]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/md/dm-integrity.c
Merge tag 's390-5.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[mirror_ubuntu-jammy-kernel.git] / drivers / md / dm-integrity.c
1 /*
2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3 * Copyright (C) 2016-2017 Milan Broz
4 * Copyright (C) 2016-2017 Mikulas Patocka
5 *
6 * This file is released under the GPL.
7 */
8
9 #include "dm-bio-record.h"
10
11 #include <linux/compiler.h>
12 #include <linux/module.h>
13 #include <linux/device-mapper.h>
14 #include <linux/dm-io.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sort.h>
17 #include <linux/rbtree.h>
18 #include <linux/delay.h>
19 #include <linux/random.h>
20 #include <linux/reboot.h>
21 #include <crypto/hash.h>
22 #include <crypto/skcipher.h>
23 #include <linux/async_tx.h>
24 #include <linux/dm-bufio.h>
25
26 #define DM_MSG_PREFIX "integrity"
27
28 #define DEFAULT_INTERLEAVE_SECTORS 32768
29 #define DEFAULT_JOURNAL_SIZE_FACTOR 7
30 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768
31 #define DEFAULT_BUFFER_SECTORS 128
32 #define DEFAULT_JOURNAL_WATERMARK 50
33 #define DEFAULT_SYNC_MSEC 10000
34 #define DEFAULT_MAX_JOURNAL_SECTORS 131072
35 #define MIN_LOG2_INTERLEAVE_SECTORS 3
36 #define MAX_LOG2_INTERLEAVE_SECTORS 31
37 #define METADATA_WORKQUEUE_MAX_ACTIVE 16
38 #define RECALC_SECTORS 32768
39 #define RECALC_WRITE_SUPER 16
40 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */
41 #define BITMAP_FLUSH_INTERVAL (10 * HZ)
42 #define DISCARD_FILLER 0xf6
43 #define SALT_SIZE 16
44
45 /*
46 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
47 * so it should not be enabled in the official kernel
48 */
49 //#define DEBUG_PRINT
50 //#define INTERNAL_VERIFY
51
52 /*
53 * On disk structures
54 */
55
56 #define SB_MAGIC "integrt"
57 #define SB_VERSION_1 1
58 #define SB_VERSION_2 2
59 #define SB_VERSION_3 3
60 #define SB_VERSION_4 4
61 #define SB_VERSION_5 5
62 #define SB_SECTORS 8
63 #define MAX_SECTORS_PER_BLOCK 8
64
65 struct superblock {
66 __u8 magic[8];
67 __u8 version;
68 __u8 log2_interleave_sectors;
69 __le16 integrity_tag_size;
70 __le32 journal_sections;
71 __le64 provided_data_sectors; /* userspace uses this value */
72 __le32 flags;
73 __u8 log2_sectors_per_block;
74 __u8 log2_blocks_per_bitmap_bit;
75 __u8 pad[2];
76 __le64 recalc_sector;
77 __u8 pad2[8];
78 __u8 salt[SALT_SIZE];
79 };
80
81 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1
82 #define SB_FLAG_RECALCULATING 0x2
83 #define SB_FLAG_DIRTY_BITMAP 0x4
84 #define SB_FLAG_FIXED_PADDING 0x8
85 #define SB_FLAG_FIXED_HMAC 0x10
86
87 #define JOURNAL_ENTRY_ROUNDUP 8
88
89 typedef __le64 commit_id_t;
90 #define JOURNAL_MAC_PER_SECTOR 8
91
92 struct journal_entry {
93 union {
94 struct {
95 __le32 sector_lo;
96 __le32 sector_hi;
97 } s;
98 __le64 sector;
99 } u;
100 commit_id_t last_bytes[];
101 /* __u8 tag[0]; */
102 };
103
104 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
105
106 #if BITS_PER_LONG == 64
107 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
108 #else
109 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
110 #endif
111 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
112 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
113 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
114 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
115 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
116
117 #define JOURNAL_BLOCK_SECTORS 8
118 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
119 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
120
121 struct journal_sector {
122 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
123 __u8 mac[JOURNAL_MAC_PER_SECTOR];
124 commit_id_t commit_id;
125 };
126
127 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
128
129 #define METADATA_PADDING_SECTORS 8
130
131 #define N_COMMIT_IDS 4
132
133 static unsigned char prev_commit_seq(unsigned char seq)
134 {
135 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
136 }
137
138 static unsigned char next_commit_seq(unsigned char seq)
139 {
140 return (seq + 1) % N_COMMIT_IDS;
141 }
142
143 /*
144 * In-memory structures
145 */
146
147 struct journal_node {
148 struct rb_node node;
149 sector_t sector;
150 };
151
152 struct alg_spec {
153 char *alg_string;
154 char *key_string;
155 __u8 *key;
156 unsigned key_size;
157 };
158
159 struct dm_integrity_c {
160 struct dm_dev *dev;
161 struct dm_dev *meta_dev;
162 unsigned tag_size;
163 __s8 log2_tag_size;
164 sector_t start;
165 mempool_t journal_io_mempool;
166 struct dm_io_client *io;
167 struct dm_bufio_client *bufio;
168 struct workqueue_struct *metadata_wq;
169 struct superblock *sb;
170 unsigned journal_pages;
171 unsigned n_bitmap_blocks;
172
173 struct page_list *journal;
174 struct page_list *journal_io;
175 struct page_list *journal_xor;
176 struct page_list *recalc_bitmap;
177 struct page_list *may_write_bitmap;
178 struct bitmap_block_status *bbs;
179 unsigned bitmap_flush_interval;
180 int synchronous_mode;
181 struct bio_list synchronous_bios;
182 struct delayed_work bitmap_flush_work;
183
184 struct crypto_skcipher *journal_crypt;
185 struct scatterlist **journal_scatterlist;
186 struct scatterlist **journal_io_scatterlist;
187 struct skcipher_request **sk_requests;
188
189 struct crypto_shash *journal_mac;
190
191 struct journal_node *journal_tree;
192 struct rb_root journal_tree_root;
193
194 sector_t provided_data_sectors;
195
196 unsigned short journal_entry_size;
197 unsigned char journal_entries_per_sector;
198 unsigned char journal_section_entries;
199 unsigned short journal_section_sectors;
200 unsigned journal_sections;
201 unsigned journal_entries;
202 sector_t data_device_sectors;
203 sector_t meta_device_sectors;
204 unsigned initial_sectors;
205 unsigned metadata_run;
206 __s8 log2_metadata_run;
207 __u8 log2_buffer_sectors;
208 __u8 sectors_per_block;
209 __u8 log2_blocks_per_bitmap_bit;
210
211 unsigned char mode;
212
213 int failed;
214
215 struct crypto_shash *internal_hash;
216
217 struct dm_target *ti;
218
219 /* these variables are locked with endio_wait.lock */
220 struct rb_root in_progress;
221 struct list_head wait_list;
222 wait_queue_head_t endio_wait;
223 struct workqueue_struct *wait_wq;
224 struct workqueue_struct *offload_wq;
225
226 unsigned char commit_seq;
227 commit_id_t commit_ids[N_COMMIT_IDS];
228
229 unsigned committed_section;
230 unsigned n_committed_sections;
231
232 unsigned uncommitted_section;
233 unsigned n_uncommitted_sections;
234
235 unsigned free_section;
236 unsigned char free_section_entry;
237 unsigned free_sectors;
238
239 unsigned free_sectors_threshold;
240
241 struct workqueue_struct *commit_wq;
242 struct work_struct commit_work;
243
244 struct workqueue_struct *writer_wq;
245 struct work_struct writer_work;
246
247 struct workqueue_struct *recalc_wq;
248 struct work_struct recalc_work;
249 u8 *recalc_buffer;
250 u8 *recalc_tags;
251
252 struct bio_list flush_bio_list;
253
254 unsigned long autocommit_jiffies;
255 struct timer_list autocommit_timer;
256 unsigned autocommit_msec;
257
258 wait_queue_head_t copy_to_journal_wait;
259
260 struct completion crypto_backoff;
261
262 bool journal_uptodate;
263 bool just_formatted;
264 bool recalculate_flag;
265 bool reset_recalculate_flag;
266 bool discard;
267 bool fix_padding;
268 bool fix_hmac;
269 bool legacy_recalculate;
270
271 struct alg_spec internal_hash_alg;
272 struct alg_spec journal_crypt_alg;
273 struct alg_spec journal_mac_alg;
274
275 atomic64_t number_of_mismatches;
276
277 struct notifier_block reboot_notifier;
278 };
279
280 struct dm_integrity_range {
281 sector_t logical_sector;
282 sector_t n_sectors;
283 bool waiting;
284 union {
285 struct rb_node node;
286 struct {
287 struct task_struct *task;
288 struct list_head wait_entry;
289 };
290 };
291 };
292
293 struct dm_integrity_io {
294 struct work_struct work;
295
296 struct dm_integrity_c *ic;
297 enum req_opf op;
298 bool fua;
299
300 struct dm_integrity_range range;
301
302 sector_t metadata_block;
303 unsigned metadata_offset;
304
305 atomic_t in_flight;
306 blk_status_t bi_status;
307
308 struct completion *completion;
309
310 struct dm_bio_details bio_details;
311 };
312
313 struct journal_completion {
314 struct dm_integrity_c *ic;
315 atomic_t in_flight;
316 struct completion comp;
317 };
318
319 struct journal_io {
320 struct dm_integrity_range range;
321 struct journal_completion *comp;
322 };
323
324 struct bitmap_block_status {
325 struct work_struct work;
326 struct dm_integrity_c *ic;
327 unsigned idx;
328 unsigned long *bitmap;
329 struct bio_list bio_queue;
330 spinlock_t bio_queue_lock;
331
332 };
333
334 static struct kmem_cache *journal_io_cache;
335
336 #define JOURNAL_IO_MEMPOOL 32
337
338 #ifdef DEBUG_PRINT
339 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
340 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
341 {
342 va_list args;
343 va_start(args, msg);
344 vprintk(msg, args);
345 va_end(args);
346 if (len)
347 pr_cont(":");
348 while (len) {
349 pr_cont(" %02x", *bytes);
350 bytes++;
351 len--;
352 }
353 pr_cont("\n");
354 }
355 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
356 #else
357 #define DEBUG_print(x, ...) do { } while (0)
358 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
359 #endif
360
361 static void dm_integrity_prepare(struct request *rq)
362 {
363 }
364
365 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
366 {
367 }
368
369 /*
370 * DM Integrity profile, protection is performed layer above (dm-crypt)
371 */
372 static const struct blk_integrity_profile dm_integrity_profile = {
373 .name = "DM-DIF-EXT-TAG",
374 .generate_fn = NULL,
375 .verify_fn = NULL,
376 .prepare_fn = dm_integrity_prepare,
377 .complete_fn = dm_integrity_complete,
378 };
379
380 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
381 static void integrity_bio_wait(struct work_struct *w);
382 static void dm_integrity_dtr(struct dm_target *ti);
383
384 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
385 {
386 if (err == -EILSEQ)
387 atomic64_inc(&ic->number_of_mismatches);
388 if (!cmpxchg(&ic->failed, 0, err))
389 DMERR("Error on %s: %d", msg, err);
390 }
391
392 static int dm_integrity_failed(struct dm_integrity_c *ic)
393 {
394 return READ_ONCE(ic->failed);
395 }
396
397 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
398 {
399 if (ic->legacy_recalculate)
400 return false;
401 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
402 ic->internal_hash_alg.key || ic->journal_mac_alg.key :
403 ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
404 return true;
405 return false;
406 }
407
408 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
409 unsigned j, unsigned char seq)
410 {
411 /*
412 * Xor the number with section and sector, so that if a piece of
413 * journal is written at wrong place, it is detected.
