikely(!dio->write)) {
1437 struct journal_sector *js;
1438 char *mem_ptr;
1439 unsigned s;
1440
1441 if (unlikely(journal_entry_is_inprogress(je))) {
1442 flush_dcache_page(bv.bv_page);
1443 kunmap_atomic(mem);
1444
1445 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1446 goto retry_kmap;
1447 }
1448 smp_rmb();
1449 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1450 js = access_journal_data(ic, journal_section, journal_entry);
1451 mem_ptr = mem + bv.bv_offset;
1452 s = 0;
1453 do {
1454 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1455 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1456 js++;
1457 mem_ptr += 1 << SECTOR_SHIFT;
1458 } while (++s < ic->sectors_per_block);
1459 #ifdef INTERNAL_VERIFY
1460 if (ic->internal_hash) {
1461 char checksums_onstack[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)];
1462
1463 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1464 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1465 DMERR("Checksum failed when reading from journal, at sector 0x%llx",
1466 (unsigned long long)logical_sector);
1467 }
1468 }
1469 #endif
1470 }
1471
1472 if (!ic->internal_hash) {
1473 struct bio_integrity_payload *bip = bio_integrity(bio);
1474 unsigned tag_todo = ic->tag_size;
1475 char *tag_ptr = journal_entry_tag(ic, je);
1476
1477 if (bip) do {
1478 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1479 unsigned tag_now = min(biv.bv_len, tag_todo);
1480 char *tag_addr;
1481 BUG_ON(PageHighMem(biv.bv_page));
1482 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1483 if (likely(dio->write))
1484 memcpy(tag_ptr, tag_addr, tag_now);
1485 else
1486 memcpy(tag_addr, tag_ptr, tag_now);
1487 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1488 tag_ptr += tag_now;
1489 tag_todo -= tag_now;
1490 } while (unlikely(tag_todo)); else {
1491 if (likely(dio->write))
1492 memset(tag_ptr, 0, tag_todo);
1493 }
1494 }
1495
1496 if (likely(dio->write)) {
1497 struct journal_sector *js;
1498 unsigned s;
1499
1500 js = access_journal_data(ic, journal_section, journal_entry);
1501 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1502
1503 s = 0;
1504 do {
1505 je->last_bytes[s] = js[s].commit_id;
1506 } while (++s < ic->sectors_per_block);
1507
1508 if (ic->internal_hash) {
1509 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1510 if (unlikely(digest_size > ic->tag_size)) {
1511 char checksums_onstack[digest_size];
1512 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1513 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1514 } else
1515 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1516 }
1517
1518 journal_entry_set_sector(je, logical_sector);
1519 }
1520 logical_sector += ic->sectors_per_block;
1521
1522 journal_entry++;
1523 if (unlikely(journal_entry == ic->journal_section_entries)) {
1524 journal_entry = 0;
1525 journal_section++;
1526 wraparound_section(ic, &journal_section);
1527 }
1528
1529 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1530 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1531
1532 if (unlikely(!dio->write))
1533 flush_dcache_page(bv.bv_page);
1534 kunmap_atomic(mem);
1535 } while (n_sectors);
1536
1537 if (likely(dio->write)) {
1538 smp_mb();
1539 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1540 wake_up(&ic->copy_to_journal_wait);
1541 if (ACCESS_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1542 queue_work(ic->commit_wq, &ic->commit_work);
1543 } else {
1544 schedule_autocommit(ic);
1545 }
1546 } else {
1547 remove_range(ic, &dio->range);
1548 }
1549
1550 if (unlikely(bio->bi_iter.bi_size)) {
1551 sector_t area, offset;
1552
1553 dio->range.logical_sector = logical_sector;
1554 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1555 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1556 return true;
1557 }
1558
1559 return false;
1560 }
1561
1562 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1563 {
1564 struct dm_integrity_c *ic = dio->ic;
1565 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1566 unsigned journal_section, journal_entry;
1567 unsigned journal_read_pos;
1568 struct completion read_comp;
1569 bool need_sync_io = ic->internal_hash && !dio->write;
1570
1571 if (need_sync_io && from_map) {
1572 INIT_WORK(&dio->work, integrity_bio_wait);
1573 queue_work(ic->metadata_wq, &dio->work);
1574 return;
1575 }
1576
1577 lock_retry:
1578 spin_lock_irq(&ic->endio_wait.lock);
1579 retry:
1580 if (unlikely(dm_integrity_failed(ic))) {
1581 spin_unlock_irq(&ic->endio_wait.lock);
1582 do_endio(ic, bio);
1583 return;
1584 }
1585 dio->range.n_sectors = bio_sectors(bio);
1586 journal_read_pos = NOT_FOUND;
1587 if (likely(ic->mode == 'J')) {
1588 if (dio->write) {
1589 unsigned next_entry, i, pos;
1590 unsigned ws, we;
1591
1592 dio->range.n_sectors = min(dio->range.n_sectors, ic->free_sectors);
1593 if (unlikely(!dio->range.n_sectors))
1594 goto sleep;
1595 ic->free_sectors -= dio->range.n_sectors;
1596 journal_section = ic->free_section;
1597 journal_entry = ic->free_section_entry;
1598
1599 next_entry = ic->free_section_entry + dio->range.n_sectors;
1600 ic->free_section_entry = next_entry % ic->journal_section_entries;
1601 ic->free_section += next_entry / ic->journal_section_entries;
1602 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1603 wraparound_section(ic, &ic->free_section);
1604
1605 pos = journal_section * ic->journal_section_entries + journal_entry;
1606 ws = journal_section;
1607 we = journal_entry;
1608 i = 0;
1609 do {
1610 struct journal_entry *je;
1611
1612 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1613 pos++;
1614 if (unlikely(pos >= ic->journal_entries))
1615 pos = 0;
1616
1617 je = access_journal_entry(ic, ws, we);
1618 BUG_ON(!journal_entry_is_unused(je));
1619 journal_entry_set_inprogress(je);
1620 we++;
1621 if (unlikely(we == ic->journal_section_entries)) {
1622 we = 0;
1623 ws++;
1624 wraparound_section(ic, &ws);
1625 }
1626 } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
1627
1628 spin_unlock_irq(&ic->endio_wait.lock);
1629 goto journal_read_write;
1630 } else {
1631 sector_t next_sector;
1632 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1633 if (likely(journal_read_pos == NOT_FOUND)) {
1634 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
1635 dio->range.n_sectors = next_sector - dio->range.logical_sector;
1636 } else {
1637 unsigned i;
1638 unsigned jp = journal_read_pos + 1;
1639 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
1640 if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
1641 break;
1642 }
1643 dio->range.n_sectors = i;
1644 }
1645 }
1646 }
1647 if (unlikely(!add_new_range(ic, &dio->range))) {
1648 /*
1649 * We must not sleep in the request routine because it could
1650 * stall bios on current->bio_list.
1651 * So, we offload the bio to a workqueue if we have to sleep.
