]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/dm-kcopyd.c
powerpc: sys_pkey_alloc() and sys_pkey_free() system calls
[mirror_ubuntu-bionic-kernel.git] / drivers / md / dm-kcopyd.c
1 /*
2 * Copyright (C) 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2006 Red Hat GmbH
4 *
5 * This file is released under the GPL.
6 *
7 * Kcopyd provides a simple interface for copying an area of one
8 * block-device to one or more other block-devices, with an asynchronous
9 * completion notification.
10 */
11
12 #include <linux/types.h>
13 #include <linux/atomic.h>
14 #include <linux/blkdev.h>
15 #include <linux/fs.h>
16 #include <linux/init.h>
17 #include <linux/list.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/workqueue.h>
24 #include <linux/mutex.h>
25 #include <linux/delay.h>
26 #include <linux/device-mapper.h>
27 #include <linux/dm-kcopyd.h>
28
29 #include "dm-core.h"
30
31 #define SUB_JOB_SIZE 128
32 #define SPLIT_COUNT 8
33 #define MIN_JOBS 8
34 #define RESERVE_PAGES (DIV_ROUND_UP(SUB_JOB_SIZE << SECTOR_SHIFT, PAGE_SIZE))
35
36 /*-----------------------------------------------------------------
37 * Each kcopyd client has its own little pool of preallocated
38 * pages for kcopyd io.
39 *---------------------------------------------------------------*/
40 struct dm_kcopyd_client {
41 struct page_list *pages;
42 unsigned nr_reserved_pages;
43 unsigned nr_free_pages;
44
45 struct dm_io_client *io_client;
46
47 wait_queue_head_t destroyq;
48 atomic_t nr_jobs;
49
50 mempool_t *job_pool;
51
52 struct workqueue_struct *kcopyd_wq;
53 struct work_struct kcopyd_work;
54
55 struct dm_kcopyd_throttle *throttle;
56
57 /*
58 * We maintain three lists of jobs:
59 *
60 * i) jobs waiting for pages
61 * ii) jobs that have pages, and are waiting for the io to be issued.
62 * iii) jobs that have completed.
63 *
64 * All three of these are protected by job_lock.
65 */
66 spinlock_t job_lock;
67 struct list_head complete_jobs;
68 struct list_head io_jobs;
69 struct list_head pages_jobs;
70 };
71
72 static struct page_list zero_page_list;
73
74 static DEFINE_SPINLOCK(throttle_spinlock);
75
76 /*
77 * IO/IDLE accounting slowly decays after (1 << ACCOUNT_INTERVAL_SHIFT) period.
78 * When total_period >= (1 << ACCOUNT_INTERVAL_SHIFT) the counters are divided
79 * by 2.
80 */
81 #define ACCOUNT_INTERVAL_SHIFT SHIFT_HZ
82
83 /*
84 * Sleep this number of milliseconds.
85 *
86 * The value was decided experimentally.
87 * Smaller values seem to cause an increased copy rate above the limit.
88 * The reason for this is unknown but possibly due to jiffies rounding errors
89 * or read/write cache inside the disk.
90 */
91 #define SLEEP_MSEC 100
92
93 /*
94 * Maximum number of sleep events. There is a theoretical livelock if more
95 * kcopyd clients do work simultaneously which this limit avoids.
96 */
97 #define MAX_SLEEPS 10
98
99 static void io_job_start(struct dm_kcopyd_throttle *t)
100 {
101 unsigned throttle, now, difference;
102 int slept = 0, skew;
103
104 if (unlikely(!t))
105 return;
106
107 try_again:
108 spin_lock_irq(&throttle_spinlock);
109
110 throttle = READ_ONCE(t->throttle);
111
112 if (likely(throttle >= 100))
113 goto skip_limit;
114
115 now = jiffies;
116 difference = now - t->last_jiffies;
117 t->last_jiffies = now;
118 if (t->num_io_jobs)
119 t->io_period += difference;
120 t->total_period += difference;
121
122 /*
123 * Maintain sane values if we got a temporary overflow.
