]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/dm-raid.c
02c07a75e4dc73e12217d65d007815fa3ea2e94e
[mirror_ubuntu-bionic-kernel.git] / drivers / md / dm-raid.c
1 /*
2 * Copyright (C) 2010-2011 Neil Brown
3 * Copyright (C) 2010-2016 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include <linux/slab.h>
9 #include <linux/module.h>
10
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "bitmap.h"
16
17 #include <linux/device-mapper.h>
18
19 #define DM_MSG_PREFIX "raid"
20 #define MAX_RAID_DEVICES 253 /* md-raid kernel limit */
21
22 static bool devices_handle_discard_safely = false;
23
24 /*
25 * The following flags are used by dm-raid.c to set up the array state.
26 * They must be cleared before md_run is called.
27 */
28 #define FirstUse 10 /* rdev flag */
29
30 struct raid_dev {
31 /*
32 * Two DM devices, one to hold metadata and one to hold the
33 * actual data/parity. The reason for this is to not confuse
34 * ti->len and give more flexibility in altering size and
35 * characteristics.
36 *
37 * While it is possible for this device to be associated
38 * with a different physical device than the data_dev, it
39 * is intended for it to be the same.
40 * |--------- Physical Device ---------|
41 * |- meta_dev -|------ data_dev ------|
42 */
43 struct dm_dev *meta_dev;
44 struct dm_dev *data_dev;
45 struct md_rdev rdev;
46 };
47
48 /*
49 * Flags for rs->ctr_flags field.
50 *
51 * 1 = no flag value
52 * 2 = flag with value
53 */
54 #define CTR_FLAG_SYNC 0x1 /* 1 */ /* Not with raid0! */
55 #define CTR_FLAG_NOSYNC 0x2 /* 1 */ /* Not with raid0! */
56 #define CTR_FLAG_REBUILD 0x4 /* 2 */ /* Not with raid0! */
57 #define CTR_FLAG_DAEMON_SLEEP 0x8 /* 2 */ /* Not with raid0! */
58 #define CTR_FLAG_MIN_RECOVERY_RATE 0x10 /* 2 */ /* Not with raid0! */
59 #define CTR_FLAG_MAX_RECOVERY_RATE 0x20 /* 2 */ /* Not with raid0! */
60 #define CTR_FLAG_MAX_WRITE_BEHIND 0x40 /* 2 */ /* Only with raid1! */
61 #define CTR_FLAG_WRITE_MOSTLY 0x80 /* 2 */ /* Only with raid1! */
62 #define CTR_FLAG_STRIPE_CACHE 0x100 /* 2 */ /* Only with raid4/5/6! */
63 #define CTR_FLAG_REGION_SIZE 0x200 /* 2 */ /* Not with raid0! */
64 #define CTR_FLAG_RAID10_COPIES 0x400 /* 2 */ /* Only with raid10 */
65 #define CTR_FLAG_RAID10_FORMAT 0x800 /* 2 */ /* Only with raid10 */
66 /* New for v1.9.0 */
67 #define CTR_FLAG_DELTA_DISKS 0x1000 /* 2 */ /* Only with reshapable raid4/5/6/10! */
68 #define CTR_FLAG_DATA_OFFSET 0x2000 /* 2 */ /* Only with reshapable raid4/5/6/10! */
69 #define CTR_FLAG_RAID10_USE_NEAR_SETS 0x4000 /* 2 */ /* Only with raid10! */
70
71 /*
72 * Definitions of various constructor flags to
73 * be used in checks of valid / invalid flags
74 * per raid level.
75 */
76 /* Define all any sync flags */
77 #define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
78
79 /* Define flags for options without argument (e.g. 'nosync') */
80 #define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \
81 CTR_FLAG_RAID10_USE_NEAR_SETS)
82
83 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
84 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
85 CTR_FLAG_WRITE_MOSTLY | \
86 CTR_FLAG_DAEMON_SLEEP | \
87 CTR_FLAG_MIN_RECOVERY_RATE | \
88 CTR_FLAG_MAX_RECOVERY_RATE | \
89 CTR_FLAG_MAX_WRITE_BEHIND | \
90 CTR_FLAG_STRIPE_CACHE | \
91 CTR_FLAG_REGION_SIZE | \
92 CTR_FLAG_RAID10_COPIES | \
93 CTR_FLAG_RAID10_FORMAT | \
94 CTR_FLAG_DELTA_DISKS | \
95 CTR_FLAG_DATA_OFFSET)
96
97 /* All ctr optional arguments */
98 #define ALL_CTR_FLAGS (CTR_FLAG_OPTIONS_NO_ARGS | \
99 CTR_FLAG_OPTIONS_ONE_ARG)
100
101 /* Invalid options definitions per raid level... */
102
103 /* "raid0" does not accept any options */
104 #define RAID0_INVALID_FLAGS ALL_CTR_FLAGS
105
106 /* "raid1" does not accept stripe cache or any raid10 options */
107 #define RAID1_INVALID_FLAGS (CTR_FLAG_STRIPE_CACHE | \
108 CTR_FLAG_RAID10_COPIES | \
109 CTR_FLAG_RAID10_FORMAT | \
110 CTR_FLAG_DELTA_DISKS | \
111 CTR_FLAG_DATA_OFFSET)
112
113 /* "raid10" does not accept any raid1 or stripe cache options */
114 #define RAID10_INVALID_FLAGS (CTR_FLAG_WRITE_MOSTLY | \
115 CTR_FLAG_MAX_WRITE_BEHIND | \
116 CTR_FLAG_STRIPE_CACHE)
117 /*
118 * "raid4/5/6" do not accept any raid1 or raid10 specific options
119 *
120 * "raid6" does not accept "nosync", because it is not guaranteed
121 * that both parity and q-syndrome are being written properly with
122 * any writes
123 */
124 #define RAID45_INVALID_FLAGS (CTR_FLAG_WRITE_MOSTLY | \
125 CTR_FLAG_MAX_WRITE_BEHIND | \
126 CTR_FLAG_RAID10_FORMAT | \
127 CTR_FLAG_RAID10_COPIES | \
128 CTR_FLAG_RAID10_USE_NEAR_SETS)
129 #define RAID6_INVALID_FLAGS (CTR_FLAG_NOSYNC | RAID45_INVALID_FLAGS)
130 /* ...invalid options definitions per raid level */
131
132 /*
133 * Flags for rs->runtime_flags field
134 * (RT_FLAG prefix meaning "runtime flag")
135 *
136 * These are all internal and used to define runtime state,
137 * e.g. to prevent another resume from preresume processing
138 * the raid set all over again.
139 */
140 #define RT_FLAG_RS_PRERESUMED 0x1
141 #define RT_FLAG_RS_RESUMED 0x2
142 #define RT_FLAG_RS_BITMAP_LOADED 0x4
143 #define RT_FLAG_UPDATE_SBS 0x8
144
145 /* Array elements of 64 bit needed for rebuild/write_mostly bits */
146 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
147
148 /*
149 * raid set level, layout and chunk sectors backup/restore
150 */
151 struct rs_layout {
152 int new_level;
153 int new_layout;
154 int new_chunk_sectors;
155 };
156
157 struct raid_set {
158 struct dm_target *ti;
159
160 uint32_t bitmap_loaded;
161 uint32_t ctr_flags;
162 uint32_t runtime_flags;
163
164 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
165
166 int raid_disks;
167 int delta_disks;
168 int data_offset;
169 int raid10_copies;
170
171 struct mddev md;
172 struct raid_type *raid_type;
173 struct dm_target_callbacks callbacks;
174 struct rs_layout rs_layout;
175
176 struct raid_dev dev[0];
177 };
178
179 /* Backup/restore raid set configuration helpers */
180 static void _rs_config_backup(struct raid_set *rs, struct rs_layout *l)
181 {
182 struct mddev *mddev = &rs->md;
183
184 l->new_level = mddev->new_level;
185 l->new_layout = mddev->new_layout;
186 l->new_chunk_sectors = mddev->new_chunk_sectors;
187 }
188
189 static void rs_config_backup(struct raid_set *rs)
190 {
191 return _rs_config_backup(rs, &rs->rs_layout);
192 }
193
194 static void _rs_config_restore(struct raid_set *rs, struct rs_layout *l)
195 {
196 struct mddev *mddev = &rs->md;
197
198 mddev->new_level = l->new_level;
199 mddev->new_layout = l->new_layout;
200 mddev->new_chunk_sectors = l->new_chunk_sectors;
201 }
202
203 static void rs_config_restore(struct raid_set *rs)
204 {
205 return _rs_config_restore(rs, &rs->rs_layout);
206 }
207 /* END: backup/restore raid set configuration helpers */
208
209 /* raid10 algorithms (i.e. formats) */
210 #define ALGORITHM_RAID10_DEFAULT 0
211 #define ALGORITHM_RAID10_NEAR 1
212 #define ALGORITHM_RAID10_OFFSET 2
213 #define ALGORITHM_RAID10_FAR 3
214
215 /* Supported raid types and properties. */
216 static struct raid_type {
217 const char *name; /* RAID algorithm. */
218 const char *descr; /* Descriptor text for logging. */
219 const unsigned parity_devs; /* # of parity devices. */
220 const unsigned minimal_devs; /* minimal # of devices in set. */
221 const unsigned level; /* RAID level. */
222 const unsigned algorithm; /* RAID algorithm. */
223 } raid_types[] = {
224 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */},
225 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */},
226 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR},
227 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET},
228 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR},
229 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT},
230 {"raid4", "raid4 (dedicated last parity disk)", 1, 2, 4, ALGORITHM_PARITY_N}, /* raid4 layout = raid5_n */
231 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N},
232 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
233 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
234 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
235 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
236 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
237 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
238 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE},
239 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6},
240 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6},
241 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6},
242 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6},
243 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6}
244 };
245
246 /* True, if @v is in inclusive range [@min, @max] */
247 static bool _in_range(long v, long min, long max)
248 {
249 return v >= min && v <= max;
250 }
251
252 /* ctr flag bit manipulation... */
253 /* Set single @flag in @flags */
254 static void _set_flag(uint32_t flag, uint32_t *flags)
255 {
256 WARN_ON_ONCE(hweight32(flag) != 1);
257 *flags |= flag;
258 }
259
260 /* Clear single @flag in @flags */
261 static void _clear_flag(uint32_t flag, uint32_t *flags)
262 {
263 WARN_ON_ONCE(hweight32(flag) != 1);
264 *flags &= ~flag;
265 }
266
267 /* Test single @flag in @flags */
268 static bool _test_flag(uint32_t flag, uint32_t flags)
269 {
270 WARN_ON_ONCE(hweight32(flag) != 1);
271 return (flag & flags) ? true : false;
272 }
273
274 /* Test multiple @flags in @all_flags */
275 static bool _test_flags(uint32_t flags, uint32_t all_flags)
276 {
277 return (flags & all_flags) ? true : false;
278 }
279
280 /* Clear (multiple) @flags in @all_flags */
281 static void _clear_flags(uint32_t flags, uint32_t *all_flags)
282 {
283 *all_flags &= ~flags;
284 }
285
286 /* Return true if single @flag is set in @*flags, else set it and return false */
287 static bool _test_and_set_flag(uint32_t flag, uint32_t *flags)
288 {
289 if (_test_flag(flag, *flags))
290 return true;
291
292 _set_flag(flag, flags);
293 return false;
294 }
295
296 /* Return true if single @flag is set in @*flags and clear it, else return false */
297 static bool _test_and_clear_flag(uint32_t flag, uint32_t *flags)
298 {
299 if (_test_flag(flag, *flags)) {
300 _clear_flag(flag, flags);
301 return true;
302 }
303
304 return false;
305 }
306 /* ...ctr and runtime flag bit manipulation */
307
308 /* All table line arguments are defined here */
309 static struct arg_name_flag {
310 const uint32_t flag;
311 const char *name;
312 } _arg_name_flags[] = {
313 { CTR_FLAG_SYNC, "sync"},
314 { CTR_FLAG_NOSYNC, "nosync"},
315 { CTR_FLAG_REBUILD, "rebuild"},
316 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
317 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
318 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
319 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
320 { CTR_FLAG_WRITE_MOSTLY, "writemostly"},
321 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
322 { CTR_FLAG_REGION_SIZE, "region_size"},
323 { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
324 { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
325 { CTR_FLAG_DATA_OFFSET, "data_offset"},
326 { CTR_FLAG_DELTA_DISKS, "delta_disks"},
327 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
328 };
329
330 /* Return argument name string for given @flag */
331 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
332 {
333 if (hweight32(flag) == 1) {
334 struct arg_name_flag *anf = _arg_name_flags + ARRAY_SIZE(_arg_name_flags);
335
336 while (anf-- > _arg_name_flags)
337 if (_test_flag(flag, anf->flag))
338 return anf->name;
339
340 } else
341 DMERR("%s called with more than one flag!", __func__);
342
343 return NULL;
344 }
345
346 /*
347 * bool helpers to test for various raid levels of a raid set,
348 * is. it's level as reported by the superblock rather than
349 * the requested raid_type passed to the constructor.