1652 */
1653 sleep:
1654 if (from_map) {
1655 spin_unlock_irq(&ic->endio_wait.lock);
1656 INIT_WORK(&dio->work, integrity_bio_wait);
1657 queue_work(ic->wait_wq, &dio->work);
1658 return;
1659 } else {
1660 sleep_on_endio_wait(ic);
1661 goto retry;
1662 }
1663 }
1664 spin_unlock_irq(&ic->endio_wait.lock);
1665
1666 if (unlikely(journal_read_pos != NOT_FOUND)) {
1667 journal_section = journal_read_pos / ic->journal_section_entries;
1668 journal_entry = journal_read_pos % ic->journal_section_entries;
1669 goto journal_read_write;
1670 }
1671
1672 dio->in_flight = (atomic_t)ATOMIC_INIT(2);
1673
1674 if (need_sync_io) {
1675 read_comp = COMPLETION_INITIALIZER_ONSTACK(read_comp);
1676 dio->completion = &read_comp;
1677 } else
1678 dio->completion = NULL;
1679
1680 dio->orig_bi_iter = bio->bi_iter;
1681
1682 dio->orig_bi_bdev = bio->bi_bdev;
1683 bio->bi_bdev = ic->dev->bdev;
1684
1685 dio->orig_bi_integrity = bio_integrity(bio);
1686 bio->bi_integrity = NULL;
1687 bio->bi_opf &= ~REQ_INTEGRITY;
1688
1689 dio->orig_bi_end_io = bio->bi_end_io;
1690 bio->bi_end_io = integrity_end_io;
1691
1692 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
1693 bio->bi_iter.bi_sector += ic->start;
1694 generic_make_request(bio);
1695
1696 if (need_sync_io) {
1697 wait_for_completion_io(&read_comp);
1698 integrity_metadata(&dio->work);
1699 } else {
1700 INIT_WORK(&dio->work, integrity_metadata);
1701 queue_work(ic->metadata_wq, &dio->work);
1702 }
1703
1704 return;
1705
1706 journal_read_write:
1707 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
1708 goto lock_retry;
1709
1710 do_endio_flush(ic, dio);
1711 }
1712
1713
1714 static void integrity_bio_wait(struct work_struct *w)
1715 {
1716 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1717
1718 dm_integrity_map_continue(dio, false);
1719 }
1720
1721 static void pad_uncommitted(struct dm_integrity_c *ic)
1722 {
1723 if (ic->free_section_entry) {
1724 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
1725 ic->free_section_entry = 0;
1726 ic->free_section++;
1727 wraparound_section(ic, &ic->free_section);
1728 ic->n_uncommitted_sections++;
1729 }
1730 }
1731
1732 static void integrity_commit(struct work_struct *w)
1733 {
1734 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
1735 unsigned commit_start, commit_sections;
1736 unsigned i, j, n;
1737 struct bio *flushes;
1738
1739 del_timer(&ic->autocommit_timer);
1740
1741 spin_lock_irq(&ic->endio_wait.lock);
1742 flushes = bio_list_get(&ic->flush_bio_list);
1743 if (unlikely(ic->mode != 'J')) {
1744 spin_unlock_irq(&ic->endio_wait.lock);
1745 dm_integrity_flush_buffers(ic);
1746 goto release_flush_bios;
1747 }
1748
1749 pad_uncommitted(ic);
1750 commit_start = ic->uncommitted_section;
1751 commit_sections = ic->n_uncommitted_sections;
1752 spin_unlock_irq(&ic->endio_wait.lock);
1753
1754 if (!commit_sections)
1755 goto release_flush_bios;
1756
1757 i = commit_start;
1758 for (n = 0; n < commit_sections; n++) {
1759 for (j = 0; j < ic->journal_section_entries; j++) {
1760 struct journal_entry *je;
1761 je = access_journal_entry(ic, i, j);
1762 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1763 }
1764 for (j = 0; j < ic->journal_section_sectors; j++) {
1765 struct journal_sector *js;
1766 js = access_journal(ic, i, j);
1767 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
1768 }
1769 i++;
1770 if (unlikely(i >= ic->journal_sections))
1771 ic->commit_seq = next_commit_seq(ic->commit_seq);
1772 wraparound_section(ic, &i);
1773 }
1774 smp_rmb();
1775
1776 write_journal(ic, commit_start, commit_sections);
1777
1778 spin_lock_irq(&ic->endio_wait.lock);
1779 ic->uncommitted_section += commit_sections;
1780 wraparound_section(ic, &ic->uncommitted_section);
1781 ic->n_uncommitted_sections -= commit_sections;
1782 ic->n_committed_sections += commit_sections;
1783 spin_unlock_irq(&ic->endio_wait.lock);
1784
1785 if (ACCESS_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
1786 queue_work(ic->writer_wq, &ic->writer_work);
1787
1788 release_flush_bios:
1789 while (flushes) {
1790 struct bio *next = flushes->bi_next;
1791 flushes->bi_next = NULL;
1792 do_endio(ic, flushes);
1793 flushes = next;
1794 }
1795 }
1796
1797 static void complete_copy_from_journal(unsigned long error, void *context)
1798 {
1799 struct journal_io *io = context;
1800 struct journal_completion *comp = io->comp;
1801 struct dm_integrity_c *ic = comp->ic;
1802 remove_range(ic, &io->range);
1803 mempool_free(io, ic->journal_io_mempool);
1804 if (unlikely(error != 0))
1805 dm_integrity_io_error(ic, "copying from journal", -EIO);
1806 complete_journal_op(comp);
1807 }
1808
1809 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
1810 struct journal_entry *je)
1811 {
1812 unsigned s = 0;
1813 do {
1814 js->commit_id = je->last_bytes[s];
1815 js++;
1816 } while (++s < ic->sectors_per_block);
1817 }
1818
1819 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
1820 unsigned write_sections, bool from_replay)
1821 {
1822 unsigned i, j, n;
1823 struct journal_completion comp;
1824
1825 comp.ic = ic;
1826 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1827 comp.comp = COMPLETION_INITIALIZER_ONSTACK(comp.comp);
1828
1829 i = write_start;
1830 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
1831 #ifndef INTERNAL_VERIFY
1832 if (unlikely(from_replay))
1833 #endif
1834 rw_section_mac(ic, i, false);
1835 for (j = 0; j < ic->journal_section_entries; j++) {
1836 struct journal_entry *je = access_journal_entry(ic, i, j);
1837 sector_t sec, area, offset;
1838 unsigned k, l, next_loop;
1839 sector_t metadata_block;
1840 unsigned metadata_offset;
1841 struct journal_io *io;
1842
1843 if (journal_entry_is_unused(je))
1844 continue;
1845 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
1846 sec = journal_entry_get_sector(je);
1847 if (unlikely(from_replay)) {
1848 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
1849 dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
1850 sec &= ~(sector_t)(ic->sectors_per_block - 1);
1851 }
1852 }
1853 get_area_and_offset(ic, sec, &area, &offset);
1854 restore_last_bytes(ic, access_journal_data(ic, i, j), je);
1855 for (k = j + 1; k < ic->journal_section_entries; k++) {
1856 struct journal_entry *je2 = access_journal_entry(ic, i, k);
1857 sector_t sec2, area2, offset2;
1858 if (journal_entry_is_unused(je2))
1859 break;
1860 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
1861 sec2 = journal_entry_get_sector(je2);
1862 get_area_and_offset(ic, sec2, &area2, &offset2);
1863 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
1864 break;
1865 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
1866 }
1867 next_loop = k - 1;
1868
1869 io = mempool_alloc(ic->journal_io_mempool, GFP_NOIO);
1870 io->comp = &comp;
1871 io->range.logical_sector = sec;
1872 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
1873
1874 spin_lock_irq(&ic->endio_wait.lock);
1875 while (unlikely(!add_new_range(ic, &io->range)))
1876 sleep_on_endio_wait(ic);
1877
1878 if (likely(!from_replay)) {
1879 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
1880
1881 /* don't write if there is newer committed sector */
1882 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
1883 struct journal_entry *je2 = access_journal_entry(ic, i, j);
1884
1885 journal_entry_set_unused(je2);
