]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/dm-raid.c
Merge branches 'for-4.11/upstream-fixes', 'for-4.12/accutouch', 'for-4.12/cp2112...
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm-raid.c
1 /*
2 * Copyright (C) 2010-2011 Neil Brown
3 * Copyright (C) 2010-2016 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include <linux/slab.h>
9 #include <linux/module.h>
10
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "bitmap.h"
16
17 #include <linux/device-mapper.h>
18
19 #define DM_MSG_PREFIX "raid"
20 #define MAX_RAID_DEVICES 253 /* md-raid kernel limit */
21
22 /*
23 * Minimum sectors of free reshape space per raid device
24 */
25 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
26
27 /*
28 * Minimum journal space 4 MiB in sectors.
29 */
30 #define MIN_RAID456_JOURNAL_SPACE (4*2048)
31
32 static bool devices_handle_discard_safely = false;
33
34 /*
35 * The following flags are used by dm-raid.c to set up the array state.
36 * They must be cleared before md_run is called.
37 */
38 #define FirstUse 10 /* rdev flag */
39
40 struct raid_dev {
41 /*
42 * Two DM devices, one to hold metadata and one to hold the
43 * actual data/parity. The reason for this is to not confuse
44 * ti->len and give more flexibility in altering size and
45 * characteristics.
46 *
47 * While it is possible for this device to be associated
48 * with a different physical device than the data_dev, it
49 * is intended for it to be the same.
50 * |--------- Physical Device ---------|
51 * |- meta_dev -|------ data_dev ------|
52 */
53 struct dm_dev *meta_dev;
54 struct dm_dev *data_dev;
55 struct md_rdev rdev;
56 };
57
58 /*
59 * Bits for establishing rs->ctr_flags
60 *
61 * 1 = no flag value
62 * 2 = flag with value
63 */
64 #define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */
65 #define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */
66 #define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */
67 #define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */
68 #define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */
69 #define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */
70 #define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */
71 #define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */
72 #define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */
73 #define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */
74 #define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */
75 #define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */
76 /* New for v1.9.0 */
77 #define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
78 #define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
79 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
80
81 /* New for v1.10.0 */
82 #define __CTR_FLAG_JOURNAL_DEV 15 /* 2 */ /* Only with raid4/5/6! */
83
84 /*
85 * Flags for rs->ctr_flags field.
86 */
87 #define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC)
88 #define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC)
89 #define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD)
90 #define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP)
91 #define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
92 #define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
93 #define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
94 #define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY)
95 #define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE)
96 #define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE)
97 #define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES)
98 #define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT)
99 #define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS)
100 #define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET)
101 #define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
102 #define CTR_FLAG_JOURNAL_DEV (1 << __CTR_FLAG_JOURNAL_DEV)
103
104 /*
105 * Definitions of various constructor flags to
106 * be used in checks of valid / invalid flags
107 * per raid level.
108 */
109 /* Define all any sync flags */
110 #define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
111
112 /* Define flags for options without argument (e.g. 'nosync') */
113 #define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \
114 CTR_FLAG_RAID10_USE_NEAR_SETS)
115
116 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
117 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
118 CTR_FLAG_WRITE_MOSTLY | \
119 CTR_FLAG_DAEMON_SLEEP | \
120 CTR_FLAG_MIN_RECOVERY_RATE | \
121 CTR_FLAG_MAX_RECOVERY_RATE | \
122 CTR_FLAG_MAX_WRITE_BEHIND | \
123 CTR_FLAG_STRIPE_CACHE | \
124 CTR_FLAG_REGION_SIZE | \
125 CTR_FLAG_RAID10_COPIES | \
126 CTR_FLAG_RAID10_FORMAT | \
127 CTR_FLAG_DELTA_DISKS | \
128 CTR_FLAG_DATA_OFFSET)
129
130 /* Valid options definitions per raid level... */
131
132 /* "raid0" does only accept data offset */
133 #define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET)
134
135 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
136 #define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