350 */
351 /* Return true, if raid set in @rs is raid0 */
352 static bool rs_is_raid0(struct raid_set *rs)
353 {
354 return !rs->md.level;
355 }
356
357 /* Return true, if raid set in @rs is raid10 */
358 static bool rs_is_raid10(struct raid_set *rs)
359 {
360 return rs->md.level == 10;
361 }
362
363 /*
364 * bool helpers to test for various raid levels of a raid type
365 */
366
367 /* Return true, if raid type in @rt is raid0 */
368 static bool rt_is_raid0(struct raid_type *rt)
369 {
370 return !rt->level;
371 }
372
373 /* Return true, if raid type in @rt is raid1 */
374 static bool rt_is_raid1(struct raid_type *rt)
375 {
376 return rt->level == 1;
377 }
378
379 /* Return true, if raid type in @rt is raid10 */
380 static bool rt_is_raid10(struct raid_type *rt)
381 {
382 return rt->level == 10;
383 }
384
385 /* Return true, if raid type in @rt is raid4/5 */
386 static bool rt_is_raid45(struct raid_type *rt)
387 {
388 return _in_range(rt->level, 4, 5);
389 }
390
391 /* Return true, if raid type in @rt is raid6 */
392 static bool rt_is_raid6(struct raid_type *rt)
393 {
394 return rt->level == 6;
395 }
396
397 /* Return true, if raid type in @rt is raid4/5/6 */
398 static bool rt_is_raid456(struct raid_type *rt)
399 {
400 return _in_range(rt->level, 4, 6);
401 }
402 /* END: raid level bools */
403
404 /* Return invalid ctr flags for the raid level of @rs */
405 static uint32_t _invalid_flags(struct raid_set *rs)
406 {
407 if (rt_is_raid0(rs->raid_type))
408 return RAID0_INVALID_FLAGS;
409 else if (rt_is_raid1(rs->raid_type))
410 return RAID1_INVALID_FLAGS;
411 else if (rt_is_raid10(rs->raid_type))
412 return RAID10_INVALID_FLAGS;
413 else if (rt_is_raid45(rs->raid_type))
414 return RAID45_INVALID_FLAGS;
415 else if (rt_is_raid6(rs->raid_type))
416 return RAID6_INVALID_FLAGS;
417
418 return ~0;
419 }
420
421 /*
422 * Check for any invalid flags set on @rs defined by bitset @invalid_flags
423 *
424 * Has to be called after parsing of the ctr flags!
425 */
426 static int rs_check_for_invalid_flags(struct raid_set *rs)
427 {
428 if (_test_flags(rs->ctr_flags, _invalid_flags(rs))) {
429 rs->ti->error = "Invalid flag combined";
430 return -EINVAL;
431 }
432
433 return 0;
434 }
435
436
437 /* MD raid10 bit definitions and helpers */
438 #define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */
439 #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
440 #define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */
441 #define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */
442
443 /* Return md raid10 near copies for @layout */
444 static unsigned int _raid10_near_copies(int layout)
445 {
446 return layout & 0xFF;
447 }
448
449 /* Return md raid10 far copies for @layout */
450 static unsigned int _raid10_far_copies(int layout)
451 {
452 return _raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
453 }
454
455 /* Return true if md raid10 offset for @layout */
456 static unsigned int _is_raid10_offset(int layout)
457 {
458 return layout & RAID10_OFFSET;
459 }
460
461 /* Return true if md raid10 near for @layout */
462 static unsigned int _is_raid10_near(int layout)
463 {
464 return !_is_raid10_offset(layout) && _raid10_near_copies(layout) > 1;
465 }
466
467 /* Return true if md raid10 far for @layout */
468 static unsigned int _is_raid10_far(int layout)
469 {
470 return !_is_raid10_offset(layout) && _raid10_far_copies(layout) > 1;
471 }
472
473 /* Return md raid10 layout string for @layout */
474 static const char *raid10_md_layout_to_format(int layout)
475 {
476 /*
477 * Bit 16 stands for "offset"
478 * (i.e. adjacent stripes hold copies)
479 *
480 * Refer to MD's raid10.c for details
481 */
482 if (_is_raid10_offset(layout))
483 return "offset";
484
485 if (_raid10_near_copies(layout) > 1)
486 return "near";
487
488 WARN_ON(_raid10_far_copies(layout) < 2);
489
490 return "far";
491 }
492
493 /* Return md raid10 algorithm for @name */
494 static const int raid10_name_to_format(const char *name)
495 {
496 if (!strcasecmp(name, "near"))
497 return ALGORITHM_RAID10_NEAR;
498 else if (!strcasecmp(name, "offset"))
499 return ALGORITHM_RAID10_OFFSET;
500 else if (!strcasecmp(name, "far"))
501 return ALGORITHM_RAID10_FAR;
502
503 return -EINVAL;
504 }
505
506
507 /* Return md raid10 copies for @layout */
508 static unsigned int raid10_md_layout_to_copies(int layout)
509 {
510 return _raid10_near_copies(layout) > 1 ?
511 _raid10_near_copies(layout) : _raid10_far_copies(layout);
512 }
513
514 /* Return md raid10 format id for @format string */
515 static int raid10_format_to_md_layout(struct raid_set *rs,
516 unsigned int algorithm,
517 unsigned int copies)
518 {
519 unsigned int n = 1, f = 1, r = 0;
520
521 /*
522 * MD resilienece flaw:
523 *
524 * enabling use_far_sets for far/offset formats causes copies
525 * to be colocated on the same devs together with their origins!
526 *
527 * -> disable it for now in the definition above
528 */
529 if (algorithm == ALGORITHM_RAID10_DEFAULT ||
530 algorithm == ALGORITHM_RAID10_NEAR)
531 n = copies;
532
533 else if (algorithm == ALGORITHM_RAID10_OFFSET) {
534 f = copies;
535 r = RAID10_OFFSET;
536 if (!_test_flag(CTR_FLAG_RAID10_USE_NEAR_SETS, rs->ctr_flags))
537 r |= RAID10_USE_FAR_SETS;
538
539 } else if (algorithm == ALGORITHM_RAID10_FAR) {
540 f = copies;
541 r = !RAID10_OFFSET;
542 if (!_test_flag(CTR_FLAG_RAID10_USE_NEAR_SETS, rs->ctr_flags))
543 r |= RAID10_USE_FAR_SETS;
544
545 } else
546 return -EINVAL;
547
548 return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
549 }
550 /* END: MD raid10 bit definitions and helpers */
551
552 /* Check for any of the raid10 algorithms */
553 static int _got_raid10(struct raid_type *rtp, const int layout)
554 {
555 if (rtp->level == 10) {
556 switch (rtp->algorithm) {
557 case ALGORITHM_RAID10_DEFAULT:
558 case ALGORITHM_RAID10_NEAR:
559 return _is_raid10_near(layout);
560 case ALGORITHM_RAID10_OFFSET:
561 return _is_raid10_offset(layout);
562 case ALGORITHM_RAID10_FAR:
563 return _is_raid10_far(layout);
564 default:
565 break;
566 }
567 }
568
569 return 0;
570 }
571
572 /* Return raid_type for @name */
573 static struct raid_type *get_raid_type(const char *name)
574 {
575 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
576
577 while (rtp-- > raid_types)
578 if (!strcasecmp(rtp->name, name))
579 return rtp;
580
581 return NULL;
582 }
583
584 /* Return raid_type for @name based derived from @level and @layout */
585 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
586 {
587 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
588
589 while (rtp-- > raid_types) {
590 /* RAID10 special checks based on @layout flags/properties */
591 if (rtp->level == level &&
592 (_got_raid10(rtp, layout) || rtp->algorithm == layout))
593 return rtp;
594 }
595
596 return NULL;
597 }
598
599 /*
600 * Set the mddev properties in @rs to the current
601 * ones retrieved from the freshest superblock
602 */
603 static void rs_set_cur(struct raid_set *rs)
604 {
605 struct mddev *mddev = &rs->md;
606
607 mddev->new_level = mddev->level;
608 mddev->new_layout = mddev->layout;
609 mddev->new_chunk_sectors = mddev->chunk_sectors;
610 }
611
612 /*
613 * Set the mddev properties in @rs to the new
614 * ones requested by the ctr
615 */
616 static void rs_set_new(struct raid_set *rs)
617 {
618 struct mddev *mddev = &rs->md;
619
620 mddev->level = mddev->new_level;
621 mddev->layout = mddev->new_layout;
622 mddev->chunk_sectors = mddev->new_chunk_sectors;
623 mddev->raid_disks = rs->raid_disks;
624 mddev->delta_disks = 0;
625 }
626
627
628 static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
629 {
630 unsigned i;
631 struct raid_set *rs;
632
633 if (raid_devs <= raid_type->parity_devs) {
634 ti->error = "Insufficient number of devices";
635 return ERR_PTR(-EINVAL);
636 }
637
638 rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
639 if (!rs) {
640 ti->error = "Cannot allocate raid context";
641 return ERR_PTR(-ENOMEM);
642 }
643
644 mddev_init(&rs->md);
645
646 rs->raid_disks = raid_devs;
647 rs->delta_disks = 0;
648
649 rs->ti = ti;
650 rs->raid_type = raid_type;
651 rs->md.raid_disks = raid_devs;
652 rs->md.level = raid_type->level;
653 rs->md.new_level = rs->md.level;
654 rs->md.layout = raid_type->algorithm;
655 rs->md.new_layout = rs->md.layout;
656 rs->md.delta_disks = 0;
657 rs->md.recovery_cp = rs_is_raid0(rs) ? MaxSector : 0;
658
659 for (i = 0; i < raid_devs; i++)
660 md_rdev_init(&rs->dev[i].rdev);
661
662 /*
663 * Remaining items to be initialized by further RAID params:
664 * rs->md.persistent
665 * rs->md.external
666 * rs->md.chunk_sectors
667 * rs->md.new_chunk_sectors
668 * rs->md.dev_sectors
669 */
670
671 return rs;
672 }
673
674 static void context_free(struct raid_set *rs)
675 {
676 int i;
677
678 for (i = 0; i < rs->md.raid_disks; i++) {
679 if (rs->dev[i].meta_dev)
680 dm_put_device(rs->ti, rs->dev[i].meta_dev);
681 md_rdev_clear(&rs->dev[i].rdev);
682 if (rs->dev[i].data_dev)
683 dm_put_device(rs->ti, rs->dev[i].data_dev);
684 }
685
686 kfree(rs);
687 }
688
689 /*
690 * For every device we have two words
691 * <meta_dev>: meta device name or '-' if missing
692 * <data_dev>: data device name or '-' if missing
693 *
694 * The following are permitted:
695 * - -
696 * - <data_dev>
697 * <meta_dev> <data_dev>
698 *
699 * The following is not allowed:
700 * <meta_dev> -
701 *
702 * This code parses those words. If there is a failure,
703 * the caller must use context_free to unwind the operations.
