]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/md/dm-integrity.c
Merge branch 'akpm' (patches from Andrew)
[mirror_ubuntu-eoan-kernel.git] / drivers / md / dm-integrity.c
1 /*
2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3 * Copyright (C) 2016-2017 Milan Broz
4 * Copyright (C) 2016-2017 Mikulas Patocka
5 *
6 * This file is released under the GPL.
7 */
8
9 #include <linux/compiler.h>
10 #include <linux/module.h>
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/vmalloc.h>
14 #include <linux/sort.h>
15 #include <linux/rbtree.h>
16 #include <linux/delay.h>
17 #include <linux/random.h>
18 #include <crypto/hash.h>
19 #include <crypto/skcipher.h>
20 #include <linux/async_tx.h>
21 #include <linux/dm-bufio.h>
22
23 #define DM_MSG_PREFIX "integrity"
24
25 #define DEFAULT_INTERLEAVE_SECTORS 32768
26 #define DEFAULT_JOURNAL_SIZE_FACTOR 7
27 #define DEFAULT_BUFFER_SECTORS 128
28 #define DEFAULT_JOURNAL_WATERMARK 50
29 #define DEFAULT_SYNC_MSEC 10000
30 #define DEFAULT_MAX_JOURNAL_SECTORS 131072
31 #define MIN_LOG2_INTERLEAVE_SECTORS 3
32 #define MAX_LOG2_INTERLEAVE_SECTORS 31
33 #define METADATA_WORKQUEUE_MAX_ACTIVE 16
34 #define RECALC_SECTORS 8192
35 #define RECALC_WRITE_SUPER 16
36
37 /*
38 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
39 * so it should not be enabled in the official kernel
40 */
41 //#define DEBUG_PRINT
42 //#define INTERNAL_VERIFY
43
44 /*
45 * On disk structures
46 */
47
48 #define SB_MAGIC "integrt"
49 #define SB_VERSION_1 1
50 #define SB_VERSION_2 2
51 #define SB_SECTORS 8
52 #define MAX_SECTORS_PER_BLOCK 8
53
54 struct superblock {
55 __u8 magic[8];
56 __u8 version;
57 __u8 log2_interleave_sectors;
58 __u16 integrity_tag_size;
59 __u32 journal_sections;
60 __u64 provided_data_sectors; /* userspace uses this value */
61 __u32 flags;
62 __u8 log2_sectors_per_block;
63 __u8 pad[3];
64 __u64 recalc_sector;
65 };
66
67 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1
68 #define SB_FLAG_RECALCULATING 0x2
69
70 #define JOURNAL_ENTRY_ROUNDUP 8
71
72 typedef __u64 commit_id_t;
73 #define JOURNAL_MAC_PER_SECTOR 8
74
75 struct journal_entry {
76 union {
77 struct {
78 __u32 sector_lo;
79 __u32 sector_hi;
80 } s;
81 __u64 sector;
82 } u;
83 commit_id_t last_bytes[0];
84 /* __u8 tag[0]; */
85 };
86
87 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
88
89 #if BITS_PER_LONG == 64
90 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
91 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
92 #elif defined(CONFIG_LBDAF)
93 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
94 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
95 #else
96 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32(0)); } while (0)
97 #define journal_entry_get_sector(je) le32_to_cpu((je)->u.s.sector_lo)
98 #endif
99 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
100 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
101 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
102 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
103
104 #define JOURNAL_BLOCK_SECTORS 8
105 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
106 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
107
108 struct journal_sector {
109 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
110 __u8 mac[JOURNAL_MAC_PER_SECTOR];
111 commit_id_t commit_id;
112 };
113
114 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
115
116 #define METADATA_PADDING_SECTORS 8
117
118 #define N_COMMIT_IDS 4
119
120 static unsigned char prev_commit_seq(unsigned char seq)
121 {
122 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
123 }
124
125 static unsigned char next_commit_seq(unsigned char seq)
126 {
127 return (seq + 1) % N_COMMIT_IDS;
128 }
129
130 /*
131 * In-memory structures
132 */
133
134 struct journal_node {
135 struct rb_node node;
136 sector_t sector;
137 };
138
139 struct alg_spec {
140 char *alg_string;
141 char *key_string;
142 __u8 *key;
143 unsigned key_size;
144 };
145
146 struct dm_integrity_c {
147 struct dm_dev *dev;
148 struct dm_dev *meta_dev;
149 unsigned tag_size;
150 __s8 log2_tag_size;
151 sector_t start;
152 mempool_t journal_io_mempool;
153 struct dm_io_client *io;
154 struct dm_bufio_client *bufio;
155 struct workqueue_struct *metadata_wq;
156 struct superblock *sb;
157 unsigned journal_pages;
158 struct page_list *journal;
159 struct page_list *journal_io;
160 struct page_list *journal_xor;
161
162 struct crypto_skcipher *journal_crypt;
163 struct scatterlist **journal_scatterlist;
164 struct scatterlist **journal_io_scatterlist;
165 struct skcipher_request **sk_requests;
166
167 struct crypto_shash *journal_mac;
168
169 struct journal_node *journal_tree;
170 struct rb_root journal_tree_root;
171
172 sector_t provided_data_sectors;
173
174 unsigned short journal_entry_size;
175 unsigned char journal_entries_per_sector;
176 unsigned char journal_section_entries;
177 unsigned short journal_section_sectors;
178 unsigned journal_sections;
179 unsigned journal_entries;
180 sector_t data_device_sectors;
181 sector_t meta_device_sectors;
182 unsigned initial_sectors;
183 unsigned metadata_run;
184 __s8 log2_metadata_run;
185 __u8 log2_buffer_sectors;
186 __u8 sectors_per_block;
187
188 unsigned char mode;
189 int suspending;
190
191 int failed;
192
193 struct crypto_shash *internal_hash;
194
195 /* these variables are locked with endio_wait.lock */
196 struct rb_root in_progress;
197 struct list_head wait_list;
198 wait_queue_head_t endio_wait;
199 struct workqueue_struct *wait_wq;
200
201 unsigned char commit_seq;
202 commit_id_t commit_ids[N_COMMIT_IDS];
203
204 unsigned committed_section;
205 unsigned n_committed_sections;
206
207 unsigned uncommitted_section;
208 unsigned n_uncommitted_sections;
209
210 unsigned free_section;
211 unsigned char free_section_entry;
212 unsigned free_sectors;
213
214 unsigned free_sectors_threshold;
215
216 struct workqueue_struct *commit_wq;
217 struct work_struct commit_work;
218
219 struct workqueue_struct *writer_wq;
220 struct work_struct writer_work;
221
222 struct workqueue_struct *recalc_wq;
223 struct work_struct recalc_work;
224 u8 *recalc_buffer;
225 u8 *recalc_tags;
226
227 struct bio_list flush_bio_list;
228
229 unsigned long autocommit_jiffies;
230 struct timer_list autocommit_timer;
231 unsigned autocommit_msec;
232
233 wait_queue_head_t copy_to_journal_wait;
234
235 struct completion crypto_backoff;
236
237 bool journal_uptodate;
238 bool just_formatted;
239
240 struct alg_spec internal_hash_alg;
241 struct alg_spec journal_crypt_alg;
242 struct alg_spec journal_mac_alg;
243
244 atomic64_t number_of_mismatches;
245 };
246
247 struct dm_integrity_range {
248 sector_t logical_sector;
249 unsigned n_sectors;
250 bool waiting;
251 union {
252 struct rb_node node;
253 struct {
254 struct task_struct *task;
255 struct list_head wait_entry;
256 };
257 };
258 };
259
260 struct dm_integrity_io {
261 struct work_struct work;
262
263 struct dm_integrity_c *ic;
264 bool write;
265 bool fua;
266
267 struct dm_integrity_range range;
268
269 sector_t metadata_block;
270 unsigned metadata_offset;
271
272 atomic_t in_flight;
273 blk_status_t bi_status;
274
275 struct completion *completion;
276
277 struct gendisk *orig_bi_disk;
278 u8 orig_bi_partno;
279 bio_end_io_t *orig_bi_end_io;
280 struct bio_integrity_payload *orig_bi_integrity;
281 struct bvec_iter orig_bi_iter;
282 };
283
284 struct journal_completion {
285 struct dm_integrity_c *ic;
286 atomic_t in_flight;
287 struct completion comp;
288 };
289
290 struct journal_io {
291 struct dm_integrity_range range;
292 struct journal_completion *comp;
293 };
294
295 static struct kmem_cache *journal_io_cache;
296
297 #define JOURNAL_IO_MEMPOOL 32
298
299 #ifdef DEBUG_PRINT
300 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
301 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
302 {
303 va_list args;
304 va_start(args, msg);
305 vprintk(msg, args);
306 va_end(args);
307 if (len)
308 pr_cont(":");
309 while (len) {
310 pr_cont(" %02x", *bytes);
311 bytes++;
312 len--;
313 }
314 pr_cont("\n");
315 }
316 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
317 #else
318 #define DEBUG_print(x, ...) do { } while (0)
319 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
320 #endif
321
322 /*
323 * DM Integrity profile, protection is performed layer above (dm-crypt)
324 */
325 static const struct blk_integrity_profile dm_integrity_profile = {
326 .name = "DM-DIF-EXT-TAG",
327 .generate_fn = NULL,
328 .verify_fn = NULL,
329 };
330
331 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
332 static void integrity_bio_wait(struct work_struct *w);
333 static void dm_integrity_dtr(struct dm_target *ti);
334
335 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
336 {
337 if (err == -EILSEQ)
338 atomic64_inc(&ic->number_of_mismatches);
339 if (!cmpxchg(&ic->failed, 0, err))
340 DMERR("Error on %s: %d", msg, err);
341 }
342
343 static int dm_integrity_failed(struct dm_integrity_c *ic)
344 {
345 return READ_ONCE(ic->failed);
346 }
347
348 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
349 unsigned j, unsigned char seq)
350 {
351 /*
352 * Xor the number with section and sector, so that if a piece of
353 * journal is written at wrong place, it is detected.