124 */
125 if (unlikely(t->io_period > t->total_period))
126 t->io_period = t->total_period;
127
128 if (unlikely(t->total_period >= (1 << ACCOUNT_INTERVAL_SHIFT))) {
129 int shift = fls(t->total_period >> ACCOUNT_INTERVAL_SHIFT);
130 t->total_period >>= shift;
131 t->io_period >>= shift;
132 }
133
134 skew = t->io_period - throttle * t->total_period / 100;
135
136 if (unlikely(skew > 0) && slept < MAX_SLEEPS) {
137 slept++;
138 spin_unlock_irq(&throttle_spinlock);
139 msleep(SLEEP_MSEC);
140 goto try_again;
141 }
142
143 skip_limit:
144 t->num_io_jobs++;
145
146 spin_unlock_irq(&throttle_spinlock);
147 }
148
149 static void io_job_finish(struct dm_kcopyd_throttle *t)
150 {
151 unsigned long flags;
152
153 if (unlikely(!t))
154 return;
155
156 spin_lock_irqsave(&throttle_spinlock, flags);
157
158 t->num_io_jobs--;
159
160 if (likely(READ_ONCE(t->throttle) >= 100))
161 goto skip_limit;
162
163 if (!t->num_io_jobs) {
164 unsigned now, difference;
165
166 now = jiffies;
167 difference = now - t->last_jiffies;
168 t->last_jiffies = now;
169
170 t->io_period += difference;
171 t->total_period += difference;
172
173 /*
174 * Maintain sane values if we got a temporary overflow.
175 */
176 if (unlikely(t->io_period > t->total_period))
177 t->io_period = t->total_period;
178 }
179
180 skip_limit:
181 spin_unlock_irqrestore(&throttle_spinlock, flags);
182 }
183
184
185 static void wake(struct dm_kcopyd_client *kc)
186 {
187 queue_work(kc->kcopyd_wq, &kc->kcopyd_work);
188 }
189
190 /*
191 * Obtain one page for the use of kcopyd.
192 */
193 static struct page_list *alloc_pl(gfp_t gfp)
194 {
195 struct page_list *pl;
196
197 pl = kmalloc(sizeof(*pl), gfp);
198 if (!pl)
199 return NULL;
200
201 pl->page = alloc_page(gfp);
202 if (!pl->page) {
203 kfree(pl);
204 return NULL;
205 }
206
207 return pl;
208 }
209
210 static void free_pl(struct page_list *pl)
211 {
212 __free_page(pl->page);
213 kfree(pl);
214 }
215
216 /*
217 * Add the provided pages to a client's free page list, releasing
218 * back to the system any beyond the reserved_pages limit.
219 */
220 static void kcopyd_put_pages(struct dm_kcopyd_client *kc, struct page_list *pl)
221 {
222 struct page_list *next;
223
224 do {
225 next = pl->next;
226
227 if (kc->nr_free_pages >= kc->nr_reserved_pages)
228 free_pl(pl);
229 else {
230 pl->next = kc->pages;
231 kc->pages = pl;
232 kc->nr_free_pages++;
233 }
234
235 pl = next;
236 } while (pl);
237 }
238
239 static int kcopyd_get_pages(struct dm_kcopyd_client *kc,
240 unsigned int nr, struct page_list **pages)
241 {
242 struct page_list *pl;
243
244 *pages = NULL;
245
246 do {
247 pl = alloc_pl(__GFP_NOWARN | __GFP_NORETRY | __GFP_KSWAPD_RECLAIM);
248 if (unlikely(!pl)) {
249 /* Use reserved pages */
250 pl = kc->pages;
251 if (unlikely(!pl))
252 goto out_of_memory;
253 kc->pages = pl->next;
254 kc->nr_free_pages--;
255 }
256 pl->next = *pages;
257 *pages = pl;
258 } while (--nr);
259
260 return 0;
261
262 out_of_memory:
263 if (*pages)
264 kcopyd_put_pages(kc, *pages);
265 return -ENOMEM;
266 }
267
268 /*
269 * These three functions resize the page pool.
270 */
271 static void drop_pages(struct page_list *pl)
272 {
273 struct page_list *next;
274
275 while (pl) {
276 next = pl->next;
277 free_pl(pl);
278 pl = next;
279 }
280 }
281
282 /*
283 * Allocate and reserve nr_pages for the use of a specific client.