704 */
705 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
706 {
707 int i;
708 int rebuild = 0;
709 int metadata_available = 0;
710 int r = 0;
711 const char *arg;
712
713 /* Put off the number of raid devices argument to get to dev pairs */
714 arg = dm_shift_arg(as);
715 if (!arg)
716 return -EINVAL;
717
718 for (i = 0; i < rs->md.raid_disks; i++) {
719 rs->dev[i].rdev.raid_disk = i;
720
721 rs->dev[i].meta_dev = NULL;
722 rs->dev[i].data_dev = NULL;
723
724 /*
725 * There are no offsets, since there is a separate device
726 * for data and metadata.
727 */
728 rs->dev[i].rdev.data_offset = 0;
729 rs->dev[i].rdev.mddev = &rs->md;
730
731 arg = dm_shift_arg(as);
732 if (!arg)
733 return -EINVAL;
734
735 if (strcmp(arg, "-")) {
736 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
737 &rs->dev[i].meta_dev);
738 if (r) {
739 rs->ti->error = "RAID metadata device lookup failure";
740 return r;
741 }
742
743 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
744 if (!rs->dev[i].rdev.sb_page) {
745 rs->ti->error = "Failed to allocate superblock page";
746 return -ENOMEM;
747 }
748 }
749
750 arg = dm_shift_arg(as);
751 if (!arg)
752 return -EINVAL;
753
754 if (!strcmp(arg, "-")) {
755 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
756 (!rs->dev[i].rdev.recovery_offset)) {
757 rs->ti->error = "Drive designated for rebuild not specified";
758 return -EINVAL;
759 }
760
761 if (rs->dev[i].meta_dev) {
762 rs->ti->error = "No data device supplied with metadata device";
763 return -EINVAL;
764 }
765
766 continue;
767 }
768
769 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
770 &rs->dev[i].data_dev);
771 if (r) {
772 rs->ti->error = "RAID device lookup failure";
773 return r;
774 }
775
776 if (rs->dev[i].meta_dev) {
777 metadata_available = 1;
778 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
779 }
780 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
781 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
782 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
783 rebuild++;
784 }
785
786 if (metadata_available) {
787 rs->md.external = 0;
788 rs->md.persistent = 1;
789 rs->md.major_version = 2;
790 } else if (rebuild && !rs->md.recovery_cp) {
791 /*
792 * Without metadata, we will not be able to tell if the array
793 * is in-sync or not - we must assume it is not. Therefore,
794 * it is impossible to rebuild a drive.
795 *
796 * Even if there is metadata, the on-disk information may
797 * indicate that the array is not in-sync and it will then
798 * fail at that time.
799 *
800 * User could specify 'nosync' option if desperate.
801 */
802 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
803 return -EINVAL;
804 }
805
806 return 0;
807 }
808
809 /*
810 * validate_region_size
811 * @rs
812 * @region_size: region size in sectors. If 0, pick a size (4MiB default).
813 *
814 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
815 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
816 *
817 * Returns: 0 on success, -EINVAL on failure.
818 */
819 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
820 {
821 unsigned long min_region_size = rs->ti->len / (1 << 21);
822
823 if (!region_size) {
824 /*
825 * Choose a reasonable default. All figures in sectors.
826 */
827 if (min_region_size > (1 << 13)) {
828 /* If not a power of 2, make it the next power of 2 */
829 region_size = roundup_pow_of_two(min_region_size);
830 DMINFO("Choosing default region size of %lu sectors",
831 region_size);
832 } else {
833 DMINFO("Choosing default region size of 4MiB");
834 region_size = 1 << 13; /* sectors */
835 }
836 } else {
837 /*
838 * Validate user-supplied value.
839 */
840 if (region_size > rs->ti->len) {
841 rs->ti->error = "Supplied region size is too large";
842 return -EINVAL;
843 }
844
845 if (region_size < min_region_size) {
846 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
847 region_size, min_region_size);
848 rs->ti->error = "Supplied region size is too small";
849 return -EINVAL;
850 }
851
852 if (!is_power_of_2(region_size)) {
853 rs->ti->error = "Region size is not a power of 2";
854 return -EINVAL;
855 }
856
857 if (region_size < rs->md.chunk_sectors) {
858 rs->ti->error = "Region size is smaller than the chunk size";
859 return -EINVAL;
860 }
861 }
862
863 /*
864 * Convert sectors to bytes.
865 */
866 rs->md.bitmap_info.chunksize = (region_size << 9);
867
868 return 0;
869 }
870
871 /*
872 * validate_raid_redundancy
873 * @rs
874 *
875 * Determine if there are enough devices in the array that haven't
876 * failed (or are being rebuilt) to form a usable array.
877 *
878 * Returns: 0 on success, -EINVAL on failure.
879 */
880 static int validate_raid_redundancy(struct raid_set *rs)
881 {
882 unsigned i, rebuild_cnt = 0;
883 unsigned rebuilds_per_group = 0, copies, d;
884 unsigned group_size, last_group_start;
885
886 for (i = 0; i < rs->md.raid_disks; i++)
887 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
888 !rs->dev[i].rdev.sb_page)
889 rebuild_cnt++;
890
891 switch (rs->raid_type->level) {
892 case 1:
893 if (rebuild_cnt >= rs->md.raid_disks)
894 goto too_many;
895 break;
896 case 4:
897 case 5:
898 case 6:
899 if (rebuild_cnt > rs->raid_type->parity_devs)
900 goto too_many;
901 break;
902 case 10:
903 copies = raid10_md_layout_to_copies(rs->md.layout);
904 if (rebuild_cnt < copies)
905 break;
906
907 /*
908 * It is possible to have a higher rebuild count for RAID10,
909 * as long as the failed devices occur in different mirror
910 * groups (i.e. different stripes).
911 *
912 * When checking "near" format, make sure no adjacent devices
913 * have failed beyond what can be handled. In addition to the
914 * simple case where the number of devices is a multiple of the
915 * number of copies, we must also handle cases where the number
916 * of devices is not a multiple of the number of copies.
917 * E.g. dev1 dev2 dev3 dev4 dev5
918 * A A B B C
919 * C D D E E
920 */
921 if (!strcmp("near", raid10_md_layout_to_format(rs->md.layout))) {
922 for (i = 0; i < rs->md.raid_disks * copies; i++) {
923 if (!(i % copies))
924 rebuilds_per_group = 0;
925 d = i % rs->md.raid_disks;
926 if ((!rs->dev[d].rdev.sb_page ||
927 !test_bit(In_sync, &rs->dev[d].rdev.flags)) &&
928 (++rebuilds_per_group >= copies))
929 goto too_many;
930 }
931 break;
932 }
933
934 /*
935 * When checking "far" and "offset" formats, we need to ensure
936 * that the device that holds its copy is not also dead or
937 * being rebuilt. (Note that "far" and "offset" formats only
938 * support two copies right now. These formats also only ever
939 * use the 'use_far_sets' variant.)
940 *
941 * This check is somewhat complicated by the need to account
942 * for arrays that are not a multiple of (far) copies. This
943 * results in the need to treat the last (potentially larger)
944 * set differently.
945 */
946 group_size = (rs->md.raid_disks / copies);
947 last_group_start = (rs->md.raid_disks / group_size) - 1;
948 last_group_start *= group_size;
949 for (i = 0; i < rs->md.raid_disks; i++) {
950 if (!(i % copies) && !(i > last_group_start))
951 rebuilds_per_group = 0;
952 if ((!rs->dev[i].rdev.sb_page ||
953 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
954 (++rebuilds_per_group >= copies))
955 goto too_many;
956 }
957 break;
958 default:
959 if (rebuild_cnt)
960 return -EINVAL;
961 }
962
963 return 0;
964
965 too_many:
966 return -EINVAL;
967 }
968
969 /*
970 * Possible arguments are...
971 * <chunk_size> [optional_args]
972 *
973 * Argument definitions
974 * <chunk_size> The number of sectors per disk that
975 * will form the "stripe"
976 * [[no]sync] Force or prevent recovery of the
977 * entire array
978 * [rebuild <idx>] Rebuild the drive indicated by the index
979 * [daemon_sleep <ms>] Time between bitmap daemon work to
980 * clear bits
981 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
982 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
983 * [write_mostly <idx>] Indicate a write mostly drive via index
984 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm)
985 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs
986 * [region_size <sectors>] Defines granularity of bitmap
987 *
988 * RAID10-only options:
989 * [raid10_copies <# copies>] Number of copies. (Default: 2)
990 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near)
991 */
992 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
993 unsigned num_raid_params)
994 {
995 int raid10_format = ALGORITHM_RAID10_DEFAULT;
996 unsigned raid10_copies = 2;
997 unsigned i;
998 unsigned value, region_size = 0;
999 sector_t sectors_per_dev = rs->ti->len;
1000 sector_t max_io_len;
1001 const char *arg, *key;
1002 struct raid_dev *rd;
1003 struct raid_type *rt = rs->raid_type;
1004
1005 arg = dm_shift_arg(as);
1006 num_raid_params--; /* Account for chunk_size argument */
1007
1008 if (kstrtouint(arg, 10, &value) < 0) {
1009 rs->ti->error = "Bad numerical argument given for chunk_size";
1010 return -EINVAL;
1011 }
1012
1013 /*
1014 * First, parse the in-order required arguments
1015 * "chunk_size" is the only argument of this type.
1016 */
1017 if (rt_is_raid1(rt)) {
1018 if (value)
1019 DMERR("Ignoring chunk size parameter for RAID 1");
1020 value = 0;
1021 } else if (!is_power_of_2(value)) {
1022 rs->ti->error = "Chunk size must be a power of 2";
1023 return -EINVAL;
1024 } else if (value < 8) {
1025 rs->ti->error = "Chunk size value is too small";
1026 return -EINVAL;
1027 }
1028
1029 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1030
1031 /*
1032 * We set each individual device as In_sync with a completed
1033 * 'recovery_offset'. If there has been a device failure or
1034 * replacement then one of the following cases applies:
1035 *
1036 * 1) User specifies 'rebuild'.
1037 * - Device is reset when param is read.
1038 * 2) A new device is supplied.
1039 * - No matching superblock found, resets device.
1040 * 3) Device failure was transient and returns on reload.
1041 * - Failure noticed, resets device for bitmap replay.
1042 * 4) Device hadn't completed recovery after previous failure.
1043 * - Superblock is read and overrides recovery_offset.
1044 *
1045 * What is found in the superblocks of the devices is always
1046 * authoritative, unless 'rebuild' or '[no]sync' was specified.
1047 */
1048 for (i = 0; i < rs->md.raid_disks; i++) {
1049 set_bit(In_sync, &rs->dev[i].rdev.flags);
1050 rs->dev[i].rdev.recovery_offset = MaxSector;
1051 }
1052
1053 /*
1054 * Second, parse the unordered optional arguments
1055 */
1056 for (i = 0; i < num_raid_params; i++) {
1057 key = dm_shift_arg(as);
1058 if (!key) {
1059 rs->ti->error = "Not enough raid parameters given";
1060 return -EINVAL;
1061 }
1062
1063 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1064 if (_test_and_set_flag(CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1065 rs->ti->error = "Only one 'nosync' argument allowed";
1066 return -EINVAL;
1067 }
1068 rs->md.recovery_cp = MaxSector;
1069 continue;
1070 }
1071 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1072 if (_test_and_set_flag(CTR_FLAG_SYNC, &rs->ctr_flags)) {
1073 rs->ti->error = "Only one 'sync' argument allowed";
1074 return -EINVAL;
1075 }
1076 rs->md.recovery_cp = 0;
1077 continue;
1078 }
1079 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1080 if (_test_and_set_flag(CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1081 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1082 return -EINVAL;
1083 }
1084 continue;
1085 }
1086
1087 arg = dm_shift_arg(as);
1088 i++; /* Account for the argument pairs */
1089 if (!arg) {
1090 rs->ti->error = "Wrong number of raid parameters given";
1091 return -EINVAL;
1092 }
1093
1094 /*
1095 * Parameters that take a string value are checked here.