354 */
355 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
356 }
357
358 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
359 sector_t *area, sector_t *offset)
360 {
361 if (!ic->meta_dev) {
362 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
363 *area = data_sector >> log2_interleave_sectors;
364 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
365 } else {
366 *area = 0;
367 *offset = data_sector;
368 }
369 }
370
371 #define sector_to_block(ic, n) \
372 do { \
373 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \
374 (n) >>= (ic)->sb->log2_sectors_per_block; \
375 } while (0)
376
377 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
378 sector_t offset, unsigned *metadata_offset)
379 {
380 __u64 ms;
381 unsigned mo;
382
383 ms = area << ic->sb->log2_interleave_sectors;
384 if (likely(ic->log2_metadata_run >= 0))
385 ms += area << ic->log2_metadata_run;
386 else
387 ms += area * ic->metadata_run;
388 ms >>= ic->log2_buffer_sectors;
389
390 sector_to_block(ic, offset);
391
392 if (likely(ic->log2_tag_size >= 0)) {
393 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
394 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
395 } else {
396 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
397 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
398 }
399 *metadata_offset = mo;
400 return ms;
401 }
402
403 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
404 {
405 sector_t result;
406
407 if (ic->meta_dev)
408 return offset;
409
410 result = area << ic->sb->log2_interleave_sectors;
411 if (likely(ic->log2_metadata_run >= 0))
412 result += (area + 1) << ic->log2_metadata_run;
413 else
414 result += (area + 1) * ic->metadata_run;
415
416 result += (sector_t)ic->initial_sectors + offset;
417 result += ic->start;
418
419 return result;
420 }
421
422 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
423 {
424 if (unlikely(*sec_ptr >= ic->journal_sections))
425 *sec_ptr -= ic->journal_sections;
426 }
427
428 static void sb_set_version(struct dm_integrity_c *ic)
429 {
430 if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
431 ic->sb->version = SB_VERSION_2;
432 else
433 ic->sb->version = SB_VERSION_1;
434 }
435
436 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
437 {
438 struct dm_io_request io_req;
439 struct dm_io_region io_loc;
440
441 io_req.bi_op = op;
442 io_req.bi_op_flags = op_flags;
443 io_req.mem.type = DM_IO_KMEM;
444 io_req.mem.ptr.addr = ic->sb;
445 io_req.notify.fn = NULL;
446 io_req.client = ic->io;
447 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
448 io_loc.sector = ic->start;
449 io_loc.count = SB_SECTORS;
450
451 return dm_io(&io_req, 1, &io_loc, NULL);
452 }
453
454 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
455 bool e, const char *function)
456 {
457 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
458 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
459
460 if (unlikely(section >= ic->journal_sections) ||
461 unlikely(offset >= limit)) {
462 printk(KERN_CRIT "%s: invalid access at (%u,%u), limit (%u,%u)\n",
463 function, section, offset, ic->journal_sections, limit);
464 BUG();
465 }
466 #endif
467 }
468
469 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
470 unsigned *pl_index, unsigned *pl_offset)
471 {
472 unsigned sector;
473
474 access_journal_check(ic, section, offset, false, "page_list_location");
475
476 sector = section * ic->journal_section_sectors + offset;
477
478 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
479 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
480 }
481
482 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
483 unsigned section, unsigned offset, unsigned *n_sectors)
484 {
485 unsigned pl_index, pl_offset;
486 char *va;
487
488 page_list_location(ic, section, offset, &pl_index, &pl_offset);
489
490 if (n_sectors)
491 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
492
493 va = lowmem_page_address(pl[pl_index].page);
494
495 return (struct journal_sector *)(va + pl_offset);
496 }
497
498 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
499 {
500 return access_page_list(ic, ic->journal, section, offset, NULL);
501 }
502
503 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
504 {
505 unsigned rel_sector, offset;
506 struct journal_sector *js;
507
508 access_journal_check(ic, section, n, true, "access_journal_entry");
509
510 rel_sector = n % JOURNAL_BLOCK_SECTORS;
511 offset = n / JOURNAL_BLOCK_SECTORS;
512
513 js = access_journal(ic, section, rel_sector);
514 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
515 }
516
517 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
518 {
519 n <<= ic->sb->log2_sectors_per_block;
520
521 n += JOURNAL_BLOCK_SECTORS;
522
523 access_journal_check(ic, section, n, false, "access_journal_data");
524
525 return access_journal(ic, section, n);
526 }
527
528 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
529 {
530 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
531 int r;
532 unsigned j, size;
533
534 desc->tfm = ic->journal_mac;
535 desc->flags = 0;
536
537 r = crypto_shash_init(desc);
538 if (unlikely(r)) {
539 dm_integrity_io_error(ic, "crypto_shash_init", r);
540 goto err;
541 }
542
543 for (j = 0; j < ic->journal_section_entries; j++) {
544 struct journal_entry *je = access_journal_entry(ic, section, j);
545 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
546 if (unlikely(r)) {
547 dm_integrity_io_error(ic, "crypto_shash_update", r);
548 goto err;
549 }
550 }
551
552 size = crypto_shash_digestsize(ic->journal_mac);
553
554 if (likely(size <= JOURNAL_MAC_SIZE)) {
555 r = crypto_shash_final(desc, result);
556 if (unlikely(r)) {
557 dm_integrity_io_error(ic, "crypto_shash_final", r);
558 goto err;
559 }
560 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
561 } else {
562 __u8 digest[HASH_MAX_DIGESTSIZE];
563
564 if (WARN_ON(size > sizeof(digest))) {
565 dm_integrity_io_error(ic, "digest_size", -EINVAL);
566 goto err;
567 }
568 r = crypto_shash_final(desc, digest);
569 if (unlikely(r)) {
570 dm_integrity_io_error(ic, "crypto_shash_final", r);
571 goto err;
572 }
573 memcpy(result, digest, JOURNAL_MAC_SIZE);
574 }
575
576 return;
577 err:
578 memset(result, 0, JOURNAL_MAC_SIZE);
579 }
580
581 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
582 {
583 __u8 result[JOURNAL_MAC_SIZE];
584 unsigned j;
585
586 if (!ic->journal_mac)
587 return;
588
589 section_mac(ic, section, result);
590
591 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
592 struct journal_sector *js = access_journal(ic, section, j);
593
594 if (likely(wr))
595 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
596 else {
597 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
598 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
599 }
600 }
601 }
602
603 static void complete_journal_op(void *context)
604 {
605 struct journal_completion *comp = context;
606 BUG_ON(!atomic_read(&comp->in_flight));
607 if (likely(atomic_dec_and_test(&comp->in_flight)))
608 complete(&comp->comp);
609 }
610
611 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
612 unsigned n_sections, struct journal_completion *comp)
613 {
614 struct async_submit_ctl submit;
615 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
616 unsigned pl_index, pl_offset, section_index;
617 struct page_list *source_pl, *target_pl;
618
619 if (likely(encrypt)) {
620 source_pl = ic->journal;
621 target_pl = ic->journal_io;
622 } else {
623 source_pl = ic->journal_io;
624 target_pl = ic->journal;
625 }
626
627 page_list_location(ic, section, 0, &pl_index, &pl_offset);
628
629 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
630
631 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
632
633 section_index = pl_index;
634
635 do {
636 size_t this_step;
637 struct page *src_pages[2];
638 struct page *dst_page;
639
640 while (unlikely(pl_index == section_index)) {
641 unsigned dummy;
642 if (likely(encrypt))
643 rw_section_mac(ic, section, true);
644 section++;
645 n_sections--;
646 if (!n_sections)
647 break;
648 page_list_location(ic, section, 0, &section_index, &dummy);
649 }
650
651 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
652 dst_page = target_pl[pl_index].page;
653 src_pages[0] = source_pl[pl_index].page;
654 src_pages[1] = ic->journal_xor[pl_index].page;
655
656 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
657
658 pl_index++;
659 pl_offset = 0;
660 n_bytes -= this_step;
661 } while (n_bytes);
662
663 BUG_ON(n_sections);
664
665 async_tx_issue_pending_all();
666 }
667
668 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
669 {
670 struct journal_completion *comp = req->data;
671 if (unlikely(err)) {
672 if (likely(err == -EINPROGRESS)) {
673 complete(&comp->ic->crypto_backoff);
674 return;
675 }
676 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
677 }
678 complete_journal_op(comp);
679 }
680
681 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
682 {
683 int r;
684 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
685 complete_journal_encrypt, comp);
686 if (likely(encrypt))
687 r = crypto_skcipher_encrypt(req);
688 else
689 r = crypto_skcipher_decrypt(req);
690 if (likely(!r))
691 return false;
692 if (likely(r == -EINPROGRESS))
693 return true;
694 if (likely(r == -EBUSY)) {
695 wait_for_completion(&comp->ic->crypto_backoff);
696 reinit_completion(&comp->ic->crypto_backoff);
697 return true;
698 }
699 dm_integrity_io_error(comp->ic, "encrypt", r);
700 return false;
701 }
702
703 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
704 unsigned n_sections, struct journal_completion *comp)
705 {
706 struct scatterlist **source_sg;
707 struct scatterlist **target_sg;
708
709 atomic_add(2, &comp->in_flight);
710
711 if (likely(encrypt)) {
712 source_sg = ic->journal_scatterlist;
713 target_sg = ic->journal_io_scatterlist;
714 } else {
715 source_sg = ic->journal_io_scatterlist;
716 target_sg = ic->journal_scatterlist;
717 }
718
719 do {
720 struct skcipher_request *req;
721 unsigned ivsize;
722 char *iv;
723
724 if (likely(encrypt))
725 rw_section_mac(ic, section, true);
726
727 req = ic->sk_requests[section];
728 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
729 iv = req->iv;
730
731 memcpy(iv, iv + ivsize, ivsize);
732
733 req->src = source_sg[section];
734 req->dst = target_sg[section];
735
736 if (unlikely(do_crypt(encrypt, req, comp)))
737 atomic_inc(&comp->in_flight);
738
739 section++;
740 n_sections--;
741 } while (n_sections);
742
743 atomic_dec(&comp->in_flight);
744 complete_journal_op(comp);
745 }
746
747 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
748 unsigned n_sections, struct journal_completion *comp)
749 {
750 if (ic->journal_xor)
751 return xor_journal(ic, encrypt, section, n_sections, comp);
752 else
753 return crypt_journal(ic, encrypt, section, n_sections, comp);
754 }
755
756 static void complete_journal_io(unsigned long error, void *context)
757 {
758 struct journal_completion *comp = context;
759 if (unlikely(error != 0))
760 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
761 complete_journal_op(comp);
762 }
763
764 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
765 unsigned n_sections, struct journal_completion *comp)
766 {
767 struct dm_io_request io_req;
768 struct dm_io_region io_loc;
769 unsigned sector, n_sectors, pl_index, pl_offset;
770 int r;
771
772 if (unlikely(dm_integrity_failed(ic))) {
773 if (comp)
774 complete_journal_io(-1UL, comp);
775 return;
776 }
777
778 sector = section * ic->journal_section_sectors;
779 n_sectors = n_sections * ic->journal_section_sectors;
780
781 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
782 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
783
784 io_req.bi_op = op;
785 io_req.bi_op_flags = op_flags;
786 io_req.mem.type = DM_IO_PAGE_LIST;
787 if (ic->journal_io)
788 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
789 else
790 io_req.mem.ptr.pl = &ic->journal[pl_index];
791 io_req.mem.offset = pl_offset;
792 if (likely(comp != NULL)) {
793 io_req.notify.fn = complete_journal_io;
794 io_req.notify.context = comp;
795 } else {
796 io_req.notify.fn = NULL;
797 }
798 io_req.client = ic->io;
799 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
800 io_loc.sector = ic->start + SB_SECTORS + sector;
801 io_loc.count = n_sectors;
802
803 r = dm_io(&io_req, 1, &io_loc, NULL);
804 if (unlikely(r)) {
805 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
806 if (comp) {
807 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
808 complete_journal_io(-1UL, comp);
809 }
810 }
811 }
812
813 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
814 {
815 struct journal_completion io_comp;
816 struct journal_completion crypt_comp_1;
817 struct journal_completion crypt_comp_2;
818 unsigned i;
819
820 io_comp.ic = ic;
821 init_completion(&io_comp.comp);
822
823 if (commit_start + commit_sections <= ic->journal_sections) {
824 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
825 if (ic->journal_io) {
826 crypt_comp_1.ic = ic;
827 init_completion(&crypt_comp_1.comp);
828 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
829 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
830 wait_for_completion_io(&crypt_comp_1.comp);
831 } else {
832 for (i = 0; i < commit_sections; i++)
833 rw_section_mac(ic, commit_start + i, true);
834 }
835 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
836 commit_sections, &io_comp);
837 } else {
838 unsigned to_end;
839 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
840 to_end = ic->journal_sections - commit_start;
841 if (ic->journal_io) {
842 crypt_comp_1.ic = ic;
843 init_completion(&crypt_comp_1.comp);
844 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
845 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
846 if (try_wait_for_completion(&crypt_comp_1.comp)) {
847 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
848 reinit_completion(&crypt_comp_1.comp);
849 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
850 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
851 wait_for_completion_io(&crypt_comp_1.comp);
852 } else {
853 crypt_comp_2.ic = ic;
854 init_completion(&crypt_comp_2.comp);
855 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
856 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
857 wait_for_completion_io(&crypt_comp_1.comp);
858 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
859 wait_for_completion_io(&crypt_comp_2.comp);
860 }
861 } else {
862 for (i = 0; i < to_end; i++)
863 rw_section_mac(ic, commit_start + i, true);
864 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
865 for (i = 0; i < commit_sections - to_end; i++)
866 rw_section_mac(ic, i, true);
867 }
868 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
869 }
870
871 wait_for_completion_io(&io_comp.comp);
872 }
873
874 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
875 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
876 {
877 struct dm_io_request io_req;
878 struct dm_io_region io_loc;
879 int r;
880 unsigned sector, pl_index, pl_offset;
881
882 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
883
884 if (unlikely(dm_integrity_failed(ic))) {
885 fn(-1UL, data);
886 return;
887 }
888
889 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
890
891 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
892 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
893
894 io_req.bi_op = REQ_OP_WRITE;
895 io_req.bi_op_flags = 0;
896 io_req.mem.type = DM_IO_PAGE_LIST;