414 */
415 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
416 }
417
418 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
419 sector_t *area, sector_t *offset)
420 {
421 if (!ic->meta_dev) {
422 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
423 *area = data_sector >> log2_interleave_sectors;
424 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
425 } else {
426 *area = 0;
427 *offset = data_sector;
428 }
429 }
430
431 #define sector_to_block(ic, n) \
432 do { \
433 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \
434 (n) >>= (ic)->sb->log2_sectors_per_block; \
435 } while (0)
436
437 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
438 sector_t offset, unsigned *metadata_offset)
439 {
440 __u64 ms;
441 unsigned mo;
442
443 ms = area << ic->sb->log2_interleave_sectors;
444 if (likely(ic->log2_metadata_run >= 0))
445 ms += area << ic->log2_metadata_run;
446 else
447 ms += area * ic->metadata_run;
448 ms >>= ic->log2_buffer_sectors;
449
450 sector_to_block(ic, offset);
451
452 if (likely(ic->log2_tag_size >= 0)) {
453 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
454 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
455 } else {
456 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
457 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
458 }
459 *metadata_offset = mo;
460 return ms;
461 }
462
463 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
464 {
465 sector_t result;
466
467 if (ic->meta_dev)
468 return offset;
469
470 result = area << ic->sb->log2_interleave_sectors;
471 if (likely(ic->log2_metadata_run >= 0))
472 result += (area + 1) << ic->log2_metadata_run;
473 else
474 result += (area + 1) * ic->metadata_run;
475
476 result += (sector_t)ic->initial_sectors + offset;
477 result += ic->start;
478
479 return result;
480 }
481
482 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
483 {
484 if (unlikely(*sec_ptr >= ic->journal_sections))
485 *sec_ptr -= ic->journal_sections;
486 }
487
488 static void sb_set_version(struct dm_integrity_c *ic)
489 {
490 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
491 ic->sb->version = SB_VERSION_5;
492 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
493 ic->sb->version = SB_VERSION_4;
494 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
495 ic->sb->version = SB_VERSION_3;
496 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
497 ic->sb->version = SB_VERSION_2;
498 else
499 ic->sb->version = SB_VERSION_1;
500 }
501
502 static int sb_mac(struct dm_integrity_c *ic, bool wr)
503 {
504 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
505 int r;
506 unsigned size = crypto_shash_digestsize(ic->journal_mac);
507
508 if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
509 dm_integrity_io_error(ic, "digest is too long", -EINVAL);
510 return -EINVAL;
511 }
512
513 desc->tfm = ic->journal_mac;
514
515 r = crypto_shash_init(desc);
516 if (unlikely(r < 0)) {
517 dm_integrity_io_error(ic, "crypto_shash_init", r);
518 return r;
519 }
520
521 r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
522 if (unlikely(r < 0)) {
523 dm_integrity_io_error(ic, "crypto_shash_update", r);
524 return r;
525 }
526
527 if (likely(wr)) {
528 r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
529 if (unlikely(r < 0)) {
530 dm_integrity_io_error(ic, "crypto_shash_final", r);
531 return r;
532 }
533 } else {
534 __u8 result[HASH_MAX_DIGESTSIZE];
535 r = crypto_shash_final(desc, result);
536 if (unlikely(r < 0)) {
537 dm_integrity_io_error(ic, "crypto_shash_final", r);
538 return r;
539 }
540 if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
541 dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
542 return -EILSEQ;
543 }
544 }
545
546 return 0;
547 }
548
549 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
550 {
551 struct dm_io_request io_req;
552 struct dm_io_region io_loc;
553 int r;
554
555 io_req.bi_op = op;
556 io_req.bi_op_flags = op_flags;
557 io_req.mem.type = DM_IO_KMEM;
558 io_req.mem.ptr.addr = ic->sb;
559 io_req.notify.fn = NULL;
560 io_req.client = ic->io;
561 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
562 io_loc.sector = ic->start;
563 io_loc.count = SB_SECTORS;
564
565 if (op == REQ_OP_WRITE) {
566 sb_set_version(ic);
567 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
568 r = sb_mac(ic, true);
569 if (unlikely(r))
570 return r;
571 }
572 }
573
574 r = dm_io(&io_req, 1, &io_loc, NULL);
575 if (unlikely(r))
576 return r;
577
578 if (op == REQ_OP_READ) {
579 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
580 r = sb_mac(ic, false);
581 if (unlikely(r))
582 return r;
583 }
584 }
585
586 return 0;
587 }
588
589 #define BITMAP_OP_TEST_ALL_SET 0
590 #define BITMAP_OP_TEST_ALL_CLEAR 1
591 #define BITMAP_OP_SET 2
592 #define BITMAP_OP_CLEAR 3
593
594 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
595 sector_t sector, sector_t n_sectors, int mode)
596 {
597 unsigned long bit, end_bit, this_end_bit, page, end_page;
598 unsigned long *data;
599
600 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
601 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
602 sector,
603 n_sectors,
604 ic->sb->log2_sectors_per_block,
605 ic->log2_blocks_per_bitmap_bit,
606 mode);
607 BUG();
608 }
609
610 if (unlikely(!n_sectors))
611 return true;
612
613 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
614 end_bit = (sector + n_sectors - 1) >>
615 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
616
617 page = bit / (PAGE_SIZE * 8);
618 bit %= PAGE_SIZE * 8;
619
620 end_page = end_bit / (PAGE_SIZE * 8);
621 end_bit %= PAGE_SIZE * 8;
622
623 repeat:
624 if (page < end_page) {
625 this_end_bit = PAGE_SIZE * 8 - 1;
626 } else {
627 this_end_bit = end_bit;
628 }
629
630 data = lowmem_page_address(bitmap[page].page);
631
632 if (mode == BITMAP_OP_TEST_ALL_SET) {
633 while (bit <= this_end_bit) {
634 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
635 do {
636 if (data[bit / BITS_PER_LONG] != -1)
637 return false;
638 bit += BITS_PER_LONG;
639 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
640 continue;
641 }
642 if (!test_bit(bit, data))
643 return false;
644 bit++;
645 }
646 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
647 while (bit <= this_end_bit) {
648 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
649 do {
650 if (data[bit / BITS_PER_LONG] != 0)
651 return false;
652 bit += BITS_PER_LONG;
653 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
654 continue;
655 }
656 if (test_bit(bit, data))
657 return false;
658 bit++;
659 }
660 } else if (mode == BITMAP_OP_SET) {
661 while (bit <= this_end_bit) {
662 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
663 do {
664 data[bit / BITS_PER_LONG] = -1;
665 bit += BITS_PER_LONG;
666 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
667 continue;
668 }
669 __set_bit(bit, data);
670 bit++;
671 }
672 } else if (mode == BITMAP_OP_CLEAR) {
673 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
674 clear_page(data);
675 else while (bit <= this_end_bit) {
676 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
677 do {
678 data[bit / BITS_PER_LONG] = 0;
679 bit += BITS_PER_LONG;
680 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
681 continue;
682 }
683 __clear_bit(bit, data);
684 bit++;
685 }
686 } else {
687 BUG();
688 }
689
690 if (unlikely(page < end_page)) {
691 bit = 0;
692 page++;
693 goto repeat;
694 }
695
696 return true;
697 }
698
699 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
700 {
701 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
702 unsigned i;
703
704 for (i = 0; i < n_bitmap_pages; i++) {
705 unsigned long *dst_data = lowmem_page_address(dst[i].page);
706 unsigned long *src_data = lowmem_page_address(src[i].page);
707 copy_page(dst_data, src_data);
708 }
709 }
710
711 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
712 {
713 unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
714 unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
715
716 BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
717 return &ic->bbs[bitmap_block];
718 }
719
720 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
721 bool e, const char *function)
722 {
723 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
724 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
725
726 if (unlikely(section >= ic->journal_sections) ||
727 unlikely(offset >= limit)) {
728 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
729 function, section, offset, ic->journal_sections, limit);
730 BUG();
731 }
732 #endif
733 }
734
735 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
736 unsigned *pl_index, unsigned *pl_offset)
737 {
738 unsigned sector;
739
740 access_journal_check(ic, section, offset, false, "page_list_location");
741
742 sector = section * ic->journal_section_sectors + offset;
743
744 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
745 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
746 }
747
748 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
749 unsigned section, unsigned offset, unsigned *n_sectors)
750 {
751 unsigned pl_index, pl_offset;
752 char *va;
753
754 page_list_location(ic, section, offset, &pl_index, &pl_offset);
755
756 if (n_sectors)
757 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
758
759 va = lowmem_page_address(pl[pl_index].page);
760
761 return (struct journal_sector *)(va + pl_offset);
762 }
763
764 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
765 {
766 return access_page_list(ic, ic->journal, section, offset, NULL);
767 }
768
769 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
770 {
771 unsigned rel_sector, offset;
772 struct journal_sector *js;
773
774 access_journal_check(ic, section, n, true, "access_journal_entry");
775
776 rel_sector = n % JOURNAL_BLOCK_SECTORS;
777 offset = n / JOURNAL_BLOCK_SECTORS;
778
779 js = access_journal(ic, section, rel_sector);
780 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
781 }
782
783 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
784 {
785 n <<= ic->sb->log2_sectors_per_block;
786
787 n += JOURNAL_BLOCK_SECTORS;
788
789 access_journal_check(ic, section, n, false, "access_journal_data");
790
791 return access_journal(ic, section, n);
792 }
793
794 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
795 {
796 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
797 int r;
798 unsigned j, size;
799
800 desc->tfm = ic->journal_mac;
801
802 r = crypto_shash_init(desc);
803 if (unlikely(r < 0)) {
804 dm_integrity_io_error(ic, "crypto_shash_init", r);
805 goto err;
806 }
807
808 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
809 __le64 section_le;
810
811 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
812 if (unlikely(r < 0)) {
813 dm_integrity_io_error(ic, "crypto_shash_update", r);
814 goto err;
815 }
816
817 section_le = cpu_to_le64(section);
818 r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof section_le);
819 if (unlikely(r < 0)) {
820 dm_integrity_io_error(ic, "crypto_shash_update", r);
821 goto err;
822 }
823 }
824
825 for (j = 0; j < ic->journal_section_entries; j++) {
826 struct journal_entry *je = access_journal_entry(ic, section, j);
827 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
828 if (unlikely(r < 0)) {
829 dm_integrity_io_error(ic, "crypto_shash_update", r);
830 goto err;
831 }
832 }
833
834 size = crypto_shash_digestsize(ic->journal_mac);
835
836 if (likely(size <= JOURNAL_MAC_SIZE)) {
837 r = crypto_shash_final(desc, result);
838 if (unlikely(r < 0)) {
839 dm_integrity_io_error(ic, "crypto_shash_final", r);
840 goto err;
841 }
842 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
843 } else {
844 __u8 digest[HASH_MAX_DIGESTSIZE];
845
846 if (WARN_ON(size > sizeof(digest))) {
847 dm_integrity_io_error(ic, "digest_size", -EINVAL);
848 goto err;
849 }
850 r = crypto_shash_final(desc, digest);
851 if (unlikely(r < 0)) {
852 dm_integrity_io_error(ic, "crypto_shash_final", r);
853 goto err;
854 }
855 memcpy(result, digest, JOURNAL_MAC_SIZE);
856 }
857
858 return;
859 err:
860 memset(result, 0, JOURNAL_MAC_SIZE);
861 }
862
863 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
864 {
865 __u8 result[JOURNAL_MAC_SIZE];
866 unsigned j;
867
868 if (!ic->journal_mac)
869 return;
870
871 section_mac(ic, section, result);
872
873 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
874 struct journal_sector *js = access_journal(ic, section, j);
875
876 if (likely(wr))
877 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
878 else {
879 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
880 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
881 }
882 }
883 }
884
885 static void complete_journal_op(void *context)
886 {
887 struct journal_completion *comp = context;
888 BUG_ON(!atomic_read(&comp->in_flight));
889 if (likely(atomic_dec_and_test(&comp->in_flight)))
890 complete(&comp->comp);
891 }
892
893 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
894 unsigned n_sections, struct journal_completion *comp)
895 {
896 struct async_submit_ctl submit;
897 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
898 unsigned pl_index, pl_offset, section_index;
899 struct page_list *source_pl, *target_pl;
900
901 if (likely(encrypt)) {
902 source_pl = ic->journal;
903 target_pl = ic->journal_io;
904 } else {
905 source_pl = ic->journal_io;
906 target_pl = ic->journal;
907 }
908
909 page_list_location(ic, section, 0, &pl_index, &pl_offset);
910
911 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
912
913 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
914
915 section_index = pl_index;
916
917 do {
918 size_t this_step;
919 struct page *src_pages[2];
920 struct page *dst_page;
921
922 while (unlikely(pl_index == section_index)) {
923 unsigned dummy;
924 if (likely(encrypt))
925 rw_section_mac(ic, section, true);
926 section++;
927 n_sections--;
928 if (!n_sections)
929 break;
930 page_list_location(ic, section, 0, &section_index, &dummy);
931 }
932
933 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
934 dst_page = target_pl[pl_index].page;
935 src_pages[0] = source_pl[pl_index].page;
936 src_pages[1] = ic->journal_xor[pl_index].page;
937
938 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
939
940 pl_index++;
941 pl_offset = 0;
942 n_bytes -= this_step;
943 } while (n_bytes);
944
945 BUG_ON(n_sections);
946
947 async_tx_issue_pending_all();
948 }
949
950 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
951 {
952 struct journal_completion *comp = req->data;
953 if (unlikely(err)) {
954 if (likely(err == -EINPROGRESS)) {
955 complete(&comp->ic->crypto_backoff);
956 return;
957 }
958 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
959 }
960 complete_journal_op(comp);
961 }
962
963 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
964 {
965 int r;
966 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
967 complete_journal_encrypt, comp);
968 if (likely(encrypt))
969 r = crypto_skcipher_encrypt(req);
970 else
971 r = crypto_skcipher_decrypt(req);
972 if (likely(!r))
973 return false;
974 if (likely(r == -EINPROGRESS))
975 return true;
976 if (likely(r == -EBUSY)) {
977 wait_for_completion(&comp->ic->crypto_backoff);
978 reinit_completion(&comp->ic->crypto_backoff);
979 return true;
980 }
981 dm_integrity_io_error(comp->ic, "encrypt", r);
982 return false;
983 }
984
985 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
986 unsigned n_sections, struct journal_completion *comp)
987 {
988 struct scatterlist **source_sg;
989 struct scatterlist **target_sg;
990
991 atomic_add(2, &comp->in_flight);
992
993 if (likely(encrypt)) {
994 source_sg = ic->journal_scatterlist;
995 target_sg = ic->journal_io_scatterlist;
996 } else {
997 source_sg = ic->journal_io_scatterlist;
998 target_sg = ic->journal_scatterlist;
999 }
1000
1001 do {
1002 struct skcipher_request *req;
1003 unsigned ivsize;
1004 char *iv;
1005
1006 if (likely(encrypt))
1007 rw_section_mac(ic, section, true);
1008
1009 req = ic->sk_requests[section];
1010 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1011 iv = req->iv;
1012
1013 memcpy(iv, iv + ivsize, ivsize);
1014
1015 req->src = source_sg[section];
1016 req->dst = target_sg[section];
1017
1018 if (unlikely(do_crypt(encrypt, req, comp)))
1019 atomic_inc(&comp->in_flight);
1020
1021 section++;
1022 n_sections--;
1023 } while (n_sections);
1024
1025 atomic_dec(&comp->in_flight);
1026 complete_journal_op(comp);
1027 }
1028
1029 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
1030 unsigned n_sections, struct journal_completion *comp)
1031 {
1032 if (ic->journal_xor)
1033 return xor_journal(ic, encrypt, section, n_sections, comp);
1034 else
1035 return crypt_journal(ic, encrypt, section, n_sections, comp);
1036 }
1037
1038 static void complete_journal_io(unsigned long error, void *context)
1039 {
1040 struct journal_completion *comp = context;
1041 if (unlikely(error != 0))
1042 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1043 complete_journal_op(comp);
1044 }
1045
1046 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
1047 unsigned sector, unsigned n_sectors, struct journal_completion *comp)
1048 {
1049 struct dm_io_request io_req;
1050 struct dm_io_region io_loc;
1051 unsigned pl_index, pl_offset;
1052 int r;
1053
1054 if (unlikely(dm_integrity_failed(ic))) {
1055 if (comp)
1056 complete_journal_io(-1UL, comp);
1057 return;
1058 }
1059
1060 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1061 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1062
1063 io_req.bi_op = op;
1064 io_req.bi_op_flags = op_flags;
1065 io_req.mem.type = DM_IO_PAGE_LIST;
1066 if (ic->journal_io)
1067 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1068 else
1069 io_req.mem.ptr.pl = &ic->journal[pl_index];
1070 io_req.mem.offset = pl_offset;
1071 if (likely(comp != NULL)) {
1072 io_req.notify.fn = complete_journal_io;
1073 io_req.notify.context = comp;
1074 } else {
1075 io_req.notify.fn = NULL;
1076 }
1077 io_req.client = ic->io;
1078 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1079 io_loc.sector = ic->start + SB_SECTORS + sector;
1080 io_loc.count = n_sectors;
1081
1082 r = dm_io(&io_req, 1, &io_loc, NULL);
1083 if (unlikely(r)) {
1084 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
1085 if (comp) {
1086 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1087 complete_journal_io(-1UL, comp);
1088 }
1089 }
1090 }
1091
1092 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
1093 unsigned n_sections, struct journal_completion *comp)
1094 {
1095 unsigned sector, n_sectors;
1096
1097 sector = section * ic->journal_section_sectors;
1098 n_sectors = n_sections * ic->journal_section_sectors;
1099
1100 rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
1101 }
1102
1103 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
1104 {
1105 struct journal_completion io_comp;
1106 struct journal_completion crypt_comp_1;
1107 struct journal_completion crypt_comp_2;
1108 unsigned i;
1109
1110 io_comp.ic = ic;
1111 init_completion(&io_comp.comp);
1112
1113 if (commit_start + commit_sections <= ic->journal_sections) {
1114 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1115 if (ic->journal_io) {
1116 crypt_comp_1.ic = ic;
1117 init_completion(&crypt_comp_1.comp);
1118 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1119 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1120 wait_for_completion_io(&crypt_comp_1.comp);
1121 } else {
1122 for (i = 0; i < commit_sections; i++)
1123 rw_section_mac(ic, commit_start + i, true);
1124 }
1125 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1126 commit_sections, &io_comp);
1127 } else {
1128 unsigned to_end;
1129 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1130 to_end = ic->journal_sections - commit_start;
1131 if (ic->journal_io) {
1132 crypt_comp_1.ic = ic;
1133 init_completion(&crypt_comp_1.comp);
1134 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1135 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1136 if (try_wait_for_completion(&crypt_comp_1.comp)) {
1137 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1138 reinit_completion(&crypt_comp_1.comp);
1139 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1140 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1141 wait_for_completion_io(&crypt_comp_1.comp);
1142 } else {
1143 crypt_comp_2.ic = ic;
1144 init_completion(&crypt_comp_2.comp);
1145 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1146 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1147 wait_for_completion_io(&crypt_comp_1.comp);
1148 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1149 wait_for_completion_io(&crypt_comp_2.comp);
1150 }
1151 } else {
1152 for (i = 0; i < to_end; i++)
1153 rw_section_mac(ic, commit_start + i, true);