137 CTR_FLAG_REBUILD | \
138 CTR_FLAG_WRITE_MOSTLY | \
139 CTR_FLAG_DAEMON_SLEEP | \
140 CTR_FLAG_MIN_RECOVERY_RATE | \
141 CTR_FLAG_MAX_RECOVERY_RATE | \
142 CTR_FLAG_MAX_WRITE_BEHIND | \
143 CTR_FLAG_REGION_SIZE | \
144 CTR_FLAG_DELTA_DISKS | \
145 CTR_FLAG_DATA_OFFSET)
146
147 /* "raid10" does not accept any raid1 or stripe cache options */
148 #define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
149 CTR_FLAG_REBUILD | \
150 CTR_FLAG_DAEMON_SLEEP | \
151 CTR_FLAG_MIN_RECOVERY_RATE | \
152 CTR_FLAG_MAX_RECOVERY_RATE | \
153 CTR_FLAG_REGION_SIZE | \
154 CTR_FLAG_RAID10_COPIES | \
155 CTR_FLAG_RAID10_FORMAT | \
156 CTR_FLAG_DELTA_DISKS | \
157 CTR_FLAG_DATA_OFFSET | \
158 CTR_FLAG_RAID10_USE_NEAR_SETS)
159
160 /*
161 * "raid4/5/6" do not accept any raid1 or raid10 specific options
162 *
163 * "raid6" does not accept "nosync", because it is not guaranteed
164 * that both parity and q-syndrome are being written properly with
165 * any writes
166 */
167 #define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
168 CTR_FLAG_REBUILD | \
169 CTR_FLAG_DAEMON_SLEEP | \
170 CTR_FLAG_MIN_RECOVERY_RATE | \
171 CTR_FLAG_MAX_RECOVERY_RATE | \
172 CTR_FLAG_STRIPE_CACHE | \
173 CTR_FLAG_REGION_SIZE | \
174 CTR_FLAG_DELTA_DISKS | \
175 CTR_FLAG_DATA_OFFSET | \
176 CTR_FLAG_JOURNAL_DEV)
177
178 #define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \
179 CTR_FLAG_REBUILD | \
180 CTR_FLAG_DAEMON_SLEEP | \
181 CTR_FLAG_MIN_RECOVERY_RATE | \
182 CTR_FLAG_MAX_RECOVERY_RATE | \
183 CTR_FLAG_STRIPE_CACHE | \
184 CTR_FLAG_REGION_SIZE | \
185 CTR_FLAG_DELTA_DISKS | \
186 CTR_FLAG_DATA_OFFSET | \
187 CTR_FLAG_JOURNAL_DEV)
188 /* ...valid options definitions per raid level */
189
190 /*
191 * Flags for rs->runtime_flags field
192 * (RT_FLAG prefix meaning "runtime flag")
193 *
194 * These are all internal and used to define runtime state,
195 * e.g. to prevent another resume from preresume processing
196 * the raid set all over again.
197 */
198 #define RT_FLAG_RS_PRERESUMED 0
199 #define RT_FLAG_RS_RESUMED 1
200 #define RT_FLAG_RS_BITMAP_LOADED 2
201 #define RT_FLAG_UPDATE_SBS 3
202 #define RT_FLAG_RESHAPE_RS 4
203
204 /* Array elements of 64 bit needed for rebuild/failed disk bits */
205 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
206
207 /*
208 * raid set level, layout and chunk sectors backup/restore
209 */
210 struct rs_layout {
211 int new_level;
212 int new_layout;
213 int new_chunk_sectors;
214 };
215
216 struct raid_set {
217 struct dm_target *ti;
218
219 uint32_t bitmap_loaded;
220 uint32_t stripe_cache_entries;
221 unsigned long ctr_flags;
222 unsigned long runtime_flags;
223
224 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
225
226 int raid_disks;
227 int delta_disks;
228 int data_offset;
229 int raid10_copies;
230 int requested_bitmap_chunk_sectors;
231
232 struct mddev md;
233 struct raid_type *raid_type;
234 struct dm_target_callbacks callbacks;
235
236 /* Optional raid4/5/6 journal device */
237 struct journal_dev {
238 struct dm_dev *dev;
239 struct md_rdev rdev;
240 } journal_dev;
241
242 struct raid_dev dev[0];
243 };
244
245 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
246 {
247 struct mddev *mddev = &rs->md;
248
249 l->new_level = mddev->new_level;
250 l->new_layout = mddev->new_layout;
251 l->new_chunk_sectors = mddev->new_chunk_sectors;
252 }
253
254 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
255 {
256 struct mddev *mddev = &rs->md;
257
258 mddev->new_level = l->new_level;
259 mddev->new_layout = l->new_layout;
260 mddev->new_chunk_sectors = l->new_chunk_sectors;
261 }
262
263 /* raid10 algorithms (i.e. formats) */
264 #define ALGORITHM_RAID10_DEFAULT 0
265 #define ALGORITHM_RAID10_NEAR 1
266 #define ALGORITHM_RAID10_OFFSET 2
267 #define ALGORITHM_RAID10_FAR 3
268
269 /* Supported raid types and properties. */
270 static struct raid_type {
271 const char *name; /* RAID algorithm. */
272 const char *descr; /* Descriptor text for logging. */
273 const unsigned int parity_devs; /* # of parity devices. */
274 const unsigned int minimal_devs;/* minimal # of devices in set. */
275 const unsigned int level; /* RAID level. */
276 const unsigned int algorithm; /* RAID algorithm. */
277 } raid_types[] = {
278 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */},
279 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */},
280 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR},
281 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET},
282 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR},
283 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT},
284 {"raid4", "raid4 (dedicated first parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */
285 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N},
286 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
287 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
288 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
289 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
290 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
291 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