897 io_req.mem.ptr.pl = &ic->journal[pl_index];
898 io_req.mem.offset = pl_offset;
899 io_req.notify.fn = fn;
900 io_req.notify.context = data;
901 io_req.client = ic->io;
902 io_loc.bdev = ic->dev->bdev;
903 io_loc.sector = target;
904 io_loc.count = n_sectors;
905
906 r = dm_io(&io_req, 1, &io_loc, NULL);
907 if (unlikely(r)) {
908 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
909 fn(-1UL, data);
910 }
911 }
912
913 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
914 {
915 return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
916 range2->logical_sector + range2->n_sectors > range2->logical_sector;
917 }
918
919 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
920 {
921 struct rb_node **n = &ic->in_progress.rb_node;
922 struct rb_node *parent;
923
924 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
925
926 if (likely(check_waiting)) {
927 struct dm_integrity_range *range;
928 list_for_each_entry(range, &ic->wait_list, wait_entry) {
929 if (unlikely(ranges_overlap(range, new_range)))
930 return false;
931 }
932 }
933
934 parent = NULL;
935
936 while (*n) {
937 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
938
939 parent = *n;
940 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
941 n = &range->node.rb_left;
942 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
943 n = &range->node.rb_right;
944 } else {
945 return false;
946 }
947 }
948
949 rb_link_node(&new_range->node, parent, n);
950 rb_insert_color(&new_range->node, &ic->in_progress);
951
952 return true;
953 }
954
955 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
956 {
957 rb_erase(&range->node, &ic->in_progress);
958 while (unlikely(!list_empty(&ic->wait_list))) {
959 struct dm_integrity_range *last_range =
960 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
961 struct task_struct *last_range_task;
962 if (!ranges_overlap(range, last_range))
963 break;
964 last_range_task = last_range->task;
965 list_del(&last_range->wait_entry);
966 if (!add_new_range(ic, last_range, false)) {
967 last_range->task = last_range_task;
968 list_add(&last_range->wait_entry, &ic->wait_list);
969 break;
970 }
971 last_range->waiting = false;
972 wake_up_process(last_range_task);
973 }
974 }
975
976 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
977 {
978 unsigned long flags;
979
980 spin_lock_irqsave(&ic->endio_wait.lock, flags);
981 remove_range_unlocked(ic, range);
982 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
983 }
984
985 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
986 {
987 new_range->waiting = true;
988 list_add_tail(&new_range->wait_entry, &ic->wait_list);
989 new_range->task = current;
990 do {
991 __set_current_state(TASK_UNINTERRUPTIBLE);
992 spin_unlock_irq(&ic->endio_wait.lock);
993 io_schedule();
994 spin_lock_irq(&ic->endio_wait.lock);
995 } while (unlikely(new_range->waiting));
996 }
997
998 static void init_journal_node(struct journal_node *node)
999 {
1000 RB_CLEAR_NODE(&node->node);
1001 node->sector = (sector_t)-1;
1002 }
1003
1004 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1005 {
1006 struct rb_node **link;
1007 struct rb_node *parent;
1008
1009 node->sector = sector;
1010 BUG_ON(!RB_EMPTY_NODE(&node->node));
1011
1012 link = &ic->journal_tree_root.rb_node;
1013 parent = NULL;
1014
1015 while (*link) {
1016 struct journal_node *j;
1017 parent = *link;
1018 j = container_of(parent, struct journal_node, node);
1019 if (sector < j->sector)
1020 link = &j->node.rb_left;
1021 else
1022 link = &j->node.rb_right;
1023 }
1024
1025 rb_link_node(&node->node, parent, link);
1026 rb_insert_color(&node->node, &ic->journal_tree_root);
1027 }
1028
1029 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1030 {
1031 BUG_ON(RB_EMPTY_NODE(&node->node));
1032 rb_erase(&node->node, &ic->journal_tree_root);
1033 init_journal_node(node);
1034 }
1035
1036 #define NOT_FOUND (-1U)
1037
1038 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1039 {
1040 struct rb_node *n = ic->journal_tree_root.rb_node;
1041 unsigned found = NOT_FOUND;
1042 *next_sector = (sector_t)-1;
1043 while (n) {
1044 struct journal_node *j = container_of(n, struct journal_node, node);
1045 if (sector == j->sector) {
1046 found = j - ic->journal_tree;
1047 }
1048 if (sector < j->sector) {
1049 *next_sector = j->sector;
1050 n = j->node.rb_left;
1051 } else {
1052 n = j->node.rb_right;
1053 }
1054 }
1055
1056 return found;
1057 }
1058
1059 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1060 {
1061 struct journal_node *node, *next_node;
1062 struct rb_node *next;
1063
1064 if (unlikely(pos >= ic->journal_entries))
1065 return false;
1066 node = &ic->journal_tree[pos];
1067 if (unlikely(RB_EMPTY_NODE(&node->node)))
1068 return false;
1069 if (unlikely(node->sector != sector))
1070 return false;
1071
1072 next = rb_next(&node->node);
1073 if (unlikely(!next))
1074 return true;
1075
1076 next_node = container_of(next, struct journal_node, node);
1077 return next_node->sector != sector;
1078 }
1079
1080 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1081 {
1082 struct rb_node *next;
1083 struct journal_node *next_node;
1084 unsigned next_section;
1085
1086 BUG_ON(RB_EMPTY_NODE(&node->node));
1087
1088 next = rb_next(&node->node);
1089 if (unlikely(!next))
1090 return false;
1091
1092 next_node = container_of(next, struct journal_node, node);
1093
1094 if (next_node->sector != node->sector)
1095 return false;
1096
1097 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1098 if (next_section >= ic->committed_section &&
1099 next_section < ic->committed_section + ic->n_committed_sections)
1100 return true;
1101 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1102 return true;
1103
1104 return false;
1105 }
1106
1107 #define TAG_READ 0
1108 #define TAG_WRITE 1
1109 #define TAG_CMP 2
1110
1111 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1112 unsigned *metadata_offset, unsigned total_size, int op)
1113 {
1114 do {
1115 unsigned char *data, *dp;
1116 struct dm_buffer *b;
1117 unsigned to_copy;
1118 int r;
1119
1120 r = dm_integrity_failed(ic);
1121 if (unlikely(r))
1122 return r;
1123
1124 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1125 if (unlikely(IS_ERR(data)))
1126 return PTR_ERR(data);
1127
1128 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1129 dp = data + *metadata_offset;
1130 if (op == TAG_READ) {
1131 memcpy(tag, dp, to_copy);
1132 } else if (op == TAG_WRITE) {
1133 memcpy(dp, tag, to_copy);
1134 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1135 } else {
1136 /* e.g.: op == TAG_CMP */
1137 if (unlikely(memcmp(dp, tag, to_copy))) {
1138 unsigned i;
1139
1140 for (i = 0; i < to_copy; i++) {
1141 if (dp[i] != tag[i])
1142 break;
1143 total_size--;
1144 }
1145 dm_bufio_release(b);
1146 return total_size;
1147 }
1148 }
1149 dm_bufio_release(b);
1150
1151 tag += to_copy;
1152 *metadata_offset += to_copy;
1153 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1154 (*metadata_block)++;
1155 *metadata_offset = 0;
1156 }
1157 total_size -= to_copy;
1158 } while (unlikely(total_size));
1159
1160 return 0;
1161 }
1162
1163 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
1164 {
1165 int r;
1166 r = dm_bufio_write_dirty_buffers(ic->bufio);
1167 if (unlikely(r))
1168 dm_integrity_io_error(ic, "writing tags", r);
1169 }
1170
1171 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1172 {
1173 DECLARE_WAITQUEUE(wait, current);
1174 __add_wait_queue(&ic->endio_wait, &wait);
1175 __set_current_state(TASK_UNINTERRUPTIBLE);
1176 spin_unlock_irq(&ic->endio_wait.lock);
1177 io_schedule();
1178 spin_lock_irq(&ic->endio_wait.lock);
1179 __remove_wait_queue(&ic->endio_wait, &wait);
1180 }
1181
1182 static void autocommit_fn(struct timer_list *t)
1183 {
1184 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1185
1186 if (likely(!dm_integrity_failed(ic)))
1187 queue_work(ic->commit_wq, &ic->commit_work);
1188 }
1189
1190 static void schedule_autocommit(struct dm_integrity_c *ic)
1191 {
1192 if (!timer_pending(&ic->autocommit_timer))
1193 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1194 }
1195
1196 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1197 {
1198 struct bio *bio;
1199 unsigned long flags;
1200
1201 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1202 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1203 bio_list_add(&ic->flush_bio_list, bio);
1204 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1205
1206 queue_work(ic->commit_wq, &ic->commit_work);
1207 }
1208
1209 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1210 {
1211 int r = dm_integrity_failed(ic);
1212 if (unlikely(r) && !bio->bi_status)
1213 bio->bi_status = errno_to_blk_status(r);
1214 bio_endio(bio);
1215 }
1216
1217 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1218 {
1219 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1220
1221 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1222 submit_flush_bio(ic, dio);
1223 else
1224 do_endio(ic, bio);
1225 }
1226
1227 static void dec_in_flight(struct dm_integrity_io *dio)
1228 {
1229 if (atomic_dec_and_test(&dio->in_flight)) {
1230 struct dm_integrity_c *ic = dio->ic;
1231 struct bio *bio;
1232
1233 remove_range(ic, &dio->range);
1234
1235 if (unlikely(dio->write))
1236 schedule_autocommit(ic);
1237
1238 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1239
1240 if (unlikely(dio->bi_status) && !bio->bi_status)
1241 bio->bi_status = dio->bi_status;
1242 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1243 dio->range.logical_sector += dio->range.n_sectors;
1244 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1245 INIT_WORK(&dio->work, integrity_bio_wait);
1246 queue_work(ic->wait_wq, &dio->work);
1247 return;
1248 }
1249 do_endio_flush(ic, dio);
1250 }
1251 }
1252
1253 static void integrity_end_io(struct bio *bio)
1254 {
1255 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1256
1257 bio->bi_iter = dio->orig_bi_iter;
1258 bio->bi_disk = dio->orig_bi_disk;
1259 bio->bi_partno = dio->orig_bi_partno;
1260 if (dio->orig_bi_integrity) {
1261 bio->bi_integrity = dio->orig_bi_integrity;
1262 bio->bi_opf |= REQ_INTEGRITY;
1263 }
1264 bio->bi_end_io = dio->orig_bi_end_io;
1265
1266 if (dio->completion)
1267 complete(dio->completion);
1268
1269 dec_in_flight(dio);
1270 }
1271
1272 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1273 const char *data, char *result)
1274 {
1275 __u64 sector_le = cpu_to_le64(sector);
1276 SHASH_DESC_ON_STACK(req, ic->internal_hash);
1277 int r;
1278 unsigned digest_size;
1279
1280 req->tfm = ic->internal_hash;
1281 req->flags = 0;
1282
1283 r = crypto_shash_init(req);
1284 if (unlikely(r < 0)) {
1285 dm_integrity_io_error(ic, "crypto_shash_init", r);
1286 goto failed;
1287 }
1288
1289 r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1290 if (unlikely(r < 0)) {
1291 dm_integrity_io_error(ic, "crypto_shash_update", r);
1292 goto failed;
1293 }
1294
1295 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1296 if (unlikely(r < 0)) {
1297 dm_integrity_io_error(ic, "crypto_shash_update", r);
1298 goto failed;
1299 }
1300
1301 r = crypto_shash_final(req, result);
1302 if (unlikely(r < 0)) {
1303 dm_integrity_io_error(ic, "crypto_shash_final", r);
1304 goto failed;
1305 }
1306
1307 digest_size = crypto_shash_digestsize(ic->internal_hash);
1308 if (unlikely(digest_size < ic->tag_size))
1309 memset(result + digest_size, 0, ic->tag_size - digest_size);
1310
1311 return;
1312
1313 failed:
1314 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1315 get_random_bytes(result, ic->tag_size);
1316 }
1317
1318 static void integrity_metadata(struct work_struct *w)
1319 {
1320 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1321 struct dm_integrity_c *ic = dio->ic;
1322
1323 int r;
1324
1325 if (ic->internal_hash) {
1326 struct bvec_iter iter;
1327 struct bio_vec bv;
1328 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1329 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1330 char *checksums;
1331 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1332 char checksums_onstack[HASH_MAX_DIGESTSIZE];
1333 unsigned sectors_to_process = dio->range.n_sectors;
1334 sector_t sector = dio->range.logical_sector;
1335
1336 if (unlikely(ic->mode == 'R'))
1337 goto skip_io;
1338
1339 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1340 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1341 if (!checksums) {
1342 checksums = checksums_onstack;
1343 if (WARN_ON(extra_space &&
1344 digest_size > sizeof(checksums_onstack))) {
1345 r = -EINVAL;
1346 goto error;
1347 }
1348 }
1349
1350 __bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) {
1351 unsigned pos;
1352 char *mem, *checksums_ptr;
1353
1354 again:
1355 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1356 pos = 0;
1357 checksums_ptr = checksums;
1358 do {
1359 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1360 checksums_ptr += ic->tag_size;
1361 sectors_to_process -= ic->sectors_per_block;
1362 pos += ic->sectors_per_block << SECTOR_SHIFT;
1363 sector += ic->sectors_per_block;
1364 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1365 kunmap_atomic(mem);
1366
1367 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1368 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
1369 if (unlikely(r)) {
1370 if (r > 0) {
1371 DMERR("Checksum failed at sector 0x%llx",
1372 (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1373 r = -EILSEQ;
1374 atomic64_inc(&ic->number_of_mismatches);
1375 }
1376 if (likely(checksums != checksums_onstack))
1377 kfree(checksums);
1378 goto error;
1379 }
1380
1381 if (!sectors_to_process)
1382 break;
1383
1384 if (unlikely(pos < bv.bv_len)) {
1385 bv.bv_offset += pos;
1386 bv.bv_len -= pos;
1387 goto again;
1388 }
1389 }
1390
1391 if (likely(checksums != checksums_onstack))
1392 kfree(checksums);
1393 } else {
1394 struct bio_integrity_payload *bip = dio->orig_bi_integrity;
1395
1396 if (bip) {
1397 struct bio_vec biv;
1398 struct bvec_iter iter;
1399 unsigned data_to_process = dio->range.n_sectors;
1400 sector_to_block(ic, data_to_process);
1401 data_to_process *= ic->tag_size;
1402
1403 bip_for_each_vec(biv, bip, iter) {
1404 unsigned char *tag;
1405 unsigned this_len;
1406
1407 BUG_ON(PageHighMem(biv.bv_page));
1408 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1409 this_len = min(biv.bv_len, data_to_process);
1410 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1411 this_len, !dio->write ? TAG_READ : TAG_WRITE);
1412 if (unlikely(r))
1413 goto error;
1414 data_to_process -= this_len;
1415 if (!data_to_process)
1416 break;
1417 }
1418 }
1419 }
1420 skip_io:
1421 dec_in_flight(dio);
1422 return;
1423 error:
1424 dio->bi_status = errno_to_blk_status(r);
1425 dec_in_flight(dio);
1426 }
1427
1428 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1429 {
1430 struct dm_integrity_c *ic = ti->private;
1431 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1432 struct bio_integrity_payload *bip;
1433
1434 sector_t area, offset;
1435
1436 dio->ic = ic;
1437 dio->bi_status = 0;
1438
1439 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1440 submit_flush_bio(ic, dio);
1441 return DM_MAPIO_SUBMITTED;
1442 }
1443
1444 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1445 dio->write = bio_op(bio) == REQ_OP_WRITE;
1446 dio->fua = dio->write && bio->bi_opf & REQ_FUA;
1447 if (unlikely(dio->fua)) {
1448 /*
1449 * Don't pass down the FUA flag because we have to flush
1450 * disk cache anyway.