1096 */
1097
1098 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1099 if (_test_and_set_flag(CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1100 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1101 return -EINVAL;
1102 }
1103 if (!rt_is_raid10(rt)) {
1104 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1105 return -EINVAL;
1106 }
1107 raid10_format = raid10_name_to_format(arg);
1108 if (raid10_format < 0) {
1109 rs->ti->error = "Invalid 'raid10_format' value given";
1110 return raid10_format;
1111 }
1112 continue;
1113 }
1114
1115 if (kstrtouint(arg, 10, &value) < 0) {
1116 rs->ti->error = "Bad numerical argument given in raid params";
1117 return -EINVAL;
1118 }
1119
1120 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1121 /*
1122 * "rebuild" is being passed in by userspace to provide
1123 * indexes of replaced devices and to set up additional
1124 * devices on raid level takeover.
1125 */
1126 if (!_in_range(value, 0, rs->raid_disks - 1)) {
1127 rs->ti->error = "Invalid rebuild index given";
1128 return -EINVAL;
1129 }
1130
1131 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1132 rs->ti->error = "rebuild for this index already given";
1133 return -EINVAL;
1134 }
1135
1136 rd = rs->dev + value;
1137 clear_bit(In_sync, &rd->rdev.flags);
1138 clear_bit(Faulty, &rd->rdev.flags);
1139 rd->rdev.recovery_offset = 0;
1140 _set_flag(CTR_FLAG_REBUILD, &rs->ctr_flags);
1141 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1142 if (!rt_is_raid1(rt)) {
1143 rs->ti->error = "write_mostly option is only valid for RAID1";
1144 return -EINVAL;
1145 }
1146
1147 if (!_in_range(value, 0, rs->md.raid_disks - 1)) {
1148 rs->ti->error = "Invalid write_mostly index given";
1149 return -EINVAL;
1150 }
1151
1152 set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1153 _set_flag(CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1154 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1155 if (!rt_is_raid1(rt)) {
1156 rs->ti->error = "max_write_behind option is only valid for RAID1";
1157 return -EINVAL;
1158 }
1159
1160 if (_test_and_set_flag(CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1161 rs->ti->error = "Only one max_write_behind argument pair allowed";
1162 return -EINVAL;
1163 }
1164
1165 /*
1166 * In device-mapper, we specify things in sectors, but
1167 * MD records this value in kB
1168 */
1169 value /= 2;
1170 if (value > COUNTER_MAX) {
1171 rs->ti->error = "Max write-behind limit out of range";
1172 return -EINVAL;
1173 }
1174
1175 rs->md.bitmap_info.max_write_behind = value;
1176 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1177 if (_test_and_set_flag(CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1178 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1179 return -EINVAL;
1180 }
1181 if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
1182 rs->ti->error = "daemon sleep period out of range";
1183 return -EINVAL;
1184 }
1185 rs->md.bitmap_info.daemon_sleep = value;
1186 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1187 /* Userspace passes new data_offset after having extended the the data image LV */
1188 if (_test_and_set_flag(CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1189 rs->ti->error = "Only one data_offset argument pair allowed";
1190 return -EINVAL;
1191 }
1192 /* Ensure sensible data offset */
1193 if (value < 0) {
1194 rs->ti->error = "Bogus data_offset value";
1195 return -EINVAL;
1196 }
1197 rs->data_offset = value;
1198 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1199 /* Define the +/-# of disks to add to/remove from the given raid set */
1200 if (_test_and_set_flag(CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1201 rs->ti->error = "Only one delta_disks argument pair allowed";
1202 return -EINVAL;
1203 }
1204 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1205 if (!_in_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1206 rs->ti->error = "Too many delta_disk requested";
1207 return -EINVAL;
1208 }
1209
1210 rs->delta_disks = value;
1211 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1212 if (_test_and_set_flag(CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1213 rs->ti->error = "Only one stripe_cache argument pair allowed";
1214 return -EINVAL;
1215 }
1216
1217 /*
1218 * In device-mapper, we specify things in sectors, but
1219 * MD records this value in kB
1220 */
1221 value /= 2;
1222
1223 if (!rt_is_raid456(rt)) {
1224 rs->ti->error = "Inappropriate argument: stripe_cache";
1225 return -EINVAL;
1226 }
1227 if (raid5_set_cache_size(&rs->md, (int)value)) {
1228 rs->ti->error = "Bad stripe_cache size";
1229 return -EINVAL;
1230 }
1231
1232 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1233 if (_test_and_set_flag(CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1234 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1235 return -EINVAL;
1236 }
1237 if (value > INT_MAX) {
1238 rs->ti->error = "min_recovery_rate out of range";
1239 return -EINVAL;
1240 }
1241 rs->md.sync_speed_min = (int)value;
1242 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1243 if (_test_and_set_flag(CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1244 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1245 return -EINVAL;
1246 }
1247 if (value > INT_MAX) {
1248 rs->ti->error = "max_recovery_rate out of range";
1249 return -EINVAL;
1250 }
1251 rs->md.sync_speed_max = (int)value;
1252 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1253 if (_test_and_set_flag(CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1254 rs->ti->error = "Only one region_size argument pair allowed";
1255 return -EINVAL;
1256 }
1257
1258 region_size = value;
1259 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1260 if (_test_and_set_flag(CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1261 rs->ti->error = "Only one raid10_copies argument pair allowed";
1262 return -EINVAL;
1263 }
1264
1265 if (!_in_range(value, 2, rs->md.raid_disks)) {
1266 rs->ti->error = "Bad value for 'raid10_copies'";
1267 return -EINVAL;
1268 }
1269
1270 raid10_copies = value;
1271 } else {
1272 DMERR("Unable to parse RAID parameter: %s", key);
1273 rs->ti->error = "Unable to parse RAID parameter";
1274 return -EINVAL;
1275 }
1276 }
1277
1278 if (validate_region_size(rs, region_size))
1279 return -EINVAL;
1280
1281 if (rs->md.chunk_sectors)
1282 max_io_len = rs->md.chunk_sectors;
1283 else
1284 max_io_len = region_size;
1285
1286 if (dm_set_target_max_io_len(rs->ti, max_io_len))
1287 return -EINVAL;
1288
1289 if (rt_is_raid10(rt)) {
1290 if (raid10_copies > rs->md.raid_disks) {
1291 rs->ti->error = "Not enough devices to satisfy specification";
1292 return -EINVAL;
1293 }
1294
1295 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1296 if (rs->md.new_layout < 0) {
1297 rs->ti->error = "Error getting raid10 format";
1298 return rs->md.new_layout;
1299 }
1300
1301 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1302 if (!rt) {
1303 rs->ti->error = "Failed to recognize new raid10 layout";
1304 return -EINVAL;
1305 }
1306
1307 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1308 rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1309 _test_flag(CTR_FLAG_RAID10_USE_NEAR_SETS, rs->ctr_flags)) {
1310 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1311 return -EINVAL;
1312 }
1313
1314 /* (Len * #mirrors) / #devices */
1315 sectors_per_dev = rs->ti->len * raid10_copies;
1316 sector_div(sectors_per_dev, rs->md.raid_disks);
1317
1318 rs->md.layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1319 rs->md.new_layout = rs->md.layout;
1320 } else if (!rt_is_raid1(rt) &&
1321 sector_div(sectors_per_dev, (rs->md.raid_disks - rt->parity_devs))) {
1322 rs->ti->error = "Target length not divisible by number of data devices";
1323 return -EINVAL;
1324 }
1325
1326 rs->raid10_copies = raid10_copies;
1327 rs->md.dev_sectors = sectors_per_dev;
1328
1329 /* Assume there are no metadata devices until the drives are parsed */
1330 rs->md.persistent = 0;
1331 rs->md.external = 1;
1332
1333 /* Check, if any invalid ctr arguments have been passed in for the raid level */
1334 return rs_check_for_invalid_flags(rs);
1335 }
1336
1337 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1338 static unsigned int mddev_data_stripes(struct raid_set *rs)
1339 {
1340 return rs->md.raid_disks - rs->raid_type->parity_devs;
1341 }
1342
1343 static void do_table_event(struct work_struct *ws)
1344 {
1345 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1346
1347 dm_table_event(rs->ti->table);
1348 }
1349
1350 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
1351 {
1352 struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
1353
1354 return mddev_congested(&rs->md, bits);
1355 }
1356
1357 /*
1358 * Make sure a valid takover (level switch) is being requested on @rs
1359 *
1360 * Conversions of raid sets from one MD personality to another
1361 * have to conform to restrictions which are enforced here.
1362 *
1363 * Degration is already checked for in rs_check_conversion() below.
1364 */
1365 static int rs_check_takeover(struct raid_set *rs)
1366 {
1367 struct mddev *mddev = &rs->md;
1368 unsigned int near_copies;
1369
1370 switch (mddev->level) {
1371 case 0:
1372 /* raid0 -> raid1/5 with one disk */
1373 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1374 mddev->raid_disks == 1)
1375 return 0;
1376
1377 /* raid0 -> raid10 */
1378 if (mddev->new_level == 10 &&
1379 !(rs->raid_disks % 2))
1380 return 0;
1381
1382 /* raid0 with multiple disks -> raid4/5/6 */
1383 if (_in_range(mddev->new_level, 4, 6) &&
1384 mddev->new_layout == ALGORITHM_PARITY_N &&
1385 mddev->raid_disks > 1)
1386 return 0;
1387
1388 break;
1389
1390 case 10:
1391 /* Can't takeover raid10_offset! */
1392 if (_is_raid10_offset(mddev->layout))
1393 break;
1394
1395 near_copies = _raid10_near_copies(mddev->layout);
1396
1397 /* raid10* -> raid0 */
1398 if (mddev->new_level == 0) {
1399 /* Can takeover raid10_near with raid disks divisable by data copies! */
1400 if (near_copies > 1 &&
1401 !(mddev->raid_disks % near_copies)) {
1402 mddev->raid_disks /= near_copies;
1403 mddev->delta_disks = mddev->raid_disks;
1404 return 0;
1405 }
1406
1407 /* Can takeover raid10_far */
1408 if (near_copies == 1 &&
1409 _raid10_far_copies(mddev->layout) > 1)
1410 return 0;
1411
1412 break;
1413 }
1414
1415 /* raid10_{near,far} -> raid1 */
1416 if (mddev->new_level == 1 &&
1417 max(near_copies, _raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1418 return 0;
1419
1420 /* raid10_{near,far} with 2 disks -> raid4/5 */
1421 if (_in_range(mddev->new_level, 4, 5) &&
1422 mddev->raid_disks == 2)
1423 return 0;
1424 break;
1425
1426 case 1:
1427 /* raid1 with 2 disks -> raid4/5 */
1428 if (_in_range(mddev->new_level, 4, 5) &&
1429 mddev->raid_disks == 2) {
1430 mddev->degraded = 1;
1431 return 0;
1432 }
1433
1434 /* raid1 -> raid0 */
1435 if (mddev->new_level == 0 &&
1436 mddev->raid_disks == 1)
1437 return 0;
1438
1439 /* raid1 -> raid10 */
1440 if (mddev->new_level == 10)
1441 return 0;
1442
1443 break;
1444
1445 case 4:
1446 /* raid4 -> raid0 */
1447 if (mddev->new_level == 0)
1448 return 0;
1449
1450 /* raid4 -> raid1/5 with 2 disks */
1451 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1452 mddev->raid_disks == 2)
1453 return 0;
1454
1455 /* raid4 -> raid5/6 with parity N */
1456 if (_in_range(mddev->new_level, 5, 6) &&
1457 mddev->layout == ALGORITHM_PARITY_N)
1458 return 0;
1459 break;
1460
1461 case 5:
1462 /* raid5 with parity N -> raid0 */
1463 if (mddev->new_level == 0 &&
1464 mddev->layout == ALGORITHM_PARITY_N)
1465 return 0;
1466
1467 /* raid5 with parity N -> raid4 */
1468 if (mddev->new_level == 4 &&
1469 mddev->layout == ALGORITHM_PARITY_N)
1470 return 0;
1471
1472 /* raid5 with 2 disks -> raid1/4/10 */
1473 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1474 mddev->raid_disks == 2)
1475 return 0;
1476
1477 /* raid5 with parity N -> raid6 with parity N */
1478 if (mddev->new_level == 6 &&
1479 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1480 _in_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1481 return 0;
1482 break;
1483
1484 case 6:
1485 /* raid6 with parity N -> raid0 */
1486 if (mddev->new_level == 0 &&
1487 mddev->layout == ALGORITHM_PARITY_N)
1488 return 0;
1489
1490 /* raid6 with parity N -> raid4 */
1491 if (mddev->new_level == 4 &&
1492 mddev->layout == ALGORITHM_PARITY_N)
1493 return 0;
1494
1495 /* raid6_*_n with parity N -> raid5_* */
1496 if (mddev->new_level == 5 &&
1497 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1498 _in_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1499 return 0;
1500
1501 default:
1502 break;
1503 }
1504
1505 rs->ti->error = "takeover not possible";
1506 return -EINVAL;
1507 }
1508
1509 /* True if @rs requested to be taken over */
1510 static bool rs_takeover_requested(struct raid_set *rs)
1511 {
1512 return rs->md.new_level != rs->md.level;
1513 }
1514
1515 /* Features */
1516 #define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */
1517
1518 /* State flags for sb->flags */
1519 #define SB_FLAG_RESHAPE_ACTIVE 0x1
1520 #define SB_FLAG_RESHAPE_BACKWARDS 0x2
1521
1522 /*
1523 * This structure is never routinely used by userspace, unlike md superblocks.