1886 remove_journal_node(ic, &section_node[j]);
1887 j++;
1888 sec += ic->sectors_per_block;
1889 offset += ic->sectors_per_block;
1890 }
1891 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
1892 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
1893
1894 journal_entry_set_unused(je2);
1895 remove_journal_node(ic, &section_node[k - 1]);
1896 k--;
1897 }
1898 if (j == k) {
1899 remove_range_unlocked(ic, &io->range);
1900 spin_unlock_irq(&ic->endio_wait.lock);
1901 mempool_free(io, ic->journal_io_mempool);
1902 goto skip_io;
1903 }
1904 for (l = j; l < k; l++) {
1905 remove_journal_node(ic, &section_node[l]);
1906 }
1907 }
1908 spin_unlock_irq(&ic->endio_wait.lock);
1909
1910 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
1911 for (l = j; l < k; l++) {
1912 int r;
1913 struct journal_entry *je2 = access_journal_entry(ic, i, l);
1914
1915 if (
1916 #ifndef INTERNAL_VERIFY
1917 unlikely(from_replay) &&
1918 #endif
1919 ic->internal_hash) {
1920 char test_tag[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)];
1921
1922 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
1923 (char *)access_journal_data(ic, i, l), test_tag);
1924 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
1925 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
1926 }
1927
1928 journal_entry_set_unused(je2);
1929 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
1930 ic->tag_size, TAG_WRITE);
1931 if (unlikely(r)) {
1932 dm_integrity_io_error(ic, "reading tags", r);
1933 }
1934 }
1935
1936 atomic_inc(&comp.in_flight);
1937 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
1938 (k - j) << ic->sb->log2_sectors_per_block,
1939 get_data_sector(ic, area, offset),
1940 complete_copy_from_journal, io);
1941 skip_io:
1942 j = next_loop;
1943 }
1944 }
1945
1946 dm_bufio_write_dirty_buffers_async(ic->bufio);
1947
1948 complete_journal_op(&comp);
1949 wait_for_completion_io(&comp.comp);
1950
1951 dm_integrity_flush_buffers(ic);
1952 }
1953
1954 static void integrity_writer(struct work_struct *w)
1955 {
1956 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
1957 unsigned write_start, write_sections;
1958
1959 unsigned prev_free_sectors;
1960
1961 /* the following test is not needed, but it tests the replay code */
1962 if (ACCESS_ONCE(ic->suspending))
1963 return;
1964
1965 spin_lock_irq(&ic->endio_wait.lock);
1966 write_start = ic->committed_section;
1967 write_sections = ic->n_committed_sections;
1968 spin_unlock_irq(&ic->endio_wait.lock);
1969
1970 if (!write_sections)
1971 return;
1972
1973 do_journal_write(ic, write_start, write_sections, false);
1974
1975 spin_lock_irq(&ic->endio_wait.lock);
1976
1977 ic->committed_section += write_sections;
1978 wraparound_section(ic, &ic->committed_section);
1979 ic->n_committed_sections -= write_sections;
1980
1981 prev_free_sectors = ic->free_sectors;
1982 ic->free_sectors += write_sections * ic->journal_section_entries;
1983 if (unlikely(!prev_free_sectors))
1984 wake_up_locked(&ic->endio_wait);
1985
1986 spin_unlock_irq(&ic->endio_wait.lock);
1987 }
1988
1989 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
1990 unsigned n_sections, unsigned char commit_seq)
1991 {
1992 unsigned i, j, n;
1993
1994 if (!n_sections)
1995 return;
1996
1997 for (n = 0; n < n_sections; n++) {
1998 i = start_section + n;
1999 wraparound_section(ic, &i);
2000 for (j = 0; j < ic->journal_section_sectors; j++) {
2001 struct journal_sector *js = access_journal(ic, i, j);
2002 memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2003 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2004 }
2005 for (j = 0; j < ic->journal_section_entries; j++) {
2006 struct journal_entry *je = access_journal_entry(ic, i, j);
2007 journal_entry_set_unused(je);
2008 }
2009 }
2010
2011 write_journal(ic, start_section, n_sections);
2012 }
2013
2014 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2015 {
2016 unsigned char k;
2017 for (k = 0; k < N_COMMIT_IDS; k++) {
2018 if (dm_integrity_commit_id(ic, i, j, k) == id)
2019 return k;
2020 }
2021 dm_integrity_io_error(ic, "journal commit id", -EIO);
2022 return -EIO;
2023 }
2024
2025 static void replay_journal(struct dm_integrity_c *ic)
2026 {
2027 unsigned i, j;
2028 bool used_commit_ids[N_COMMIT_IDS];
2029 unsigned max_commit_id_sections[N_COMMIT_IDS];
2030 unsigned write_start, write_sections;
2031 unsigned continue_section;
2032 bool journal_empty;
2033 unsigned char unused, last_used, want_commit_seq;
2034
2035 if (ic->mode == 'R')
2036 return;
2037
2038 if (ic->journal_uptodate)
2039 return;
2040
2041 last_used = 0;
2042 write_start = 0;
2043
2044 if (!ic->just_formatted) {
2045 DEBUG_print("reading journal\n");
2046 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2047 if (ic->journal_io)
2048 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2049 if (ic->journal_io) {
2050 struct journal_completion crypt_comp;
2051 crypt_comp.ic = ic;
2052 crypt_comp.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp.comp);
2053 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2054 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2055 wait_for_completion(&crypt_comp.comp);
2056 }
2057 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2058 }
2059
2060 if (dm_integrity_failed(ic))
2061 goto clear_journal;
2062
2063 journal_empty = true;
2064 memset(used_commit_ids, 0, sizeof used_commit_ids);
2065 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2066 for (i = 0; i < ic->journal_sections; i++) {
2067 for (j = 0; j < ic->journal_section_sectors; j++) {
2068 int k;
2069 struct journal_sector *js = access_journal(ic, i, j);
2070 k = find_commit_seq(ic, i, j, js->commit_id);
2071 if (k < 0)
2072 goto clear_journal;
2073 used_commit_ids[k] = true;
2074 max_commit_id_sections[k] = i;
2075 }
2076 if (journal_empty) {
2077 for (j = 0; j < ic->journal_section_entries; j++) {
2078 struct journal_entry *je = access_journal_entry(ic, i, j);
2079 if (!journal_entry_is_unused(je)) {
2080 journal_empty = false;
2081 break;
2082 }
2083 }
2084 }
2085 }
2086
2087 if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2088 unused = N_COMMIT_IDS - 1;
2089 while (unused && !used_commit_ids[unused - 1])
2090 unused--;
2091 } else {
2092 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2093 if (!used_commit_ids[unused])
2094 break;
2095 if (unused == N_COMMIT_IDS) {
2096 dm_integrity_io_error(ic, "journal commit ids", -EIO);
2097 goto clear_journal;
2098 }
2099 }
2100 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2101 unused, used_commit_ids[0], used_commit_ids[1],
2102 used_commit_ids[2], used_commit_ids[3]);
2103
2104 last_used = prev_commit_seq(unused);
2105 want_commit_seq = prev_commit_seq(last_used);
2106
2107 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2108 journal_empty = true;
2109
2110 write_start = max_commit_id_sections[last_used] + 1;
2111 if (unlikely(write_start >= ic->journal_sections))
2112 want_commit_seq = next_commit_seq(want_commit_seq);
2113 wraparound_section(ic, &write_start);
2114
2115 i = write_start;
2116 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2117 for (j = 0; j < ic->journal_section_sectors; j++) {
2118 struct journal_sector *js = access_journal(ic, i, j);
2119
2120 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2121 /*
2122 * This could be caused by crash during writing.