1451 */
1452 bio->bi_opf &= ~REQ_FUA;
1453 }
1454 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1455 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1456 (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
1457 (unsigned long long)ic->provided_data_sectors);
1458 return DM_MAPIO_KILL;
1459 }
1460 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1461 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1462 ic->sectors_per_block,
1463 (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
1464 return DM_MAPIO_KILL;
1465 }
1466
1467 if (ic->sectors_per_block > 1) {
1468 struct bvec_iter iter;
1469 struct bio_vec bv;
1470 bio_for_each_segment(bv, bio, iter) {
1471 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1472 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1473 bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1474 return DM_MAPIO_KILL;
1475 }
1476 }
1477 }
1478
1479 bip = bio_integrity(bio);
1480 if (!ic->internal_hash) {
1481 if (bip) {
1482 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1483 if (ic->log2_tag_size >= 0)
1484 wanted_tag_size <<= ic->log2_tag_size;
1485 else
1486 wanted_tag_size *= ic->tag_size;
1487 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1488 DMERR("Invalid integrity data size %u, expected %u", bip->bip_iter.bi_size, wanted_tag_size);
1489 return DM_MAPIO_KILL;
1490 }
1491 }
1492 } else {
1493 if (unlikely(bip != NULL)) {
1494 DMERR("Unexpected integrity data when using internal hash");
1495 return DM_MAPIO_KILL;
1496 }
1497 }
1498
1499 if (unlikely(ic->mode == 'R') && unlikely(dio->write))
1500 return DM_MAPIO_KILL;
1501
1502 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1503 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1504 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1505
1506 dm_integrity_map_continue(dio, true);
1507 return DM_MAPIO_SUBMITTED;
1508 }
1509
1510 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1511 unsigned journal_section, unsigned journal_entry)
1512 {
1513 struct dm_integrity_c *ic = dio->ic;
1514 sector_t logical_sector;
1515 unsigned n_sectors;
1516
1517 logical_sector = dio->range.logical_sector;
1518 n_sectors = dio->range.n_sectors;
1519 do {
1520 struct bio_vec bv = bio_iovec(bio);
1521 char *mem;
1522
1523 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1524 bv.bv_len = n_sectors << SECTOR_SHIFT;
1525 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1526 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1527 retry_kmap:
1528 mem = kmap_atomic(bv.bv_page);
1529 if (likely(dio->write))
1530 flush_dcache_page(bv.bv_page);
1531
1532 do {
1533 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1534
1535 if (unlikely(!dio->write)) {
1536 struct journal_sector *js;
1537 char *mem_ptr;
1538 unsigned s;
1539
1540 if (unlikely(journal_entry_is_inprogress(je))) {
1541 flush_dcache_page(bv.bv_page);
1542 kunmap_atomic(mem);
1543
1544 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1545 goto retry_kmap;
1546 }
1547 smp_rmb();
1548 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1549 js = access_journal_data(ic, journal_section, journal_entry);
1550 mem_ptr = mem + bv.bv_offset;
1551 s = 0;
1552 do {
1553 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1554 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1555 js++;
1556 mem_ptr += 1 << SECTOR_SHIFT;
1557 } while (++s < ic->sectors_per_block);
1558 #ifdef INTERNAL_VERIFY
1559 if (ic->internal_hash) {
1560 char checksums_onstack[max(HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1561
1562 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1563 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1564 DMERR("Checksum failed when reading from journal, at sector 0x%llx",
1565 (unsigned long long)logical_sector);
1566 }
1567 }
1568 #endif
1569 }
1570
1571 if (!ic->internal_hash) {
1572 struct bio_integrity_payload *bip = bio_integrity(bio);
1573 unsigned tag_todo = ic->tag_size;
1574 char *tag_ptr = journal_entry_tag(ic, je);
1575
1576 if (bip) do {
1577 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1578 unsigned tag_now = min(biv.bv_len, tag_todo);
1579 char *tag_addr;
1580 BUG_ON(PageHighMem(biv.bv_page));
1581 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1582 if (likely(dio->write))
1583 memcpy(tag_ptr, tag_addr, tag_now);
1584 else
1585 memcpy(tag_addr, tag_ptr, tag_now);
1586 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1587 tag_ptr += tag_now;
1588 tag_todo -= tag_now;
1589 } while (unlikely(tag_todo)); else {
1590 if (likely(dio->write))
1591 memset(tag_ptr, 0, tag_todo);
1592 }
1593 }
1594
1595 if (likely(dio->write)) {
1596 struct journal_sector *js;
1597 unsigned s;
1598
1599 js = access_journal_data(ic, journal_section, journal_entry);
1600 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1601
1602 s = 0;
1603 do {
1604 je->last_bytes[s] = js[s].commit_id;
1605 } while (++s < ic->sectors_per_block);
1606
1607 if (ic->internal_hash) {
1608 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1609 if (unlikely(digest_size > ic->tag_size)) {
1610 char checksums_onstack[HASH_MAX_DIGESTSIZE];
1611 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1612 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1613 } else
1614 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1615 }
1616
1617 journal_entry_set_sector(je, logical_sector);
1618 }
1619 logical_sector += ic->sectors_per_block;
1620
1621 journal_entry++;
1622 if (unlikely(journal_entry == ic->journal_section_entries)) {
1623 journal_entry = 0;
1624 journal_section++;
1625 wraparound_section(ic, &journal_section);
1626 }
1627
1628 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1629 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1630
1631 if (unlikely(!dio->write))
1632 flush_dcache_page(bv.bv_page);
1633 kunmap_atomic(mem);
1634 } while (n_sectors);
1635
1636 if (likely(dio->write)) {
1637 smp_mb();
1638 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1639 wake_up(&ic->copy_to_journal_wait);
1640 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1641 queue_work(ic->commit_wq, &ic->commit_work);
1642 } else {
1643 schedule_autocommit(ic);
1644 }
1645 } else {
1646 remove_range(ic, &dio->range);
1647 }
1648
1649 if (unlikely(bio->bi_iter.bi_size)) {
1650 sector_t area, offset;
1651
1652 dio->range.logical_sector = logical_sector;
1653 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1654 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1655 return true;
1656 }
1657
1658 return false;
1659 }
1660
1661 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1662 {
1663 struct dm_integrity_c *ic = dio->ic;
1664 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1665 unsigned journal_section, journal_entry;
1666 unsigned journal_read_pos;
1667 struct completion read_comp;
1668 bool need_sync_io = ic->internal_hash && !dio->write;
1669
1670 if (need_sync_io && from_map) {
1671 INIT_WORK(&dio->work, integrity_bio_wait);
1672 queue_work(ic->metadata_wq, &dio->work);
1673 return;
1674 }
1675
1676 lock_retry:
1677 spin_lock_irq(&ic->endio_wait.lock);
1678 retry:
1679 if (unlikely(dm_integrity_failed(ic))) {
1680 spin_unlock_irq(&ic->endio_wait.lock);
1681 do_endio(ic, bio);
1682 return;
1683 }
1684 dio->range.n_sectors = bio_sectors(bio);
1685 journal_read_pos = NOT_FOUND;
1686 if (likely(ic->mode == 'J')) {
1687 if (dio->write) {
1688 unsigned next_entry, i, pos;
1689 unsigned ws, we, range_sectors;
1690
1691 dio->range.n_sectors = min(dio->range.n_sectors,
1692 ic->free_sectors << ic->sb->log2_sectors_per_block);
1693 if (unlikely(!dio->range.n_sectors)) {
1694 if (from_map)
1695 goto offload_to_thread;
1696 sleep_on_endio_wait(ic);
1697 goto retry;
1698 }
1699 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
1700 ic->free_sectors -= range_sectors;
1701 journal_section = ic->free_section;
1702 journal_entry = ic->free_section_entry;
1703
1704 next_entry = ic->free_section_entry + range_sectors;
1705 ic->free_section_entry = next_entry % ic->journal_section_entries;
1706 ic->free_section += next_entry / ic->journal_section_entries;
1707 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1708 wraparound_section(ic, &ic->free_section);
1709
1710 pos = journal_section * ic->journal_section_entries + journal_entry;
1711 ws = journal_section;
1712 we = journal_entry;
1713 i = 0;
1714 do {
1715 struct journal_entry *je;
1716
1717 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1718 pos++;
1719 if (unlikely(pos >= ic->journal_entries))
1720 pos = 0;
1721
1722 je = access_journal_entry(ic, ws, we);
1723 BUG_ON(!journal_entry_is_unused(je));
1724 journal_entry_set_inprogress(je);
1725 we++;
1726 if (unlikely(we == ic->journal_section_entries)) {
1727 we = 0;
1728 ws++;
1729 wraparound_section(ic, &ws);
1730 }
1731 } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
1732
1733 spin_unlock_irq(&ic->endio_wait.lock);
1734 goto journal_read_write;
1735 } else {
1736 sector_t next_sector;
1737 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1738 if (likely(journal_read_pos == NOT_FOUND)) {
1739 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
1740 dio->range.n_sectors = next_sector - dio->range.logical_sector;
1741 } else {
1742 unsigned i;
1743 unsigned jp = journal_read_pos + 1;
1744 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
1745 if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
1746 break;
1747 }
1748 dio->range.n_sectors = i;
1749 }
1750 }
1751 }
1752 if (unlikely(!add_new_range(ic, &dio->range, true))) {
1753 /*
1754 * We must not sleep in the request routine because it could
1755 * stall bios on current->bio_list.
1756 * So, we offload the bio to a workqueue if we have to sleep.
1757 */
1758 if (from_map) {
1759 offload_to_thread:
1760 spin_unlock_irq(&ic->endio_wait.lock);
1761 INIT_WORK(&dio->work, integrity_bio_wait);
1762 queue_work(ic->wait_wq, &dio->work);
1763 return;
1764 }
1765 wait_and_add_new_range(ic, &dio->range);
1766 }
1767 spin_unlock_irq(&ic->endio_wait.lock);
1768
1769 if (unlikely(journal_read_pos != NOT_FOUND)) {
1770 journal_section = journal_read_pos / ic->journal_section_entries;
1771 journal_entry = journal_read_pos % ic->journal_section_entries;
1772 goto journal_read_write;
1773 }
1774
1775 dio->in_flight = (atomic_t)ATOMIC_INIT(2);
1776
1777 if (need_sync_io) {
1778 init_completion(&read_comp);
1779 dio->completion = &read_comp;
1780 } else
1781 dio->completion = NULL;
1782
1783 dio->orig_bi_iter = bio->bi_iter;
1784
1785 dio->orig_bi_disk = bio->bi_disk;
1786 dio->orig_bi_partno = bio->bi_partno;
1787 bio_set_dev(bio, ic->dev->bdev);
1788
1789 dio->orig_bi_integrity = bio_integrity(bio);
1790 bio->bi_integrity = NULL;
1791 bio->bi_opf &= ~REQ_INTEGRITY;
1792
1793 dio->orig_bi_end_io = bio->bi_end_io;
1794 bio->bi_end_io = integrity_end_io;
1795
1796 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
1797 generic_make_request(bio);
1798
1799 if (need_sync_io) {
1800 wait_for_completion_io(&read_comp);
1801 if (unlikely(ic->recalc_wq != NULL) &&
1802 ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
1803 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
1804 goto skip_check;
1805 if (likely(!bio->bi_status))
1806 integrity_metadata(&dio->work);
1807 else
1808 skip_check:
1809 dec_in_flight(dio);
1810
1811 } else {
1812 INIT_WORK(&dio->work, integrity_metadata);
1813 queue_work(ic->metadata_wq, &dio->work);
1814 }
1815
1816 return;
1817
1818 journal_read_write:
1819 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
1820 goto lock_retry;
1821
1822 do_endio_flush(ic, dio);
1823 }
1824
1825
1826 static void integrity_bio_wait(struct work_struct *w)
1827 {
1828 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1829
1830 dm_integrity_map_continue(dio, false);
1831 }
1832
1833 static void pad_uncommitted(struct dm_integrity_c *ic)
1834 {
1835 if (ic->free_section_entry) {
1836 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
1837 ic->free_section_entry = 0;
1838 ic->free_section++;
1839 wraparound_section(ic, &ic->free_section);
1840 ic->n_uncommitted_sections++;
1841 }
1842 WARN_ON(ic->journal_sections * ic->journal_section_entries !=
1843 (ic->n_uncommitted_sections + ic->n_committed_sections) * ic->journal_section_entries + ic->free_sectors);
1844 }
1845
1846 static void integrity_commit(struct work_struct *w)
1847 {
1848 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
1849 unsigned commit_start, commit_sections;
1850 unsigned i, j, n;
1851 struct bio *flushes;
1852
1853 del_timer(&ic->autocommit_timer);
1854
1855 spin_lock_irq(&ic->endio_wait.lock);
1856 flushes = bio_list_get(&ic->flush_bio_list);
1857 if (unlikely(ic->mode != 'J')) {
1858 spin_unlock_irq(&ic->endio_wait.lock);
1859 dm_integrity_flush_buffers(ic);
1860 goto release_flush_bios;
1861 }
1862
1863 pad_uncommitted(ic);
1864 commit_start = ic->uncommitted_section;
1865 commit_sections = ic->n_uncommitted_sections;
1866 spin_unlock_irq(&ic->endio_wait.lock);
1867
1868 if (!commit_sections)
1869 goto release_flush_bios;
1870
1871 i = commit_start;
1872 for (n = 0; n < commit_sections; n++) {
1873 for (j = 0; j < ic->journal_section_entries; j++) {
1874 struct journal_entry *je;
1875 je = access_journal_entry(ic, i, j);
1876 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1877 }
1878 for (j = 0; j < ic->journal_section_sectors; j++) {
1879 struct journal_sector *js;
1880 js = access_journal(ic, i, j);
1881 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
1882 }
1883 i++;
1884 if (unlikely(i >= ic->journal_sections))
1885 ic->commit_seq = next_commit_seq(ic->commit_seq);
1886 wraparound_section(ic, &i);
1887 }
1888 smp_rmb();
1889
1890 write_journal(ic, commit_start, commit_sections);
1891
1892 spin_lock_irq(&ic->endio_wait.lock);
1893 ic->uncommitted_section += commit_sections;
1894 wraparound_section(ic, &ic->uncommitted_section);