1524 * Devices with this superblock should only ever be accessed via device-mapper.
1525 */
1526 #define DM_RAID_MAGIC 0x64526D44
1527 struct dm_raid_superblock {
1528 __le32 magic; /* "DmRd" */
1529 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1530
1531 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */
1532 __le32 array_position; /* The position of this drive in the raid set */
1533
1534 __le64 events; /* Incremented by md when superblock updated */
1535 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */
1536 /* indicate failures (see extension below) */
1537
1538 /*
1539 * This offset tracks the progress of the repair or replacement of
1540 * an individual drive.
1541 */
1542 __le64 disk_recovery_offset;
1543
1544 /*
1545 * This offset tracks the progress of the initial raid set
1546 * synchronisation/parity calculation.
1547 */
1548 __le64 array_resync_offset;
1549
1550 /*
1551 * raid characteristics
1552 */
1553 __le32 level;
1554 __le32 layout;
1555 __le32 stripe_sectors;
1556
1557 /********************************************************************
1558 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1559 *
1560 * FEATURE_FLAG_SUPPORTS_V190 in the features member indicates that those exist
1561 */
1562
1563 __le32 flags; /* Flags defining array states for reshaping */
1564
1565 /*
1566 * This offset tracks the progress of a raid
1567 * set reshape in order to be able to restart it
1568 */
1569 __le64 reshape_position;
1570
1571 /*
1572 * These define the properties of the array in case of an interrupted reshape
1573 */
1574 __le32 new_level;
1575 __le32 new_layout;
1576 __le32 new_stripe_sectors;
1577 __le32 delta_disks;
1578
1579 __le64 array_sectors; /* Array size in sectors */
1580
1581 /*
1582 * Sector offsets to data on devices (reshaping).
1583 * Needed to support out of place reshaping, thus
1584 * not writing over any stripes whilst converting
1585 * them from old to new layout
1586 */
1587 __le64 data_offset;
1588 __le64 new_data_offset;
1589
1590 __le64 sectors; /* Used device size in sectors */
1591
1592 /*
1593 * Additonal Bit field of devices indicating failures to support
1594 * up to 256 devices with the 1.9.0 on-disk metadata format
1595 */
1596 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1597
1598 __le32 incompat_features; /* Used to indicate any incompatible features */
1599
1600 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
1601 } __packed;
1602
1603 static int read_disk_sb(struct md_rdev *rdev, int size)
1604 {
1605 BUG_ON(!rdev->sb_page);
1606
1607 if (rdev->sb_loaded)
1608 return 0;
1609
1610 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, 1)) {
1611 DMERR("Failed to read superblock of device at position %d",
1612 rdev->raid_disk);
1613 md_error(rdev->mddev, rdev);
1614 return -EINVAL;
1615 }
1616
1617 rdev->sb_loaded = 1;
1618
1619 return 0;
1620 }
1621
1622 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1623 {
1624 failed_devices[0] = le64_to_cpu(sb->failed_devices);
1625 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
1626
1627 if (_test_flag(FEATURE_FLAG_SUPPORTS_V190, le32_to_cpu(sb->compat_features))) {
1628 int i = ARRAY_SIZE(sb->extended_failed_devices);
1629
1630 while (i--)
1631 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
1632 }
1633 }
1634
1635 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1636 {
1637 int i = ARRAY_SIZE(sb->extended_failed_devices);
1638
1639 sb->failed_devices = cpu_to_le64(failed_devices[0]);
1640 while (i--)
1641 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
1642 }
1643
1644 /*
1645 * Synchronize the superblock members with the raid set properties
1646 *
1647 * All superblock data is little endian.
1648 */
1649 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
1650 {
1651 bool update_failed_devices = false;
1652 unsigned int i;
1653 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
1654 struct dm_raid_superblock *sb;
1655 struct raid_set *rs = container_of(mddev, struct raid_set, md);
1656
1657 /* No metadata device, no superblock */
1658 if (!rdev->meta_bdev)
1659 return;
1660
1661 BUG_ON(!rdev->sb_page);
1662
1663 sb = page_address(rdev->sb_page);
1664
1665 sb_retrieve_failed_devices(sb, failed_devices);
1666
1667 for (i = 0; i < rs->raid_disks; i++)
1668 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
1669 update_failed_devices = true;
1670 set_bit(i, (void *) failed_devices);
1671 }
1672
1673 if (update_failed_devices)
1674 sb_update_failed_devices(sb, failed_devices);
1675
1676 sb->magic = cpu_to_le32(DM_RAID_MAGIC);
1677 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
1678
1679 sb->num_devices = cpu_to_le32(mddev->raid_disks);
1680 sb->array_position = cpu_to_le32(rdev->raid_disk);
1681
1682 sb->events = cpu_to_le64(mddev->events);
1683
1684 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
1685 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
1686
1687 sb->level = cpu_to_le32(mddev->level);
1688 sb->layout = cpu_to_le32(mddev->layout);
1689 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
1690
1691 sb->new_level = cpu_to_le32(mddev->new_level);
1692 sb->new_layout = cpu_to_le32(mddev->new_layout);
1693 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
1694
1695 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1696
1697 smp_rmb(); /* Make sure we access most recent reshape position */
1698 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1699 if (le64_to_cpu(sb->reshape_position) != MaxSector) {
1700 /* Flag ongoing reshape */
1701 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
1702
1703 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
1704 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
1705 } else
1706 /* Flag no reshape */
1707 _clear_flags(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS), &sb->flags);
1708
1709 sb->array_sectors = cpu_to_le64(mddev->array_sectors);
1710 sb->data_offset = cpu_to_le64(rdev->data_offset);
1711 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
1712 sb->sectors = cpu_to_le64(rdev->sectors);
1713
1714 /* Zero out the rest of the payload after the size of the superblock */
1715 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
1716 }
1717
1718 /*
1719 * super_load
1720 *
1721 * This function creates a superblock if one is not found on the device
1722 * and will decide which superblock to use if there's a choice.
1723 *
1724 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
1725 */
1726 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
1727 {
1728 int r;
1729 struct dm_raid_superblock *sb;
1730 struct dm_raid_superblock *refsb;
1731 uint64_t events_sb, events_refsb;
1732
1733 rdev->sb_start = 0;
1734 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
1735 if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
1736 DMERR("superblock size of a logical block is no longer valid");
1737 return -EINVAL;
1738 }
1739
1740 r = read_disk_sb(rdev, rdev->sb_size);
1741 if (r)
1742 return r;
1743
1744 sb = page_address(rdev->sb_page);
1745
1746 /*
1747 * Two cases that we want to write new superblocks and rebuild:
1748 * 1) New device (no matching magic number)
1749 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
1750 */
1751 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
1752 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
1753 super_sync(rdev->mddev, rdev);
1754
1755 set_bit(FirstUse, &rdev->flags);
1756 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
1757
1758 /* Force writing of superblocks to disk */
1759 set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
1760
1761 /* Any superblock is better than none, choose that if given */
1762 return refdev ? 0 : 1;
1763 }
1764
1765 if (!refdev)
1766 return 1;
1767
1768 events_sb = le64_to_cpu(sb->events);
1769
1770 refsb = page_address(refdev->sb_page);
1771 events_refsb = le64_to_cpu(refsb->events);
1772
1773 return (events_sb > events_refsb) ? 1 : 0;
1774 }
1775
1776 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
1777 {
1778 int role;
1779 unsigned int d;
1780 struct mddev *mddev = &rs->md;
1781 uint64_t events_sb;
1782 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
1783 struct dm_raid_superblock *sb;
1784 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
1785 struct md_rdev *r;
1786 struct dm_raid_superblock *sb2;
1787
1788 sb = page_address(rdev->sb_page);
1789 events_sb = le64_to_cpu(sb->events);
1790
1791 /*
1792 * Initialise to 1 if this is a new superblock.
1793 */
1794 mddev->events = events_sb ? : 1;
1795
1796 mddev->reshape_position = MaxSector;
1797
1798 /*
1799 * Reshaping is supported, e.g. reshape_position is valid
1800 * in superblock and superblock content is authoritative.
1801 */
1802 if (_test_flag(FEATURE_FLAG_SUPPORTS_V190, le32_to_cpu(sb->compat_features))) {
1803 /* Superblock is authoritative wrt given raid set layout! */
1804 mddev->raid_disks = le32_to_cpu(sb->num_devices);
1805 mddev->level = le32_to_cpu(sb->level);
1806 mddev->layout = le32_to_cpu(sb->layout);
1807 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
1808 mddev->new_level = le32_to_cpu(sb->new_level);
1809 mddev->new_layout = le32_to_cpu(sb->new_layout);
1810 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
1811 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1812 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
1813
1814 /* raid was reshaping and got interrupted */
1815 if (_test_flag(SB_FLAG_RESHAPE_ACTIVE, le32_to_cpu(sb->flags))) {
1816 if (_test_flag(CTR_FLAG_DELTA_DISKS, rs->ctr_flags)) {
1817 DMERR("Reshape requested but raid set is still reshaping");
1818 return -EINVAL;
1819 }
1820
1821 if (mddev->delta_disks < 0 ||
1822 (!mddev->delta_disks && _test_flag(SB_FLAG_RESHAPE_BACKWARDS, le32_to_cpu(sb->flags))))
1823 mddev->reshape_backwards = 1;
1824 else
1825 mddev->reshape_backwards = 0;
1826
1827 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1828 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
1829 }
1830
1831 } else {
1832 /*
1833 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
1834 */
1835 if (le32_to_cpu(sb->level) != mddev->level) {
1836 DMERR("Reshaping/takeover raid sets not yet supported. (raid level/stripes/size change)");
1837 return -EINVAL;
1838 }
1839 if (le32_to_cpu(sb->layout) != mddev->layout) {
1840 DMERR("Reshaping raid sets not yet supported. (raid layout change)");
1841 DMERR(" 0x%X vs 0x%X", le32_to_cpu(sb->layout), mddev->layout);
1842 DMERR(" Old layout: %s w/ %d copies",
1843 raid10_md_layout_to_format(le32_to_cpu(sb->layout)),
1844 raid10_md_layout_to_copies(le32_to_cpu(sb->layout)));
1845 DMERR(" New layout: %s w/ %d copies",
1846 raid10_md_layout_to_format(mddev->layout),
1847 raid10_md_layout_to_copies(mddev->layout));
1848 return -EINVAL;
1849 }
1850 if (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors) {
1851 DMERR("Reshaping raid sets not yet supported. (stripe sectors change)");
1852 return -EINVAL;
1853 }
1854
1855 /* We can only change the number of devices in raid1 with old (i.e. pre 1.0.7) metadata */
1856 if (!rt_is_raid1(rs->raid_type) &&
1857 (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
1858 DMERR("Reshaping raid sets not yet supported. (device count change from %u to %u)",
1859 sb->num_devices, mddev->raid_disks);
1860 return -EINVAL;
1861 }
1862
1863 /* Table line is checked vs. authoritative superblock */
1864 rs_set_new(rs);
1865 }
1866
1867 if (!_test_flag(CTR_FLAG_NOSYNC, rs->ctr_flags))
1868 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
1869
1870 /*
1871 * During load, we set FirstUse if a new superblock was written.