1154 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1155 for (i = 0; i < commit_sections - to_end; i++)
1156 rw_section_mac(ic, i, true);
1157 }
1158 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1159 }
1160
1161 wait_for_completion_io(&io_comp.comp);
1162 }
1163
1164 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1165 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1166 {
1167 struct dm_io_request io_req;
1168 struct dm_io_region io_loc;
1169 int r;
1170 unsigned sector, pl_index, pl_offset;
1171
1172 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1173
1174 if (unlikely(dm_integrity_failed(ic))) {
1175 fn(-1UL, data);
1176 return;
1177 }
1178
1179 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1180
1181 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1182 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1183
1184 io_req.bi_op = REQ_OP_WRITE;
1185 io_req.bi_op_flags = 0;
1186 io_req.mem.type = DM_IO_PAGE_LIST;
1187 io_req.mem.ptr.pl = &ic->journal[pl_index];
1188 io_req.mem.offset = pl_offset;
1189 io_req.notify.fn = fn;
1190 io_req.notify.context = data;
1191 io_req.client = ic->io;
1192 io_loc.bdev = ic->dev->bdev;
1193 io_loc.sector = target;
1194 io_loc.count = n_sectors;
1195
1196 r = dm_io(&io_req, 1, &io_loc, NULL);
1197 if (unlikely(r)) {
1198 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1199 fn(-1UL, data);
1200 }
1201 }
1202
1203 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1204 {
1205 return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1206 range1->logical_sector + range1->n_sectors > range2->logical_sector;
1207 }
1208
1209 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1210 {
1211 struct rb_node **n = &ic->in_progress.rb_node;
1212 struct rb_node *parent;
1213
1214 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1215
1216 if (likely(check_waiting)) {
1217 struct dm_integrity_range *range;
1218 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1219 if (unlikely(ranges_overlap(range, new_range)))
1220 return false;
1221 }
1222 }
1223
1224 parent = NULL;
1225
1226 while (*n) {
1227 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1228
1229 parent = *n;
1230 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1231 n = &range->node.rb_left;
1232 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1233 n = &range->node.rb_right;
1234 } else {
1235 return false;
1236 }
1237 }
1238
1239 rb_link_node(&new_range->node, parent, n);
1240 rb_insert_color(&new_range->node, &ic->in_progress);
1241
1242 return true;
1243 }
1244
1245 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1246 {
1247 rb_erase(&range->node, &ic->in_progress);
1248 while (unlikely(!list_empty(&ic->wait_list))) {
1249 struct dm_integrity_range *last_range =
1250 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1251 struct task_struct *last_range_task;
1252 last_range_task = last_range->task;
1253 list_del(&last_range->wait_entry);
1254 if (!add_new_range(ic, last_range, false)) {
1255 last_range->task = last_range_task;
1256 list_add(&last_range->wait_entry, &ic->wait_list);
1257 break;
1258 }
1259 last_range->waiting = false;
1260 wake_up_process(last_range_task);
1261 }
1262 }
1263
1264 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1265 {
1266 unsigned long flags;
1267
1268 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1269 remove_range_unlocked(ic, range);
1270 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1271 }
1272
1273 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1274 {
1275 new_range->waiting = true;
1276 list_add_tail(&new_range->wait_entry, &ic->wait_list);
1277 new_range->task = current;
1278 do {
1279 __set_current_state(TASK_UNINTERRUPTIBLE);
1280 spin_unlock_irq(&ic->endio_wait.lock);
1281 io_schedule();
1282 spin_lock_irq(&ic->endio_wait.lock);
1283 } while (unlikely(new_range->waiting));
1284 }
1285
1286 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1287 {
1288 if (unlikely(!add_new_range(ic, new_range, true)))
1289 wait_and_add_new_range(ic, new_range);
1290 }
1291
1292 static void init_journal_node(struct journal_node *node)
1293 {
1294 RB_CLEAR_NODE(&node->node);
1295 node->sector = (sector_t)-1;
1296 }
1297
1298 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1299 {
1300 struct rb_node **link;
1301 struct rb_node *parent;
1302
1303 node->sector = sector;
1304 BUG_ON(!RB_EMPTY_NODE(&node->node));
1305
1306 link = &ic->journal_tree_root.rb_node;
1307 parent = NULL;
1308
1309 while (*link) {
1310 struct journal_node *j;
1311 parent = *link;
1312 j = container_of(parent, struct journal_node, node);
1313 if (sector < j->sector)
1314 link = &j->node.rb_left;
1315 else
1316 link = &j->node.rb_right;
1317 }
1318
1319 rb_link_node(&node->node, parent, link);
1320 rb_insert_color(&node->node, &ic->journal_tree_root);
1321 }
1322
1323 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1324 {
1325 BUG_ON(RB_EMPTY_NODE(&node->node));
1326 rb_erase(&node->node, &ic->journal_tree_root);
1327 init_journal_node(node);
1328 }
1329
1330 #define NOT_FOUND (-1U)
1331
1332 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1333 {
1334 struct rb_node *n = ic->journal_tree_root.rb_node;
1335 unsigned found = NOT_FOUND;
1336 *next_sector = (sector_t)-1;
1337 while (n) {
1338 struct journal_node *j = container_of(n, struct journal_node, node);
1339 if (sector == j->sector) {
1340 found = j - ic->journal_tree;
1341 }
1342 if (sector < j->sector) {
1343 *next_sector = j->sector;
1344 n = j->node.rb_left;
1345 } else {
1346 n = j->node.rb_right;
1347 }
1348 }
1349
1350 return found;
1351 }
1352
1353 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1354 {
1355 struct journal_node *node, *next_node;
1356 struct rb_node *next;
1357
1358 if (unlikely(pos >= ic->journal_entries))
1359 return false;
1360 node = &ic->journal_tree[pos];
1361 if (unlikely(RB_EMPTY_NODE(&node->node)))
1362 return false;
1363 if (unlikely(node->sector != sector))
1364 return false;
1365
1366 next = rb_next(&node->node);
1367 if (unlikely(!next))
1368 return true;
1369
1370 next_node = container_of(next, struct journal_node, node);
1371 return next_node->sector != sector;
1372 }
1373
1374 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1375 {
1376 struct rb_node *next;
1377 struct journal_node *next_node;
1378 unsigned next_section;
1379
1380 BUG_ON(RB_EMPTY_NODE(&node->node));
1381
1382 next = rb_next(&node->node);
1383 if (unlikely(!next))
1384 return false;
1385
1386 next_node = container_of(next, struct journal_node, node);
1387
1388 if (next_node->sector != node->sector)
1389 return false;
1390
1391 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1392 if (next_section >= ic->committed_section &&
1393 next_section < ic->committed_section + ic->n_committed_sections)
1394 return true;
1395 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1396 return true;
1397
1398 return false;
1399 }
1400
1401 #define TAG_READ 0
1402 #define TAG_WRITE 1
1403 #define TAG_CMP 2
1404
1405 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1406 unsigned *metadata_offset, unsigned total_size, int op)
1407 {
1408 #define MAY_BE_FILLER 1
1409 #define MAY_BE_HASH 2
1410 unsigned hash_offset = 0;
1411 unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1412
1413 do {
1414 unsigned char *data, *dp;
1415 struct dm_buffer *b;
1416 unsigned to_copy;
1417 int r;
1418
1419 r = dm_integrity_failed(ic);
1420 if (unlikely(r))
1421 return r;
1422
1423 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1424 if (IS_ERR(data))
1425 return PTR_ERR(data);
1426
1427 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1428 dp = data + *metadata_offset;
1429 if (op == TAG_READ) {
1430 memcpy(tag, dp, to_copy);
1431 } else if (op == TAG_WRITE) {
1432 if (memcmp(dp, tag, to_copy)) {
1433 memcpy(dp, tag, to_copy);
1434 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1435 }
1436 } else {
1437 /* e.g.: op == TAG_CMP */
1438
1439 if (likely(is_power_of_2(ic->tag_size))) {
1440 if (unlikely(memcmp(dp, tag, to_copy)))
1441 if (unlikely(!ic->discard) ||
1442 unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1443 goto thorough_test;
1444 }
1445 } else {
1446 unsigned i, ts;
1447 thorough_test:
1448 ts = total_size;
1449
1450 for (i = 0; i < to_copy; i++, ts--) {
1451 if (unlikely(dp[i] != tag[i]))
1452 may_be &= ~MAY_BE_HASH;
1453 if (likely(dp[i] != DISCARD_FILLER))
1454 may_be &= ~MAY_BE_FILLER;
1455 hash_offset++;
1456 if (unlikely(hash_offset == ic->tag_size)) {
1457 if (unlikely(!may_be)) {
1458 dm_bufio_release(b);
1459 return ts;
1460 }
1461 hash_offset = 0;
1462 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1463 }
1464 }
1465 }
1466 }
1467 dm_bufio_release(b);
1468
1469 tag += to_copy;
1470 *metadata_offset += to_copy;
1471 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1472 (*metadata_block)++;
1473 *metadata_offset = 0;
1474 }
1475
1476 if (unlikely(!is_power_of_2(ic->tag_size))) {
1477 hash_offset = (hash_offset + to_copy) % ic->tag_size;
1478 }
1479
1480 total_size -= to_copy;
1481 } while (unlikely(total_size));
1482
1483 return 0;
1484 #undef MAY_BE_FILLER
1485 #undef MAY_BE_HASH
1486 }
1487
1488 struct flush_request {
1489 struct dm_io_request io_req;
1490 struct dm_io_region io_reg;
1491 struct dm_integrity_c *ic;
1492 struct completion comp;
1493 };
1494
1495 static void flush_notify(unsigned long error, void *fr_)
1496 {
1497 struct flush_request *fr = fr_;
1498 if (unlikely(error != 0))
1499 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1500 complete(&fr->comp);
1501 }
1502
1503 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1504 {
1505 int r;
1506
1507 struct flush_request fr;
1508
1509 if (!ic->meta_dev)
1510 flush_data = false;
1511 if (flush_data) {
1512 fr.io_req.bi_op = REQ_OP_WRITE,
1513 fr.io_req.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1514 fr.io_req.mem.type = DM_IO_KMEM,
1515 fr.io_req.mem.ptr.addr = NULL,
1516 fr.io_req.notify.fn = flush_notify,
1517 fr.io_req.notify.context = &fr;
1518 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1519 fr.io_reg.bdev = ic->dev->bdev,
1520 fr.io_reg.sector = 0,
1521 fr.io_reg.count = 0,
1522 fr.ic = ic;
1523 init_completion(&fr.comp);
1524 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1525 BUG_ON(r);
1526 }
1527
1528 r = dm_bufio_write_dirty_buffers(ic->bufio);
1529 if (unlikely(r))
1530 dm_integrity_io_error(ic, "writing tags", r);
1531
1532 if (flush_data)
1533 wait_for_completion(&fr.comp);
1534 }
1535
1536 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1537 {
1538 DECLARE_WAITQUEUE(wait, current);
1539 __add_wait_queue(&ic->endio_wait, &wait);
1540 __set_current_state(TASK_UNINTERRUPTIBLE);
1541 spin_unlock_irq(&ic->endio_wait.lock);
1542 io_schedule();
1543 spin_lock_irq(&ic->endio_wait.lock);
1544 __remove_wait_queue(&ic->endio_wait, &wait);
1545 }
1546
1547 static void autocommit_fn(struct timer_list *t)
1548 {
1549 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1550
1551 if (likely(!dm_integrity_failed(ic)))
1552 queue_work(ic->commit_wq, &ic->commit_work);
1553 }
1554
1555 static void schedule_autocommit(struct dm_integrity_c *ic)
1556 {
1557 if (!timer_pending(&ic->autocommit_timer))
1558 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1559 }
1560
1561 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1562 {
1563 struct bio *bio;
1564 unsigned long flags;
1565
1566 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1567 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1568 bio_list_add(&ic->flush_bio_list, bio);
1569 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1570
1571 queue_work(ic->commit_wq, &ic->commit_work);
1572 }
1573
1574 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1575 {
1576 int r = dm_integrity_failed(ic);
1577 if (unlikely(r) && !bio->bi_status)
1578 bio->bi_status = errno_to_blk_status(r);
1579 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1580 unsigned long flags;
1581 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1582 bio_list_add(&ic->synchronous_bios, bio);
1583 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1584 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1585 return;
1586 }
1587 bio_endio(bio);
1588 }
1589
1590 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1591 {
1592 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1593
1594 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1595 submit_flush_bio(ic, dio);
1596 else
1597 do_endio(ic, bio);
1598 }
1599
1600 static void dec_in_flight(struct dm_integrity_io *dio)
1601 {
1602 if (atomic_dec_and_test(&dio->in_flight)) {
1603 struct dm_integrity_c *ic = dio->ic;
1604 struct bio *bio;
1605
1606 remove_range(ic, &dio->range);
1607
1608 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1609 schedule_autocommit(ic);
1610
1611 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1612
1613 if (unlikely(dio->bi_status) && !bio->bi_status)
1614 bio->bi_status = dio->bi_status;
1615 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1616 dio->range.logical_sector += dio->range.n_sectors;
1617 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1618 INIT_WORK(&dio->work, integrity_bio_wait);
1619 queue_work(ic->offload_wq, &dio->work);
1620 return;
1621 }
1622 do_endio_flush(ic, dio);
1623 }
1624 }
1625
1626 static void integrity_end_io(struct bio *bio)
1627 {
1628 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1629
1630 dm_bio_restore(&dio->bio_details, bio);
1631 if (bio->bi_integrity)
1632 bio->bi_opf |= REQ_INTEGRITY;
1633
1634 if (dio->completion)
1635 complete(dio->completion);
1636
1637 dec_in_flight(dio);
1638 }
1639
1640 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1641 const char *data, char *result)
1642 {
1643 __le64 sector_le = cpu_to_le64(sector);
1644 SHASH_DESC_ON_STACK(req, ic->internal_hash);
1645 int r;
1646 unsigned digest_size;
1647
1648 req->tfm = ic->internal_hash;
1649
1650 r = crypto_shash_init(req);
1651 if (unlikely(r < 0)) {
1652 dm_integrity_io_error(ic, "crypto_shash_init", r);
1653 goto failed;
1654 }
1655
1656 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1657 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1658 if (unlikely(r < 0)) {
1659 dm_integrity_io_error(ic, "crypto_shash_update", r);
1660 goto failed;
1661 }
1662 }
1663
1664 r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1665 if (unlikely(r < 0)) {
1666 dm_integrity_io_error(ic, "crypto_shash_update", r);
1667 goto failed;
1668 }
1669
1670 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1671 if (unlikely(r < 0)) {
1672 dm_integrity_io_error(ic, "crypto_shash_update", r);
1673 goto failed;
1674 }
1675
1676 r = crypto_shash_final(req, result);
1677 if (unlikely(r < 0)) {
1678 dm_integrity_io_error(ic, "crypto_shash_final", r);
1679 goto failed;
1680 }
1681
1682 digest_size = crypto_shash_digestsize(ic->internal_hash);
1683 if (unlikely(digest_size < ic->tag_size))
1684 memset(result + digest_size, 0, ic->tag_size - digest_size);
1685
1686 return;
1687
1688 failed:
1689 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1690 get_random_bytes(result, ic->tag_size);
1691 }
1692
1693 static void integrity_metadata(struct work_struct *w)
1694 {
1695 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1696 struct dm_integrity_c *ic = dio->ic;
1697
1698 int r;
1699
1700 if (ic->internal_hash) {
1701 struct bvec_iter iter;
1702 struct bio_vec bv;
1703 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1704 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1705 char *checksums;
1706 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1707 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1708 sector_t sector;
1709 unsigned sectors_to_process;
1710
1711 if (unlikely(ic->mode == 'R'))
1712 goto skip_io;
1713
1714 if (likely(dio->op != REQ_OP_DISCARD))
1715 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1716 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1717 else
1718 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1719 if (!checksums) {
1720 checksums = checksums_onstack;
1721 if (WARN_ON(extra_space &&
1722 digest_size > sizeof(checksums_onstack))) {
1723 r = -EINVAL;
1724 goto error;
1725 }
1726 }
1727
1728 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1729 sector_t bi_sector = dio->bio_details.bi_iter.bi_sector;
1730 unsigned bi_size = dio->bio_details.bi_iter.bi_size;
1731 unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1732 unsigned max_blocks = max_size / ic->tag_size;
1733 memset(checksums, DISCARD_FILLER, max_size);
1734
1735 while (bi_size) {
1736 unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1737 this_step_blocks = min(this_step_blocks, max_blocks);
1738 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1739 this_step_blocks * ic->tag_size, TAG_WRITE);
1740 if (unlikely(r)) {
1741 if (likely(checksums != checksums_onstack))
1742 kfree(checksums);
1743 goto error;
1744 }
1745
1746 /*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) {
1747 printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size);
1748 printk("BUGG: this_step_blocks: %u\n", this_step_blocks);
1749 BUG();
1750 }*/
1751 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1752 bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block;
1753 }
1754
1755 if (likely(checksums != checksums_onstack))
1756 kfree(checksums);
1757 goto skip_io;
1758 }
1759
1760 sector = dio->range.logical_sector;
1761 sectors_to_process = dio->range.n_sectors;
1762
1763 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1764 unsigned pos;
1765 char *mem, *checksums_ptr;
1766
1767 again:
1768 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1769 pos = 0;
1770 checksums_ptr = checksums;
1771 do {
1772 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1773 checksums_ptr += ic->tag_size;
1774 sectors_to_process -= ic->sectors_per_block;
1775 pos += ic->sectors_per_block << SECTOR_SHIFT;
1776 sector += ic->sectors_per_block;
1777 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1778 kunmap_atomic(mem);
1779
1780 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1781 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1782 if (unlikely(r)) {
1783 if (r > 0) {
1784 char b[BDEVNAME_SIZE];
1785 DMERR_LIMIT("%s: Checksum failed at sector 0x%llx", bio_devname(bio, b),
1786 (sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1787 r = -EILSEQ;
1788 atomic64_inc(&ic->number_of_mismatches);
1789 }
1790 if (likely(checksums != checksums_onstack))
1791 kfree(checksums);
1792 goto error;
1793 }
1794
1795 if (!sectors_to_process)
1796 break;
1797
1798 if (unlikely(pos < bv.bv_len)) {
1799 bv.bv_offset += pos;
1800 bv.bv_len -= pos;
1801 goto again;
1802 }
1803 }
1804
1805 if (likely(checksums != checksums_onstack))
1806 kfree(checksums);
1807 } else {
1808 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1809
1810 if (bip) {
1811 struct bio_vec biv;
1812 struct bvec_iter iter;
1813 unsigned data_to_process = dio->range.n_sectors;
1814 sector_to_block(ic, data_to_process);
1815 data_to_process *= ic->tag_size;
1816
1817 bip_for_each_vec(biv, bip, iter) {
1818 unsigned char *tag;
1819 unsigned this_len;
1820
1821 BUG_ON(PageHighMem(biv.bv_page));
1822 tag = bvec_virt(&biv);
1823 this_len = min(biv.bv_len, data_to_process);
1824 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1825 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1826 if (unlikely(r))
1827 goto error;
1828 data_to_process -= this_len;
1829 if (!data_to_process)
1830 break;
1831 }
1832 }
1833 }
1834 skip_io:
1835 dec_in_flight(dio);
1836 return;
1837 error:
1838 dio->bi_status = errno_to_blk_status(r);
1839 dec_in_flight(dio);
1840 }
1841
1842 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1843 {
1844 struct dm_integrity_c *ic = ti->private;
1845 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1846 struct bio_integrity_payload *bip;
1847
1848 sector_t area, offset;
1849
1850 dio->ic = ic;
1851 dio->bi_status = 0;
1852 dio->op = bio_op(bio);
1853
1854 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1855 if (ti->max_io_len) {
1856 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1857 unsigned log2_max_io_len = __fls(ti->max_io_len);
1858 sector_t start_boundary = sec >> log2_max_io_len;
1859 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1860 if (start_boundary < end_boundary) {
1861 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1862 dm_accept_partial_bio(bio, len);
1863 }
1864 }
1865 }
1866
1867 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1868 submit_flush_bio(ic, dio);
1869 return DM_MAPIO_SUBMITTED;
1870 }
1871
1872 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1873 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1874 if (unlikely(dio->fua)) {
1875 /*
1876 * Don't pass down the FUA flag because we have to flush
1877 * disk cache anyway.