1895 ic->n_uncommitted_sections -= commit_sections;
1896 ic->n_committed_sections += commit_sections;
1897 spin_unlock_irq(&ic->endio_wait.lock);
1898
1899 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
1900 queue_work(ic->writer_wq, &ic->writer_work);
1901
1902 release_flush_bios:
1903 while (flushes) {
1904 struct bio *next = flushes->bi_next;
1905 flushes->bi_next = NULL;
1906 do_endio(ic, flushes);
1907 flushes = next;
1908 }
1909 }
1910
1911 static void complete_copy_from_journal(unsigned long error, void *context)
1912 {
1913 struct journal_io *io = context;
1914 struct journal_completion *comp = io->comp;
1915 struct dm_integrity_c *ic = comp->ic;
1916 remove_range(ic, &io->range);
1917 mempool_free(io, &ic->journal_io_mempool);
1918 if (unlikely(error != 0))
1919 dm_integrity_io_error(ic, "copying from journal", -EIO);
1920 complete_journal_op(comp);
1921 }
1922
1923 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
1924 struct journal_entry *je)
1925 {
1926 unsigned s = 0;
1927 do {
1928 js->commit_id = je->last_bytes[s];
1929 js++;
1930 } while (++s < ic->sectors_per_block);
1931 }
1932
1933 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
1934 unsigned write_sections, bool from_replay)
1935 {
1936 unsigned i, j, n;
1937 struct journal_completion comp;
1938 struct blk_plug plug;
1939
1940 blk_start_plug(&plug);
1941
1942 comp.ic = ic;
1943 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1944 init_completion(&comp.comp);
1945
1946 i = write_start;
1947 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
1948 #ifndef INTERNAL_VERIFY
1949 if (unlikely(from_replay))
1950 #endif
1951 rw_section_mac(ic, i, false);
1952 for (j = 0; j < ic->journal_section_entries; j++) {
1953 struct journal_entry *je = access_journal_entry(ic, i, j);
1954 sector_t sec, area, offset;
1955 unsigned k, l, next_loop;
1956 sector_t metadata_block;
1957 unsigned metadata_offset;
1958 struct journal_io *io;
1959
1960 if (journal_entry_is_unused(je))
1961 continue;
1962 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
1963 sec = journal_entry_get_sector(je);
1964 if (unlikely(from_replay)) {
1965 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
1966 dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
1967 sec &= ~(sector_t)(ic->sectors_per_block - 1);
1968 }
1969 }
1970 get_area_and_offset(ic, sec, &area, &offset);
1971 restore_last_bytes(ic, access_journal_data(ic, i, j), je);
1972 for (k = j + 1; k < ic->journal_section_entries; k++) {
1973 struct journal_entry *je2 = access_journal_entry(ic, i, k);
1974 sector_t sec2, area2, offset2;
1975 if (journal_entry_is_unused(je2))
1976 break;
1977 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
1978 sec2 = journal_entry_get_sector(je2);
1979 get_area_and_offset(ic, sec2, &area2, &offset2);
1980 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
1981 break;
1982 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
1983 }
1984 next_loop = k - 1;
1985
1986 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
1987 io->comp = &comp;
1988 io->range.logical_sector = sec;
1989 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
1990
1991 spin_lock_irq(&ic->endio_wait.lock);
1992 if (unlikely(!add_new_range(ic, &io->range, true)))
1993 wait_and_add_new_range(ic, &io->range);
1994
1995 if (likely(!from_replay)) {
1996 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
1997
1998 /* don't write if there is newer committed sector */
1999 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2000 struct journal_entry *je2 = access_journal_entry(ic, i, j);
2001
2002 journal_entry_set_unused(je2);
2003 remove_journal_node(ic, &section_node[j]);
2004 j++;
2005 sec += ic->sectors_per_block;
2006 offset += ic->sectors_per_block;
2007 }
2008 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2009 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2010
2011 journal_entry_set_unused(je2);
2012 remove_journal_node(ic, &section_node[k - 1]);
2013 k--;
2014 }
2015 if (j == k) {
2016 remove_range_unlocked(ic, &io->range);
2017 spin_unlock_irq(&ic->endio_wait.lock);
2018 mempool_free(io, &ic->journal_io_mempool);
2019 goto skip_io;
2020 }
2021 for (l = j; l < k; l++) {
2022 remove_journal_node(ic, &section_node[l]);
2023 }
2024 }
2025 spin_unlock_irq(&ic->endio_wait.lock);
2026
2027 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2028 for (l = j; l < k; l++) {
2029 int r;
2030 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2031
2032 if (
2033 #ifndef INTERNAL_VERIFY
2034 unlikely(from_replay) &&
2035 #endif
2036 ic->internal_hash) {
2037 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2038
2039 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2040 (char *)access_journal_data(ic, i, l), test_tag);
2041 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2042 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2043 }
2044
2045 journal_entry_set_unused(je2);
2046 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2047 ic->tag_size, TAG_WRITE);
2048 if (unlikely(r)) {
2049 dm_integrity_io_error(ic, "reading tags", r);
2050 }
2051 }
2052
2053 atomic_inc(&comp.in_flight);
2054 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2055 (k - j) << ic->sb->log2_sectors_per_block,
2056 get_data_sector(ic, area, offset),
2057 complete_copy_from_journal, io);
2058 skip_io:
2059 j = next_loop;
2060 }
2061 }
2062
2063 dm_bufio_write_dirty_buffers_async(ic->bufio);
2064
2065 blk_finish_plug(&plug);
2066
2067 complete_journal_op(&comp);
2068 wait_for_completion_io(&comp.comp);
2069
2070 dm_integrity_flush_buffers(ic);
2071 }
2072
2073 static void integrity_writer(struct work_struct *w)
2074 {
2075 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2076 unsigned write_start, write_sections;
2077
2078 unsigned prev_free_sectors;
2079
2080 /* the following test is not needed, but it tests the replay code */
2081 if (READ_ONCE(ic->suspending) && !ic->meta_dev)
2082 return;
2083
2084 spin_lock_irq(&ic->endio_wait.lock);
2085 write_start = ic->committed_section;
2086 write_sections = ic->n_committed_sections;
2087 spin_unlock_irq(&ic->endio_wait.lock);
2088
2089 if (!write_sections)
2090 return;
2091
2092 do_journal_write(ic, write_start, write_sections, false);
2093
2094 spin_lock_irq(&ic->endio_wait.lock);
2095
2096 ic->committed_section += write_sections;
2097 wraparound_section(ic, &ic->committed_section);
2098 ic->n_committed_sections -= write_sections;
2099
2100 prev_free_sectors = ic->free_sectors;
2101 ic->free_sectors += write_sections * ic->journal_section_entries;
2102 if (unlikely(!prev_free_sectors))
2103 wake_up_locked(&ic->endio_wait);
2104
2105 spin_unlock_irq(&ic->endio_wait.lock);
2106 }
2107
2108 static void recalc_write_super(struct dm_integrity_c *ic)
2109 {
2110 int r;
2111
2112 dm_integrity_flush_buffers(ic);
2113 if (dm_integrity_failed(ic))
2114 return;
2115
2116 sb_set_version(ic);
2117 r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2118 if (unlikely(r))
2119 dm_integrity_io_error(ic, "writing superblock", r);
2120 }
2121
2122 static void integrity_recalc(struct work_struct *w)
2123 {
2124 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2125 struct dm_integrity_range range;
2126 struct dm_io_request io_req;
2127 struct dm_io_region io_loc;
2128 sector_t area, offset;
2129 sector_t metadata_block;
2130 unsigned metadata_offset;
2131 __u8 *t;
2132 unsigned i;
2133 int r;
2134 unsigned super_counter = 0;
2135
2136 spin_lock_irq(&ic->endio_wait.lock);
2137
2138 next_chunk:
2139
2140 if (unlikely(READ_ONCE(ic->suspending)))
2141 goto unlock_ret;
2142
2143 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2144 if (unlikely(range.logical_sector >= ic->provided_data_sectors))
2145 goto unlock_ret;
2146
2147 get_area_and_offset(ic, range.logical_sector, &area, &offset);
2148 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2149 if (!ic->meta_dev)
2150 range.n_sectors = min(range.n_sectors, (1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2151
2152 if (unlikely(!add_new_range(ic, &range, true)))
2153 wait_and_add_new_range(ic, &range);
2154
2155 spin_unlock_irq(&ic->endio_wait.lock);
2156
2157 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2158 recalc_write_super(ic);
2159 super_counter = 0;
2160 }
2161
2162 if (unlikely(dm_integrity_failed(ic)))
2163 goto err;
2164
2165 io_req.bi_op = REQ_OP_READ;
2166 io_req.bi_op_flags = 0;
2167 io_req.mem.type = DM_IO_VMA;
2168 io_req.mem.ptr.addr = ic->recalc_buffer;
2169 io_req.notify.fn = NULL;
2170 io_req.client = ic->io;
2171 io_loc.bdev = ic->dev->bdev;
2172 io_loc.sector = get_data_sector(ic, area, offset);
2173 io_loc.count = range.n_sectors;
2174
2175 r = dm_io(&io_req, 1, &io_loc, NULL);
2176 if (unlikely(r)) {
2177 dm_integrity_io_error(ic, "reading data", r);
2178 goto err;
2179 }
2180
2181 t = ic->recalc_tags;
2182 for (i = 0; i < range.n_sectors; i += ic->sectors_per_block) {
2183 integrity_sector_checksum(ic, range.logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2184 t += ic->tag_size;
2185 }
2186
2187 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2188
2189 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2190 if (unlikely(r)) {
2191 dm_integrity_io_error(ic, "writing tags", r);
2192 goto err;
2193 }
2194
2195 spin_lock_irq(&ic->endio_wait.lock);
2196 remove_range_unlocked(ic, &range);
2197 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2198 goto next_chunk;
2199
2200 err:
2201 remove_range(ic, &range);
2202 return;
2203
2204 unlock_ret:
2205 spin_unlock_irq(&ic->endio_wait.lock);
2206
2207 recalc_write_super(ic);
2208 }
2209
2210 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2211 unsigned n_sections, unsigned char commit_seq)
2212 {
2213 unsigned i, j, n;
2214
2215 if (!n_sections)
2216 return;
2217
2218 for (n = 0; n < n_sections; n++) {
2219 i = start_section + n;
2220 wraparound_section(ic, &i);
2221 for (j = 0; j < ic->journal_section_sectors; j++) {
2222 struct journal_sector *js = access_journal(ic, i, j);
2223 memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2224 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2225 }
2226 for (j = 0; j < ic->journal_section_entries; j++) {
2227 struct journal_entry *je = access_journal_entry(ic, i, j);
2228 journal_entry_set_unused(je);
2229 }
2230 }
2231
2232 write_journal(ic, start_section, n_sections);
2233 }
2234
2235 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2236 {
2237 unsigned char k;
2238 for (k = 0; k < N_COMMIT_IDS; k++) {
2239 if (dm_integrity_commit_id(ic, i, j, k) == id)
2240 return k;
2241 }
2242 dm_integrity_io_error(ic, "journal commit id", -EIO);
2243 return -EIO;
2244 }
2245
2246 static void replay_journal(struct dm_integrity_c *ic)
2247 {
2248 unsigned i, j;
2249 bool used_commit_ids[N_COMMIT_IDS];
2250 unsigned max_commit_id_sections[N_COMMIT_IDS];
2251 unsigned write_start, write_sections;
2252 unsigned continue_section;
2253 bool journal_empty;
2254 unsigned char unused, last_used, want_commit_seq;
2255
2256 if (ic->mode == 'R')
2257 return;
2258
2259 if (ic->journal_uptodate)
2260 return;
2261
2262 last_used = 0;
2263 write_start = 0;
2264
2265 if (!ic->just_formatted) {
2266 DEBUG_print("reading journal\n");
2267 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2268 if (ic->journal_io)
2269 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2270 if (ic->journal_io) {
2271 struct journal_completion crypt_comp;
2272 crypt_comp.ic = ic;
2273 init_completion(&crypt_comp.comp);
2274 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2275 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2276 wait_for_completion(&crypt_comp.comp);
2277 }
2278 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2279 }
2280
2281 if (dm_integrity_failed(ic))
2282 goto clear_journal;
2283
2284 journal_empty = true;
2285 memset(used_commit_ids, 0, sizeof used_commit_ids);
2286 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2287 for (i = 0; i < ic->journal_sections; i++) {
2288 for (j = 0; j < ic->journal_section_sectors; j++) {
2289 int k;
2290 struct journal_sector *js = access_journal(ic, i, j);
2291 k = find_commit_seq(ic, i, j, js->commit_id);
2292 if (k < 0)
2293 goto clear_journal;
2294 used_commit_ids[k] = true;
2295 max_commit_id_sections[k] = i;
2296 }
2297 if (journal_empty) {
2298 for (j = 0; j < ic->journal_section_entries; j++) {
2299 struct journal_entry *je = access_journal_entry(ic, i, j);
2300 if (!journal_entry_is_unused(je)) {
2301 journal_empty = false;
2302 break;
2303 }
2304 }
2305 }
2306 }
2307
2308 if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2309 unused = N_COMMIT_IDS - 1;
2310 while (unused && !used_commit_ids[unused - 1])
2311 unused--;
2312 } else {
2313 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2314 if (!used_commit_ids[unused])
2315 break;
2316 if (unused == N_COMMIT_IDS) {
2317 dm_integrity_io_error(ic, "journal commit ids", -EIO);
2318 goto clear_journal;
2319 }
2320 }
2321 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2322 unused, used_commit_ids[0], used_commit_ids[1],
2323 used_commit_ids[2], used_commit_ids[3]);
2324
2325 last_used = prev_commit_seq(unused);
2326 want_commit_seq = prev_commit_seq(last_used);
2327
2328 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2329 journal_empty = true;
2330
2331 write_start = max_commit_id_sections[last_used] + 1;
2332 if (unlikely(write_start >= ic->journal_sections))
2333 want_commit_seq = next_commit_seq(want_commit_seq);
2334 wraparound_section(ic, &write_start);
2335
2336 i = write_start;
2337 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2338 for (j = 0; j < ic->journal_section_sectors; j++) {
2339 struct journal_sector *js = access_journal(ic, i, j);
2340
2341 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2342 /*
2343 * This could be caused by crash during writing.