1872 * There are two reasons we might not have a superblock:
1873 * 1) The raid set is brand new - in which case, all of the
1874 * devices must have their In_sync bit set. Also,
1875 * recovery_cp must be 0, unless forced.
1876 * 2) This is a new device being added to an old raid set
1877 * and the new device needs to be rebuilt - in which
1878 * case the In_sync bit will /not/ be set and
1879 * recovery_cp must be MaxSector.
1880 */
1881 d = 0;
1882 rdev_for_each(r, mddev) {
1883 if (test_bit(FirstUse, &r->flags))
1884 new_devs++;
1885
1886 if (!test_bit(In_sync, &r->flags)) {
1887 DMINFO("Device %d specified for rebuild; clearing superblock",
1888 r->raid_disk);
1889 rebuilds++;
1890
1891 if (test_bit(FirstUse, &r->flags))
1892 rebuild_and_new++;
1893 }
1894
1895 d++;
1896 }
1897
1898 if (new_devs == rs->raid_disks || !rebuilds) {
1899 /* Replace a broken device */
1900 if (new_devs == 1 && !rs->delta_disks)
1901 ;
1902 if (new_devs == rs->raid_disks) {
1903 DMINFO("Superblocks created for new raid set");
1904 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
1905 _set_flag(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
1906 mddev->recovery_cp = 0;
1907 } else if (new_devs && new_devs != rs->raid_disks && !rebuilds) {
1908 DMERR("New device injected into existing raid set without "
1909 "'delta_disks' or 'rebuild' parameter specified");
1910 return -EINVAL;
1911 }
1912 } else if (new_devs && new_devs != rebuilds) {
1913 DMERR("%u 'rebuild' devices cannot be injected into"
1914 " a raid set with %u other first-time devices",
1915 rebuilds, new_devs);
1916 return -EINVAL;
1917 } else if (rebuilds) {
1918 if (rebuild_and_new && rebuilds != rebuild_and_new) {
1919 DMERR("new device%s provided without 'rebuild'",
1920 new_devs > 1 ? "s" : "");
1921 return -EINVAL;
1922 } else if (mddev->recovery_cp != MaxSector) {
1923 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
1924 (unsigned long long) mddev->recovery_cp);
1925 return -EINVAL;
1926 } else if (mddev->reshape_position != MaxSector) {
1927 DMERR("'rebuild' specified while raid set is being reshaped");
1928 return -EINVAL;
1929 }
1930 }
1931
1932 /*
1933 * Now we set the Faulty bit for those devices that are
1934 * recorded in the superblock as failed.
1935 */
1936 sb_retrieve_failed_devices(sb, failed_devices);
1937 rdev_for_each(r, mddev) {
1938 if (!r->sb_page)
1939 continue;
1940 sb2 = page_address(r->sb_page);
1941 sb2->failed_devices = 0;
1942 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
1943
1944 /*
1945 * Check for any device re-ordering.
1946 */
1947 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
1948 role = le32_to_cpu(sb2->array_position);
1949 if (role < 0)
1950 continue;
1951
1952 if (role != r->raid_disk) {
1953 if (_is_raid10_near(mddev->layout)) {
1954 if (mddev->raid_disks % _raid10_near_copies(mddev->layout) ||
1955 rs->raid_disks % rs->raid10_copies) {
1956 rs->ti->error =
1957 "Cannot change raid10 near set to odd # of devices!";
1958 return -EINVAL;
1959 }
1960
1961 sb2->array_position = cpu_to_le32(r->raid_disk);
1962
1963 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
1964 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
1965 !rt_is_raid1(rs->raid_type)) {
1966 rs->ti->error = "Cannot change device positions in raid set";
1967 return -EINVAL;
1968 }
1969
1970 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
1971 }
1972
1973 /*
1974 * Partial recovery is performed on
1975 * returning failed devices.
1976 */
1977 if (test_bit(role, (void *) failed_devices))
1978 set_bit(Faulty, &r->flags);
1979 }
1980 }
1981
1982 return 0;
1983 }
1984
1985 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
1986 {
1987 struct mddev *mddev = &rs->md;
1988 struct dm_raid_superblock *sb;
1989
1990 if (rs_is_raid0(rs) || !rdev->sb_page)
1991 return 0;
1992
1993 sb = page_address(rdev->sb_page);
1994
1995 /*
1996 * If mddev->events is not set, we know we have not yet initialized
1997 * the array.
1998 */
1999 if (!mddev->events && super_init_validation(rs, rdev))
2000 return -EINVAL;
2001
2002 if (le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2003 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2004 return -EINVAL;
2005 }
2006
2007 if (sb->incompat_features) {
2008 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2009 return -EINVAL;
2010 }
2011
2012 /* Enable bitmap creation for RAID levels != 0 */
2013 mddev->bitmap_info.offset = rt_is_raid0(rs->raid_type) ? 0 : to_sector(4096);
2014 rdev->mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2015
2016 if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2017 /* Retrieve device size stored in superblock to be prepared for shrink */
2018 rdev->sectors = le64_to_cpu(sb->sectors);
2019 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2020 if (rdev->recovery_offset == MaxSector)
2021 set_bit(In_sync, &rdev->flags);
2022 /*
2023 * If no reshape in progress -> we're recovering single
2024 * disk(s) and have to set the device(s) to out-of-sync
2025 */
2026 else if (rs->md.reshape_position == MaxSector)
2027 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2028 }
2029
2030 /*
2031 * If a device comes back, set it as not In_sync and no longer faulty.
2032 */
2033 if (test_and_clear_bit(Faulty, &rdev->flags)) {
2034 rdev->recovery_offset = 0;
2035 clear_bit(In_sync, &rdev->flags);
2036 rdev->saved_raid_disk = rdev->raid_disk;
2037 }
2038
2039 /* Reshape support -> restore repective data offsets */
2040 rdev->data_offset = le64_to_cpu(sb->data_offset);
2041 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2042
2043 return 0;
2044 }
2045
2046 /*
2047 * Analyse superblocks and select the freshest.
2048 */
2049 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2050 {
2051 int r;
2052 struct raid_dev *dev;
2053 struct md_rdev *rdev, *tmp, *freshest;
2054 struct mddev *mddev = &rs->md;
2055
2056 freshest = NULL;
2057 rdev_for_each_safe(rdev, tmp, mddev) {
2058 /*
2059 * Skipping super_load due to CTR_FLAG_SYNC will cause
2060 * the array to undergo initialization again as
2061 * though it were new. This is the intended effect
2062 * of the "sync" directive.
2063 *
2064 * When reshaping capability is added, we must ensure
2065 * that the "sync" directive is disallowed during the
2066 * reshape.
2067 */
2068 if (_test_flag(CTR_FLAG_SYNC, rs->ctr_flags))
2069 continue;
2070
2071 if (!rdev->meta_bdev)
2072 continue;
2073
2074 r = super_load(rdev, freshest);
2075
2076 switch (r) {
2077 case 1:
2078 freshest = rdev;
2079 break;
2080 case 0:
2081 break;
2082 default:
2083 dev = container_of(rdev, struct raid_dev, rdev);
2084 if (dev->meta_dev)
2085 dm_put_device(ti, dev->meta_dev);
2086
2087 dev->meta_dev = NULL;
2088 rdev->meta_bdev = NULL;
2089
2090 if (rdev->sb_page)
2091 put_page(rdev->sb_page);
2092
2093 rdev->sb_page = NULL;
2094
2095 rdev->sb_loaded = 0;
2096
2097 /*
2098 * We might be able to salvage the data device
2099 * even though the meta device has failed. For
2100 * now, we behave as though '- -' had been
2101 * set for this device in the table.
2102 */
2103 if (dev->data_dev)
2104 dm_put_device(ti, dev->data_dev);
2105
2106 dev->data_dev = NULL;
2107 rdev->bdev = NULL;
2108
2109 list_del(&rdev->same_set);
2110 }
2111 }
2112
2113 if (!freshest)
2114 return 0;
2115
2116 if (validate_raid_redundancy(rs)) {
2117 rs->ti->error = "Insufficient redundancy to activate array";
2118 return -EINVAL;
2119 }
2120
2121 /*
2122 * Validation of the freshest device provides the source of
2123 * validation for the remaining devices.
2124 */
2125 if (super_validate(rs, freshest)) {
2126 rs->ti->error = "Unable to assemble array: Invalid superblocks";
2127 return -EINVAL;
2128 }
2129
2130 rdev_for_each(rdev, mddev)
2131 if ((rdev != freshest) && super_validate(rs, rdev))
2132 return -EINVAL;
2133
2134 return 0;
2135 }
2136
2137 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2138 static void _reorder_raid_disk_indexes(struct raid_set *rs)
2139 {
2140 int i = 0;
2141 struct md_rdev *rdev;
2142
2143 rdev_for_each(rdev, &rs->md) {
2144 rdev->raid_disk = i++;
2145 rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2146 }
2147 }
2148
2149 /*
2150 * Setup @rs for takeover by a different raid level
2151 */
2152 static int rs_setup_takeover(struct raid_set *rs)
2153 {
2154 struct mddev *mddev = &rs->md;
2155 struct md_rdev *rdev;
2156 unsigned int d = mddev->raid_disks = rs->raid_disks;
2157 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2158
2159 if (rt_is_raid10(rs->raid_type)) {
2160 if (mddev->level == 0) {
2161 /* Userpace reordered disks -> adjust raid_disk indexes */
2162 _reorder_raid_disk_indexes(rs);
2163
2164 /* raid0 -> raid10_far layout */
2165 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2166 rs->raid10_copies);
2167 } else if (mddev->level == 1)
2168 /* raid1 -> raid10_near layout */
2169 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2170 rs->raid_disks);
2171 else
2172 return -EINVAL;
2173
2174 }
2175
2176 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2177 mddev->recovery_cp = MaxSector;
2178
2179 while (d--) {
2180 rdev = &rs->dev[d].rdev;
2181
2182 if (test_bit(d, (void *) rs->rebuild_disks)) {
2183 clear_bit(In_sync, &rdev->flags);
2184 clear_bit(Faulty, &rdev->flags);
2185 mddev->recovery_cp = rdev->recovery_offset = 0;
2186 /* Bitmap has to be created when we do an "up" takeover */
2187 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2188 }
2189
2190 rdev->new_data_offset = new_data_offset;
2191 }
2192
2193 return 0;
2194 }
2195
2196 /*
2197 * Enable/disable discard support on RAID set depending on
2198 * RAID level and discard properties of underlying RAID members.
2199 */
2200 static void configure_discard_support(struct raid_set *rs)
2201 {
2202 int i;
2203 bool raid456;
2204 struct dm_target *ti = rs->ti;
2205
2206 /* Assume discards not supported until after checks below. */
2207 ti->discards_supported = false;
2208
2209 /* RAID level 4,5,6 require discard_zeroes_data for data integrity! */
2210 raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6);
2211
2212 for (i = 0; i < rs->md.raid_disks; i++) {
2213 struct request_queue *q;
2214
2215 if (!rs->dev[i].rdev.bdev)
2216 continue;
2217
2218 q = bdev_get_queue(rs->dev[i].rdev.bdev);
2219 if (!q || !blk_queue_discard(q))
2220 return;
2221
2222 if (raid456) {
2223 if (!q->limits.discard_zeroes_data)
2224 return;
2225 if (!devices_handle_discard_safely) {
2226 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2227 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2228 return;
2229 }
2230 }
2231 }
2232
2233 /* All RAID members properly support discards */
2234 ti->discards_supported = true;
2235
2236 /*
2237 * RAID1 and RAID10 personalities require bio splitting,
2238 * RAID0/4/5/6 don't and process large discard bios properly.