284 */
285 static int client_reserve_pages(struct dm_kcopyd_client *kc, unsigned nr_pages)
286 {
287 unsigned i;
288 struct page_list *pl = NULL, *next;
289
290 for (i = 0; i < nr_pages; i++) {
291 next = alloc_pl(GFP_KERNEL);
292 if (!next) {
293 if (pl)
294 drop_pages(pl);
295 return -ENOMEM;
296 }
297 next->next = pl;
298 pl = next;
299 }
300
301 kc->nr_reserved_pages += nr_pages;
302 kcopyd_put_pages(kc, pl);
303
304 return 0;
305 }
306
307 static void client_free_pages(struct dm_kcopyd_client *kc)
308 {
309 BUG_ON(kc->nr_free_pages != kc->nr_reserved_pages);
310 drop_pages(kc->pages);
311 kc->pages = NULL;
312 kc->nr_free_pages = kc->nr_reserved_pages = 0;
313 }
314
315 /*-----------------------------------------------------------------
316 * kcopyd_jobs need to be allocated by the *clients* of kcopyd,
317 * for this reason we use a mempool to prevent the client from
318 * ever having to do io (which could cause a deadlock).
319 *---------------------------------------------------------------*/
320 struct kcopyd_job {
321 struct dm_kcopyd_client *kc;
322 struct list_head list;
323 unsigned long flags;
324
325 /*
326 * Error state of the job.
327 */
328 int read_err;
329 unsigned long write_err;
330
331 /*
332 * Either READ or WRITE
333 */
334 int rw;
335 struct dm_io_region source;
336
337 /*
338 * The destinations for the transfer.
339 */
340 unsigned int num_dests;
341 struct dm_io_region dests[DM_KCOPYD_MAX_REGIONS];
342
343 struct page_list *pages;
344
345 /*
346 * Set this to ensure you are notified when the job has
347 * completed. 'context' is for callback to use.
348 */
349 dm_kcopyd_notify_fn fn;
350 void *context;
351
352 /*
353 * These fields are only used if the job has been split
354 * into more manageable parts.
355 */
356 struct mutex lock;
357 atomic_t sub_jobs;
358 sector_t progress;
359 sector_t write_offset;
360
361 struct kcopyd_job *master_job;
362 };
363
364 static struct kmem_cache *_job_cache;
365
366 int __init dm_kcopyd_init(void)
367 {
368 _job_cache = kmem_cache_create("kcopyd_job",
369 sizeof(struct kcopyd_job) * (SPLIT_COUNT + 1),
370 __alignof__(struct kcopyd_job), 0, NULL);
371 if (!_job_cache)
372 return -ENOMEM;
373
374 zero_page_list.next = &zero_page_list;
375 zero_page_list.page = ZERO_PAGE(0);
376
377 return 0;
378 }
379
380 void dm_kcopyd_exit(void)
381 {
382 kmem_cache_destroy(_job_cache);
383 _job_cache = NULL;
384 }
385
386 /*
387 * Functions to push and pop a job onto the head of a given job
388 * list.
389 */
390 static struct kcopyd_job *pop_io_job(struct list_head *jobs,
391 struct dm_kcopyd_client *kc)
392 {
393 struct kcopyd_job *job;
394
395 /*
396 * For I/O jobs, pop any read, any write without sequential write
397 * constraint and sequential writes that are at the right position.