2344 * We won't replay the inconsistent part of the
2345 * journal.
2346 */
2347 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2348 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2349 goto brk;
2350 }
2351 }
2352 i++;
2353 if (unlikely(i >= ic->journal_sections))
2354 want_commit_seq = next_commit_seq(want_commit_seq);
2355 wraparound_section(ic, &i);
2356 }
2357 brk:
2358
2359 if (!journal_empty) {
2360 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2361 write_sections, write_start, want_commit_seq);
2362 do_journal_write(ic, write_start, write_sections, true);
2363 }
2364
2365 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2366 continue_section = write_start;
2367 ic->commit_seq = want_commit_seq;
2368 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2369 } else {
2370 unsigned s;
2371 unsigned char erase_seq;
2372 clear_journal:
2373 DEBUG_print("clearing journal\n");
2374
2375 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2376 s = write_start;
2377 init_journal(ic, s, 1, erase_seq);
2378 s++;
2379 wraparound_section(ic, &s);
2380 if (ic->journal_sections >= 2) {
2381 init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2382 s += ic->journal_sections - 2;
2383 wraparound_section(ic, &s);
2384 init_journal(ic, s, 1, erase_seq);
2385 }
2386
2387 continue_section = 0;
2388 ic->commit_seq = next_commit_seq(erase_seq);
2389 }
2390
2391 ic->committed_section = continue_section;
2392 ic->n_committed_sections = 0;
2393
2394 ic->uncommitted_section = continue_section;
2395 ic->n_uncommitted_sections = 0;
2396
2397 ic->free_section = continue_section;
2398 ic->free_section_entry = 0;
2399 ic->free_sectors = ic->journal_entries;
2400
2401 ic->journal_tree_root = RB_ROOT;
2402 for (i = 0; i < ic->journal_entries; i++)
2403 init_journal_node(&ic->journal_tree[i]);
2404 }
2405
2406 static void dm_integrity_postsuspend(struct dm_target *ti)
2407 {
2408 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2409
2410 del_timer_sync(&ic->autocommit_timer);
2411
2412 WRITE_ONCE(ic->suspending, 1);
2413
2414 if (ic->recalc_wq)
2415 drain_workqueue(ic->recalc_wq);
2416
2417 queue_work(ic->commit_wq, &ic->commit_work);
2418 drain_workqueue(ic->commit_wq);
2419
2420 if (ic->mode == 'J') {
2421 if (ic->meta_dev)
2422 queue_work(ic->writer_wq, &ic->writer_work);
2423 drain_workqueue(ic->writer_wq);
2424 dm_integrity_flush_buffers(ic);
2425 }
2426
2427 WRITE_ONCE(ic->suspending, 0);
2428
2429 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2430
2431 ic->journal_uptodate = true;
2432 }
2433
2434 static void dm_integrity_resume(struct dm_target *ti)
2435 {
2436 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2437
2438 replay_journal(ic);
2439
2440 if (ic->recalc_wq && ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2441 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
2442 if (recalc_pos < ic->provided_data_sectors) {
2443 queue_work(ic->recalc_wq, &ic->recalc_work);
2444 } else if (recalc_pos > ic->provided_data_sectors) {
2445 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
2446 recalc_write_super(ic);
2447 }
2448 }
2449 }
2450
2451 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
2452 unsigned status_flags, char *result, unsigned maxlen)
2453 {
2454 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2455 unsigned arg_count;
2456 size_t sz = 0;
2457
2458 switch (type) {
2459 case STATUSTYPE_INFO:
2460 DMEMIT("%llu %llu",
2461 (unsigned long long)atomic64_read(&ic->number_of_mismatches),
2462 (unsigned long long)ic->provided_data_sectors);
2463 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2464 DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector));
2465 else
2466 DMEMIT(" -");
2467 break;
2468
2469 case STATUSTYPE_TABLE: {
2470 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
2471 watermark_percentage += ic->journal_entries / 2;
2472 do_div(watermark_percentage, ic->journal_entries);
2473 arg_count = 5;
2474 arg_count += !!ic->meta_dev;
2475 arg_count += ic->sectors_per_block != 1;
2476 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
2477 arg_count += !!ic->internal_hash_alg.alg_string;
2478 arg_count += !!ic->journal_crypt_alg.alg_string;
2479 arg_count += !!ic->journal_mac_alg.alg_string;
2480 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
2481 ic->tag_size, ic->mode, arg_count);
2482 if (ic->meta_dev)
2483 DMEMIT(" meta_device:%s", ic->meta_dev->name);
2484 if (ic->sectors_per_block != 1)
2485 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
2486 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2487 DMEMIT(" recalculate");
2488 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
2489 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
2490 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
2491 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
2492 DMEMIT(" commit_time:%u", ic->autocommit_msec);
2493
2494 #define EMIT_ALG(a, n) \
2495 do { \
2496 if (ic->a.alg_string) { \
2497 DMEMIT(" %s:%s", n, ic->a.alg_string); \
2498 if (ic->a.key_string) \
2499 DMEMIT(":%s", ic->a.key_string);\
2500 } \
2501 } while (0)
2502 EMIT_ALG(internal_hash_alg, "internal_hash");
2503 EMIT_ALG(journal_crypt_alg, "journal_crypt");
2504 EMIT_ALG(journal_mac_alg, "journal_mac");
2505 break;
2506 }
2507 }
2508 }
2509
2510 static int dm_integrity_iterate_devices(struct dm_target *ti,
2511 iterate_devices_callout_fn fn, void *data)
2512 {
2513 struct dm_integrity_c *ic = ti->private;
2514
2515 if (!ic->meta_dev)
2516 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
2517 else
2518 return fn(ti, ic->dev, 0, ti->len, data);
2519 }
2520
2521 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
2522 {
2523 struct dm_integrity_c *ic = ti->private;
2524
2525 if (ic->sectors_per_block > 1) {
2526 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2527 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2528 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
2529 }
2530 }
2531
2532 static void calculate_journal_section_size(struct dm_integrity_c *ic)
2533 {
2534 unsigned sector_space = JOURNAL_SECTOR_DATA;
2535
2536 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
2537 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
2538 JOURNAL_ENTRY_ROUNDUP);
2539
2540 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
2541 sector_space -= JOURNAL_MAC_PER_SECTOR;
2542 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
2543 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
2544 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
2545 ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
2546 }
2547
2548 static int calculate_device_limits(struct dm_integrity_c *ic)
2549 {
2550 __u64 initial_sectors;
2551
2552 calculate_journal_section_size(ic);
2553 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
2554 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
2555 return -EINVAL;
2556 ic->initial_sectors = initial_sectors;
2557
2558 if (!ic->meta_dev) {
2559 sector_t last_sector, last_area, last_offset;
2560
2561 ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
2562 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT;
2563 if (!(ic->metadata_run & (ic->metadata_run - 1)))
2564 ic->log2_metadata_run = __ffs(ic->metadata_run);
2565 else
2566 ic->log2_metadata_run = -1;
2567
2568 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
2569 last_sector = get_data_sector(ic, last_area, last_offset);
2570 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
2571 return -EINVAL;
2572 } else {
2573 __u64 meta_size = ic->provided_data_sectors * ic->tag_size;
2574 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
2575 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
2576 meta_size <<= ic->log2_buffer_sectors;
2577 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
2578 ic->initial_sectors + meta_size > ic->meta_device_sectors)
2579 return -EINVAL;
2580 ic->metadata_run = 1;
2581 ic->log2_metadata_run = 0;
2582 }
2583
2584 return 0;
2585 }
2586
2587 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
2588 {
2589 unsigned journal_sections;
2590 int test_bit;
2591
2592 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
2593 memcpy(ic->sb->magic, SB_MAGIC, 8);
2594 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
2595 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
2596 if (ic->journal_mac_alg.alg_string)
2597 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
2598
2599 calculate_journal_section_size(ic);
2600 journal_sections = journal_sectors / ic->journal_section_sectors;
2601 if (!journal_sections)
2602 journal_sections = 1;
2603
2604 if (!ic->meta_dev) {
2605 ic->sb->journal_sections = cpu_to_le32(journal_sections);
2606 if (!interleave_sectors)
2607 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
2608 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
2609 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2610 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2611
2612 ic->provided_data_sectors = 0;
2613 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
2614 __u64 prev_data_sectors = ic->provided_data_sectors;
2615
2616 ic->provided_data_sectors |= (sector_t)1 << test_bit;
2617 if (calculate_device_limits(ic))
2618 ic->provided_data_sectors = prev_data_sectors;
2619 }
2620 if (!ic->provided_data_sectors)
2621 return -EINVAL;
2622 } else {
2623 ic->sb->log2_interleave_sectors = 0;
2624 ic->provided_data_sectors = ic->data_device_sectors;
2625 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
2626
2627 try_smaller_buffer:
2628 ic->sb->journal_sections = cpu_to_le32(0);
2629 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
2630 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
2631 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
2632 if (test_journal_sections > journal_sections)
2633 continue;
2634 ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
2635 if (calculate_device_limits(ic))
2636 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
2637
2638 }
2639 if (!le32_to_cpu(ic->sb->journal_sections)) {
2640 if (ic->log2_buffer_sectors > 3) {
2641 ic->log2_buffer_sectors--;
2642 goto try_smaller_buffer;
2643 }
2644 return -EINVAL;
2645 }
2646 }
2647
2648 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
2649
2650 sb_set_version(ic);
2651
2652 return 0;
2653 }
2654
2655 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
2656 {
2657 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
2658 struct blk_integrity bi;
2659
2660 memset(&bi, 0, sizeof(bi));
2661 bi.profile = &dm_integrity_profile;
2662 bi.tuple_size = ic->tag_size;
2663 bi.tag_size = bi.tuple_size;
2664 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
2665
2666 blk_integrity_register(disk, &bi);
2667 blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
2668 }
2669
2670 static void dm_integrity_free_page_list(struct dm_integrity_c *ic, struct page_list *pl)
2671 {
2672 unsigned i;
2673
2674 if (!pl)
2675 return;
2676 for (i = 0; i < ic->journal_pages; i++)
2677 if (pl[i].page)
2678 __free_page(pl[i].page);
2679 kvfree(pl);
2680 }
2681
2682 static struct page_list *dm_integrity_alloc_page_list(struct dm_integrity_c *ic)
2683 {
2684 size_t page_list_desc_size = ic->journal_pages * sizeof(struct page_list);
2685 struct page_list *pl;
2686 unsigned i;
2687
2688 pl = kvmalloc(page_list_desc_size, GFP_KERNEL | __GFP_ZERO);
2689 if (!pl)
2690 return NULL;
2691
2692 for (i = 0; i < ic->journal_pages; i++) {
2693 pl[i].page = alloc_page(GFP_KERNEL);
2694 if (!pl[i].page) {
2695 dm_integrity_free_page_list(ic, pl);
2696 return NULL;
2697 }
2698 if (i)
2699 pl[i - 1].next = &pl[i];
2700 }
2701
2702 return pl;
2703 }
2704
2705 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
2706 {
2707 unsigned i;
2708 for (i = 0; i < ic->journal_sections; i++)
2709 kvfree(sl[i]);
2710 kvfree(sl);
2711 }
2712
2713 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, struct page_list *pl)
2714 {
2715 struct scatterlist **sl;
2716 unsigned i;
2717
2718 sl = kvmalloc_array(ic->journal_sections,
2719 sizeof(struct scatterlist *),
2720 GFP_KERNEL | __GFP_ZERO);
2721 if (!sl)
2722 return NULL;
2723
2724 for (i = 0; i < ic->journal_sections; i++) {
2725 struct scatterlist *s;
2726 unsigned start_index, start_offset;
2727 unsigned end_index, end_offset;
2728 unsigned n_pages;
2729 unsigned idx;
2730
2731 page_list_location(ic, i, 0, &start_index, &start_offset);
2732 page_list_location(ic, i, ic->journal_section_sectors - 1, &end_index, &end_offset);
2733
2734 n_pages = (end_index - start_index + 1);
2735
2736 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
2737 GFP_KERNEL);
2738 if (!s) {
2739 dm_integrity_free_journal_scatterlist(ic, sl);
2740 return NULL;
2741 }
2742
2743 sg_init_table(s, n_pages);
2744 for (idx = start_index; idx <= end_index; idx++) {
2745 char *va = lowmem_page_address(pl[idx].page);
2746 unsigned start = 0, end = PAGE_SIZE;
2747 if (idx == start_index)
2748 start = start_offset;
2749 if (idx == end_index)
2750 end = end_offset + (1 << SECTOR_SHIFT);
2751 sg_set_buf(&s[idx - start_index], va + start, end - start);
2752 }
2753
2754 sl[i] = s;
2755 }
2756
2757 return sl;
2758 }
2759
2760 static void free_alg(struct alg_spec *a)
2761 {
2762 kzfree(a->alg_string);
2763 kzfree(a->key);
2764 memset(a, 0, sizeof *a);
2765 }
2766
2767 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
2768 {
2769 char *k;
2770
2771 free_alg(a);
2772
2773 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
2774 if (!a->alg_string)
2775 goto nomem;
2776
2777 k = strchr(a->alg_string, ':');
2778 if (k) {
2779 *k = 0;
2780 a->key_string = k + 1;
2781 if (strlen(a->key_string) & 1)
2782 goto inval;
2783
2784 a->key_size = strlen(a->key_string) / 2;
2785 a->key = kmalloc(a->key_size, GFP_KERNEL);
2786 if (!a->key)
2787 goto nomem;
2788 if (hex2bin(a->key, a->key_string, a->key_size))
2789 goto inval;
2790 }
2791
2792 return 0;
2793 inval:
2794 *error = error_inval;
2795 return -EINVAL;
2796 nomem:
2797 *error = "Out of memory for an argument";
2798 return -ENOMEM;
2799 }
2800
2801 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
2802 char *error_alg, char *error_key)
2803 {
2804 int r;
2805
2806 if (a->alg_string) {
2807 *hash = crypto_alloc_shash(a->alg_string, 0, 0);
2808 if (IS_ERR(*hash)) {
2809 *error = error_alg;
2810 r = PTR_ERR(*hash);
2811 *hash = NULL;