2239 */
2240 ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10);
2241 ti->num_discard_bios = 1;
2242 }
2243
2244 /*
2245 * Construct a RAID0/1/10/4/5/6 mapping:
2246 * Args:
2247 * <raid_type> <#raid_params> <raid_params>{0,} \
2248 * <#raid_devs> [<meta_dev1> <dev1>]{1,}
2249 *
2250 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for
2251 * details on possible <raid_params>.
2252 *
2253 * Userspace is free to initialize the metadata devices, hence the superblocks to
2254 * enforce recreation based on the passed in table parameters.
2255 *
2256 */
2257 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
2258 {
2259 int r;
2260 struct raid_type *rt;
2261 unsigned num_raid_params, num_raid_devs;
2262 struct raid_set *rs = NULL;
2263 const char *arg;
2264 struct dm_arg_set as = { argc, argv }, as_nrd;
2265 struct dm_arg _args[] = {
2266 { 0, as.argc, "Cannot understand number of raid parameters" },
2267 { 1, 254, "Cannot understand number of raid devices parameters" }
2268 };
2269
2270 /* Must have <raid_type> */
2271 arg = dm_shift_arg(&as);
2272 if (!arg) {
2273 ti->error = "No arguments";
2274 return -EINVAL;
2275 }
2276
2277 rt = get_raid_type(arg);
2278 if (!rt) {
2279 ti->error = "Unrecognised raid_type";
2280 return -EINVAL;
2281 }
2282
2283 /* Must have <#raid_params> */
2284 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
2285 return -EINVAL;
2286
2287 /* number of raid device tupples <meta_dev data_dev> */
2288 as_nrd = as;
2289 dm_consume_args(&as_nrd, num_raid_params);
2290 _args[1].max = (as_nrd.argc - 1) / 2;
2291 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
2292 return -EINVAL;
2293
2294 if (!_in_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
2295 ti->error = "Invalid number of supplied raid devices";
2296 return -EINVAL;
2297 }
2298
2299 rs = context_alloc(ti, rt, num_raid_devs);
2300 if (IS_ERR(rs))
2301 return PTR_ERR(rs);
2302
2303 r = parse_raid_params(rs, &as, num_raid_params);
2304 if (r)
2305 goto bad;
2306
2307 r = parse_dev_params(rs, &as);
2308 if (r)
2309 goto bad;
2310
2311 rs->md.sync_super = super_sync;
2312
2313 /*
2314 * Backup any new raid set level, layout, ...
2315 * requested to be able to compare to superblock
2316 * members for conversion decisions.
2317 */
2318 rs_config_backup(rs);
2319
2320 r = analyse_superblocks(ti, rs);
2321 if (r)
2322 goto bad;
2323
2324 INIT_WORK(&rs->md.event_work, do_table_event);
2325 ti->private = rs;
2326 ti->num_flush_bios = 1;
2327
2328 /* Restore any requested new layout for conversion decision */
2329 rs_config_restore(rs);
2330
2331 /*
2332 * If a takeover is needed, just set the level to
2333 * the new requested one and allow the raid set to run.
2334 */
2335 if (rs_takeover_requested(rs)) {
2336 r = rs_check_takeover(rs);
2337 if (r)
2338 return r;
2339
2340 r = rs_setup_takeover(rs);
2341 if (r)
2342 return r;
2343
2344 /* Tell preresume to update superblocks with new layout */
2345 _set_flag(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2346 rs_set_new(rs);
2347 } else
2348 rs_set_cur(rs);
2349
2350 /* Start raid set read-only and assumed clean to change in raid_resume() */
2351 rs->md.ro = 1;
2352 rs->md.in_sync = 1;
2353 set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
2354
2355 /* Has to be held on running the array */
2356 mddev_lock_nointr(&rs->md);
2357 r = md_run(&rs->md);
2358 rs->md.in_sync = 0; /* Assume already marked dirty */
2359 mddev_unlock(&rs->md);
2360
2361 if (r) {
2362 ti->error = "Fail to run raid array";
2363 goto bad;
2364 }
2365
2366 if (ti->len != rs->md.array_sectors) {
2367 ti->error = "Array size does not match requested target length";
2368 r = -EINVAL;
2369 goto size_mismatch;
2370 }
2371 rs->callbacks.congested_fn = raid_is_congested;
2372 dm_table_add_target_callbacks(ti->table, &rs->callbacks);
2373
2374 mddev_suspend(&rs->md);
2375 return 0;
2376
2377 size_mismatch:
2378 md_stop(&rs->md);
2379 bad:
2380 context_free(rs);
2381
2382 return r;
2383 }
2384
2385 static void raid_dtr(struct dm_target *ti)
2386 {
2387 struct raid_set *rs = ti->private;
2388
2389 list_del_init(&rs->callbacks.list);
2390 md_stop(&rs->md);
2391 context_free(rs);
2392 }
2393
2394 static int raid_map(struct dm_target *ti, struct bio *bio)
2395 {
2396 struct raid_set *rs = ti->private;
2397 struct mddev *mddev = &rs->md;
2398
2399 mddev->pers->make_request(mddev, bio);
2400
2401 return DM_MAPIO_SUBMITTED;
2402 }
2403
2404 /* Return string describing the current sync action of @mddev */
2405 static const char *decipher_sync_action(struct mddev *mddev)
2406 {
2407 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
2408 return "frozen";
2409
2410 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2411 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
2412 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2413 return "reshape";
2414
2415 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2416 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2417 return "resync";
2418 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2419 return "check";
2420 return "repair";
2421 }
2422
2423 if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
2424 return "recover";
2425 }
2426
2427 return "idle";
2428 }
2429
2430 /*
2431 * Return status string @rdev
2432 *
2433 * Status characters:
2434 *
2435 * 'D' = Dead/Failed device
2436 * 'a' = Alive but not in-sync
2437 * 'A' = Alive and in-sync
2438 */
2439 static const char *_raid_dev_status(struct md_rdev *rdev, bool array_in_sync)
2440 {
2441 if (test_bit(Faulty, &rdev->flags))
2442 return "D";
2443 else if (!array_in_sync || !test_bit(In_sync, &rdev->flags))
2444 return "a";
2445 else
2446 return "A";
2447 }
2448
2449 /* Helper to return resync/reshape progress for @rs and @array_in_sync */
2450 static sector_t rs_get_progress(struct raid_set *rs,
2451 sector_t resync_max_sectors, bool *array_in_sync)
2452 {
2453 sector_t r, recovery_cp, curr_resync_completed;
2454 struct mddev *mddev = &rs->md;
2455
2456 curr_resync_completed = mddev->curr_resync_completed ?: mddev->recovery_cp;
2457 recovery_cp = mddev->recovery_cp;
2458 *array_in_sync = false;
2459
2460 if (rs_is_raid0(rs)) {
2461 r = resync_max_sectors;
2462 *array_in_sync = true;
2463
2464 } else {
2465 r = mddev->reshape_position;
2466
2467 /* Reshape is relative to the array size */
2468 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
2469 r != MaxSector) {
2470 if (r == MaxSector) {
2471 *array_in_sync = true;
2472 r = resync_max_sectors;
2473 } else {
2474 /* Got to reverse on backward reshape */
2475 if (mddev->reshape_backwards)
2476 r = mddev->array_sectors - r;
2477
2478 /* Devide by # of data stripes */
2479 sector_div(r, mddev_data_stripes(rs));
2480 }
2481
2482 /* Sync is relative to the component device size */
2483 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2484 r = curr_resync_completed;
2485 else
2486 r = recovery_cp;
2487
2488 if (r == MaxSector) {
2489 /*
2490 * Sync complete.
2491 */
2492 *array_in_sync = true;
2493 r = resync_max_sectors;
2494 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2495 /*
2496 * If "check" or "repair" is occurring, the raid set has
2497 * undergone an initial sync and the health characters
2498 * should not be 'a' anymore.
2499 */
2500 *array_in_sync = true;
2501 } else {
2502 struct md_rdev *rdev;
2503
2504 /*
2505 * The raid set may be doing an initial sync, or it may
2506 * be rebuilding individual components. If all the
2507 * devices are In_sync, then it is the raid set that is
2508 * being initialized.
2509 */
2510 rdev_for_each(rdev, mddev)
2511 if (!test_bit(In_sync, &rdev->flags))
2512 *array_in_sync = true;
2513 #if 0
2514 r = 0; /* HM FIXME: TESTME: https://bugzilla.redhat.com/show_bug.cgi?id=1210637 ? */
2515 #endif
2516 }
2517 }
2518
2519 return r;
2520 }
2521
2522 /* Helper to return @dev name or "-" if !@dev */
2523 static const char *_get_dev_name(struct dm_dev *dev)
2524 {
2525 return dev ? dev->name : "-";
2526 }
2527
2528 static void raid_status(struct dm_target *ti, status_type_t type,
2529 unsigned int status_flags, char *result, unsigned int maxlen)
2530 {
2531 struct raid_set *rs = ti->private;
2532 struct mddev *mddev = &rs->md;
2533 struct r5conf *conf = mddev->private;
2534 int max_nr_stripes = conf ? conf->max_nr_stripes : 0;
2535 bool array_in_sync;
2536 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
2537 unsigned int sz = 0;
2538 unsigned int write_mostly_params = 0;
2539 sector_t progress, resync_max_sectors, resync_mismatches;
2540 const char *sync_action;
2541 struct raid_type *rt;
2542 struct md_rdev *rdev;
2543
2544 switch (type) {
2545 case STATUSTYPE_INFO:
2546 /* *Should* always succeed */
2547 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2548 if (!rt)
2549 return;
2550
2551 DMEMIT("%s %d ", rt ? rt->name : "unknown", mddev->raid_disks);
2552
2553 /* Access most recent mddev properties for status output */
2554 smp_rmb();
2555 /* Get sensible max sectors even if raid set not yet started */
2556 resync_max_sectors = _test_flag(RT_FLAG_RS_PRERESUMED, rs->runtime_flags) ?
2557 mddev->resync_max_sectors : mddev->dev_sectors;
2558 progress = rs_get_progress(rs, resync_max_sectors, &array_in_sync);
2559 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
2560 (unsigned int) atomic64_read(&mddev->resync_mismatches) : 0;
2561 sync_action = decipher_sync_action(&rs->md);
2562
2563 /* HM FIXME: do we want another state char for raid0? It shows 'D' or 'A' now */
2564 rdev_for_each(rdev, mddev)
2565 DMEMIT(_raid_dev_status(rdev, array_in_sync));
2566
2567 /*
2568 * In-sync/Reshape ratio:
2569 * The in-sync ratio shows the progress of:
2570 * - Initializing the raid set
2571 * - Rebuilding a subset of devices of the raid set
2572 * The user can distinguish between the two by referring
2573 * to the status characters.
2574 *
2575 * The reshape ratio shows the progress of
2576 * changing the raid layout or the number of
2577 * disks of a raid set
2578 */
2579 DMEMIT(" %llu/%llu", (unsigned long long) progress,
2580 (unsigned long long) resync_max_sectors);
2581
2582 /*
2583 * v1.5.0+:
2584 *
2585 * Sync action:
2586 * See Documentation/device-mapper/dm-raid.txt for
2587 * information on each of these states.
2588 */
2589 DMEMIT(" %s", sync_action);
2590
2591 /*
2592 * v1.5.0+:
2593 *
2594 * resync_mismatches/mismatch_cnt
2595 * This field shows the number of discrepancies found when
2596 * performing a "check" of the raid set.
2597 */
2598 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
2599
2600 /*
2601 * v1.9.0+:
2602 *
2603 * data_offset (needed for out of space reshaping)
2604 * This field shows the data offset into the data
2605 * image LV where the first stripes data starts.
2606 *
2607 * We keep data_offset equal on all raid disks of the set,
2608 * so retrieving it from the first raid disk is sufficient.