292 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE},
293 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6},
294 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6},
295 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6},
296 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6},
297 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6}
298 };
299
300 /* True, if @v is in inclusive range [@min, @max] */
301 static bool __within_range(long v, long min, long max)
302 {
303 return v >= min && v <= max;
304 }
305
306 /* All table line arguments are defined here */
307 static struct arg_name_flag {
308 const unsigned long flag;
309 const char *name;
310 } __arg_name_flags[] = {
311 { CTR_FLAG_SYNC, "sync"},
312 { CTR_FLAG_NOSYNC, "nosync"},
313 { CTR_FLAG_REBUILD, "rebuild"},
314 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
315 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
316 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
317 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
318 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
319 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
320 { CTR_FLAG_REGION_SIZE, "region_size"},
321 { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
322 { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
323 { CTR_FLAG_DATA_OFFSET, "data_offset"},
324 { CTR_FLAG_DELTA_DISKS, "delta_disks"},
325 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
326 { CTR_FLAG_JOURNAL_DEV, "journal_dev" },
327 };
328
329 /* Return argument name string for given @flag */
330 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
331 {
332 if (hweight32(flag) == 1) {
333 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
334
335 while (anf-- > __arg_name_flags)
336 if (flag & anf->flag)
337 return anf->name;
338
339 } else
340 DMERR("%s called with more than one flag!", __func__);
341
342 return NULL;
343 }
344
345 /*
346 * Bool helpers to test for various raid levels of a raid set.
347 * It's level as reported by the superblock rather than
348 * the requested raid_type passed to the constructor.
349 */
350 /* Return true, if raid set in @rs is raid0 */
351 static bool rs_is_raid0(struct raid_set *rs)
352 {
353 return !rs->md.level;
354 }
355
356 /* Return true, if raid set in @rs is raid1 */
357 static bool rs_is_raid1(struct raid_set *rs)
358 {
359 return rs->md.level == 1;
360 }
361
362 /* Return true, if raid set in @rs is raid10 */
363 static bool rs_is_raid10(struct raid_set *rs)
364 {
365 return rs->md.level == 10;
366 }
367
368 /* Return true, if raid set in @rs is level 6 */
369 static bool rs_is_raid6(struct raid_set *rs)
370 {
371 return rs->md.level == 6;
372 }
373
374 /* Return true, if raid set in @rs is level 4, 5 or 6 */
375 static bool rs_is_raid456(struct raid_set *rs)
376 {
377 return __within_range(rs->md.level, 4, 6);
378 }
379
380 /* Return true, if raid set in @rs is reshapable */
381 static bool __is_raid10_far(int layout);
382 static bool rs_is_reshapable(struct raid_set *rs)
383 {
384 return rs_is_raid456(rs) ||
385 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
386 }
387
388 /* Return true, if raid set in @rs is recovering */
389 static bool rs_is_recovering(struct raid_set *rs)
390 {
391 return rs->md.recovery_cp < rs->md.dev_sectors;
392 }
393
394 /* Return true, if raid set in @rs is reshaping */
395 static bool rs_is_reshaping(struct raid_set *rs)
396 {
397 return rs->md.reshape_position != MaxSector;
398 }
399
400 /*
401 * bool helpers to test for various raid levels of a raid type @rt
402 */
403
404 /* Return true, if raid type in @rt is raid0 */
405 static bool rt_is_raid0(struct raid_type *rt)
406 {
407 return !rt->level;
408 }
409
410 /* Return true, if raid type in @rt is raid1 */
411 static bool rt_is_raid1(struct raid_type *rt)
412 {
413 return rt->level == 1;
414 }
415
416 /* Return true, if raid type in @rt is raid10 */
417 static bool rt_is_raid10(struct raid_type *rt)
418 {
419 return rt->level == 10;
420 }
421
422 /* Return true, if raid type in @rt is raid4/5 */
423 static bool rt_is_raid45(struct raid_type *rt)
424 {
425 return __within_range(rt->level, 4, 5);
426 }
427
428 /* Return true, if raid type in @rt is raid6 */
429 static bool rt_is_raid6(struct raid_type *rt)
430 {
431 return rt->level == 6;
432 }
433
434 /* Return true, if raid type in @rt is raid4/5/6 */
435 static bool rt_is_raid456(struct raid_type *rt)
436 {
437 return __within_range(rt->level, 4, 6);
438 }
439 /* END: raid level bools */
440
441 /* Return valid ctr flags for the raid level of @rs */
442 static unsigned long __valid_flags(struct raid_set *rs)
443 {
444 if (rt_is_raid0(rs->raid_type))
445 return RAID0_VALID_FLAGS;
446 else if (rt_is_raid1(rs->raid_type))
447 return RAID1_VALID_FLAGS;
448 else if (rt_is_raid10(rs->raid_type))
449 return RAID10_VALID_FLAGS;
450 else if (rt_is_raid45(rs->raid_type))
451 return RAID45_VALID_FLAGS;
452 else if (rt_is_raid6(rs->raid_type))
453 return RAID6_VALID_FLAGS;
454
455 return 0;
456 }
457
458 /*
459 * Check for valid flags set on @rs
460 *
461 * Has to be called after parsing of the ctr flags!