398 */
399 list_for_each_entry(job, jobs, list) {
400 if (job->rw == READ || !test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags)) {
401 list_del(&job->list);
402 return job;
403 }
404
405 if (job->write_offset == job->master_job->write_offset) {
406 job->master_job->write_offset += job->source.count;
407 list_del(&job->list);
408 return job;
409 }
410 }
411
412 return NULL;
413 }
414
415 static struct kcopyd_job *pop(struct list_head *jobs,
416 struct dm_kcopyd_client *kc)
417 {
418 struct kcopyd_job *job = NULL;
419 unsigned long flags;
420
421 spin_lock_irqsave(&kc->job_lock, flags);
422
423 if (!list_empty(jobs)) {
424 if (jobs == &kc->io_jobs)
425 job = pop_io_job(jobs, kc);
426 else {
427 job = list_entry(jobs->next, struct kcopyd_job, list);
428 list_del(&job->list);
429 }
430 }
431 spin_unlock_irqrestore(&kc->job_lock, flags);
432
433 return job;
434 }
435
436 static void push(struct list_head *jobs, struct kcopyd_job *job)
437 {
438 unsigned long flags;
439 struct dm_kcopyd_client *kc = job->kc;
440
441 spin_lock_irqsave(&kc->job_lock, flags);
442 list_add_tail(&job->list, jobs);
443 spin_unlock_irqrestore(&kc->job_lock, flags);
444 }
445
446
447 static void push_head(struct list_head *jobs, struct kcopyd_job *job)
448 {
449 unsigned long flags;
450 struct dm_kcopyd_client *kc = job->kc;
451
452 spin_lock_irqsave(&kc->job_lock, flags);
453 list_add(&job->list, jobs);
454 spin_unlock_irqrestore(&kc->job_lock, flags);
455 }
456
457 /*
458 * These three functions process 1 item from the corresponding
459 * job list.
460 *
461 * They return:
462 * < 0: error
463 * 0: success
464 * > 0: can't process yet.
465 */
466 static int run_complete_job(struct kcopyd_job *job)
467 {
468 void *context = job->context;
469 int read_err = job->read_err;
470 unsigned long write_err = job->write_err;
471 dm_kcopyd_notify_fn fn = job->fn;
472 struct dm_kcopyd_client *kc = job->kc;
473
474 if (job->pages && job->pages != &zero_page_list)
475 kcopyd_put_pages(kc, job->pages);
476 /*
477 * If this is the master job, the sub jobs have already
478 * completed so we can free everything.
479 */
480 if (job->master_job == job)
481 mempool_free(job, kc->job_pool);
482 fn(read_err, write_err, context);
483
484 if (atomic_dec_and_test(&kc->nr_jobs))
485 wake_up(&kc->destroyq);
486
487 return 0;
488 }
489
490 static void complete_io(unsigned long error, void *context)
491 {
492 struct kcopyd_job *job = (struct kcopyd_job *) context;
493 struct dm_kcopyd_client *kc = job->kc;
494
495 io_job_finish(kc->throttle);
496
497 if (error) {
498 if (op_is_write(job->rw))
499 job->write_err |= error;
500 else
501 job->read_err = 1;
502
503 if (!test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) {
504 push(&kc->complete_jobs, job);
505 wake(kc);
506 return;
507 }
508 }
509
510 if (op_is_write(job->rw))
511 push(&kc->complete_jobs, job);
512
513 else {
514 job->rw = WRITE;
515 push(&kc->io_jobs, job);
516 }
517
518 wake(kc);
519 }
520
521 /*
522 * Request io on as many buffer heads as we can currently get for
523 * a particular job.
524 */
525 static int run_io_job(struct kcopyd_job *job)
526 {
527 int r;
528 struct dm_io_request io_req = {
529 .bi_op = job->rw,
530 .bi_op_flags = 0,
531 .mem.type = DM_IO_PAGE_LIST,
532 .mem.ptr.pl = job->pages,
533 .mem.offset = 0,
534 .notify.fn = complete_io,
535 .notify.context = job,
536 .client = job->kc->io_client,
537 };
538
539 /*
540 * If we need to write sequentially and some reads or writes failed,
541 * no point in continuing.
542 */
543 if (test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags) &&
544 job->master_job->write_err)
545 return -EIO;
546
547 io_job_start(job->kc->throttle);
548
549 if (job->rw == READ)
550 r = dm_io(&io_req, 1, &job->source, NULL);
551 else
552 r = dm_io(&io_req, job->num_dests, job->dests, NULL);
553
554 return r;
555 }
556
557 static int run_pages_job(struct kcopyd_job *job)
558 {
559 int r;
560 unsigned nr_pages = dm_div_up(job->dests[0].count, PAGE_SIZE >> 9);
561
562 r = kcopyd_get_pages(job->kc, nr_pages, &job->pages);
563 if (!r) {
564 /* this job is ready for io */
565 push(&job->kc->io_jobs, job);
566 return 0;
567 }
568
569 if (r == -ENOMEM)
570 /* can't complete now */
571 return 1;
572
573 return r;
574 }
575
576 /*
577 * Run through a list for as long as possible. Returns the count
578 * of successful jobs.