1878 */
1879 bio->bi_opf &= ~REQ_FUA;
1880 }
1881 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1882 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1883 dio->range.logical_sector, bio_sectors(bio),
1884 ic->provided_data_sectors);
1885 return DM_MAPIO_KILL;
1886 }
1887 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1888 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1889 ic->sectors_per_block,
1890 dio->range.logical_sector, bio_sectors(bio));
1891 return DM_MAPIO_KILL;
1892 }
1893
1894 if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1895 struct bvec_iter iter;
1896 struct bio_vec bv;
1897 bio_for_each_segment(bv, bio, iter) {
1898 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1899 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1900 bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1901 return DM_MAPIO_KILL;
1902 }
1903 }
1904 }
1905
1906 bip = bio_integrity(bio);
1907 if (!ic->internal_hash) {
1908 if (bip) {
1909 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1910 if (ic->log2_tag_size >= 0)
1911 wanted_tag_size <<= ic->log2_tag_size;
1912 else
1913 wanted_tag_size *= ic->tag_size;
1914 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1915 DMERR("Invalid integrity data size %u, expected %u",
1916 bip->bip_iter.bi_size, wanted_tag_size);
1917 return DM_MAPIO_KILL;
1918 }
1919 }
1920 } else {
1921 if (unlikely(bip != NULL)) {
1922 DMERR("Unexpected integrity data when using internal hash");
1923 return DM_MAPIO_KILL;
1924 }
1925 }
1926
1927 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1928 return DM_MAPIO_KILL;
1929
1930 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1931 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1932 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1933
1934 dm_integrity_map_continue(dio, true);
1935 return DM_MAPIO_SUBMITTED;
1936 }
1937
1938 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1939 unsigned journal_section, unsigned journal_entry)
1940 {
1941 struct dm_integrity_c *ic = dio->ic;
1942 sector_t logical_sector;
1943 unsigned n_sectors;
1944
1945 logical_sector = dio->range.logical_sector;
1946 n_sectors = dio->range.n_sectors;
1947 do {
1948 struct bio_vec bv = bio_iovec(bio);
1949 char *mem;
1950
1951 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1952 bv.bv_len = n_sectors << SECTOR_SHIFT;
1953 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1954 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1955 retry_kmap:
1956 mem = kmap_atomic(bv.bv_page);
1957 if (likely(dio->op == REQ_OP_WRITE))
1958 flush_dcache_page(bv.bv_page);
1959
1960 do {
1961 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1962
1963 if (unlikely(dio->op == REQ_OP_READ)) {
1964 struct journal_sector *js;
1965 char *mem_ptr;
1966 unsigned s;
1967
1968 if (unlikely(journal_entry_is_inprogress(je))) {
1969 flush_dcache_page(bv.bv_page);
1970 kunmap_atomic(mem);
1971
1972 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1973 goto retry_kmap;
1974 }
1975 smp_rmb();
1976 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1977 js = access_journal_data(ic, journal_section, journal_entry);
1978 mem_ptr = mem + bv.bv_offset;
1979 s = 0;
1980 do {
1981 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1982 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1983 js++;
1984 mem_ptr += 1 << SECTOR_SHIFT;
1985 } while (++s < ic->sectors_per_block);
1986 #ifdef INTERNAL_VERIFY
1987 if (ic->internal_hash) {
1988 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1989
1990 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1991 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1992 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1993 logical_sector);
1994 }
1995 }
1996 #endif
1997 }
1998
1999 if (!ic->internal_hash) {
2000 struct bio_integrity_payload *bip = bio_integrity(bio);
2001 unsigned tag_todo = ic->tag_size;
2002 char *tag_ptr = journal_entry_tag(ic, je);
2003
2004 if (bip) do {
2005 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2006 unsigned tag_now = min(biv.bv_len, tag_todo);
2007 char *tag_addr;
2008 BUG_ON(PageHighMem(biv.bv_page));
2009 tag_addr = bvec_virt(&biv);
2010 if (likely(dio->op == REQ_OP_WRITE))
2011 memcpy(tag_ptr, tag_addr, tag_now);
2012 else
2013 memcpy(tag_addr, tag_ptr, tag_now);
2014 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2015 tag_ptr += tag_now;
2016 tag_todo -= tag_now;
2017 } while (unlikely(tag_todo)); else {
2018 if (likely(dio->op == REQ_OP_WRITE))
2019 memset(tag_ptr, 0, tag_todo);
2020 }
2021 }
2022
2023 if (likely(dio->op == REQ_OP_WRITE)) {
2024 struct journal_sector *js;
2025 unsigned s;
2026
2027 js = access_journal_data(ic, journal_section, journal_entry);
2028 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2029
2030 s = 0;
2031 do {
2032 je->last_bytes[s] = js[s].commit_id;
2033 } while (++s < ic->sectors_per_block);
2034
2035 if (ic->internal_hash) {
2036 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
2037 if (unlikely(digest_size > ic->tag_size)) {
2038 char checksums_onstack[HASH_MAX_DIGESTSIZE];
2039 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2040 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2041 } else
2042 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2043 }
2044
2045 journal_entry_set_sector(je, logical_sector);
2046 }
2047 logical_sector += ic->sectors_per_block;
2048
2049 journal_entry++;
2050 if (unlikely(journal_entry == ic->journal_section_entries)) {
2051 journal_entry = 0;
2052 journal_section++;
2053 wraparound_section(ic, &journal_section);
2054 }
2055
2056 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2057 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2058
2059 if (unlikely(dio->op == REQ_OP_READ))
2060 flush_dcache_page(bv.bv_page);
2061 kunmap_atomic(mem);
2062 } while (n_sectors);
2063
2064 if (likely(dio->op == REQ_OP_WRITE)) {
2065 smp_mb();
2066 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2067 wake_up(&ic->copy_to_journal_wait);
2068 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
2069 queue_work(ic->commit_wq, &ic->commit_work);
2070 } else {
2071 schedule_autocommit(ic);
2072 }
2073 } else {
2074 remove_range(ic, &dio->range);
2075 }
2076
2077 if (unlikely(bio->bi_iter.bi_size)) {
2078 sector_t area, offset;
2079
2080 dio->range.logical_sector = logical_sector;
2081 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2082 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2083 return true;
2084 }
2085
2086 return false;
2087 }
2088
2089 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2090 {
2091 struct dm_integrity_c *ic = dio->ic;
2092 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2093 unsigned journal_section, journal_entry;
2094 unsigned journal_read_pos;
2095 struct completion read_comp;
2096 bool discard_retried = false;
2097 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2098 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2099 need_sync_io = true;
2100
2101 if (need_sync_io && from_map) {
2102 INIT_WORK(&dio->work, integrity_bio_wait);
2103 queue_work(ic->offload_wq, &dio->work);
2104 return;
2105 }
2106
2107 lock_retry:
2108 spin_lock_irq(&ic->endio_wait.lock);
2109 retry:
2110 if (unlikely(dm_integrity_failed(ic))) {
2111 spin_unlock_irq(&ic->endio_wait.lock);
2112 do_endio(ic, bio);
2113 return;
2114 }
2115 dio->range.n_sectors = bio_sectors(bio);
2116 journal_read_pos = NOT_FOUND;
2117 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2118 if (dio->op == REQ_OP_WRITE) {
2119 unsigned next_entry, i, pos;
2120 unsigned ws, we, range_sectors;
2121
2122 dio->range.n_sectors = min(dio->range.n_sectors,
2123 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2124 if (unlikely(!dio->range.n_sectors)) {
2125 if (from_map)
2126 goto offload_to_thread;
2127 sleep_on_endio_wait(ic);
2128 goto retry;
2129 }
2130 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2131 ic->free_sectors -= range_sectors;
2132 journal_section = ic->free_section;
2133 journal_entry = ic->free_section_entry;
2134
2135 next_entry = ic->free_section_entry + range_sectors;
2136 ic->free_section_entry = next_entry % ic->journal_section_entries;
2137 ic->free_section += next_entry / ic->journal_section_entries;
2138 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2139 wraparound_section(ic, &ic->free_section);
2140
2141 pos = journal_section * ic->journal_section_entries + journal_entry;
2142 ws = journal_section;
2143 we = journal_entry;
2144 i = 0;
2145 do {
2146 struct journal_entry *je;
2147
2148 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2149 pos++;
2150 if (unlikely(pos >= ic->journal_entries))
2151 pos = 0;
2152
2153 je = access_journal_entry(ic, ws, we);
2154 BUG_ON(!journal_entry_is_unused(je));
2155 journal_entry_set_inprogress(je);
2156 we++;
2157 if (unlikely(we == ic->journal_section_entries)) {
2158 we = 0;
2159 ws++;
2160 wraparound_section(ic, &ws);
2161 }
2162 } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2163
2164 spin_unlock_irq(&ic->endio_wait.lock);
2165 goto journal_read_write;
2166 } else {
2167 sector_t next_sector;
2168 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2169 if (likely(journal_read_pos == NOT_FOUND)) {
2170 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2171 dio->range.n_sectors = next_sector - dio->range.logical_sector;
2172 } else {
2173 unsigned i;
2174 unsigned jp = journal_read_pos + 1;
2175 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2176 if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2177 break;
2178 }
2179 dio->range.n_sectors = i;
2180 }
2181 }
2182 }
2183 if (unlikely(!add_new_range(ic, &dio->range, true))) {
2184 /*
2185 * We must not sleep in the request routine because it could
2186 * stall bios on current->bio_list.
2187 * So, we offload the bio to a workqueue if we have to sleep.
2188 */
2189 if (from_map) {
2190 offload_to_thread:
2191 spin_unlock_irq(&ic->endio_wait.lock);
2192 INIT_WORK(&dio->work, integrity_bio_wait);
2193 queue_work(ic->wait_wq, &dio->work);
2194 return;
2195 }
2196 if (journal_read_pos != NOT_FOUND)
2197 dio->range.n_sectors = ic->sectors_per_block;
2198 wait_and_add_new_range(ic, &dio->range);
2199 /*
2200 * wait_and_add_new_range drops the spinlock, so the journal
2201 * may have been changed arbitrarily. We need to recheck.
2202 * To simplify the code, we restrict I/O size to just one block.