2123 * We won't replay the inconsistent part of the
2124 * journal.
2125 */
2126 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2127 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2128 goto brk;
2129 }
2130 }
2131 i++;
2132 if (unlikely(i >= ic->journal_sections))
2133 want_commit_seq = next_commit_seq(want_commit_seq);
2134 wraparound_section(ic, &i);
2135 }
2136 brk:
2137
2138 if (!journal_empty) {
2139 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2140 write_sections, write_start, want_commit_seq);
2141 do_journal_write(ic, write_start, write_sections, true);
2142 }
2143
2144 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2145 continue_section = write_start;
2146 ic->commit_seq = want_commit_seq;
2147 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2148 } else {
2149 unsigned s;
2150 unsigned char erase_seq;
2151 clear_journal:
2152 DEBUG_print("clearing journal\n");
2153
2154 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2155 s = write_start;
2156 init_journal(ic, s, 1, erase_seq);
2157 s++;
2158 wraparound_section(ic, &s);
2159 if (ic->journal_sections >= 2) {
2160 init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2161 s += ic->journal_sections - 2;
2162 wraparound_section(ic, &s);
2163 init_journal(ic, s, 1, erase_seq);
2164 }
2165
2166 continue_section = 0;
2167 ic->commit_seq = next_commit_seq(erase_seq);
2168 }
2169
2170 ic->committed_section = continue_section;
2171 ic->n_committed_sections = 0;
2172
2173 ic->uncommitted_section = continue_section;
2174 ic->n_uncommitted_sections = 0;
2175
2176 ic->free_section = continue_section;
2177 ic->free_section_entry = 0;
2178 ic->free_sectors = ic->journal_entries;
2179
2180 ic->journal_tree_root = RB_ROOT;
2181 for (i = 0; i < ic->journal_entries; i++)
2182 init_journal_node(&ic->journal_tree[i]);
2183 }
2184
2185 static void dm_integrity_postsuspend(struct dm_target *ti)
2186 {
2187 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2188
2189 del_timer_sync(&ic->autocommit_timer);
2190
2191 ic->suspending = true;
2192
2193 queue_work(ic->commit_wq, &ic->commit_work);
2194 drain_workqueue(ic->commit_wq);
2195
2196 if (ic->mode == 'J') {
2197 drain_workqueue(ic->writer_wq);
2198 dm_integrity_flush_buffers(ic);
2199 }
2200
2201 ic->suspending = false;
2202
2203 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2204
2205 ic->journal_uptodate = true;
2206 }
2207
2208 static void dm_integrity_resume(struct dm_target *ti)
2209 {
2210 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2211
2212 replay_journal(ic);
2213 }
2214
2215 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
2216 unsigned status_flags, char *result, unsigned maxlen)
2217 {
2218 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2219 unsigned arg_count;
2220 size_t sz = 0;
2221
2222 switch (type) {
2223 case STATUSTYPE_INFO:
2224 result[0] = '\0';
2225 break;
2226
2227 case STATUSTYPE_TABLE: {
2228 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
2229 watermark_percentage += ic->journal_entries / 2;
2230 do_div(watermark_percentage, ic->journal_entries);
2231 arg_count = 5;
2232 arg_count += ic->sectors_per_block != 1;
2233 arg_count += !!ic->internal_hash_alg.alg_string;
2234 arg_count += !!ic->journal_crypt_alg.alg_string;
2235 arg_count += !!ic->journal_mac_alg.alg_string;
2236 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
2237 ic->tag_size, ic->mode, arg_count);
2238 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
2239 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
2240 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
2241 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
2242 DMEMIT(" commit_time:%u", ic->autocommit_msec);
2243 if (ic->sectors_per_block != 1)
2244 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
2245
2246 #define EMIT_ALG(a, n) \
2247 do { \
2248 if (ic->a.alg_string) { \
2249 DMEMIT(" %s:%s", n, ic->a.alg_string); \
2250 if (ic->a.key_string) \
2251 DMEMIT(":%s", ic->a.key_string);\
2252 } \
2253 } while (0)
2254 EMIT_ALG(internal_hash_alg, "internal_hash");
2255 EMIT_ALG(journal_crypt_alg, "journal_crypt");
2256 EMIT_ALG(journal_mac_alg, "journal_mac");
2257 break;
2258 }
2259 }
2260 }
2261
2262 static int dm_integrity_iterate_devices(struct dm_target *ti,
2263 iterate_devices_callout_fn fn, void *data)
2264 {
2265 struct dm_integrity_c *ic = ti->private;
2266
2267 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
2268 }
2269
2270 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
2271 {
2272 struct dm_integrity_c *ic = ti->private;
2273
2274 if (ic->sectors_per_block > 1) {
2275 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2276 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2277 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
2278 }
2279 }
2280
2281 static void calculate_journal_section_size(struct dm_integrity_c *ic)
2282 {
2283 unsigned sector_space = JOURNAL_SECTOR_DATA;
2284
2285 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
2286 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
2287 JOURNAL_ENTRY_ROUNDUP);
2288
2289 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
2290 sector_space -= JOURNAL_MAC_PER_SECTOR;
2291 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
2292 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
2293 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
2294 ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
2295 }
2296
2297 static int calculate_device_limits(struct dm_integrity_c *ic)
2298 {
2299 __u64 initial_sectors;
2300 sector_t last_sector, last_area, last_offset;
2301
2302 calculate_journal_section_size(ic);
2303 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
2304 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->device_sectors || initial_sectors > UINT_MAX)
2305 return -EINVAL;
2306 ic->initial_sectors = initial_sectors;
2307
2308 ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
2309 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT;
2310 if (!(ic->metadata_run & (ic->metadata_run - 1)))
2311 ic->log2_metadata_run = __ffs(ic->metadata_run);
2312 else
2313 ic->log2_metadata_run = -1;
2314
2315 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