579 */
580 static int process_jobs(struct list_head *jobs, struct dm_kcopyd_client *kc,
581 int (*fn) (struct kcopyd_job *))
582 {
583 struct kcopyd_job *job;
584 int r, count = 0;
585
586 while ((job = pop(jobs, kc))) {
587
588 r = fn(job);
589
590 if (r < 0) {
591 /* error this rogue job */
592 if (op_is_write(job->rw))
593 job->write_err = (unsigned long) -1L;
594 else
595 job->read_err = 1;
596 push(&kc->complete_jobs, job);
597 break;
598 }
599
600 if (r > 0) {
601 /*
602 * We couldn't service this job ATM, so
603 * push this job back onto the list.
604 */
605 push_head(jobs, job);
606 break;
607 }
608
609 count++;
610 }
611
612 return count;
613 }
614
615 /*
616 * kcopyd does this every time it's woken up.
617 */
618 static void do_work(struct work_struct *work)
619 {
620 struct dm_kcopyd_client *kc = container_of(work,
621 struct dm_kcopyd_client, kcopyd_work);
622 struct blk_plug plug;
623
624 /*
625 * The order that these are called is *very* important.
626 * complete jobs can free some pages for pages jobs.
627 * Pages jobs when successful will jump onto the io jobs
628 * list. io jobs call wake when they complete and it all
629 * starts again.
630 */
631 blk_start_plug(&plug);
632 process_jobs(&kc->complete_jobs, kc, run_complete_job);
633 process_jobs(&kc->pages_jobs, kc, run_pages_job);
634 process_jobs(&kc->io_jobs, kc, run_io_job);
635 blk_finish_plug(&plug);
636 }
637
638 /*
639 * If we are copying a small region we just dispatch a single job
640 * to do the copy, otherwise the io has to be split up into many
641 * jobs.
642 */
643 static void dispatch_job(struct kcopyd_job *job)
644 {
645 struct dm_kcopyd_client *kc = job->kc;
646 atomic_inc(&kc->nr_jobs);
647 if (unlikely(!job->source.count))
648 push(&kc->complete_jobs, job);
649 else if (job->pages == &zero_page_list)
650 push(&kc->io_jobs, job);
651 else
652 push(&kc->pages_jobs, job);
653 wake(kc);
654 }
655
656 static void segment_complete(int read_err, unsigned long write_err,
657 void *context)
658 {
659 /* FIXME: tidy this function */
660 sector_t progress = 0;
661 sector_t count = 0;
662 struct kcopyd_job *sub_job = (struct kcopyd_job *) context;
663 struct kcopyd_job *job = sub_job->master_job;
664 struct dm_kcopyd_client *kc = job->kc;
665
666 mutex_lock(&job->lock);
667
668 /* update the error */
669 if (read_err)
670 job->read_err = 1;
671
672 if (write_err)
673 job->write_err |= write_err;
674
675 /*
676 * Only dispatch more work if there hasn't been an error.
677 */
678 if ((!job->read_err && !job->write_err) ||
679 test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) {
680 /* get the next chunk of work */
681 progress = job->progress;
682 count = job->source.count - progress;
683 if (count) {
684 if (count > SUB_JOB_SIZE)
685 count = SUB_JOB_SIZE;
686
687 job->progress += count;
688 }
689 }
690 mutex_unlock(&job->lock);
691
692 if (count) {
693 int i;
694
695 *sub_job = *job;
696 sub_job->write_offset = progress;
697 sub_job->source.sector += progress;
698 sub_job->source.count = count;
699
700 for (i = 0; i < job->num_dests; i++) {
701 sub_job->dests[i].sector += progress;
702 sub_job->dests[i].count = count;
703 }
704
705 sub_job->fn = segment_complete;
706 sub_job->context = sub_job;
707 dispatch_job(sub_job);
708
709 } else if (atomic_dec_and_test(&job->sub_jobs)) {
710
711 /*
712 * Queue the completion callback to the kcopyd thread.