2203 */
2204 if (journal_read_pos != NOT_FOUND) {
2205 sector_t next_sector;
2206 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2207 if (unlikely(new_pos != journal_read_pos)) {
2208 remove_range_unlocked(ic, &dio->range);
2209 goto retry;
2210 }
2211 }
2212 }
2213 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2214 sector_t next_sector;
2215 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2216 if (unlikely(new_pos != NOT_FOUND) ||
2217 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2218 remove_range_unlocked(ic, &dio->range);
2219 spin_unlock_irq(&ic->endio_wait.lock);
2220 queue_work(ic->commit_wq, &ic->commit_work);
2221 flush_workqueue(ic->commit_wq);
2222 queue_work(ic->writer_wq, &ic->writer_work);
2223 flush_workqueue(ic->writer_wq);
2224 discard_retried = true;
2225 goto lock_retry;
2226 }
2227 }
2228 spin_unlock_irq(&ic->endio_wait.lock);
2229
2230 if (unlikely(journal_read_pos != NOT_FOUND)) {
2231 journal_section = journal_read_pos / ic->journal_section_entries;
2232 journal_entry = journal_read_pos % ic->journal_section_entries;
2233 goto journal_read_write;
2234 }
2235
2236 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2237 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2238 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2239 struct bitmap_block_status *bbs;
2240
2241 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2242 spin_lock(&bbs->bio_queue_lock);
2243 bio_list_add(&bbs->bio_queue, bio);
2244 spin_unlock(&bbs->bio_queue_lock);
2245 queue_work(ic->writer_wq, &bbs->work);
2246 return;
2247 }
2248 }
2249
2250 dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2251
2252 if (need_sync_io) {
2253 init_completion(&read_comp);
2254 dio->completion = &read_comp;
2255 } else
2256 dio->completion = NULL;
2257
2258 dm_bio_record(&dio->bio_details, bio);
2259 bio_set_dev(bio, ic->dev->bdev);
2260 bio->bi_integrity = NULL;
2261 bio->bi_opf &= ~REQ_INTEGRITY;
2262 bio->bi_end_io = integrity_end_io;
2263 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2264
2265 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2266 integrity_metadata(&dio->work);
2267 dm_integrity_flush_buffers(ic, false);
2268
2269 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2270 dio->completion = NULL;
2271
2272 submit_bio_noacct(bio);
2273
2274 return;
2275 }
2276
2277 submit_bio_noacct(bio);
2278
2279 if (need_sync_io) {
2280 wait_for_completion_io(&read_comp);
2281 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2282 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2283 goto skip_check;
2284 if (ic->mode == 'B') {
2285 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2286 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2287 goto skip_check;
2288 }
2289
2290 if (likely(!bio->bi_status))
2291 integrity_metadata(&dio->work);
2292 else
2293 skip_check:
2294 dec_in_flight(dio);
2295
2296 } else {
2297 INIT_WORK(&dio->work, integrity_metadata);
2298 queue_work(ic->metadata_wq, &dio->work);
2299 }
2300
2301 return;
2302
2303 journal_read_write:
2304 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2305 goto lock_retry;
2306
2307 do_endio_flush(ic, dio);
2308 }
2309
2310
2311 static void integrity_bio_wait(struct work_struct *w)
2312 {
2313 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2314
2315 dm_integrity_map_continue(dio, false);
2316 }
2317
2318 static void pad_uncommitted(struct dm_integrity_c *ic)
2319 {
2320 if (ic->free_section_entry) {
2321 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2322 ic->free_section_entry = 0;
2323 ic->free_section++;
2324 wraparound_section(ic, &ic->free_section);
2325 ic->n_uncommitted_sections++;
2326 }
2327 if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2328 (ic->n_uncommitted_sections + ic->n_committed_sections) *
2329 ic->journal_section_entries + ic->free_sectors)) {
2330 DMCRIT("journal_sections %u, journal_section_entries %u, "
2331 "n_uncommitted_sections %u, n_committed_sections %u, "
2332 "journal_section_entries %u, free_sectors %u",
2333 ic->journal_sections, ic->journal_section_entries,
2334 ic->n_uncommitted_sections, ic->n_committed_sections,
2335 ic->journal_section_entries, ic->free_sectors);
2336 }
2337 }
2338
2339 static void integrity_commit(struct work_struct *w)
2340 {
2341 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2342 unsigned commit_start, commit_sections;
2343 unsigned i, j, n;
2344 struct bio *flushes;
2345
2346 del_timer(&ic->autocommit_timer);
2347
2348 spin_lock_irq(&ic->endio_wait.lock);
2349 flushes = bio_list_get(&ic->flush_bio_list);
2350 if (unlikely(ic->mode != 'J')) {
2351 spin_unlock_irq(&ic->endio_wait.lock);
2352 dm_integrity_flush_buffers(ic, true);
2353 goto release_flush_bios;
2354 }
2355
2356 pad_uncommitted(ic);
2357 commit_start = ic->uncommitted_section;
2358 commit_sections = ic->n_uncommitted_sections;
2359 spin_unlock_irq(&ic->endio_wait.lock);
2360
2361 if (!commit_sections)
2362 goto release_flush_bios;
2363
2364 i = commit_start;
2365 for (n = 0; n < commit_sections; n++) {
2366 for (j = 0; j < ic->journal_section_entries; j++) {
2367 struct journal_entry *je;
2368 je = access_journal_entry(ic, i, j);
2369 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2370 }
2371 for (j = 0; j < ic->journal_section_sectors; j++) {
2372 struct journal_sector *js;
2373 js = access_journal(ic, i, j);
2374 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2375 }
2376 i++;
2377 if (unlikely(i >= ic->journal_sections))
2378 ic->commit_seq = next_commit_seq(ic->commit_seq);
2379 wraparound_section(ic, &i);
2380 }
2381 smp_rmb();
2382
2383 write_journal(ic, commit_start, commit_sections);
2384
2385 spin_lock_irq(&ic->endio_wait.lock);
2386 ic->uncommitted_section += commit_sections;
2387 wraparound_section(ic, &ic->uncommitted_section);
2388 ic->n_uncommitted_sections -= commit_sections;
2389 ic->n_committed_sections += commit_sections;
2390 spin_unlock_irq(&ic->endio_wait.lock);
2391
2392 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2393 queue_work(ic->writer_wq, &ic->writer_work);
2394
2395 release_flush_bios:
2396 while (flushes) {
2397 struct bio *next = flushes->bi_next;
2398 flushes->bi_next = NULL;
2399 do_endio(ic, flushes);
2400 flushes = next;
2401 }
2402 }
2403
2404 static void complete_copy_from_journal(unsigned long error, void *context)
2405 {
2406 struct journal_io *io = context;
2407 struct journal_completion *comp = io->comp;
2408 struct dm_integrity_c *ic = comp->ic;
2409 remove_range(ic, &io->range);
2410 mempool_free(io, &ic->journal_io_mempool);
2411 if (unlikely(error != 0))
2412 dm_integrity_io_error(ic, "copying from journal", -EIO);
2413 complete_journal_op(comp);
2414 }
2415
2416 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2417 struct journal_entry *je)
2418 {
2419 unsigned s = 0;
2420 do {
2421 js->commit_id = je->last_bytes[s];
2422 js++;
2423 } while (++s < ic->sectors_per_block);
2424 }
2425
2426 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2427 unsigned write_sections, bool from_replay)
2428 {
2429 unsigned i, j, n;
2430 struct journal_completion comp;
2431 struct blk_plug plug;
2432
2433 blk_start_plug(&plug);
2434
2435 comp.ic = ic;
2436 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2437 init_completion(&comp.comp);
2438
2439 i = write_start;
2440 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2441 #ifndef INTERNAL_VERIFY
2442 if (unlikely(from_replay))
2443 #endif
2444 rw_section_mac(ic, i, false);
2445 for (j = 0; j < ic->journal_section_entries; j++) {
2446 struct journal_entry *je = access_journal_entry(ic, i, j);
2447 sector_t sec, area, offset;
2448 unsigned k, l, next_loop;
2449 sector_t metadata_block;
2450 unsigned metadata_offset;
2451 struct journal_io *io;
2452
2453 if (journal_entry_is_unused(je))
2454 continue;
2455 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2456 sec = journal_entry_get_sector(je);
2457 if (unlikely(from_replay)) {
2458 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2459 dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2460 sec &= ~(sector_t)(ic->sectors_per_block - 1);
2461 }
2462 }
2463 if (unlikely(sec >= ic->provided_data_sectors))
2464 continue;
2465 get_area_and_offset(ic, sec, &area, &offset);
2466 restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2467 for (k = j + 1; k < ic->journal_section_entries; k++) {
2468 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2469 sector_t sec2, area2, offset2;
2470 if (journal_entry_is_unused(je2))
2471 break;
2472 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2473 sec2 = journal_entry_get_sector(je2);
2474 if (unlikely(sec2 >= ic->provided_data_sectors))
2475 break;
2476 get_area_and_offset(ic, sec2, &area2, &offset2);
2477 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2478 break;
2479 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2480 }
2481 next_loop = k - 1;
2482
2483 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2484 io->comp = &comp;
2485 io->range.logical_sector = sec;
2486 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2487
2488 spin_lock_irq(&ic->endio_wait.lock);
2489 add_new_range_and_wait(ic, &io->range);
2490
2491 if (likely(!from_replay)) {
2492 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2493
2494 /* don't write if there is newer committed sector */
2495 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2496 struct journal_entry *je2 = access_journal_entry(ic, i, j);
2497
2498 journal_entry_set_unused(je2);
2499 remove_journal_node(ic, &section_node[j]);
2500 j++;
2501 sec += ic->sectors_per_block;
2502 offset += ic->sectors_per_block;
2503 }
2504 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2505 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2506
2507 journal_entry_set_unused(je2);
2508 remove_journal_node(ic, &section_node[k - 1]);
2509 k--;
2510 }
2511 if (j == k) {
2512 remove_range_unlocked(ic, &io->range);
2513 spin_unlock_irq(&ic->endio_wait.lock);
2514 mempool_free(io, &ic->journal_io_mempool);
2515 goto skip_io;
2516 }
2517 for (l = j; l < k; l++) {
2518 remove_journal_node(ic, &section_node[l]);
2519 }
2520 }
2521 spin_unlock_irq(&ic->endio_wait.lock);
2522
2523 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2524 for (l = j; l < k; l++) {
2525 int r;
2526 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2527
2528 if (
2529 #ifndef INTERNAL_VERIFY
2530 unlikely(from_replay) &&
2531 #endif
2532 ic->internal_hash) {
2533 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2534
2535 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2536 (char *)access_journal_data(ic, i, l), test_tag);
2537 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2538 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2539 }
2540
2541 journal_entry_set_unused(je2);
2542 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2543 ic->tag_size, TAG_WRITE);
2544 if (unlikely(r)) {
2545 dm_integrity_io_error(ic, "reading tags", r);
2546 }
2547 }
2548
2549 atomic_inc(&comp.in_flight);
2550 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2551 (k - j) << ic->sb->log2_sectors_per_block,
2552 get_data_sector(ic, area, offset),
2553 complete_copy_from_journal, io);
2554 skip_io:
2555 j = next_loop;
2556 }
2557 }
2558
2559 dm_bufio_write_dirty_buffers_async(ic->bufio);
2560
2561 blk_finish_plug(&plug);
2562
2563 complete_journal_op(&comp);
2564 wait_for_completion_io(&comp.comp);
2565
2566 dm_integrity_flush_buffers(ic, true);
2567 }
2568
2569 static void integrity_writer(struct work_struct *w)
2570 {
2571 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2572 unsigned write_start, write_sections;
2573
2574 unsigned prev_free_sectors;
2575
2576 /* the following test is not needed, but it tests the replay code */
2577 if (unlikely(dm_post_suspending(ic->ti)) && !ic->meta_dev)
2578 return;
2579
2580 spin_lock_irq(&ic->endio_wait.lock);
2581 write_start = ic->committed_section;
2582 write_sections = ic->n_committed_sections;
2583 spin_unlock_irq(&ic->endio_wait.lock);
2584
2585 if (!write_sections)
2586 return;
2587
2588 do_journal_write(ic, write_start, write_sections, false);
2589
2590 spin_lock_irq(&ic->endio_wait.lock);
2591
2592 ic->committed_section += write_sections;
2593 wraparound_section(ic, &ic->committed_section);
2594 ic->n_committed_sections -= write_sections;
2595
2596 prev_free_sectors = ic->free_sectors;
2597 ic->free_sectors += write_sections * ic->journal_section_entries;
2598 if (unlikely(!prev_free_sectors))
2599 wake_up_locked(&ic->endio_wait);
2600
2601 spin_unlock_irq(&ic->endio_wait.lock);
2602 }
2603
2604 static void recalc_write_super(struct dm_integrity_c *ic)
2605 {
2606 int r;
2607
2608 dm_integrity_flush_buffers(ic, false);
2609 if (dm_integrity_failed(ic))
2610 return;
2611
2612 r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2613 if (unlikely(r))
2614 dm_integrity_io_error(ic, "writing superblock", r);
2615 }
2616
2617 static void integrity_recalc(struct work_struct *w)
2618 {
2619 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2620 struct dm_integrity_range range;
2621 struct dm_io_request io_req;
2622 struct dm_io_region io_loc;
2623 sector_t area, offset;
2624 sector_t metadata_block;
2625 unsigned metadata_offset;
2626 sector_t logical_sector, n_sectors;
2627 __u8 *t;
2628 unsigned i;
2629 int r;
2630 unsigned super_counter = 0;
2631
2632 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2633
2634 spin_lock_irq(&ic->endio_wait.lock);
2635
2636 next_chunk:
2637
2638 if (unlikely(dm_post_suspending(ic->ti)))
2639 goto unlock_ret;
2640
2641 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2642 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2643 if (ic->mode == 'B') {
2644 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2645 DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2646 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2647 }
2648 goto unlock_ret;
2649 }
2650
2651 get_area_and_offset(ic, range.logical_sector, &area, &offset);
2652 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2653 if (!ic->meta_dev)
2654 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2655
2656 add_new_range_and_wait(ic, &range);
2657 spin_unlock_irq(&ic->endio_wait.lock);
2658 logical_sector = range.logical_sector;
2659 n_sectors = range.n_sectors;
2660
2661 if (ic->mode == 'B') {
2662 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2663 goto advance_and_next;
2664 }
2665 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2666 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2667 logical_sector += ic->sectors_per_block;
2668 n_sectors -= ic->sectors_per_block;
2669 cond_resched();
2670 }
2671 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2672 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2673 n_sectors -= ic->sectors_per_block;
2674 cond_resched();
2675 }
2676 get_area_and_offset(ic, logical_sector, &area, &offset);
2677 }
2678
2679 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2680
2681 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2682 recalc_write_super(ic);
2683 if (ic->mode == 'B') {
2684 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2685 }
2686 super_counter = 0;
2687 }
2688
2689 if (unlikely(dm_integrity_failed(ic)))
2690 goto err;
2691
2692 io_req.bi_op = REQ_OP_READ;
2693 io_req.bi_op_flags = 0;
2694 io_req.mem.type = DM_IO_VMA;
2695 io_req.mem.ptr.addr = ic->recalc_buffer;
2696 io_req.notify.fn = NULL;
2697 io_req.client = ic->io;
2698 io_loc.bdev = ic->dev->bdev;
2699 io_loc.sector = get_data_sector(ic, area, offset);
2700 io_loc.count = n_sectors;
2701
2702 r = dm_io(&io_req, 1, &io_loc, NULL);
2703 if (unlikely(r)) {
2704 dm_integrity_io_error(ic, "reading data", r);
2705 goto err;
2706 }
2707
2708 t = ic->recalc_tags;
2709 for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2710 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2711 t += ic->tag_size;
2712 }
2713
2714 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2715
2716 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2717 if (unlikely(r)) {
2718 dm_integrity_io_error(ic, "writing tags", r);
2719 goto err;
2720 }
2721
2722 if (ic->mode == 'B') {
2723 sector_t start, end;
2724 start = (range.logical_sector >>
2725 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2726 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2727 end = ((range.logical_sector + range.n_sectors) >>
2728 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2729 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2730 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2731 }
2732
2733 advance_and_next:
2734 cond_resched();
2735
2736 spin_lock_irq(&ic->endio_wait.lock);
2737 remove_range_unlocked(ic, &range);
2738 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2739 goto next_chunk;
2740
2741 err:
2742 remove_range(ic, &range);
2743 return;
2744
2745 unlock_ret:
2746 spin_unlock_irq(&ic->endio_wait.lock);
2747
2748 recalc_write_super(ic);
2749 }
2750
2751 static void bitmap_block_work(struct work_struct *w)
2752 {
2753 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2754 struct dm_integrity_c *ic = bbs->ic;
2755 struct bio *bio;
2756 struct bio_list bio_queue;
2757 struct bio_list waiting;
2758
2759 bio_list_init(&waiting);
2760
2761 spin_lock(&bbs->bio_queue_lock);
2762 bio_queue = bbs->bio_queue;
2763 bio_list_init(&bbs->bio_queue);
2764 spin_unlock(&bbs->bio_queue_lock);
2765
2766 while ((bio = bio_list_pop(&bio_queue))) {
2767 struct dm_integrity_io *dio;
2768
2769 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2770
2771 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2772 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2773 remove_range(ic, &dio->range);
2774 INIT_WORK(&dio->work, integrity_bio_wait);
2775 queue_work(ic->offload_wq, &dio->work);
2776 } else {
2777 block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2778 dio->range.n_sectors, BITMAP_OP_SET);
2779 bio_list_add(&waiting, bio);
2780 }
2781 }
2782
2783 if (bio_list_empty(&waiting))
2784 return;
2785
2786 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2787 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2788 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2789
2790 while ((bio = bio_list_pop(&waiting))) {
2791 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2792
2793 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2794 dio->range.n_sectors, BITMAP_OP_SET);
2795
2796 remove_range(ic, &dio->range);
2797 INIT_WORK(&dio->work, integrity_bio_wait);
2798 queue_work(ic->offload_wq, &dio->work);
2799 }
2800
2801 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2802 }
2803
2804 static void bitmap_flush_work(struct work_struct *work)
2805 {
2806 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2807 struct dm_integrity_range range;
2808 unsigned long limit;
2809 struct bio *bio;
2810
2811 dm_integrity_flush_buffers(ic, false);
2812
2813 range.logical_sector = 0;
2814 range.n_sectors = ic->provided_data_sectors;
2815
2816 spin_lock_irq(&ic->endio_wait.lock);
2817 add_new_range_and_wait(ic, &range);
2818 spin_unlock_irq(&ic->endio_wait.lock);
2819
2820 dm_integrity_flush_buffers(ic, true);
2821
2822 limit = ic->provided_data_sectors;
2823 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2824 limit = le64_to_cpu(ic->sb->recalc_sector)
2825 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2826 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2827 }
2828 /*DEBUG_print("zeroing journal\n");*/
2829 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2830 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2831
2832 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2833 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2834
2835 spin_lock_irq(&ic->endio_wait.lock);
2836 remove_range_unlocked(ic, &range);
2837 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2838 bio_endio(bio);
2839 spin_unlock_irq(&ic->endio_wait.lock);
2840 spin_lock_irq(&ic->endio_wait.lock);
2841 }
2842 spin_unlock_irq(&ic->endio_wait.lock);
2843 }
2844
2845
2846 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2847 unsigned n_sections, unsigned char commit_seq)
2848 {
2849 unsigned i, j, n;
2850
2851 if (!n_sections)
2852 return;
2853
2854 for (n = 0; n < n_sections; n++) {
2855 i = start_section + n;
2856 wraparound_section(ic, &i);
2857 for (j = 0; j < ic->journal_section_sectors; j++) {
2858 struct journal_sector *js = access_journal(ic, i, j);
2859 memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2860 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2861 }
2862 for (j = 0; j < ic->journal_section_entries; j++) {
2863 struct journal_entry *je = access_journal_entry(ic, i, j);
2864 journal_entry_set_unused(je);
2865 }
2866 }
2867
2868 write_journal(ic, start_section, n_sections);
2869 }
2870
2871 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2872 {
2873 unsigned char k;
2874 for (k = 0; k < N_COMMIT_IDS; k++) {
2875 if (dm_integrity_commit_id(ic, i, j, k) == id)
2876 return k;
2877 }
2878 dm_integrity_io_error(ic, "journal commit id", -EIO);
2879 return -EIO;
2880 }
2881
2882 static void replay_journal(struct dm_integrity_c *ic)
2883 {
2884 unsigned i, j;
2885 bool used_commit_ids[N_COMMIT_IDS];
2886 unsigned max_commit_id_sections[N_COMMIT_IDS];
2887 unsigned write_start, write_sections;
2888 unsigned continue_section;
2889 bool journal_empty;
2890 unsigned char unused, last_used, want_commit_seq;
2891
2892 if (ic->mode == 'R')
2893 return;
2894
2895 if (ic->journal_uptodate)
2896 return;
2897
2898 last_used = 0;
2899 write_start = 0;
2900
2901 if (!ic->just_formatted) {
2902 DEBUG_print("reading journal\n");
2903 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2904 if (ic->journal_io)
2905 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2906 if (ic->journal_io) {
2907 struct journal_completion crypt_comp;
2908 crypt_comp.ic = ic;
2909 init_completion(&crypt_comp.comp);
2910 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2911 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2912 wait_for_completion(&crypt_comp.comp);
2913 }
2914 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2915 }
2916
2917 if (dm_integrity_failed(ic))
2918 goto clear_journal;
2919
2920 journal_empty = true;
2921 memset(used_commit_ids, 0, sizeof used_commit_ids);
2922 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2923 for (i = 0; i < ic->journal_sections; i++) {
2924 for (j = 0; j < ic->journal_section_sectors; j++) {
2925 int k;
2926 struct journal_sector *js = access_journal(ic, i, j);
2927 k = find_commit_seq(ic, i, j, js->commit_id);
2928 if (k < 0)
2929 goto clear_journal;
2930 used_commit_ids[k] = true;
2931 max_commit_id_sections[k] = i;
2932 }
2933 if (journal_empty) {
2934 for (j = 0; j < ic->journal_section_entries; j++) {
2935 struct journal_entry *je = access_journal_entry(ic, i, j);
2936 if (!journal_entry_is_unused(je)) {
2937 journal_empty = false;
2938 break;
2939 }
2940 }
2941 }
2942 }
2943
2944 if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2945 unused = N_COMMIT_IDS - 1;
2946 while (unused && !used_commit_ids[unused - 1])
2947 unused--;
2948 } else {
2949 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2950 if (!used_commit_ids[unused])
2951 break;
2952 if (unused == N_COMMIT_IDS) {
2953 dm_integrity_io_error(ic, "journal commit ids", -EIO);
2954 goto clear_journal;
2955 }
2956 }
2957 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2958 unused, used_commit_ids[0], used_commit_ids[1],
2959 used_commit_ids[2], used_commit_ids[3]);
2960
2961 last_used = prev_commit_seq(unused);
2962 want_commit_seq = prev_commit_seq(last_used);
2963
2964 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2965 journal_empty = true;
2966
2967 write_start = max_commit_id_sections[last_used] + 1;
2968 if (unlikely(write_start >= ic->journal_sections))
2969 want_commit_seq = next_commit_seq(want_commit_seq);
2970 wraparound_section(ic, &write_start);
2971
2972 i = write_start;
2973 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2974 for (j = 0; j < ic->journal_section_sectors; j++) {
2975 struct journal_sector *js = access_journal(ic, i, j);
2976
2977 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2978 /*
2979 * This could be caused by crash during writing.