2316 last_sector = get_data_sector(ic, last_area, last_offset);
2317
2318 if (ic->start + last_sector < last_sector || ic->start + last_sector >= ic->device_sectors)
2319 return -EINVAL;
2320
2321 return 0;
2322 }
2323
2324 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
2325 {
2326 unsigned journal_sections;
2327 int test_bit;
2328
2329 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
2330 memcpy(ic->sb->magic, SB_MAGIC, 8);
2331 ic->sb->version = SB_VERSION;
2332 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
2333 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
2334 if (ic->journal_mac_alg.alg_string)
2335 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
2336
2337 calculate_journal_section_size(ic);
2338 journal_sections = journal_sectors / ic->journal_section_sectors;
2339 if (!journal_sections)
2340 journal_sections = 1;
2341 ic->sb->journal_sections = cpu_to_le32(journal_sections);
2342
2343 if (!interleave_sectors)
2344 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
2345 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
2346 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2347 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2348
2349 ic->provided_data_sectors = 0;
2350 for (test_bit = fls64(ic->device_sectors) - 1; test_bit >= 3; test_bit--) {
2351 __u64 prev_data_sectors = ic->provided_data_sectors;
2352
2353 ic->provided_data_sectors |= (sector_t)1 << test_bit;
2354 if (calculate_device_limits(ic))
2355 ic->provided_data_sectors = prev_data_sectors;
2356 }
2357
2358 if (!ic->provided_data_sectors)
2359 return -EINVAL;
2360
2361 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
2362
2363 return 0;
2364 }
2365
2366 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
2367 {
2368 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
2369 struct blk_integrity bi;
2370
2371 memset(&bi, 0, sizeof(bi));
2372 bi.profile = &dm_integrity_profile;
2373 bi.tuple_size = ic->tag_size;
2374 bi.tag_size = bi.tuple_size;
2375 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
2376
2377 blk_integrity_register(disk, &bi);
2378 blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
2379 }
2380
2381 static void dm_integrity_free_page_list(struct dm_integrity_c *ic, struct page_list *pl)
2382 {
2383 unsigned i;
2384
2385 if (!pl)
2386 return;
2387 for (i = 0; i < ic->journal_pages; i++)
2388 if (pl[i].page)
2389 __free_page(pl[i].page);
2390 kvfree(pl);
2391 }
2392
2393 static struct page_list *dm_integrity_alloc_page_list(struct dm_integrity_c *ic)
2394 {
2395 size_t page_list_desc_size = ic->journal_pages * sizeof(struct page_list);
2396 struct page_list *pl;
2397 unsigned i;
2398
2399 pl = kvmalloc(page_list_desc_size, GFP_KERNEL | __GFP_ZERO);
2400 if (!pl)
2401 return NULL;
2402
2403 for (i = 0; i < ic->journal_pages; i++) {
2404 pl[i].page = alloc_page(GFP_KERNEL);
2405 if (!pl[i].page) {
2406 dm_integrity_free_page_list(ic, pl);
2407 return NULL;
2408 }
2409 if (i)
2410 pl[i - 1].next = &pl[i];
2411 }
2412
2413 return pl;
2414 }
2415
2416 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
2417 {
2418 unsigned i;
2419 for (i = 0; i < ic->journal_sections; i++)
2420 kvfree(sl[i]);
2421 kfree(sl);
2422 }
2423
2424 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, struct page_list *pl)
2425 {
2426 struct scatterlist **sl;
2427 unsigned i;
2428
2429 sl = kvmalloc(ic->journal_sections * sizeof(struct scatterlist *), GFP_KERNEL | __GFP_ZERO);
2430 if (!sl)
2431 return NULL;
2432
2433 for (i = 0; i < ic->journal_sections; i++) {
2434 struct scatterlist *s;
2435 unsigned start_index, start_offset;
2436 unsigned end_index, end_offset;
2437 unsigned n_pages;
2438 unsigned idx;
2439
2440 page_list_location(ic, i, 0, &start_index, &start_offset);
2441 page_list_location(ic, i, ic->journal_section_sectors - 1, &end_index, &end_offset);
2442
2443 n_pages = (end_index - start_index + 1);
2444
2445 s = kvmalloc(n_pages * sizeof(struct scatterlist), GFP_KERNEL);
2446 if (!s) {
2447 dm_integrity_free_journal_scatterlist(ic, sl);
2448 return NULL;
2449 }
2450
2451 sg_init_table(s, n_pages);
2452 for (idx = start_index; idx <= end_index; idx++) {
2453 char *va = lowmem_page_address(pl[idx].page);
2454 unsigned start = 0, end = PAGE_SIZE;
2455 if (idx == start_index)
2456 start = start_offset;
2457 if (idx == end_index)
2458 end = end_offset + (1 << SECTOR_SHIFT);
2459 sg_set_buf(&s[idx - start_index], va + start, end - start);
2460 }
2461
2462 sl[i] = s;
2463 }
2464
2465 return sl;
2466 }
2467
2468 static void free_alg(struct alg_spec *a)
2469 {
2470 kzfree(a->alg_string);
2471 kzfree(a->key);
2472 memset(a, 0, sizeof *a);
2473 }
2474
2475 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
2476 {
2477 char *k;
2478
2479 free_alg(a);
2480
2481 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
2482 if (!a->alg_string)
2483 goto nomem;
2484
2485 k = strchr(a->alg_string, ':');
2486 if (k) {
2487 *k = 0;
2488 a->key_string = k + 1;
2489 if (strlen(a->key_string) & 1)
2490 goto inval;
2491
2492 a->key_size = strlen(a->key_string) / 2;
2493 a->key = kmalloc(a->key_size, GFP_KERNEL);
2494 if (!a->key)
2495 goto nomem;
2496 if (hex2bin(a->key, a->key_string, a->key_size))
2497 goto inval;
2498 }
2499
2500 return 0;
2501 inval:
2502 *error = error_inval;
2503 return -EINVAL;
2504 nomem:
2505 *error = "Out of memory for an argument";
2506 return -ENOMEM;
2507 }
2508
2509 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
2510 char *error_alg, char *error_key)
2511 {
2512 int r;
2513
2514 if (a->alg_string) {
2515 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ASYNC);
2516 if (IS_ERR(*hash)) {
2517 *error = error_alg;
2518 r = PTR_ERR(*hash);
2519 *hash = NULL;
2520 return r;
2521 }
2522
2523 if (a->key) {
2524 r = crypto_shash_setkey(*hash, a->key, a->key_size);
2525 if (r) {
2526 *error = error_key;
2527 return r;
2528 }
2529 }
2530 }
2531
2532 return 0;
2533 }
2534
2535 static int create_journal(struct dm_integrity_c *ic, char **error)
2536 {
2537 int r = 0;
2538 unsigned i;
2539 __u64 journal_pages, journal_desc_size, journal_tree_size;
2540 unsigned char *crypt_data = NULL;
2541
2542 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
2543 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