2812 return r;
2813 }
2814
2815 if (a->key) {
2816 r = crypto_shash_setkey(*hash, a->key, a->key_size);
2817 if (r) {
2818 *error = error_key;
2819 return r;
2820 }
2821 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
2822 *error = error_key;
2823 return -ENOKEY;
2824 }
2825 }
2826
2827 return 0;
2828 }
2829
2830 static int create_journal(struct dm_integrity_c *ic, char **error)
2831 {
2832 int r = 0;
2833 unsigned i;
2834 __u64 journal_pages, journal_desc_size, journal_tree_size;
2835 unsigned char *crypt_data = NULL, *crypt_iv = NULL;
2836 struct skcipher_request *req = NULL;
2837
2838 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
2839 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
2840 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
2841 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
2842
2843 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
2844 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
2845 journal_desc_size = journal_pages * sizeof(struct page_list);
2846 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
2847 *error = "Journal doesn't fit into memory";
2848 r = -ENOMEM;
2849 goto bad;
2850 }
2851 ic->journal_pages = journal_pages;
2852
2853 ic->journal = dm_integrity_alloc_page_list(ic);
2854 if (!ic->journal) {
2855 *error = "Could not allocate memory for journal";
2856 r = -ENOMEM;
2857 goto bad;
2858 }
2859 if (ic->journal_crypt_alg.alg_string) {
2860 unsigned ivsize, blocksize;
2861 struct journal_completion comp;
2862
2863 comp.ic = ic;
2864 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
2865 if (IS_ERR(ic->journal_crypt)) {
2866 *error = "Invalid journal cipher";
2867 r = PTR_ERR(ic->journal_crypt);
2868 ic->journal_crypt = NULL;
2869 goto bad;
2870 }
2871 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
2872 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
2873
2874 if (ic->journal_crypt_alg.key) {
2875 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
2876 ic->journal_crypt_alg.key_size);
2877 if (r) {
2878 *error = "Error setting encryption key";
2879 goto bad;
2880 }
2881 }
2882 DEBUG_print("cipher %s, block size %u iv size %u\n",
2883 ic->journal_crypt_alg.alg_string, blocksize, ivsize);
2884
2885 ic->journal_io = dm_integrity_alloc_page_list(ic);
2886 if (!ic->journal_io) {
2887 *error = "Could not allocate memory for journal io";
2888 r = -ENOMEM;
2889 goto bad;
2890 }
2891
2892 if (blocksize == 1) {
2893 struct scatterlist *sg;
2894
2895 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2896 if (!req) {
2897 *error = "Could not allocate crypt request";
2898 r = -ENOMEM;
2899 goto bad;
2900 }
2901
2902 crypt_iv = kmalloc(ivsize, GFP_KERNEL);
2903 if (!crypt_iv) {
2904 *error = "Could not allocate iv";
2905 r = -ENOMEM;
2906 goto bad;
2907 }
2908
2909 ic->journal_xor = dm_integrity_alloc_page_list(ic);
2910 if (!ic->journal_xor) {
2911 *error = "Could not allocate memory for journal xor";
2912 r = -ENOMEM;
2913 goto bad;
2914 }
2915
2916 sg = kvmalloc_array(ic->journal_pages + 1,
2917 sizeof(struct scatterlist),
2918 GFP_KERNEL);
2919 if (!sg) {
2920 *error = "Unable to allocate sg list";
2921 r = -ENOMEM;
2922 goto bad;
2923 }
2924 sg_init_table(sg, ic->journal_pages + 1);
2925 for (i = 0; i < ic->journal_pages; i++) {
2926 char *va = lowmem_page_address(ic->journal_xor[i].page);
2927 clear_page(va);
2928 sg_set_buf(&sg[i], va, PAGE_SIZE);
2929 }
2930 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
2931 memset(crypt_iv, 0x00, ivsize);
2932
2933 skcipher_request_set_crypt(req, sg, sg, PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
2934 init_completion(&comp.comp);
2935 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2936 if (do_crypt(true, req, &comp))
2937 wait_for_completion(&comp.comp);
2938 kvfree(sg);
2939 r = dm_integrity_failed(ic);
2940 if (r) {
2941 *error = "Unable to encrypt journal";
2942 goto bad;
2943 }
2944 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
2945
2946 crypto_free_skcipher(ic->journal_crypt);
2947 ic->journal_crypt = NULL;
2948 } else {
2949 unsigned crypt_len = roundup(ivsize, blocksize);
2950
2951 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2952 if (!req) {
2953 *error = "Could not allocate crypt request";
2954 r = -ENOMEM;
2955 goto bad;
2956 }
2957
2958 crypt_iv = kmalloc(ivsize, GFP_KERNEL);
2959 if (!crypt_iv) {
2960 *error = "Could not allocate iv";
2961 r = -ENOMEM;
2962 goto bad;
2963 }
2964
2965 crypt_data = kmalloc(crypt_len, GFP_KERNEL);
2966 if (!crypt_data) {
2967 *error = "Unable to allocate crypt data";
2968 r = -ENOMEM;
2969 goto bad;
2970 }
2971
2972 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
2973 if (!ic->journal_scatterlist) {
2974 *error = "Unable to allocate sg list";
2975 r = -ENOMEM;
2976 goto bad;
2977 }
2978 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
2979 if (!ic->journal_io_scatterlist) {
2980 *error = "Unable to allocate sg list";
2981 r = -ENOMEM;
2982 goto bad;
2983 }
2984 ic->sk_requests = kvmalloc_array(ic->journal_sections,
2985 sizeof(struct skcipher_request *),
2986 GFP_KERNEL | __GFP_ZERO);
2987 if (!ic->sk_requests) {
2988 *error = "Unable to allocate sk requests";
2989 r = -ENOMEM;
2990 goto bad;
2991 }
2992 for (i = 0; i < ic->journal_sections; i++) {
2993 struct scatterlist sg;
2994 struct skcipher_request *section_req;
2995 __u32 section_le = cpu_to_le32(i);
2996
2997 memset(crypt_iv, 0x00, ivsize);
2998 memset(crypt_data, 0x00, crypt_len);
2999 memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3000
3001 sg_init_one(&sg, crypt_data, crypt_len);
3002 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3003 init_completion(&comp.comp);
3004 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3005 if (do_crypt(true, req, &comp))
3006 wait_for_completion(&comp.comp);
3007
3008 r = dm_integrity_failed(ic);
3009 if (r) {
3010 *error = "Unable to generate iv";
3011 goto bad;
3012 }
3013
3014 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3015 if (!section_req) {
3016 *error = "Unable to allocate crypt request";
3017 r = -ENOMEM;
3018 goto bad;
3019 }
3020 section_req->iv = kmalloc_array(ivsize, 2,
3021 GFP_KERNEL);
3022 if (!section_req->iv) {
3023 skcipher_request_free(section_req);
3024 *error = "Unable to allocate iv";
3025 r = -ENOMEM;
3026 goto bad;
3027 }
3028 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3029 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3030 ic->sk_requests[i] = section_req;
3031 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3032 }
3033 }
3034 }
3035
3036 for (i = 0; i < N_COMMIT_IDS; i++) {
3037 unsigned j;
3038 retest_commit_id:
3039 for (j = 0; j < i; j++) {
3040 if (ic->commit_ids[j] == ic->commit_ids[i]) {
3041 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3042 goto retest_commit_id;
3043 }
3044 }
3045 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3046 }
3047
3048 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3049 if (journal_tree_size > ULONG_MAX) {
3050 *error = "Journal doesn't fit into memory";
3051 r = -ENOMEM;
3052 goto bad;
3053 }
3054 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3055 if (!ic->journal_tree) {
3056 *error = "Could not allocate memory for journal tree";
3057 r = -ENOMEM;
3058 }
3059 bad:
3060 kfree(crypt_data);
3061 kfree(crypt_iv);
3062 skcipher_request_free(req);
3063
3064 return r;
3065 }
3066
3067 /*
3068 * Construct a integrity mapping
3069 *
3070 * Arguments:
3071 * device
3072 * offset from the start of the device
3073 * tag size
3074 * D - direct writes, J - journal writes, R - recovery mode
3075 * number of optional arguments
3076 * optional arguments:
3077 * journal_sectors
3078 * interleave_sectors
3079 * buffer_sectors
3080 * journal_watermark
3081 * commit_time
3082 * internal_hash
3083 * journal_crypt
3084 * journal_mac
3085 * block_size
3086 */
3087 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3088 {
3089 struct dm_integrity_c *ic;
3090 char dummy;
3091 int r;
3092 unsigned extra_args;
3093 struct dm_arg_set as;
3094 static const struct dm_arg _args[] = {
3095 {0, 9, "Invalid number of feature args"},
3096 };
3097 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3098 bool recalculate;
3099 bool should_write_sb;
3100 __u64 threshold;
3101 unsigned long long start;
3102
3103 #define DIRECT_ARGUMENTS 4
3104
3105 if (argc <= DIRECT_ARGUMENTS) {
3106 ti->error = "Invalid argument count";
3107 return -EINVAL;
3108 }
3109
3110 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3111 if (!ic) {
3112 ti->error = "Cannot allocate integrity context";
3113 return -ENOMEM;
3114 }
3115 ti->private = ic;
3116 ti->per_io_data_size = sizeof(struct dm_integrity_io);
3117
3118 ic->in_progress = RB_ROOT;
3119 INIT_LIST_HEAD(&ic->wait_list);
3120 init_waitqueue_head(&ic->endio_wait);
3121 bio_list_init(&ic->flush_bio_list);
3122 init_waitqueue_head(&ic->copy_to_journal_wait);
3123 init_completion(&ic->crypto_backoff);
3124 atomic64_set(&ic->number_of_mismatches, 0);
3125
3126 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3127 if (r) {
3128 ti->error = "Device lookup failed";
3129 goto bad;
3130 }
3131
3132 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3133 ti->error = "Invalid starting offset";
3134 r = -EINVAL;
3135 goto bad;
3136 }
3137 ic->start = start;
3138
3139 if (strcmp(argv[2], "-")) {
3140 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3141 ti->error = "Invalid tag size";
3142 r = -EINVAL;
3143 goto bad;
3144 }
3145 }
3146
3147 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "D") || !strcmp(argv[3], "R"))
3148 ic->mode = argv[3][0];
3149 else {
3150 ti->error = "Invalid mode (expecting J, D, R)";
3151 r = -EINVAL;
3152 goto bad;
3153 }
3154
3155 journal_sectors = 0;
3156 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3157 buffer_sectors = DEFAULT_BUFFER_SECTORS;
3158 journal_watermark = DEFAULT_JOURNAL_WATERMARK;
3159 sync_msec = DEFAULT_SYNC_MSEC;
3160 recalculate = false;
3161 ic->sectors_per_block = 1;
3162
3163 as.argc = argc - DIRECT_ARGUMENTS;
3164 as.argv = argv + DIRECT_ARGUMENTS;
3165 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
3166 if (r)
3167 goto bad;
3168
3169 while (extra_args--) {
3170 const char *opt_string;
3171 unsigned val;
3172 opt_string = dm_shift_arg(&as);
3173 if (!opt_string) {
3174 r = -EINVAL;
3175 ti->error = "Not enough feature arguments";
3176 goto bad;
3177 }
3178 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
3179 journal_sectors = val ? val : 1;
3180 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
3181 interleave_sectors = val;
3182 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
3183 buffer_sectors = val;
3184 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
3185 journal_watermark = val;
3186 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
3187 sync_msec = val;
3188 else if (!memcmp(opt_string, "meta_device:", strlen("meta_device:"))) {
3189 if (ic->meta_dev) {
3190 dm_put_device(ti, ic->meta_dev);
3191 ic->meta_dev = NULL;
3192 }
3193 r = dm_get_device(ti, strchr(opt_string, ':') + 1, dm_table_get_mode(ti->table), &ic->meta_dev);
3194 if (r) {
3195 ti->error = "Device lookup failed";
3196 goto bad;
3197 }
3198 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
3199 if (val < 1 << SECTOR_SHIFT ||
3200 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
3201 (val & (val -1))) {
3202 r = -EINVAL;
3203 ti->error = "Invalid block_size argument";
3204 goto bad;
3205 }
3206 ic->sectors_per_block = val >> SECTOR_SHIFT;
3207 } else if (!memcmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
3208 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
3209 "Invalid internal_hash argument");
3210 if (r)
3211 goto bad;
3212 } else if (!memcmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
3213 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
3214 "Invalid journal_crypt argument");
3215 if (r)
3216 goto bad;
3217 } else if (!memcmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
3218 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
3219 "Invalid journal_mac argument");
3220 if (r)
3221 goto bad;
3222 } else if (!strcmp(opt_string, "recalculate")) {
3223 recalculate = true;
3224 } else {
3225 r = -EINVAL;
3226 ti->error = "Invalid argument";
3227 goto bad;
3228 }
3229 }
3230
3231 ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
3232 if (!ic->meta_dev)
3233 ic->meta_device_sectors = ic->data_device_sectors;
3234 else
3235 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
3236
3237 if (!journal_sectors) {
3238 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
3239 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
3240 }
3241
3242 if (!buffer_sectors)
3243 buffer_sectors = 1;
3244 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
3245
3246 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
3247 "Invalid internal hash", "Error setting internal hash key");
3248 if (r)
3249 goto bad;
3250
3251 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
3252 "Invalid journal mac", "Error setting journal mac key");
3253 if (r)
3254 goto bad;
3255
3256 if (!ic->tag_size) {
3257 if (!ic->internal_hash) {
3258 ti->error = "Unknown tag size";
3259 r = -EINVAL;
3260 goto bad;
3261 }
3262 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
3263 }
3264 if (ic->tag_size > MAX_TAG_SIZE) {
3265 ti->error = "Too big tag size";
3266 r = -EINVAL;
3267 goto bad;
3268 }
3269 if (!(ic->tag_size & (ic->tag_size - 1)))
3270 ic->log2_tag_size = __ffs(ic->tag_size);
3271 else
3272 ic->log2_tag_size = -1;
3273
3274 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
3275 ic->autocommit_msec = sync_msec;
3276 timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
3277
3278 ic->io = dm_io_client_create();
3279 if (IS_ERR(ic->io)) {
3280 r = PTR_ERR(ic->io);
3281 ic->io = NULL;
3282 ti->error = "Cannot allocate dm io";
3283 goto bad;
3284 }
3285
3286 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
3287 if (r) {
3288 ti->error = "Cannot allocate mempool";
3289 goto bad;
3290 }
3291
3292 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
3293 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
3294 if (!ic->metadata_wq) {
3295 ti->error = "Cannot allocate workqueue";
3296 r = -ENOMEM;
3297 goto bad;
3298 }
3299
3300 /*
3301 * If this workqueue were percpu, it would cause bio reordering
3302 * and reduced performance.