2980 * We won't replay the inconsistent part of the
2981 * journal.
2982 */
2983 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2984 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2985 goto brk;
2986 }
2987 }
2988 i++;
2989 if (unlikely(i >= ic->journal_sections))
2990 want_commit_seq = next_commit_seq(want_commit_seq);
2991 wraparound_section(ic, &i);
2992 }
2993 brk:
2994
2995 if (!journal_empty) {
2996 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2997 write_sections, write_start, want_commit_seq);
2998 do_journal_write(ic, write_start, write_sections, true);
2999 }
3000
3001 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3002 continue_section = write_start;
3003 ic->commit_seq = want_commit_seq;
3004 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3005 } else {
3006 unsigned s;
3007 unsigned char erase_seq;
3008 clear_journal:
3009 DEBUG_print("clearing journal\n");
3010
3011 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3012 s = write_start;
3013 init_journal(ic, s, 1, erase_seq);
3014 s++;
3015 wraparound_section(ic, &s);
3016 if (ic->journal_sections >= 2) {
3017 init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3018 s += ic->journal_sections - 2;
3019 wraparound_section(ic, &s);
3020 init_journal(ic, s, 1, erase_seq);
3021 }
3022
3023 continue_section = 0;
3024 ic->commit_seq = next_commit_seq(erase_seq);
3025 }
3026
3027 ic->committed_section = continue_section;
3028 ic->n_committed_sections = 0;
3029
3030 ic->uncommitted_section = continue_section;
3031 ic->n_uncommitted_sections = 0;
3032
3033 ic->free_section = continue_section;
3034 ic->free_section_entry = 0;
3035 ic->free_sectors = ic->journal_entries;
3036
3037 ic->journal_tree_root = RB_ROOT;
3038 for (i = 0; i < ic->journal_entries; i++)
3039 init_journal_node(&ic->journal_tree[i]);
3040 }
3041
3042 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3043 {
3044 DEBUG_print("dm_integrity_enter_synchronous_mode\n");
3045
3046 if (ic->mode == 'B') {
3047 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3048 ic->synchronous_mode = 1;
3049
3050 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3051 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3052 flush_workqueue(ic->commit_wq);
3053 }
3054 }
3055
3056 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3057 {
3058 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3059
3060 DEBUG_print("dm_integrity_reboot\n");
3061
3062 dm_integrity_enter_synchronous_mode(ic);
3063
3064 return NOTIFY_DONE;
3065 }
3066
3067 static void dm_integrity_postsuspend(struct dm_target *ti)
3068 {
3069 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3070 int r;
3071
3072 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3073
3074 del_timer_sync(&ic->autocommit_timer);
3075
3076 if (ic->recalc_wq)
3077 drain_workqueue(ic->recalc_wq);
3078
3079 if (ic->mode == 'B')
3080 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3081
3082 queue_work(ic->commit_wq, &ic->commit_work);
3083 drain_workqueue(ic->commit_wq);
3084
3085 if (ic->mode == 'J') {
3086 if (ic->meta_dev)
3087 queue_work(ic->writer_wq, &ic->writer_work);
3088 drain_workqueue(ic->writer_wq);
3089 dm_integrity_flush_buffers(ic, true);
3090 }
3091
3092 if (ic->mode == 'B') {
3093 dm_integrity_flush_buffers(ic, true);
3094 #if 1
3095 /* set to 0 to test bitmap replay code */
3096 init_journal(ic, 0, ic->journal_sections, 0);
3097 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3098 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3099 if (unlikely(r))
3100 dm_integrity_io_error(ic, "writing superblock", r);
3101 #endif
3102 }
3103
3104 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3105
3106 ic->journal_uptodate = true;
3107 }
3108
3109 static void dm_integrity_resume(struct dm_target *ti)
3110 {
3111 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3112 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3113 int r;
3114
3115 DEBUG_print("resume\n");
3116
3117 if (ic->provided_data_sectors != old_provided_data_sectors) {
3118 if (ic->provided_data_sectors > old_provided_data_sectors &&
3119 ic->mode == 'B' &&
3120 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3121 rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3122 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3123 block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3124 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3125 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3126 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3127 }
3128
3129 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3130 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3131 if (unlikely(r))
3132 dm_integrity_io_error(ic, "writing superblock", r);
3133 }
3134
3135 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3136 DEBUG_print("resume dirty_bitmap\n");
3137 rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3138 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3139 if (ic->mode == 'B') {
3140 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3141 !ic->reset_recalculate_flag) {
3142 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3143 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3144 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3145 BITMAP_OP_TEST_ALL_CLEAR)) {
3146 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3147 ic->sb->recalc_sector = cpu_to_le64(0);
3148 }
3149 } else {
3150 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3151 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3152 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3153 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3154 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3155 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3156 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3157 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3158 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3159 ic->sb->recalc_sector = cpu_to_le64(0);
3160 }
3161 } else {
3162 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3163 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3164 ic->reset_recalculate_flag) {
3165 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3166 ic->sb->recalc_sector = cpu_to_le64(0);
3167 }
3168 init_journal(ic, 0, ic->journal_sections, 0);
3169 replay_journal(ic);
3170 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3171 }
3172 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3173 if (unlikely(r))
3174 dm_integrity_io_error(ic, "writing superblock", r);
3175 } else {
3176 replay_journal(ic);
3177 if (ic->reset_recalculate_flag) {
3178 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3179 ic->sb->recalc_sector = cpu_to_le64(0);
3180 }
3181 if (ic->mode == 'B') {
3182 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3183 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3184 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3185 if (unlikely(r))
3186 dm_integrity_io_error(ic, "writing superblock", r);
3187
3188 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3189 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3190 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3191 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3192 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3193 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3194 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3195 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3196 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3197 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3198 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3199 }
3200 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3201 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3202 }
3203 }
3204
3205 DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3206 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3207 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3208 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3209 if (recalc_pos < ic->provided_data_sectors) {
3210 queue_work(ic->recalc_wq, &ic->recalc_work);
3211 } else if (recalc_pos > ic->provided_data_sectors) {
3212 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3213 recalc_write_super(ic);
3214 }
3215 }
3216
3217 ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3218 ic->reboot_notifier.next = NULL;
3219 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */
3220 WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3221
3222 #if 0
3223 /* set to 1 to stress test synchronous mode */
3224 dm_integrity_enter_synchronous_mode(ic);
3225 #endif
3226 }
3227
3228 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3229 unsigned status_flags, char *result, unsigned maxlen)
3230 {
3231 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3232 unsigned arg_count;
3233 size_t sz = 0;
3234
3235 switch (type) {
3236 case STATUSTYPE_INFO:
3237 DMEMIT("%llu %llu",
3238 (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3239 ic->provided_data_sectors);
3240 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3241 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3242 else
3243 DMEMIT(" -");
3244 break;
3245
3246 case STATUSTYPE_TABLE: {
3247 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3248 watermark_percentage += ic->journal_entries / 2;
3249 do_div(watermark_percentage, ic->journal_entries);
3250 arg_count = 3;
3251 arg_count += !!ic->meta_dev;
3252 arg_count += ic->sectors_per_block != 1;
3253 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3254 arg_count += ic->reset_recalculate_flag;
3255 arg_count += ic->discard;
3256 arg_count += ic->mode == 'J';
3257 arg_count += ic->mode == 'J';
3258 arg_count += ic->mode == 'B';
3259 arg_count += ic->mode == 'B';
3260 arg_count += !!ic->internal_hash_alg.alg_string;
3261 arg_count += !!ic->journal_crypt_alg.alg_string;
3262 arg_count += !!ic->journal_mac_alg.alg_string;
3263 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3264 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3265 arg_count += ic->legacy_recalculate;
3266 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3267 ic->tag_size, ic->mode, arg_count);
3268 if (ic->meta_dev)
3269 DMEMIT(" meta_device:%s", ic->meta_dev->name);
3270 if (ic->sectors_per_block != 1)
3271 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3272 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3273 DMEMIT(" recalculate");
3274 if (ic->reset_recalculate_flag)
3275 DMEMIT(" reset_recalculate");
3276 if (ic->discard)
3277 DMEMIT(" allow_discards");
3278 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3279 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3280 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3281 if (ic->mode == 'J') {
3282 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
3283 DMEMIT(" commit_time:%u", ic->autocommit_msec);
3284 }
3285 if (ic->mode == 'B') {
3286 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3287 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3288 }
3289 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3290 DMEMIT(" fix_padding");
3291 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3292 DMEMIT(" fix_hmac");
3293 if (ic->legacy_recalculate)
3294 DMEMIT(" legacy_recalculate");
3295
3296 #define EMIT_ALG(a, n) \
3297 do { \
3298 if (ic->a.alg_string) { \
3299 DMEMIT(" %s:%s", n, ic->a.alg_string); \
3300 if (ic->a.key_string) \
3301 DMEMIT(":%s", ic->a.key_string);\
3302 } \
3303 } while (0)
3304 EMIT_ALG(internal_hash_alg, "internal_hash");
3305 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3306 EMIT_ALG(journal_mac_alg, "journal_mac");
3307 break;
3308 }
3309 case STATUSTYPE_IMA:
3310 DMEMIT_TARGET_NAME_VERSION(ti->type);
3311 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3312 ic->dev->name, ic->start, ic->tag_size, ic->mode);
3313
3314 if (ic->meta_dev)
3315 DMEMIT(",meta_device=%s", ic->meta_dev->name);
3316 if (ic->sectors_per_block != 1)
3317 DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3318
3319 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3320 'y' : 'n');
3321 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3322 DMEMIT(",fix_padding=%c",
3323 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3324 DMEMIT(",fix_hmac=%c",
3325 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3326 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3327
3328 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3329 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3330 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3331 DMEMIT(";");
3332 break;
3333 }
3334 }
3335
3336 static int dm_integrity_iterate_devices(struct dm_target *ti,
3337 iterate_devices_callout_fn fn, void *data)
3338 {
3339 struct dm_integrity_c *ic = ti->private;
3340
3341 if (!ic->meta_dev)
3342 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3343 else
3344 return fn(ti, ic->dev, 0, ti->len, data);
3345 }
3346
3347 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3348 {
3349 struct dm_integrity_c *ic = ti->private;
3350
3351 if (ic->sectors_per_block > 1) {
3352 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3353 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3354 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3355 }
3356 }
3357
3358 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3359 {
3360 unsigned sector_space = JOURNAL_SECTOR_DATA;
3361
3362 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3363 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3364 JOURNAL_ENTRY_ROUNDUP);
3365
3366 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3367 sector_space -= JOURNAL_MAC_PER_SECTOR;
3368 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3369 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3370 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3371 ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3372 }
3373
3374 static int calculate_device_limits(struct dm_integrity_c *ic)
3375 {
3376 __u64 initial_sectors;
3377
3378 calculate_journal_section_size(ic);
3379 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3380 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3381 return -EINVAL;
3382 ic->initial_sectors = initial_sectors;
3383
3384 if (!ic->meta_dev) {
3385 sector_t last_sector, last_area, last_offset;
3386
3387 /* we have to maintain excessive padding for compatibility with existing volumes */
3388 __u64 metadata_run_padding =
3389 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3390 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3391 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3392
3393 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3394 metadata_run_padding) >> SECTOR_SHIFT;
3395 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3396 ic->log2_metadata_run = __ffs(ic->metadata_run);
3397 else
3398 ic->log2_metadata_run = -1;
3399
3400 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3401 last_sector = get_data_sector(ic, last_area, last_offset);
3402 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3403 return -EINVAL;
3404 } else {
3405 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3406 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3407 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3408 meta_size <<= ic->log2_buffer_sectors;
3409 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3410 ic->initial_sectors + meta_size > ic->meta_device_sectors)
3411 return -EINVAL;
3412 ic->metadata_run = 1;
3413 ic->log2_metadata_run = 0;
3414 }
3415
3416 return 0;
3417 }
3418
3419 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3420 {
3421 if (!ic->meta_dev) {
3422 int test_bit;
3423 ic->provided_data_sectors = 0;
3424 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3425 __u64 prev_data_sectors = ic->provided_data_sectors;
3426
3427 ic->provided_data_sectors |= (sector_t)1 << test_bit;
3428 if (calculate_device_limits(ic))
3429 ic->provided_data_sectors = prev_data_sectors;
3430 }
3431 } else {
3432 ic->provided_data_sectors = ic->data_device_sectors;
3433 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3434 }
3435 }
3436
3437 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3438 {
3439 unsigned journal_sections;
3440 int test_bit;
3441
3442 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3443 memcpy(ic->sb->magic, SB_MAGIC, 8);
3444 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3445 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3446 if (ic->journal_mac_alg.alg_string)
3447 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3448
3449 calculate_journal_section_size(ic);
3450 journal_sections = journal_sectors / ic->journal_section_sectors;
3451 if (!journal_sections)
3452 journal_sections = 1;
3453
3454 if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3455 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3456 get_random_bytes(ic->sb->salt, SALT_SIZE);
3457 }
3458
3459 if (!ic->meta_dev) {
3460 if (ic->fix_padding)
3461 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3462 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3463 if (!interleave_sectors)
3464 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3465 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3466 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3467 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3468
3469 get_provided_data_sectors(ic);
3470 if (!ic->provided_data_sectors)
3471 return -EINVAL;
3472 } else {
3473 ic->sb->log2_interleave_sectors = 0;
3474
3475 get_provided_data_sectors(ic);
3476 if (!ic->provided_data_sectors)
3477 return -EINVAL;
3478
3479 try_smaller_buffer:
3480 ic->sb->journal_sections = cpu_to_le32(0);
3481 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3482 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3483 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3484 if (test_journal_sections > journal_sections)
3485 continue;
3486 ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3487 if (calculate_device_limits(ic))
3488 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3489
3490 }
3491 if (!le32_to_cpu(ic->sb->journal_sections)) {
3492 if (ic->log2_buffer_sectors > 3) {
3493 ic->log2_buffer_sectors--;
3494 goto try_smaller_buffer;
3495 }
3496 return -EINVAL;
3497 }
3498 }
3499
3500 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3501
3502 sb_set_version(ic);
3503
3504 return 0;
3505 }
3506
3507 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3508 {
3509 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3510 struct blk_integrity bi;
3511
3512 memset(&bi, 0, sizeof(bi));
3513 bi.profile = &dm_integrity_profile;
3514 bi.tuple_size = ic->tag_size;
3515 bi.tag_size = bi.tuple_size;
3516 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3517
3518 blk_integrity_register(disk, &bi);
3519 blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3520 }
3521
3522 static void dm_integrity_free_page_list(struct page_list *pl)
3523 {
3524 unsigned i;
3525
3526 if (!pl)
3527 return;
3528 for (i = 0; pl[i].page; i++)