2609 */
2610 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
2611 break;
2612
2613 case STATUSTYPE_TABLE:
2614 /* Report the table line string you would use to construct this raid set */
2615
2616 /* Calculate raid parameter count */
2617 rdev_for_each(rdev, mddev)
2618 if (test_bit(WriteMostly, &rdev->flags))
2619 write_mostly_params += 2;
2620 raid_param_cnt += memweight(rs->rebuild_disks,
2621 DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks)) * 2 +
2622 write_mostly_params +
2623 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
2624 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
2625 /* Emit table line */
2626 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
2627 if (_test_flag(CTR_FLAG_RAID10_FORMAT, rs->ctr_flags))
2628 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
2629 raid10_md_layout_to_format(mddev->layout));
2630 if (_test_flag(CTR_FLAG_RAID10_COPIES, rs->ctr_flags))
2631 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
2632 raid10_md_layout_to_copies(mddev->layout));
2633 if (_test_flag(CTR_FLAG_NOSYNC, rs->ctr_flags))
2634 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
2635 if (_test_flag(CTR_FLAG_SYNC, rs->ctr_flags))
2636 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
2637 if (_test_flag(CTR_FLAG_REGION_SIZE, rs->ctr_flags))
2638 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
2639 (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
2640 if (_test_flag(CTR_FLAG_DATA_OFFSET, rs->ctr_flags))
2641 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
2642 (unsigned long long) rs->data_offset);
2643 if (_test_flag(CTR_FLAG_DAEMON_SLEEP, rs->ctr_flags))
2644 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
2645 mddev->bitmap_info.daemon_sleep);
2646 if (_test_flag(CTR_FLAG_DELTA_DISKS, rs->ctr_flags))
2647 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
2648 mddev->delta_disks);
2649 if (_test_flag(CTR_FLAG_STRIPE_CACHE, rs->ctr_flags))
2650 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
2651 max_nr_stripes);
2652 rdev_for_each(rdev, mddev)
2653 if (test_bit(rdev->raid_disk, (void *) rs->rebuild_disks))
2654 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD),
2655 rdev->raid_disk);
2656 rdev_for_each(rdev, mddev)
2657 if (test_bit(WriteMostly, &rdev->flags))
2658 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
2659 rdev->raid_disk);
2660 if (_test_flag(CTR_FLAG_MAX_WRITE_BEHIND, rs->ctr_flags))
2661 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
2662 mddev->bitmap_info.max_write_behind);
2663 if (_test_flag(CTR_FLAG_MAX_RECOVERY_RATE, rs->ctr_flags))
2664 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
2665 mddev->sync_speed_max);
2666 if (_test_flag(CTR_FLAG_MIN_RECOVERY_RATE, rs->ctr_flags))
2667 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
2668 mddev->sync_speed_min);
2669 DMEMIT(" %d", rs->raid_disks);
2670 rdev_for_each(rdev, mddev) {
2671 struct raid_dev *rd = container_of(rdev, struct raid_dev, rdev);
2672
2673 DMEMIT(" %s %s", _get_dev_name(rd->meta_dev),
2674 _get_dev_name(rd->data_dev));
2675 }
2676 }
2677 }
2678
2679 static int raid_message(struct dm_target *ti, unsigned argc, char **argv)
2680 {
2681 struct raid_set *rs = ti->private;
2682 struct mddev *mddev = &rs->md;
2683
2684 if (!strcasecmp(argv[0], "reshape")) {
2685 DMERR("Reshape not supported.");
2686 return -EINVAL;
2687 }
2688
2689 if (!mddev->pers || !mddev->pers->sync_request)
2690 return -EINVAL;
2691
2692 if (!strcasecmp(argv[0], "frozen"))
2693 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
2694 else
2695 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
2696
2697 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
2698 if (mddev->sync_thread) {
2699 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2700 md_reap_sync_thread(mddev);
2701 }
2702 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2703 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2704 return -EBUSY;
2705 else if (!strcasecmp(argv[0], "resync"))
2706 ; /* MD_RECOVERY_NEEDED set below */
2707 else if (!strcasecmp(argv[0], "recover"))
2708 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2709 else {
2710 if (!strcasecmp(argv[0], "check"))
2711 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2712 else if (!!strcasecmp(argv[0], "repair"))
2713 return -EINVAL;
2714 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2715 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2716 }
2717 if (mddev->ro == 2) {
2718 /* A write to sync_action is enough to justify
2719 * canceling read-auto mode
2720 */
2721 mddev->ro = 0;
2722 if (!mddev->suspended && mddev->sync_thread)
2723 md_wakeup_thread(mddev->sync_thread);
2724 }
2725 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2726 if (!mddev->suspended && mddev->thread)
2727 md_wakeup_thread(mddev->thread);
2728
2729 return 0;
2730 }
2731
2732 static int raid_iterate_devices(struct dm_target *ti,
2733 iterate_devices_callout_fn fn, void *data)
2734 {
2735 struct raid_set *rs = ti->private;
2736 unsigned i;
2737 int r = 0;
2738
2739 for (i = 0; !r && i < rs->md.raid_disks; i++)
2740 if (rs->dev[i].data_dev)
2741 r = fn(ti,
2742 rs->dev[i].data_dev,
2743 0, /* No offset on data devs */
2744 rs->md.dev_sectors,
2745 data);
2746
2747 return r;
2748 }
2749
2750 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
2751 {
2752 struct raid_set *rs = ti->private;
2753 unsigned chunk_size = rs->md.chunk_sectors << 9;
2754 struct r5conf *conf = rs->md.private;
2755
2756 blk_limits_io_min(limits, chunk_size);
2757 blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
2758 }
2759
2760 static void raid_presuspend(struct dm_target *ti)
2761 {
2762 struct raid_set *rs = ti->private;
2763
2764 md_stop_writes(&rs->md);
2765 }
2766
2767 static void raid_postsuspend(struct dm_target *ti)
2768 {
2769 struct raid_set *rs = ti->private;
2770
2771 mddev_suspend(&rs->md);
2772 }
2773
2774 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
2775 {
2776 int i;
2777 uint64_t failed_devices, cleared_failed_devices = 0;
2778 unsigned long flags;
2779 struct dm_raid_superblock *sb;
2780 struct md_rdev *r;
2781
2782 for (i = 0; i < rs->md.raid_disks; i++) {
2783 r = &rs->dev[i].rdev;
2784 if (test_bit(Faulty, &r->flags) && r->sb_page &&
2785 sync_page_io(r, 0, r->sb_size, r->sb_page, REQ_OP_READ, 0,
2786 1)) {
2787 DMINFO("Faulty %s device #%d has readable super block."
2788 " Attempting to revive it.",
2789 rs->raid_type->name, i);
2790
2791 /*
2792 * Faulty bit may be set, but sometimes the array can
2793 * be suspended before the personalities can respond
2794 * by removing the device from the array (i.e. calling
2795 * 'hot_remove_disk'). If they haven't yet removed
2796 * the failed device, its 'raid_disk' number will be
2797 * '>= 0' - meaning we must call this function
2798 * ourselves.
2799 */
2800 if ((r->raid_disk >= 0) &&
2801 (r->mddev->pers->hot_remove_disk(r->mddev, r) != 0))
2802 /* Failed to revive this device, try next */
2803 continue;
2804
2805 r->raid_disk = i;
2806 r->saved_raid_disk = i;
2807 flags = r->flags;
2808 clear_bit(Faulty, &r->flags);
2809 clear_bit(WriteErrorSeen, &r->flags);
2810 clear_bit(In_sync, &r->flags);
2811 if (r->mddev->pers->hot_add_disk(r->mddev, r)) {
2812 r->raid_disk = -1;
2813 r->saved_raid_disk = -1;
2814 r->flags = flags;
2815 } else {
2816 r->recovery_offset = 0;
2817 cleared_failed_devices |= 1 << i;
2818 }
2819 }
2820 }
2821 if (cleared_failed_devices) {
2822 rdev_for_each(r, &rs->md) {
2823 sb = page_address(r->sb_page);
2824 failed_devices = le64_to_cpu(sb->failed_devices);
2825 failed_devices &= ~cleared_failed_devices;
2826 sb->failed_devices = cpu_to_le64(failed_devices);
2827 }
2828 }
2829 }
2830
2831 /* Load the dirty region bitmap */
2832 static int _bitmap_load(struct raid_set *rs)
2833 {
2834 int r = 0;
2835
2836 /* Try loading the bitmap unless "raid0", which does not have one */
2837 if (!rs_is_raid0(rs) &&
2838 !_test_and_set_flag(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
2839 r = bitmap_load(&rs->md);
2840 if (r)
2841 DMERR("Failed to load bitmap");
2842 }
2843
2844 return r;
2845 }
2846
2847 static int raid_preresume(struct dm_target *ti)
2848 {
2849 struct raid_set *rs = ti->private;
2850 struct mddev *mddev = &rs->md;
2851
2852 /* This is a resume after a suspend of the set -> it's already started */
2853 if (_test_and_set_flag(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
2854 return 0;
2855
2856 /*
2857 * The superblocks need to be updated on disk if the
2858 * array is new or _bitmap_load will overwrite them
2859 * in core with old data.
2860 *
2861 * In case the array got modified (takeover/reshape/resize)
2862 * or the data offsets on the component devices changed, they
2863 * have to be updated as well.
2864 *
2865 * Have to switch to readwrite and back in order to
2866 * allow for the superblock updates.
2867 */
2868 if (_test_and_clear_flag(RT_FLAG_UPDATE_SBS, &rs->runtime_flags)) {
2869 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2870 mddev->ro = 0;
2871 md_update_sb(mddev, 1);
2872 mddev->ro = 1;
2873 }
2874
2875 /*
2876 * Disable/enable discard support on raid set after any
2877 * conversion, because devices can have been added
2878 */
2879 configure_discard_support(rs);
2880
2881 /* Load the bitmap from disk unless raid0 */
2882 return _bitmap_load(rs);
2883 }
2884
2885 static void raid_resume(struct dm_target *ti)
2886 {
2887 struct raid_set *rs = ti->private;
2888 struct mddev *mddev = &rs->md;
2889
2890 if (_test_and_set_flag(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
2891 /*
2892 * A secondary resume while the device is active.
2893 * Take this opportunity to check whether any failed
2894 * devices are reachable again.
2895 */
2896 attempt_restore_of_faulty_devices(rs);
2897 }
2898
2899 mddev->ro = 0;
2900 mddev->in_sync = 0;
2901 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
2902
2903 if (mddev->suspended)
2904 mddev_resume(mddev);
2905 }
2906
2907 static struct target_type raid_target = {
2908 .name = "raid",
2909 .version = {1, 9, 0},
2910 .module = THIS_MODULE,
2911 .ctr = raid_ctr,
2912 .dtr = raid_dtr,
2913 .map = raid_map,
2914 .status = raid_status,
2915 .message = raid_message,
2916 .iterate_devices = raid_iterate_devices,
2917 .io_hints = raid_io_hints,
2918 .presuspend = raid_presuspend,
2919 .postsuspend = raid_postsuspend,
2920 .preresume = raid_preresume,
2921 .resume = raid_resume,
2922 };
2923
2924 static int __init dm_raid_init(void)
2925 {
2926 DMINFO("Loading target version %u.%u.%u",
2927 raid_target.version[0],
2928 raid_target.version[1],
2929 raid_target.version[2]);
2930 return dm_register_target(&raid_target);
2931 }
2932
2933 static void __exit dm_raid_exit(void)
2934 {
2935 dm_unregister_target(&raid_target);
2936 }
2937
2938 module_init(dm_raid_init);
2939 module_exit(dm_raid_exit);
2940
2941 module_param(devices_handle_discard_safely, bool, 0644);
2942 MODULE_PARM_DESC(devices_handle_discard_safely,
2943 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
2944
2945 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
2946 MODULE_ALIAS("dm-raid0");
2947 MODULE_ALIAS("dm-raid1");
2948 MODULE_ALIAS("dm-raid10");
2949 MODULE_ALIAS("dm-raid4");
2950 MODULE_ALIAS("dm-raid5");
2951 MODULE_ALIAS("dm-raid6");
2952 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
2953 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
2954 MODULE_LICENSE("GPL");