713 *
714 * Some callers assume that all the completions are called
715 * from a single thread and don't race with each other.
716 *
717 * We must not call the callback directly here because this
718 * code may not be executing in the thread.
719 */
720 push(&kc->complete_jobs, job);
721 wake(kc);
722 }
723 }
724
725 /*
726 * Create some sub jobs to share the work between them.
727 */
728 static void split_job(struct kcopyd_job *master_job)
729 {
730 int i;
731
732 atomic_inc(&master_job->kc->nr_jobs);
733
734 atomic_set(&master_job->sub_jobs, SPLIT_COUNT);
735 for (i = 0; i < SPLIT_COUNT; i++) {
736 master_job[i + 1].master_job = master_job;
737 segment_complete(0, 0u, &master_job[i + 1]);
738 }
739 }
740
741 int dm_kcopyd_copy(struct dm_kcopyd_client *kc, struct dm_io_region *from,
742 unsigned int num_dests, struct dm_io_region *dests,
743 unsigned int flags, dm_kcopyd_notify_fn fn, void *context)
744 {
745 struct kcopyd_job *job;
746 int i;
747
748 /*
749 * Allocate an array of jobs consisting of one master job
750 * followed by SPLIT_COUNT sub jobs.
751 */
752 job = mempool_alloc(kc->job_pool, GFP_NOIO);
753
754 /*
755 * set up for the read.
756 */
757 job->kc = kc;
758 job->flags = flags;
759 job->read_err = 0;
760 job->write_err = 0;
761
762 job->num_dests = num_dests;
763 memcpy(&job->dests, dests, sizeof(*dests) * num_dests);
764
765 /*
766 * If one of the destination is a host-managed zoned block device,
767 * we need to write sequentially. If one of the destination is a
768 * host-aware device, then leave it to the caller to choose what to do.
769 */
770 if (!test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags)) {
771 for (i = 0; i < job->num_dests; i++) {
772 if (bdev_zoned_model(dests[i].bdev) == BLK_ZONED_HM) {
773 set_bit(DM_KCOPYD_WRITE_SEQ, &job->flags);
774 break;
775 }
776 }
777 }
778
779 /*
780 * If we need to write sequentially, errors cannot be ignored.
781 */
782 if (test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags) &&
783 test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags))
784 clear_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags);
785
786 if (from) {
787 job->source = *from;
788 job->pages = NULL;
789 job->rw = READ;
790 } else {
791 memset(&job->source, 0, sizeof job->source);
792 job->source.count = job->dests[0].count;
793 job->pages = &zero_page_list;
794
795 /*
796 * Use WRITE ZEROES to optimize zeroing if all dests support it.
797 */
798 job->rw = REQ_OP_WRITE_ZEROES;
799 for (i = 0; i < job->num_dests; i++)
800 if (!bdev_write_zeroes_sectors(job->dests[i].bdev)) {
801 job->rw = WRITE;
802 break;
803 }
804 }
805
806 job->fn = fn;
807 job->context = context;
808 job->master_job = job;
809 job->write_offset = 0;
810
811 if (job->source.count <= SUB_JOB_SIZE)
812 dispatch_job(job);
813 else {
814 mutex_init(&job->lock);
815 job->progress = 0;
816 split_job(job);
817 }
818
819 return 0;
820 }
821 EXPORT_SYMBOL(dm_kcopyd_copy);
822
823 int dm_kcopyd_zero(struct dm_kcopyd_client *kc,
824 unsigned num_dests, struct dm_io_region *dests,
825 unsigned flags, dm_kcopyd_notify_fn fn, void *context)
826 {
827 return dm_kcopyd_copy(kc, NULL, num_dests, dests, flags, fn, context);
828 }
829 EXPORT_SYMBOL(dm_kcopyd_zero);
830
831 void *dm_kcopyd_prepare_callback(struct dm_kcopyd_client *kc,
832 dm_kcopyd_notify_fn fn, void *context)
833 {
834 struct kcopyd_job *job;
835
836 job = mempool_alloc(kc->job_pool, GFP_NOIO);
837
838 memset(job, 0, sizeof(struct kcopyd_job));
839 job->kc = kc;
840 job->fn = fn;
841 job->context = context;
842 job->master_job = job;
843
844 atomic_inc(&kc->nr_jobs);
845
846 return job;
847 }
848 EXPORT_SYMBOL(dm_kcopyd_prepare_callback);
849
850 void dm_kcopyd_do_callback(void *j, int read_err, unsigned long write_err)
851 {
852 struct kcopyd_job *job = j;
853 struct dm_kcopyd_client *kc = job->kc;
854
855 job->read_err = read_err;
856 job->write_err = write_err;
857
858 push(&kc->complete_jobs, job);
859 wake(kc);
860 }
861 EXPORT_SYMBOL(dm_kcopyd_do_callback);
862
863 /*
864 * Cancels a kcopyd job, eg. someone might be deactivating a
865 * mirror.