3529 __free_page(pl[i].page);
3530 kvfree(pl);
3531 }
3532
3533 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3534 {
3535 struct page_list *pl;
3536 unsigned i;
3537
3538 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3539 if (!pl)
3540 return NULL;
3541
3542 for (i = 0; i < n_pages; i++) {
3543 pl[i].page = alloc_page(GFP_KERNEL);
3544 if (!pl[i].page) {
3545 dm_integrity_free_page_list(pl);
3546 return NULL;
3547 }
3548 if (i)
3549 pl[i - 1].next = &pl[i];
3550 }
3551 pl[i].page = NULL;
3552 pl[i].next = NULL;
3553
3554 return pl;
3555 }
3556
3557 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3558 {
3559 unsigned i;
3560 for (i = 0; i < ic->journal_sections; i++)
3561 kvfree(sl[i]);
3562 kvfree(sl);
3563 }
3564
3565 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3566 struct page_list *pl)
3567 {
3568 struct scatterlist **sl;
3569 unsigned i;
3570
3571 sl = kvmalloc_array(ic->journal_sections,
3572 sizeof(struct scatterlist *),
3573 GFP_KERNEL | __GFP_ZERO);
3574 if (!sl)
3575 return NULL;
3576
3577 for (i = 0; i < ic->journal_sections; i++) {
3578 struct scatterlist *s;
3579 unsigned start_index, start_offset;
3580 unsigned end_index, end_offset;
3581 unsigned n_pages;
3582 unsigned idx;
3583
3584 page_list_location(ic, i, 0, &start_index, &start_offset);
3585 page_list_location(ic, i, ic->journal_section_sectors - 1,
3586 &end_index, &end_offset);
3587
3588 n_pages = (end_index - start_index + 1);
3589
3590 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3591 GFP_KERNEL);
3592 if (!s) {
3593 dm_integrity_free_journal_scatterlist(ic, sl);
3594 return NULL;
3595 }
3596
3597 sg_init_table(s, n_pages);
3598 for (idx = start_index; idx <= end_index; idx++) {
3599 char *va = lowmem_page_address(pl[idx].page);
3600 unsigned start = 0, end = PAGE_SIZE;
3601 if (idx == start_index)
3602 start = start_offset;
3603 if (idx == end_index)
3604 end = end_offset + (1 << SECTOR_SHIFT);
3605 sg_set_buf(&s[idx - start_index], va + start, end - start);
3606 }
3607
3608 sl[i] = s;
3609 }
3610
3611 return sl;
3612 }
3613
3614 static void free_alg(struct alg_spec *a)
3615 {
3616 kfree_sensitive(a->alg_string);
3617 kfree_sensitive(a->key);
3618 memset(a, 0, sizeof *a);
3619 }
3620
3621 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3622 {
3623 char *k;
3624
3625 free_alg(a);
3626
3627 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3628 if (!a->alg_string)
3629 goto nomem;
3630
3631 k = strchr(a->alg_string, ':');
3632 if (k) {
3633 *k = 0;
3634 a->key_string = k + 1;
3635 if (strlen(a->key_string) & 1)
3636 goto inval;
3637
3638 a->key_size = strlen(a->key_string) / 2;
3639 a->key = kmalloc(a->key_size, GFP_KERNEL);
3640 if (!a->key)
3641 goto nomem;
3642 if (hex2bin(a->key, a->key_string, a->key_size))
3643 goto inval;
3644 }
3645
3646 return 0;
3647 inval:
3648 *error = error_inval;
3649 return -EINVAL;
3650 nomem:
3651 *error = "Out of memory for an argument";
3652 return -ENOMEM;
3653 }
3654
3655 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3656 char *error_alg, char *error_key)
3657 {
3658 int r;
3659
3660 if (a->alg_string) {
3661 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3662 if (IS_ERR(*hash)) {
3663 *error = error_alg;
3664 r = PTR_ERR(*hash);
3665 *hash = NULL;
3666 return r;
3667 }
3668
3669 if (a->key) {
3670 r = crypto_shash_setkey(*hash, a->key, a->key_size);
3671 if (r) {
3672 *error = error_key;
3673 return r;
3674 }
3675 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3676 *error = error_key;
3677 return -ENOKEY;
3678 }
3679 }
3680
3681 return 0;
3682 }
3683
3684 static int create_journal(struct dm_integrity_c *ic, char **error)
3685 {
3686 int r = 0;
3687 unsigned i;
3688 __u64 journal_pages, journal_desc_size, journal_tree_size;
3689 unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3690 struct skcipher_request *req = NULL;
3691
3692 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3693 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3694 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3695 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3696
3697 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3698 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3699 journal_desc_size = journal_pages * sizeof(struct page_list);
3700 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3701 *error = "Journal doesn't fit into memory";
3702 r = -ENOMEM;
3703 goto bad;
3704 }
3705 ic->journal_pages = journal_pages;
3706
3707 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3708 if (!ic->journal) {
3709 *error = "Could not allocate memory for journal";
3710 r = -ENOMEM;
3711 goto bad;
3712 }
3713 if (ic->journal_crypt_alg.alg_string) {
3714 unsigned ivsize, blocksize;
3715 struct journal_completion comp;
3716
3717 comp.ic = ic;
3718 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3719 if (IS_ERR(ic->journal_crypt)) {
3720 *error = "Invalid journal cipher";
3721 r = PTR_ERR(ic->journal_crypt);
3722 ic->journal_crypt = NULL;
3723 goto bad;
3724 }
3725 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3726 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3727
3728 if (ic->journal_crypt_alg.key) {
3729 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3730 ic->journal_crypt_alg.key_size);
3731 if (r) {
3732 *error = "Error setting encryption key";
3733 goto bad;
3734 }
3735 }
3736 DEBUG_print("cipher %s, block size %u iv size %u\n",
3737 ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3738
3739 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3740 if (!ic->journal_io) {
3741 *error = "Could not allocate memory for journal io";
3742 r = -ENOMEM;
3743 goto bad;
3744 }
3745
3746 if (blocksize == 1) {
3747 struct scatterlist *sg;
3748
3749 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3750 if (!req) {
3751 *error = "Could not allocate crypt request";
3752 r = -ENOMEM;
3753 goto bad;
3754 }
3755
3756 crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3757 if (!crypt_iv) {
3758 *error = "Could not allocate iv";
3759 r = -ENOMEM;
3760 goto bad;
3761 }
3762
3763 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3764 if (!ic->journal_xor) {
3765 *error = "Could not allocate memory for journal xor";
3766 r = -ENOMEM;
3767 goto bad;
3768 }
3769
3770 sg = kvmalloc_array(ic->journal_pages + 1,
3771 sizeof(struct scatterlist),
3772 GFP_KERNEL);
3773 if (!sg) {
3774 *error = "Unable to allocate sg list";
3775 r = -ENOMEM;
3776 goto bad;
3777 }
3778 sg_init_table(sg, ic->journal_pages + 1);
3779 for (i = 0; i < ic->journal_pages; i++) {
3780 char *va = lowmem_page_address(ic->journal_xor[i].page);
3781 clear_page(va);
3782 sg_set_buf(&sg[i], va, PAGE_SIZE);
3783 }
3784 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3785
3786 skcipher_request_set_crypt(req, sg, sg,
3787 PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3788 init_completion(&comp.comp);
3789 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3790 if (do_crypt(true, req, &comp))
3791 wait_for_completion(&comp.comp);
3792 kvfree(sg);
3793 r = dm_integrity_failed(ic);
3794 if (r) {
3795 *error = "Unable to encrypt journal";
3796 goto bad;
3797 }
3798 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3799
3800 crypto_free_skcipher(ic->journal_crypt);
3801 ic->journal_crypt = NULL;
3802 } else {
3803 unsigned crypt_len = roundup(ivsize, blocksize);
3804
3805 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3806 if (!req) {
3807 *error = "Could not allocate crypt request";
3808 r = -ENOMEM;
3809 goto bad;
3810 }
3811
3812 crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3813 if (!crypt_iv) {
3814 *error = "Could not allocate iv";
3815 r = -ENOMEM;
3816 goto bad;
3817 }
3818
3819 crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3820 if (!crypt_data) {
3821 *error = "Unable to allocate crypt data";
3822 r = -ENOMEM;
3823 goto bad;
3824 }
3825
3826 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3827 if (!ic->journal_scatterlist) {
3828 *error = "Unable to allocate sg list";
3829 r = -ENOMEM;
3830 goto bad;
3831 }
3832 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3833 if (!ic->journal_io_scatterlist) {
3834 *error = "Unable to allocate sg list";
3835 r = -ENOMEM;
3836 goto bad;
3837 }
3838 ic->sk_requests = kvmalloc_array(ic->journal_sections,
3839 sizeof(struct skcipher_request *),
3840 GFP_KERNEL | __GFP_ZERO);
3841 if (!ic->sk_requests) {
3842 *error = "Unable to allocate sk requests";
3843 r = -ENOMEM;
3844 goto bad;
3845 }
3846 for (i = 0; i < ic->journal_sections; i++) {
3847 struct scatterlist sg;
3848 struct skcipher_request *section_req;
3849 __le32 section_le = cpu_to_le32(i);
3850
3851 memset(crypt_iv, 0x00, ivsize);
3852 memset(crypt_data, 0x00, crypt_len);
3853 memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3854
3855 sg_init_one(&sg, crypt_data, crypt_len);
3856 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3857 init_completion(&comp.comp);
3858 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3859 if (do_crypt(true, req, &comp))
3860 wait_for_completion(&comp.comp);
3861
3862 r = dm_integrity_failed(ic);
3863 if (r) {
3864 *error = "Unable to generate iv";
3865 goto bad;
3866 }
3867
3868 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3869 if (!section_req) {
3870 *error = "Unable to allocate crypt request";
3871 r = -ENOMEM;
3872 goto bad;
3873 }
3874 section_req->iv = kmalloc_array(ivsize, 2,
3875 GFP_KERNEL);
3876 if (!section_req->iv) {
3877 skcipher_request_free(section_req);
3878 *error = "Unable to allocate iv";
3879 r = -ENOMEM;
3880 goto bad;
3881 }
3882 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3883 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3884 ic->sk_requests[i] = section_req;
3885 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3886 }
3887 }
3888 }
3889
3890 for (i = 0; i < N_COMMIT_IDS; i++) {
3891 unsigned j;
3892 retest_commit_id:
3893 for (j = 0; j < i; j++) {
3894 if (ic->commit_ids[j] == ic->commit_ids[i]) {
3895 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3896 goto retest_commit_id;
3897 }
3898 }
3899 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3900 }
3901
3902 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3903 if (journal_tree_size > ULONG_MAX) {
3904 *error = "Journal doesn't fit into memory";
3905 r = -ENOMEM;
3906 goto bad;
3907 }
3908 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3909 if (!ic->journal_tree) {
3910 *error = "Could not allocate memory for journal tree";
3911 r = -ENOMEM;
3912 }
3913 bad:
3914 kfree(crypt_data);
3915 kfree(crypt_iv);
3916 skcipher_request_free(req);
3917
3918 return r;
3919 }
3920
3921 /*
3922 * Construct a integrity mapping
3923 *
3924 * Arguments:
3925 * device
3926 * offset from the start of the device
3927 * tag size
3928 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3929 * number of optional arguments
3930 * optional arguments:
3931 * journal_sectors
3932 * interleave_sectors
3933 * buffer_sectors
3934 * journal_watermark
3935 * commit_time
3936 * meta_device
3937 * block_size
3938 * sectors_per_bit
3939 * bitmap_flush_interval
3940 * internal_hash
3941 * journal_crypt
3942 * journal_mac
3943 * recalculate
3944 */
3945 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3946 {
3947 struct dm_integrity_c *ic;
3948 char dummy;
3949 int r;
3950 unsigned extra_args;
3951 struct dm_arg_set as;
3952 static const struct dm_arg _args[] = {
3953 {0, 18, "Invalid number of feature args"},
3954 };
3955 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3956 bool should_write_sb;
3957 __u64 threshold;
3958 unsigned long long start;
3959 __s8 log2_sectors_per_bitmap_bit = -1;
3960 __s8 log2_blocks_per_bitmap_bit;
3961 __u64 bits_in_journal;
3962 __u64 n_bitmap_bits;
3963
3964 #define DIRECT_ARGUMENTS 4
3965
3966 if (argc <= DIRECT_ARGUMENTS) {
3967 ti->error = "Invalid argument count";
3968 return -EINVAL;
3969 }
3970
3971 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3972 if (!ic) {
3973 ti->error = "Cannot allocate integrity context";
3974 return -ENOMEM;
3975 }
3976 ti->private = ic;
3977 ti->per_io_data_size = sizeof(struct dm_integrity_io);
3978 ic->ti = ti;
3979
3980 ic->in_progress = RB_ROOT;
3981 INIT_LIST_HEAD(&ic->wait_list);
3982 init_waitqueue_head(&ic->endio_wait);
3983 bio_list_init(&ic->flush_bio_list);
3984 init_waitqueue_head(&ic->copy_to_journal_wait);
3985 init_completion(&ic->crypto_backoff);
3986 atomic64_set(&ic->number_of_mismatches, 0);
3987 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
3988
3989 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3990 if (r) {
3991 ti->error = "Device lookup failed";
3992 goto bad;
3993 }
3994
3995 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3996 ti->error = "Invalid starting offset";
3997 r = -EINVAL;
3998 goto bad;
3999 }
4000 ic->start = start;
4001
4002 if (strcmp(argv[2], "-")) {
4003 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4004 ti->error = "Invalid tag size";
4005 r = -EINVAL;
4006 goto bad;
4007 }
4008 }
4009
4010 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4011 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4012 ic->mode = argv[3][0];
4013 } else {
4014 ti->error = "Invalid mode (expecting J, B, D, R)";
4015 r = -EINVAL;
4016 goto bad;
4017 }
4018
4019 journal_sectors = 0;
4020 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4021 buffer_sectors = DEFAULT_BUFFER_SECTORS;
4022 journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4023 sync_msec = DEFAULT_SYNC_MSEC;
4024 ic->sectors_per_block = 1;
4025
4026 as.argc = argc - DIRECT_ARGUMENTS;
4027 as.argv = argv + DIRECT_ARGUMENTS;
4028 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4029 if (r)
4030 goto bad;
4031
4032 while (extra_args--) {
4033 const char *opt_string;
4034 unsigned val;
4035 unsigned long long llval;
4036 opt_string = dm_shift_arg(&as);
4037 if (!opt_string) {
4038 r = -EINVAL;
4039 ti->error = "Not enough feature arguments";
4040 goto bad;
4041 }
4042 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4043 journal_sectors = val ? val : 1;
4044 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4045 interleave_sectors = val;
4046 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4047 buffer_sectors = val;
4048 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4049 journal_watermark = val;
4050 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4051 sync_msec = val;
4052 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4053 if (ic->meta_dev) {
4054 dm_put_device(ti, ic->meta_dev);
4055 ic->meta_dev = NULL;
4056 }
4057 r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4058 dm_table_get_mode(ti->table), &ic->meta_dev);
4059 if (r) {
4060 ti->error = "Device lookup failed";
4061 goto bad;
4062 }
4063 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4064 if (val < 1 << SECTOR_SHIFT ||
4065 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4066 (val & (val -1))) {
4067 r = -EINVAL;
4068 ti->error = "Invalid block_size argument";
4069 goto bad;
4070 }
4071 ic->sectors_per_block = val >> SECTOR_SHIFT;
4072 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4073 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4074 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4075 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4076 r = -EINVAL;
4077 ti->error = "Invalid bitmap_flush_interval argument";
4078 goto bad;
4079 }
4080 ic->bitmap_flush_interval = msecs_to_jiffies(val);
4081 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4082 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4083 "Invalid internal_hash argument");
4084 if (r)
4085 goto bad;
4086 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4087 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4088 "Invalid journal_crypt argument");
4089 if (r)
4090 goto bad;
4091 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4092 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4093 "Invalid journal_mac argument");
4094 if (r)
4095 goto bad;
4096 } else if (!strcmp(opt_string, "recalculate")) {
4097 ic->recalculate_flag = true;
4098 } else if (!strcmp(opt_string, "reset_recalculate")) {
4099 ic->recalculate_flag = true;
4100 ic->reset_recalculate_flag = true;
4101 } else if (!strcmp(opt_string, "allow_discards")) {
4102 ic->discard = true;
4103 } else if (!strcmp(opt_string, "fix_padding")) {
4104 ic->fix_padding = true;
4105 } else if (!strcmp(opt_string, "fix_hmac")) {
4106 ic->fix_hmac = true;
4107 } else if (!strcmp(opt_string, "legacy_recalculate")) {
4108 ic->legacy_recalculate = true;
4109 } else {
4110 r = -EINVAL;
4111 ti->error = "Invalid argument";
4112 goto bad;
4113 }
4114 }
4115
4116 ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
4117 if (!ic->meta_dev)
4118 ic->meta_device_sectors = ic->data_device_sectors;
4119 else
4120 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
4121
4122 if (!journal_sectors) {
4123 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4124 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4125 }
4126
4127 if (!buffer_sectors)
4128 buffer_sectors = 1;
4129 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4130
4131 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4132 "Invalid internal hash", "Error setting internal hash key");
4133 if (r)
4134 goto bad;
4135
4136 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4137 "Invalid journal mac", "Error setting journal mac key");
4138 if (r)
4139 goto bad;
4140
4141 if (!ic->tag_size) {
4142 if (!ic->internal_hash) {
4143 ti->error = "Unknown tag size";
4144 r = -EINVAL;
4145 goto bad;
4146 }
4147 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4148 }
4149 if (ic->tag_size > MAX_TAG_SIZE) {
4150 ti->error = "Too big tag size";
4151 r = -EINVAL;
4152 goto bad;
4153 }
4154 if (!(ic->tag_size & (ic->tag_size - 1)))
4155 ic->log2_tag_size = __ffs(ic->tag_size);
4156 else
4157 ic->log2_tag_size = -1;
4158
4159 if (ic->mode == 'B' && !ic->internal_hash) {
4160 r = -EINVAL;
4161 ti->error = "Bitmap mode can be only used with internal hash";
4162 goto bad;
4163 }
4164
4165 if (ic->discard && !ic->internal_hash) {
4166 r = -EINVAL;
4167 ti->error = "Discard can be only used with internal hash";
4168 goto bad;
4169 }
4170
4171 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4172 ic->autocommit_msec = sync_msec;
4173 timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4174
4175 ic->io = dm_io_client_create();
4176 if (IS_ERR(ic->io)) {
4177 r = PTR_ERR(ic->io);
4178 ic->io = NULL;
4179 ti->error = "Cannot allocate dm io";
4180 goto bad;
4181 }
4182
4183 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4184 if (r) {
4185 ti->error = "Cannot allocate mempool";
4186 goto bad;
4187 }
4188
4189 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4190 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4191 if (!ic->metadata_wq) {
4192 ti->error = "Cannot allocate workqueue";
4193 r = -ENOMEM;
4194 goto bad;
4195 }
4196
4197 /*
4198 * If this workqueue were percpu, it would cause bio reordering
4199 * and reduced performance.