2544 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
2545 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
2546
2547 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
2548 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
2549 journal_desc_size = journal_pages * sizeof(struct page_list);
2550 if (journal_pages >= totalram_pages - totalhigh_pages || journal_desc_size > ULONG_MAX) {
2551 *error = "Journal doesn't fit into memory";
2552 r = -ENOMEM;
2553 goto bad;
2554 }
2555 ic->journal_pages = journal_pages;
2556
2557 ic->journal = dm_integrity_alloc_page_list(ic);
2558 if (!ic->journal) {
2559 *error = "Could not allocate memory for journal";
2560 r = -ENOMEM;
2561 goto bad;
2562 }
2563 if (ic->journal_crypt_alg.alg_string) {
2564 unsigned ivsize, blocksize;
2565 struct journal_completion comp;
2566
2567 comp.ic = ic;
2568 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
2569 if (IS_ERR(ic->journal_crypt)) {
2570 *error = "Invalid journal cipher";
2571 r = PTR_ERR(ic->journal_crypt);
2572 ic->journal_crypt = NULL;
2573 goto bad;
2574 }
2575 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
2576 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
2577
2578 if (ic->journal_crypt_alg.key) {
2579 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
2580 ic->journal_crypt_alg.key_size);
2581 if (r) {
2582 *error = "Error setting encryption key";
2583 goto bad;
2584 }
2585 }
2586 DEBUG_print("cipher %s, block size %u iv size %u\n",
2587 ic->journal_crypt_alg.alg_string, blocksize, ivsize);
2588
2589 ic->journal_io = dm_integrity_alloc_page_list(ic);
2590 if (!ic->journal_io) {
2591 *error = "Could not allocate memory for journal io";
2592 r = -ENOMEM;
2593 goto bad;
2594 }
2595
2596 if (blocksize == 1) {
2597 struct scatterlist *sg;
2598 SKCIPHER_REQUEST_ON_STACK(req, ic->journal_crypt);
2599 unsigned char iv[ivsize];
2600 skcipher_request_set_tfm(req, ic->journal_crypt);
2601
2602 ic->journal_xor = dm_integrity_alloc_page_list(ic);
2603 if (!ic->journal_xor) {
2604 *error = "Could not allocate memory for journal xor";
2605 r = -ENOMEM;
2606 goto bad;
2607 }
2608
2609 sg = kvmalloc((ic->journal_pages + 1) * sizeof(struct scatterlist), GFP_KERNEL);
2610 if (!sg) {
2611 *error = "Unable to allocate sg list";
2612 r = -ENOMEM;
2613 goto bad;
2614 }
2615 sg_init_table(sg, ic->journal_pages + 1);
2616 for (i = 0; i < ic->journal_pages; i++) {
2617 char *va = lowmem_page_address(ic->journal_xor[i].page);
2618 clear_page(va);
2619 sg_set_buf(&sg[i], va, PAGE_SIZE);
2620 }
2621 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
2622 memset(iv, 0x00, ivsize);
2623
2624 skcipher_request_set_crypt(req, sg, sg, PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, iv);
2625 comp.comp = COMPLETION_INITIALIZER_ONSTACK(comp.comp);
2626 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2627 if (do_crypt(true, req, &comp))
2628 wait_for_completion(&comp.comp);
2629 kvfree(sg);
2630 r = dm_integrity_failed(ic);
2631 if (r) {
2632 *error = "Unable to encrypt journal";
2633 goto bad;
2634 }
2635 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
2636
2637 crypto_free_skcipher(ic->journal_crypt);
2638 ic->journal_crypt = NULL;
2639 } else {
2640 SKCIPHER_REQUEST_ON_STACK(req, ic->journal_crypt);
2641 unsigned char iv[ivsize];
2642 unsigned crypt_len = roundup(ivsize, blocksize);
2643
2644 crypt_data = kmalloc(crypt_len, GFP_KERNEL);
2645 if (!crypt_data) {
2646 *error = "Unable to allocate crypt data";
2647 r = -ENOMEM;
2648 goto bad;
2649 }
2650
2651 skcipher_request_set_tfm(req, ic->journal_crypt);
2652
2653 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
2654 if (!ic->journal_scatterlist) {
2655 *error = "Unable to allocate sg list";
2656 r = -ENOMEM;
2657 goto bad;
2658 }
2659 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
2660 if (!ic->journal_io_scatterlist) {
2661 *error = "Unable to allocate sg list";
2662 r = -ENOMEM;
2663 goto bad;
2664 }
2665 ic->sk_requests = kvmalloc(ic->journal_sections * sizeof(struct skcipher_request *), GFP_KERNEL | __GFP_ZERO);
2666 if (!ic->sk_requests) {
2667 *error = "Unable to allocate sk requests";
2668 r = -ENOMEM;
2669 goto bad;
2670 }
2671 for (i = 0; i < ic->journal_sections; i++) {
2672 struct scatterlist sg;
2673 struct skcipher_request *section_req;
2674 __u32 section_le = cpu_to_le32(i);
2675
2676 memset(iv, 0x00, ivsize);
2677 memset(crypt_data, 0x00, crypt_len);
2678 memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
2679
2680 sg_init_one(&sg, crypt_data, crypt_len);
2681 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, iv);
2682 comp.comp = COMPLETION_INITIALIZER_ONSTACK(comp.comp);
2683 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2684 if (do_crypt(true, req, &comp))
2685 wait_for_completion(&comp.comp);
2686
2687 r = dm_integrity_failed(ic);
2688 if (r) {
2689 *error = "Unable to generate iv";
2690 goto bad;
2691 }
2692
2693 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2694 if (!section_req) {
2695 *error = "Unable to allocate crypt request";
2696 r = -ENOMEM;
2697 goto bad;
2698 }
2699 section_req->iv = kmalloc(ivsize * 2, GFP_KERNEL);
2700 if (!section_req->iv) {
2701 skcipher_request_free(section_req);
2702 *error = "Unable to allocate iv";
2703 r = -ENOMEM;
2704 goto bad;
2705 }
2706 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
2707 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
2708 ic->sk_requests[i] = section_req;
2709 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
2710 }
2711 }
2712 }
2713
2714 for (i = 0; i < N_COMMIT_IDS; i++) {
2715 unsigned j;
2716 retest_commit_id:
2717 for (j = 0; j < i; j++) {
2718 if (ic->commit_ids[j] == ic->commit_ids[i]) {
2719 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
2720 goto retest_commit_id;
2721 }
2722 }
2723 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
2724 }
2725
2726 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
2727 if (journal_tree_size > ULONG_MAX) {
2728 *error = "Journal doesn't fit into memory";
2729 r = -ENOMEM;
2730 goto bad;
2731 }
2732 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
2733 if (!ic->journal_tree) {
2734 *error = "Could not allocate memory for journal tree";
2735 r = -ENOMEM;
2736 }
2737 bad:
2738 kfree(crypt_data);
2739 return r;
2740 }
2741
2742 /*
2743 * Construct a integrity mapping
2744 *
2745 * Arguments:
2746 * device
2747 * offset from the start of the device
2748 * tag size
2749 * D - direct writes, J - journal writes, R - recovery mode
2750 * number of optional arguments
2751 * optional arguments:
2752 * journal_sectors
2753 * interleave_sectors
2754 * buffer_sectors
2755 * journal_watermark
2756 * commit_time
2757 * internal_hash
2758 * journal_crypt
2759 * journal_mac
2760 * block_size
2761 */
2762 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
2763 {
2764 struct dm_integrity_c *ic;
2765 char dummy;
2766 int r;
2767 unsigned extra_args;
2768 struct dm_arg_set as;
2769 static struct dm_arg _args[] = {
2770 {0, 9, "Invalid number of feature args"},
2771 };
2772 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
2773 bool should_write_sb;
2774 __u64 threshold;
2775 unsigned long long start;
2776
2777 #define DIRECT_ARGUMENTS 4
2778
2779 if (argc <= DIRECT_ARGUMENTS) {
2780 ti->error = "Invalid argument count";
2781 return -EINVAL;
2782 }
2783
2784 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
2785 if (!ic) {
2786 ti->error = "Cannot allocate integrity context";
2787 return -ENOMEM;
2788 }
2789 ti->private = ic;
2790 ti->per_io_data_size = sizeof(struct dm_integrity_io);
2791
2792 ic->in_progress = RB_ROOT;
2793 init_waitqueue_head(&ic->endio_wait);
2794 bio_list_init(&ic->flush_bio_list);
2795 init_waitqueue_head(&ic->copy_to_journal_wait);
2796 init_completion(&ic->crypto_backoff);
2797
2798 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
2799 if (r) {
2800 ti->error = "Device lookup failed";
2801 goto bad;
2802 }
2803
2804 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
2805 ti->error = "Invalid starting offset";
2806 r = -EINVAL;
2807 goto bad;
2808 }
2809 ic->start = start;
2810
2811 if (strcmp(argv[2], "-")) {
2812 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
2813 ti->error = "Invalid tag size";
2814 r = -EINVAL;
2815 goto bad;
2816 }
2817 }
2818
2819 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "D") || !strcmp(argv[3], "R"))
2820 ic->mode = argv[3][0];
2821 else {
2822 ti->error = "Invalid mode (expecting J, D, R)";
2823 r = -EINVAL;
2824 goto bad;
2825 }
2826
2827 ic->device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
2828 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
2829 ic->device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
2830 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
2831 buffer_sectors = DEFAULT_BUFFER_SECTORS;
2832 journal_watermark = DEFAULT_JOURNAL_WATERMARK;
2833 sync_msec = DEFAULT_SYNC_MSEC;
2834 ic->sectors_per_block = 1;
2835
2836 as.argc = argc - DIRECT_ARGUMENTS;
2837 as.argv = argv + DIRECT_ARGUMENTS;
2838 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
2839 if (r)
2840 goto bad;
2841
2842 while (extra_args--) {
2843 const char *opt_string;
2844 unsigned val;
2845 opt_string = dm_shift_arg(&as);
2846 if (!opt_string) {
2847 r = -EINVAL;
2848 ti->error = "Not enough feature arguments";
2849 goto bad;
2850 }
2851 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
2852 journal_sectors = val;
2853 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
2854 interleave_sectors = val;
2855 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
2856 buffer_sectors = val;
2857 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
2858 journal_watermark = val;
2859 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
2860 sync_msec = val;
2861 else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
2862 if (val < 1 << SECTOR_SHIFT ||
2863 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
2864 (val & (val -1))) {
2865 r = -EINVAL;
2866 ti->error = "Invalid block_size argument";
2867 goto bad;
2868 }
2869 ic->sectors_per_block = val >> SECTOR_SHIFT;
2870 } else if (!memcmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
2871 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
2872 "Invalid internal_hash argument");
2873 if (r)
2874 goto bad;
2875 } else if (!memcmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
2876 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
2877 "Invalid journal_crypt argument");
2878 if (r)
2879 goto bad;
2880 } else if (!memcmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
2881 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
2882 "Invalid journal_mac argument");
2883 if (r)
2884 goto bad;
2885 } else {
2886 r = -EINVAL;
2887 ti->error = "Invalid argument";
2888 goto bad;
2889 }
2890 }
2891
2892 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
2893 "Invalid internal hash", "Error setting internal hash key");
2894 if (r)
2895 goto bad;
2896
2897 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
2898 "Invalid journal mac", "Error setting journal mac key");
2899 if (r)
2900 goto bad;
2901
2902 if (!ic->tag_size) {
2903 if (!ic->internal_hash) {
2904 ti->error = "Unknown tag size";
2905 r = -EINVAL;
2906 goto bad;
2907 }
2908 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
2909 }
2910 if (ic->tag_size > MAX_TAG_SIZE) {
2911 ti->error = "Too big tag size";
2912 r = -EINVAL;
2913 goto bad;
2914 }
2915 if (!(ic->tag_size & (ic->tag_size - 1)))
2916 ic->log2_tag_size = __ffs(ic->tag_size);
2917 else
2918 ic->log2_tag_size = -1;
2919
2920 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
2921 ic->autocommit_msec = sync_msec;
2922 setup_timer(&ic->autocommit_timer, autocommit_fn, (unsigned long)ic);
2923
2924 ic->io = dm_io_client_create();
2925 if (IS_ERR(ic->io)) {
2926 r = PTR_ERR(ic->io);
2927 ic->io = NULL;
2928 ti->error = "Cannot allocate dm io";
2929 goto bad;
2930 }
2931
2932 ic->journal_io_mempool = mempool_create_slab_pool(JOURNAL_IO_MEMPOOL, journal_io_cache);
2933 if (!ic->journal_io_mempool) {
2934 r = -ENOMEM;
2935 ti->error = "Cannot allocate mempool";
2936 goto bad;
2937 }
2938
2939 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
2940 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
2941 if (!ic->metadata_wq) {
2942 ti->error = "Cannot allocate workqueue";
2943 r = -ENOMEM;
2944 goto bad;
2945 }
2946
2947 /*
2948 * If this workqueue were percpu, it would cause bio reordering
2949 * and reduced performance.