866 */
867 #if 0
868 int kcopyd_cancel(struct kcopyd_job *job, int block)
869 {
870 /* FIXME: finish */
871 return -1;
872 }
873 #endif /* 0 */
874
875 /*-----------------------------------------------------------------
876 * Client setup
877 *---------------------------------------------------------------*/
878 struct dm_kcopyd_client *dm_kcopyd_client_create(struct dm_kcopyd_throttle *throttle)
879 {
880 int r = -ENOMEM;
881 struct dm_kcopyd_client *kc;
882
883 kc = kmalloc(sizeof(*kc), GFP_KERNEL);
884 if (!kc)
885 return ERR_PTR(-ENOMEM);
886
887 spin_lock_init(&kc->job_lock);
888 INIT_LIST_HEAD(&kc->complete_jobs);
889 INIT_LIST_HEAD(&kc->io_jobs);
890 INIT_LIST_HEAD(&kc->pages_jobs);
891 kc->throttle = throttle;
892
893 kc->job_pool = mempool_create_slab_pool(MIN_JOBS, _job_cache);
894 if (!kc->job_pool)
895 goto bad_slab;
896
897 INIT_WORK(&kc->kcopyd_work, do_work);
898 kc->kcopyd_wq = alloc_workqueue("kcopyd", WQ_MEM_RECLAIM, 0);
899 if (!kc->kcopyd_wq)
900 goto bad_workqueue;
901
902 kc->pages = NULL;
903 kc->nr_reserved_pages = kc->nr_free_pages = 0;
904 r = client_reserve_pages(kc, RESERVE_PAGES);
905 if (r)
906 goto bad_client_pages;
907
908 kc->io_client = dm_io_client_create();
909 if (IS_ERR(kc->io_client)) {
910 r = PTR_ERR(kc->io_client);
911 goto bad_io_client;
912 }
913
914 init_waitqueue_head(&kc->destroyq);
915 atomic_set(&kc->nr_jobs, 0);
916
917 return kc;
918
919 bad_io_client:
920 client_free_pages(kc);
921 bad_client_pages:
922 destroy_workqueue(kc->kcopyd_wq);
923 bad_workqueue:
924 mempool_destroy(kc->job_pool);
925 bad_slab:
926 kfree(kc);
927
928 return ERR_PTR(r);
929 }
930 EXPORT_SYMBOL(dm_kcopyd_client_create);
931
932 void dm_kcopyd_client_destroy(struct dm_kcopyd_client *kc)
933 {
934 /* Wait for completion of all jobs submitted by this client. */
935 wait_event(kc->destroyq, !atomic_read(&kc->nr_jobs));
936
937 BUG_ON(!list_empty(&kc->complete_jobs));
938 BUG_ON(!list_empty(&kc->io_jobs));
939 BUG_ON(!list_empty(&kc->pages_jobs));
940 destroy_workqueue(kc->kcopyd_wq);
941 dm_io_client_destroy(kc->io_client);
942 client_free_pages(kc);
943 mempool_destroy(kc->job_pool);
944 kfree(kc);
945 }
946 EXPORT_SYMBOL(dm_kcopyd_client_destroy);