4200 */
4201 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4202 if (!ic->wait_wq) {
4203 ti->error = "Cannot allocate workqueue";
4204 r = -ENOMEM;
4205 goto bad;
4206 }
4207
4208 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4209 METADATA_WORKQUEUE_MAX_ACTIVE);
4210 if (!ic->offload_wq) {
4211 ti->error = "Cannot allocate workqueue";
4212 r = -ENOMEM;
4213 goto bad;
4214 }
4215
4216 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4217 if (!ic->commit_wq) {
4218 ti->error = "Cannot allocate workqueue";
4219 r = -ENOMEM;
4220 goto bad;
4221 }
4222 INIT_WORK(&ic->commit_work, integrity_commit);
4223
4224 if (ic->mode == 'J' || ic->mode == 'B') {
4225 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4226 if (!ic->writer_wq) {
4227 ti->error = "Cannot allocate workqueue";
4228 r = -ENOMEM;
4229 goto bad;
4230 }
4231 INIT_WORK(&ic->writer_work, integrity_writer);
4232 }
4233
4234 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4235 if (!ic->sb) {
4236 r = -ENOMEM;
4237 ti->error = "Cannot allocate superblock area";
4238 goto bad;
4239 }
4240
4241 r = sync_rw_sb(ic, REQ_OP_READ, 0);
4242 if (r) {
4243 ti->error = "Error reading superblock";
4244 goto bad;
4245 }
4246 should_write_sb = false;
4247 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4248 if (ic->mode != 'R') {
4249 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4250 r = -EINVAL;
4251 ti->error = "The device is not initialized";
4252 goto bad;
4253 }
4254 }
4255
4256 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4257 if (r) {
4258 ti->error = "Could not initialize superblock";
4259 goto bad;
4260 }
4261 if (ic->mode != 'R')
4262 should_write_sb = true;
4263 }
4264
4265 if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4266 r = -EINVAL;
4267 ti->error = "Unknown version";
4268 goto bad;
4269 }
4270 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4271 r = -EINVAL;
4272 ti->error = "Tag size doesn't match the information in superblock";
4273 goto bad;
4274 }
4275 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4276 r = -EINVAL;
4277 ti->error = "Block size doesn't match the information in superblock";
4278 goto bad;
4279 }
4280 if (!le32_to_cpu(ic->sb->journal_sections)) {
4281 r = -EINVAL;
4282 ti->error = "Corrupted superblock, journal_sections is 0";
4283 goto bad;
4284 }
4285 /* make sure that ti->max_io_len doesn't overflow */
4286 if (!ic->meta_dev) {
4287 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4288 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4289 r = -EINVAL;
4290 ti->error = "Invalid interleave_sectors in the superblock";
4291 goto bad;
4292 }
4293 } else {
4294 if (ic->sb->log2_interleave_sectors) {
4295 r = -EINVAL;
4296 ti->error = "Invalid interleave_sectors in the superblock";
4297 goto bad;
4298 }
4299 }
4300 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4301 r = -EINVAL;
4302 ti->error = "Journal mac mismatch";
4303 goto bad;
4304 }
4305
4306 get_provided_data_sectors(ic);
4307 if (!ic->provided_data_sectors) {
4308 r = -EINVAL;
4309 ti->error = "The device is too small";
4310 goto bad;
4311 }
4312
4313 try_smaller_buffer:
4314 r = calculate_device_limits(ic);
4315 if (r) {
4316 if (ic->meta_dev) {
4317 if (ic->log2_buffer_sectors > 3) {
4318 ic->log2_buffer_sectors--;
4319 goto try_smaller_buffer;
4320 }
4321 }
4322 ti->error = "The device is too small";
4323 goto bad;
4324 }
4325
4326 if (log2_sectors_per_bitmap_bit < 0)
4327 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4328 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4329 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4330
4331 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4332 if (bits_in_journal > UINT_MAX)
4333 bits_in_journal = UINT_MAX;
4334 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4335 log2_sectors_per_bitmap_bit++;
4336
4337 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4338 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4339 if (should_write_sb) {
4340 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4341 }
4342 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4343 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4344 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4345
4346 if (!ic->meta_dev)
4347 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4348
4349 if (ti->len > ic->provided_data_sectors) {
4350 r = -EINVAL;
4351 ti->error = "Not enough provided sectors for requested mapping size";
4352 goto bad;
4353 }
4354
4355
4356 threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4357 threshold += 50;
4358 do_div(threshold, 100);
4359 ic->free_sectors_threshold = threshold;
4360
4361 DEBUG_print("initialized:\n");
4362 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4363 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
4364 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4365 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
4366 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
4367 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
4368 DEBUG_print(" journal_entries %u\n", ic->journal_entries);
4369 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4370 DEBUG_print(" data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT);
4371 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
4372 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
4373 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
4374 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4375 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4376 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal);
4377
4378 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4379 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4380 ic->sb->recalc_sector = cpu_to_le64(0);
4381 }
4382
4383 if (ic->internal_hash) {
4384 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4385 if (!ic->recalc_wq ) {
4386 ti->error = "Cannot allocate workqueue";
4387 r = -ENOMEM;
4388 goto bad;
4389 }
4390 INIT_WORK(&ic->recalc_work, integrity_recalc);
4391 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4392 if (!ic->recalc_buffer) {
4393 ti->error = "Cannot allocate buffer for recalculating";
4394 r = -ENOMEM;
4395 goto bad;
4396 }
4397 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
4398 ic->tag_size, GFP_KERNEL);
4399 if (!ic->recalc_tags) {
4400 ti->error = "Cannot allocate tags for recalculating";
4401 r = -ENOMEM;
4402 goto bad;
4403 }
4404 } else {
4405 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4406 ti->error = "Recalculate can only be specified with internal_hash";
4407 r = -EINVAL;
4408 goto bad;
4409 }
4410 }
4411
4412 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4413 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4414 dm_integrity_disable_recalculate(ic)) {
4415 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4416 r = -EOPNOTSUPP;
4417 goto bad;
4418 }
4419
4420 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4421 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4422 if (IS_ERR(ic->bufio)) {
4423 r = PTR_ERR(ic->bufio);
4424 ti->error = "Cannot initialize dm-bufio";
4425 ic->bufio = NULL;
4426 goto bad;
4427 }
4428 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4429
4430 if (ic->mode != 'R') {
4431 r = create_journal(ic, &ti->error);
4432 if (r)
4433 goto bad;
4434
4435 }
4436
4437 if (ic->mode == 'B') {
4438 unsigned i;
4439 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4440
4441 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4442 if (!ic->recalc_bitmap) {
4443 r = -ENOMEM;
4444 goto bad;
4445 }
4446 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4447 if (!ic->may_write_bitmap) {
4448 r = -ENOMEM;
4449 goto bad;
4450 }
4451 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4452 if (!ic->bbs) {
4453 r = -ENOMEM;
4454 goto bad;
4455 }
4456 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4457 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4458 struct bitmap_block_status *bbs = &ic->bbs[i];
4459 unsigned sector, pl_index, pl_offset;
4460
4461 INIT_WORK(&bbs->work, bitmap_block_work);
4462 bbs->ic = ic;
4463 bbs->idx = i;
4464 bio_list_init(&bbs->bio_queue);
4465 spin_lock_init(&bbs->bio_queue_lock);
4466
4467 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4468 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4469 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4470
4471 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4472 }
4473 }
4474
4475 if (should_write_sb) {
4476 int r;
4477
4478 init_journal(ic, 0, ic->journal_sections, 0);
4479 r = dm_integrity_failed(ic);
4480 if (unlikely(r)) {
4481 ti->error = "Error initializing journal";
4482 goto bad;
4483 }
4484 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4485 if (r) {
4486 ti->error = "Error initializing superblock";
4487 goto bad;
4488 }
4489 ic->just_formatted = true;
4490 }
4491
4492 if (!ic->meta_dev) {
4493 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4494 if (r)
4495 goto bad;
4496 }
4497 if (ic->mode == 'B') {
4498 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4499 if (!max_io_len)
4500 max_io_len = 1U << 31;
4501 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4502 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4503 r = dm_set_target_max_io_len(ti, max_io_len);
4504 if (r)
4505 goto bad;
4506 }
4507 }
4508
4509 if (!ic->internal_hash)
4510 dm_integrity_set(ti, ic);
4511
4512 ti->num_flush_bios = 1;
4513 ti->flush_supported = true;
4514 if (ic->discard)
4515 ti->num_discard_bios = 1;
4516
4517 return 0;
4518
4519 bad:
4520 dm_integrity_dtr(ti);
4521 return r;
4522 }
4523
4524 static void dm_integrity_dtr(struct dm_target *ti)
4525 {
4526 struct dm_integrity_c *ic = ti->private;
4527
4528 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4529 BUG_ON(!list_empty(&ic->wait_list));
4530
4531 if (ic->metadata_wq)
4532 destroy_workqueue(ic->metadata_wq);
4533 if (ic->wait_wq)
4534 destroy_workqueue(ic->wait_wq);
4535 if (ic->offload_wq)
4536 destroy_workqueue(ic->offload_wq);
4537 if (ic->commit_wq)
4538 destroy_workqueue(ic->commit_wq);
4539 if (ic->writer_wq)
4540 destroy_workqueue(ic->writer_wq);
4541 if (ic->recalc_wq)
4542 destroy_workqueue(ic->recalc_wq);
4543 vfree(ic->recalc_buffer);
4544 kvfree(ic->recalc_tags);
4545 kvfree(ic->bbs);
4546 if (ic->bufio)
4547 dm_bufio_client_destroy(ic->bufio);
4548 mempool_exit(&ic->journal_io_mempool);
4549 if (ic->io)
4550 dm_io_client_destroy(ic->io);
4551 if (ic->dev)
4552 dm_put_device(ti, ic->dev);
4553 if (ic->meta_dev)
4554 dm_put_device(ti, ic->meta_dev);
4555 dm_integrity_free_page_list(ic->journal);
4556 dm_integrity_free_page_list(ic->journal_io);
4557 dm_integrity_free_page_list(ic->journal_xor);
4558 dm_integrity_free_page_list(ic->recalc_bitmap);
4559 dm_integrity_free_page_list(ic->may_write_bitmap);
4560 if (ic->journal_scatterlist)
4561 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4562 if (ic->journal_io_scatterlist)
4563 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4564 if (ic->sk_requests) {
4565 unsigned i;
4566
4567 for (i = 0; i < ic->journal_sections; i++) {
4568 struct skcipher_request *req = ic->sk_requests[i];
4569 if (req) {
4570 kfree_sensitive(req->iv);
4571 skcipher_request_free(req);
4572 }
4573 }
4574 kvfree(ic->sk_requests);
4575 }
4576 kvfree(ic->journal_tree);
4577 if (ic->sb)
4578 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4579
4580 if (ic->internal_hash)
4581 crypto_free_shash(ic->internal_hash);
4582 free_alg(&ic->internal_hash_alg);
4583
4584 if (ic->journal_crypt)
4585 crypto_free_skcipher(ic->journal_crypt);
4586 free_alg(&ic->journal_crypt_alg);
4587
4588 if (ic->journal_mac)
4589 crypto_free_shash(ic->journal_mac);
4590 free_alg(&ic->journal_mac_alg);
4591
4592 kfree(ic);
4593 }
4594
4595 static struct target_type integrity_target = {
4596 .name = "integrity",
4597 .version = {1, 10, 0},
4598 .module = THIS_MODULE,
4599 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4600 .ctr = dm_integrity_ctr,
4601 .dtr = dm_integrity_dtr,
4602 .map = dm_integrity_map,
4603 .postsuspend = dm_integrity_postsuspend,
4604 .resume = dm_integrity_resume,
4605 .status = dm_integrity_status,
4606 .iterate_devices = dm_integrity_iterate_devices,
4607 .io_hints = dm_integrity_io_hints,
4608 };
4609
4610 static int __init dm_integrity_init(void)
4611 {
4612 int r;
4613
4614 journal_io_cache = kmem_cache_create("integrity_journal_io",
4615 sizeof(struct journal_io), 0, 0, NULL);
4616 if (!journal_io_cache) {
4617 DMERR("can't allocate journal io cache");
4618 return -ENOMEM;
4619 }
4620
4621 r = dm_register_target(&integrity_target);
4622
4623 if (r < 0)
4624 DMERR("register failed %d", r);
4625
4626 return r;
4627 }
4628
4629 static void __exit dm_integrity_exit(void)
4630 {
4631 dm_unregister_target(&integrity_target);
4632 kmem_cache_destroy(journal_io_cache);
4633 }
4634
4635 module_init(dm_integrity_init);
4636 module_exit(dm_integrity_exit);
4637
4638 MODULE_AUTHOR("Milan Broz");
4639 MODULE_AUTHOR("Mikulas Patocka");
4640 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4641 MODULE_LICENSE("GPL");