2950 */
2951 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
2952 if (!ic->wait_wq) {
2953 ti->error = "Cannot allocate workqueue";
2954 r = -ENOMEM;
2955 goto bad;
2956 }
2957
2958 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
2959 if (!ic->commit_wq) {
2960 ti->error = "Cannot allocate workqueue";
2961 r = -ENOMEM;
2962 goto bad;
2963 }
2964 INIT_WORK(&ic->commit_work, integrity_commit);
2965
2966 if (ic->mode == 'J') {
2967 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
2968 if (!ic->writer_wq) {
2969 ti->error = "Cannot allocate workqueue";
2970 r = -ENOMEM;
2971 goto bad;
2972 }
2973 INIT_WORK(&ic->writer_work, integrity_writer);
2974 }
2975
2976 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
2977 if (!ic->sb) {
2978 r = -ENOMEM;
2979 ti->error = "Cannot allocate superblock area";
2980 goto bad;
2981 }
2982
2983 r = sync_rw_sb(ic, REQ_OP_READ, 0);
2984 if (r) {
2985 ti->error = "Error reading superblock";
2986 goto bad;
2987 }
2988 should_write_sb = false;
2989 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
2990 if (ic->mode != 'R') {
2991 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
2992 r = -EINVAL;
2993 ti->error = "The device is not initialized";
2994 goto bad;
2995 }
2996 }
2997
2998 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
2999 if (r) {
3000 ti->error = "Could not initialize superblock";
3001 goto bad;
3002 }
3003 if (ic->mode != 'R')
3004 should_write_sb = true;
3005 }
3006
3007 if (ic->sb->version != SB_VERSION) {
3008 r = -EINVAL;
3009 ti->error = "Unknown version";
3010 goto bad;
3011 }
3012 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
3013 r = -EINVAL;
3014 ti->error = "Tag size doesn't match the information in superblock";
3015 goto bad;
3016 }
3017 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
3018 r = -EINVAL;
3019 ti->error = "Block size doesn't match the information in superblock";
3020 goto bad;
3021 }
3022 /* make sure that ti->max_io_len doesn't overflow */
3023 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
3024 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
3025 r = -EINVAL;
3026 ti->error = "Invalid interleave_sectors in the superblock";
3027 goto bad;
3028 }
3029 ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3030 if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) {
3031 /* test for overflow */
3032 r = -EINVAL;
3033 ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
3034 goto bad;
3035 }
3036 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
3037 r = -EINVAL;
3038 ti->error = "Journal mac mismatch";
3039 goto bad;
3040 }
3041 r = calculate_device_limits(ic);
3042 if (r) {
3043 ti->error = "The device is too small";
3044 goto bad;
3045 }
3046 if (ti->len > ic->provided_data_sectors) {
3047 r = -EINVAL;
3048 ti->error = "Not enough provided sectors for requested mapping size";
3049 goto bad;
3050 }
3051
3052 if (!buffer_sectors)
3053 buffer_sectors = 1;
3054 ic->log2_buffer_sectors = min3((int)__fls(buffer_sectors), (int)__ffs(ic->metadata_run), 31 - SECTOR_SHIFT);
3055
3056 threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
3057 threshold += 50;
3058 do_div(threshold, 100);
3059 ic->free_sectors_threshold = threshold;
3060
3061 DEBUG_print("initialized:\n");
3062 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
3063 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
3064 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
3065 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
3066 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
3067 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
3068 DEBUG_print(" journal_entries %u\n", ic->journal_entries);
3069 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
3070 DEBUG_print(" device_sectors 0x%llx\n", (unsigned long long)ic->device_sectors);
3071 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
3072 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
3073 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
3074 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors,
3075 (unsigned long long)ic->provided_data_sectors);
3076 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
3077
3078 ic->bufio = dm_bufio_client_create(ic->dev->bdev, 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors),
3079 1, 0, NULL, NULL);
3080 if (IS_ERR(ic->bufio)) {
3081 r = PTR_ERR(ic->bufio);
3082 ti->error = "Cannot initialize dm-bufio";
3083 ic->bufio = NULL;
3084 goto bad;
3085 }
3086 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
3087
3088 if (ic->mode != 'R') {
3089 r = create_journal(ic, &ti->error);
3090 if (r)
3091 goto bad;
3092 }
3093
3094 if (should_write_sb) {
3095 int r;
3096
3097 init_journal(ic, 0, ic->journal_sections, 0);
3098 r = dm_integrity_failed(ic);
3099 if (unlikely(r)) {
3100 ti->error = "Error initializing journal";
3101 goto bad;
3102 }
3103 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3104 if (r) {
3105 ti->error = "Error initializing superblock";
3106 goto bad;
3107 }
3108 ic->just_formatted = true;
3109 }
3110
3111 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
3112 if (r)
3113 goto bad;
3114
3115 if (!ic->internal_hash)
3116 dm_integrity_set(ti, ic);
3117
3118 ti->num_flush_bios = 1;
3119 ti->flush_supported = true;
3120
3121 return 0;
3122 bad:
3123 dm_integrity_dtr(ti);
3124 return r;
3125 }
3126
3127 static void dm_integrity_dtr(struct dm_target *ti)
3128 {
3129 struct dm_integrity_c *ic = ti->private;
3130
3131 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3132
3133 if (ic->metadata_wq)
3134 destroy_workqueue(ic->metadata_wq);
3135 if (ic->wait_wq)
3136 destroy_workqueue(ic->wait_wq);
3137 if (ic->commit_wq)
3138 destroy_workqueue(ic->commit_wq);
3139 if (ic->writer_wq)
3140 destroy_workqueue(ic->writer_wq);
3141 if (ic->bufio)
3142 dm_bufio_client_destroy(ic->bufio);
3143 mempool_destroy(ic->journal_io_mempool);
3144 if (ic->io)
3145 dm_io_client_destroy(ic->io);
3146 if (ic->dev)
3147 dm_put_device(ti, ic->dev);
3148 dm_integrity_free_page_list(ic, ic->journal);
3149 dm_integrity_free_page_list(ic, ic->journal_io);
3150 dm_integrity_free_page_list(ic, ic->journal_xor);
3151 if (ic->journal_scatterlist)
3152 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
3153 if (ic->journal_io_scatterlist)
3154 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
3155 if (ic->sk_requests) {
3156 unsigned i;
3157
3158 for (i = 0; i < ic->journal_sections; i++) {
3159 struct skcipher_request *req = ic->sk_requests[i];
3160 if (req) {
3161 kzfree(req->iv);
3162 skcipher_request_free(req);
3163 }
3164 }
3165 kvfree(ic->sk_requests);
3166 }
3167 kvfree(ic->journal_tree);
3168 if (ic->sb)
3169 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
3170
3171 if (ic->internal_hash)
3172 crypto_free_shash(ic->internal_hash);
3173 free_alg(&ic->internal_hash_alg);
3174
3175 if (ic->journal_crypt)
3176 crypto_free_skcipher(ic->journal_crypt);
3177 free_alg(&ic->journal_crypt_alg);
3178
3179 if (ic->journal_mac)
3180 crypto_free_shash(ic->journal_mac);
3181 free_alg(&ic->journal_mac_alg);
3182
3183 kfree(ic);
3184 }
3185
3186 static struct target_type integrity_target = {
3187 .name = "integrity",
3188 .version = {1, 0, 0},
3189 .module = THIS_MODULE,
3190 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
3191 .ctr = dm_integrity_ctr,
3192 .dtr = dm_integrity_dtr,
3193 .map = dm_integrity_map,
3194 .postsuspend = dm_integrity_postsuspend,
3195 .resume = dm_integrity_resume,
3196 .status = dm_integrity_status,
3197 .iterate_devices = dm_integrity_iterate_devices,
3198 .io_hints = dm_integrity_io_hints,
3199 };
3200
3201 int __init dm_integrity_init(void)
3202 {
3203 int r;
3204
3205 journal_io_cache = kmem_cache_create("integrity_journal_io",
3206 sizeof(struct journal_io), 0, 0, NULL);
3207 if (!journal_io_cache) {
3208 DMERR("can't allocate journal io cache");
3209 return -ENOMEM;
3210 }
3211
3212 r = dm_register_target(&integrity_target);
3213
3214 if (r < 0)
3215 DMERR("register failed %d", r);
3216
3217 return r;
3218 }
3219
3220 void dm_integrity_exit(void)
3221 {
3222 dm_unregister_target(&integrity_target);
3223 kmem_cache_destroy(journal_io_cache);
3224 }
3225
3226 module_init(dm_integrity_init);
3227 module_exit(dm_integrity_exit);
3228
3229 MODULE_AUTHOR("Milan Broz");
3230 MODULE_AUTHOR("Mikulas Patocka");
3231 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
3232 MODULE_LICENSE("GPL");