3303 */
3304 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3305 if (!ic->wait_wq) {
3306 ti->error = "Cannot allocate workqueue";
3307 r = -ENOMEM;
3308 goto bad;
3309 }
3310
3311 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
3312 if (!ic->commit_wq) {
3313 ti->error = "Cannot allocate workqueue";
3314 r = -ENOMEM;
3315 goto bad;
3316 }
3317 INIT_WORK(&ic->commit_work, integrity_commit);
3318
3319 if (ic->mode == 'J') {
3320 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
3321 if (!ic->writer_wq) {
3322 ti->error = "Cannot allocate workqueue";
3323 r = -ENOMEM;
3324 goto bad;
3325 }
3326 INIT_WORK(&ic->writer_work, integrity_writer);
3327 }
3328
3329 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
3330 if (!ic->sb) {
3331 r = -ENOMEM;
3332 ti->error = "Cannot allocate superblock area";
3333 goto bad;
3334 }
3335
3336 r = sync_rw_sb(ic, REQ_OP_READ, 0);
3337 if (r) {
3338 ti->error = "Error reading superblock";
3339 goto bad;
3340 }
3341 should_write_sb = false;
3342 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
3343 if (ic->mode != 'R') {
3344 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
3345 r = -EINVAL;
3346 ti->error = "The device is not initialized";
3347 goto bad;
3348 }
3349 }
3350
3351 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
3352 if (r) {
3353 ti->error = "Could not initialize superblock";
3354 goto bad;
3355 }
3356 if (ic->mode != 'R')
3357 should_write_sb = true;
3358 }
3359
3360 if (!ic->sb->version || ic->sb->version > SB_VERSION_2) {
3361 r = -EINVAL;
3362 ti->error = "Unknown version";
3363 goto bad;
3364 }
3365 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
3366 r = -EINVAL;
3367 ti->error = "Tag size doesn't match the information in superblock";
3368 goto bad;
3369 }
3370 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
3371 r = -EINVAL;
3372 ti->error = "Block size doesn't match the information in superblock";
3373 goto bad;
3374 }
3375 if (!le32_to_cpu(ic->sb->journal_sections)) {
3376 r = -EINVAL;
3377 ti->error = "Corrupted superblock, journal_sections is 0";
3378 goto bad;
3379 }
3380 /* make sure that ti->max_io_len doesn't overflow */
3381 if (!ic->meta_dev) {
3382 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
3383 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
3384 r = -EINVAL;
3385 ti->error = "Invalid interleave_sectors in the superblock";
3386 goto bad;
3387 }
3388 } else {
3389 if (ic->sb->log2_interleave_sectors) {
3390 r = -EINVAL;
3391 ti->error = "Invalid interleave_sectors in the superblock";
3392 goto bad;
3393 }
3394 }
3395 ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3396 if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) {
3397 /* test for overflow */
3398 r = -EINVAL;
3399 ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
3400 goto bad;
3401 }
3402 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
3403 r = -EINVAL;
3404 ti->error = "Journal mac mismatch";
3405 goto bad;
3406 }
3407
3408 try_smaller_buffer:
3409 r = calculate_device_limits(ic);
3410 if (r) {
3411 if (ic->meta_dev) {
3412 if (ic->log2_buffer_sectors > 3) {
3413 ic->log2_buffer_sectors--;
3414 goto try_smaller_buffer;
3415 }
3416 }
3417 ti->error = "The device is too small";
3418 goto bad;
3419 }
3420 if (!ic->meta_dev)
3421 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
3422
3423 if (ti->len > ic->provided_data_sectors) {
3424 r = -EINVAL;
3425 ti->error = "Not enough provided sectors for requested mapping size";
3426 goto bad;
3427 }
3428
3429
3430 threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
3431 threshold += 50;
3432 do_div(threshold, 100);
3433 ic->free_sectors_threshold = threshold;
3434
3435 DEBUG_print("initialized:\n");
3436 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
3437 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
3438 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
3439 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
3440 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
3441 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
3442 DEBUG_print(" journal_entries %u\n", ic->journal_entries);
3443 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
3444 DEBUG_print(" device_sectors 0x%llx\n", (unsigned long long)ic->device_sectors);
3445 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
3446 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
3447 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
3448 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors,
3449 (unsigned long long)ic->provided_data_sectors);
3450 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
3451
3452 if (recalculate && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
3453 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3454 ic->sb->recalc_sector = cpu_to_le64(0);
3455 }
3456
3457 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3458 if (!ic->internal_hash) {
3459 r = -EINVAL;
3460 ti->error = "Recalculate is only valid with internal hash";
3461 goto bad;
3462 }
3463 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
3464 if (!ic->recalc_wq ) {
3465 ti->error = "Cannot allocate workqueue";
3466 r = -ENOMEM;
3467 goto bad;
3468 }
3469 INIT_WORK(&ic->recalc_work, integrity_recalc);
3470 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
3471 if (!ic->recalc_buffer) {
3472 ti->error = "Cannot allocate buffer for recalculating";
3473 r = -ENOMEM;
3474 goto bad;
3475 }
3476 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
3477 ic->tag_size, GFP_KERNEL);
3478 if (!ic->recalc_tags) {
3479 ti->error = "Cannot allocate tags for recalculating";
3480 r = -ENOMEM;
3481 goto bad;
3482 }
3483 }
3484
3485 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
3486 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
3487 if (IS_ERR(ic->bufio)) {
3488 r = PTR_ERR(ic->bufio);
3489 ti->error = "Cannot initialize dm-bufio";
3490 ic->bufio = NULL;
3491 goto bad;
3492 }
3493 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
3494
3495 if (ic->mode != 'R') {
3496 r = create_journal(ic, &ti->error);
3497 if (r)
3498 goto bad;
3499 }
3500
3501 if (should_write_sb) {
3502 int r;
3503
3504 init_journal(ic, 0, ic->journal_sections, 0);
3505 r = dm_integrity_failed(ic);
3506 if (unlikely(r)) {
3507 ti->error = "Error initializing journal";
3508 goto bad;
3509 }
3510 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3511 if (r) {
3512 ti->error = "Error initializing superblock";
3513 goto bad;
3514 }
3515 ic->just_formatted = true;
3516 }
3517
3518 if (!ic->meta_dev) {
3519 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
3520 if (r)
3521 goto bad;
3522 }
3523
3524 if (!ic->internal_hash)
3525 dm_integrity_set(ti, ic);
3526
3527 ti->num_flush_bios = 1;
3528 ti->flush_supported = true;
3529
3530 return 0;
3531 bad:
3532 dm_integrity_dtr(ti);
3533 return r;
3534 }
3535
3536 static void dm_integrity_dtr(struct dm_target *ti)
3537 {
3538 struct dm_integrity_c *ic = ti->private;
3539
3540 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3541 BUG_ON(!list_empty(&ic->wait_list));
3542
3543 if (ic->metadata_wq)
3544 destroy_workqueue(ic->metadata_wq);
3545 if (ic->wait_wq)
3546 destroy_workqueue(ic->wait_wq);
3547 if (ic->commit_wq)
3548 destroy_workqueue(ic->commit_wq);
3549 if (ic->writer_wq)
3550 destroy_workqueue(ic->writer_wq);
3551 if (ic->recalc_wq)
3552 destroy_workqueue(ic->recalc_wq);
3553 if (ic->recalc_buffer)
3554 vfree(ic->recalc_buffer);
3555 if (ic->recalc_tags)
3556 kvfree(ic->recalc_tags);
3557 if (ic->bufio)
3558 dm_bufio_client_destroy(ic->bufio);
3559 mempool_exit(&ic->journal_io_mempool);
3560 if (ic->io)
3561 dm_io_client_destroy(ic->io);
3562 if (ic->dev)
3563 dm_put_device(ti, ic->dev);
3564 if (ic->meta_dev)
3565 dm_put_device(ti, ic->meta_dev);
3566 dm_integrity_free_page_list(ic, ic->journal);
3567 dm_integrity_free_page_list(ic, ic->journal_io);
3568 dm_integrity_free_page_list(ic, ic->journal_xor);
3569 if (ic->journal_scatterlist)
3570 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
3571 if (ic->journal_io_scatterlist)
3572 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
3573 if (ic->sk_requests) {
3574 unsigned i;
3575
3576 for (i = 0; i < ic->journal_sections; i++) {
3577 struct skcipher_request *req = ic->sk_requests[i];
3578 if (req) {
3579 kzfree(req->iv);
3580 skcipher_request_free(req);
3581 }
3582 }
3583 kvfree(ic->sk_requests);
3584 }
3585 kvfree(ic->journal_tree);
3586 if (ic->sb)
3587 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
3588
3589 if (ic->internal_hash)
3590 crypto_free_shash(ic->internal_hash);
3591 free_alg(&ic->internal_hash_alg);
3592
3593 if (ic->journal_crypt)
3594 crypto_free_skcipher(ic->journal_crypt);
3595 free_alg(&ic->journal_crypt_alg);
3596
3597 if (ic->journal_mac)
3598 crypto_free_shash(ic->journal_mac);
3599 free_alg(&ic->journal_mac_alg);
3600
3601 kfree(ic);
3602 }
3603
3604 static struct target_type integrity_target = {
3605 .name = "integrity",
3606 .version = {1, 2, 0},
3607 .module = THIS_MODULE,
3608 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
3609 .ctr = dm_integrity_ctr,
3610 .dtr = dm_integrity_dtr,
3611 .map = dm_integrity_map,
3612 .postsuspend = dm_integrity_postsuspend,
3613 .resume = dm_integrity_resume,
3614 .status = dm_integrity_status,
3615 .iterate_devices = dm_integrity_iterate_devices,
3616 .io_hints = dm_integrity_io_hints,
3617 };
3618
3619 int __init dm_integrity_init(void)
3620 {
3621 int r;
3622
3623 journal_io_cache = kmem_cache_create("integrity_journal_io",
3624 sizeof(struct journal_io), 0, 0, NULL);
3625 if (!journal_io_cache) {
3626 DMERR("can't allocate journal io cache");
3627 return -ENOMEM;
3628 }
3629
3630 r = dm_register_target(&integrity_target);
3631
3632 if (r < 0)
3633 DMERR("register failed %d", r);
3634
3635 return r;
3636 }
3637
3638 void dm_integrity_exit(void)
3639 {
3640 dm_unregister_target(&integrity_target);
3641 kmem_cache_destroy(journal_io_cache);
3642 }
3643
3644 module_init(dm_integrity_init);
3645 module_exit(dm_integrity_exit);
3646
3647 MODULE_AUTHOR("Milan Broz");
3648 MODULE_AUTHOR("Mikulas Patocka");
3649 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
3650 MODULE_LICENSE("GPL");