462 */
463 static int rs_check_for_valid_flags(struct raid_set *rs)
464 {
465 if (rs->ctr_flags & ~__valid_flags(rs)) {
466 rs->ti->error = "Invalid flags combination";
467 return -EINVAL;
468 }
469
470 return 0;
471 }
472
473 /* MD raid10 bit definitions and helpers */
474 #define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */
475 #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
476 #define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */
477 #define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */
478
479 /* Return md raid10 near copies for @layout */
480 static unsigned int __raid10_near_copies(int layout)
481 {
482 return layout & 0xFF;
483 }
484
485 /* Return md raid10 far copies for @layout */
486 static unsigned int __raid10_far_copies(int layout)
487 {
488 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
489 }
490
491 /* Return true if md raid10 offset for @layout */
492 static bool __is_raid10_offset(int layout)
493 {
494 return !!(layout & RAID10_OFFSET);
495 }
496
497 /* Return true if md raid10 near for @layout */
498 static bool __is_raid10_near(int layout)
499 {
500 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
501 }
502
503 /* Return true if md raid10 far for @layout */
504 static bool __is_raid10_far(int layout)
505 {
506 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
507 }
508
509 /* Return md raid10 layout string for @layout */
510 static const char *raid10_md_layout_to_format(int layout)
511 {
512 /*
513 * Bit 16 stands for "offset"
514 * (i.e. adjacent stripes hold copies)
515 *
516 * Refer to MD's raid10.c for details
517 */
518 if (__is_raid10_offset(layout))
519 return "offset";
520
521 if (__raid10_near_copies(layout) > 1)
522 return "near";
523
524 WARN_ON(__raid10_far_copies(layout) < 2);
525
526 return "far";
527 }
528
529 /* Return md raid10 algorithm for @name */
530 static int raid10_name_to_format(const char *name)
531 {
532 if (!strcasecmp(name, "near"))
533 return ALGORITHM_RAID10_NEAR;
534 else if (!strcasecmp(name, "offset"))
535 return ALGORITHM_RAID10_OFFSET;
536 else if (!strcasecmp(name, "far"))
537 return ALGORITHM_RAID10_FAR;
538
539 return -EINVAL;
540 }
541
542 /* Return md raid10 copies for @layout */
543 static unsigned int raid10_md_layout_to_copies(int layout)
544 {
545 return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
546 }
547
548 /* Return md raid10 format id for @format string */
549 static int raid10_format_to_md_layout(struct raid_set *rs,
550 unsigned int algorithm,
551 unsigned int copies)
552 {
553 unsigned int n = 1, f = 1, r = 0;
554
555 /*
556 * MD resilienece flaw:
557 *
558 * enabling use_far_sets for far/offset formats causes copies
559 * to be colocated on the same devs together with their origins!
560 *
561 * -> disable it for now in the definition above
562 */
563 if (algorithm == ALGORITHM_RAID10_DEFAULT ||
564 algorithm == ALGORITHM_RAID10_NEAR)
565 n = copies;
566
567 else if (algorithm == ALGORITHM_RAID10_OFFSET) {
568 f = copies;
569 r = RAID10_OFFSET;
570 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
571 r |= RAID10_USE_FAR_SETS;
572
573 } else if (algorithm == ALGORITHM_RAID10_FAR) {
574 f = copies;
575 r = !RAID10_OFFSET;
576 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
577 r |= RAID10_USE_FAR_SETS;
578
579 } else
580 return -EINVAL;
581
582 return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
583 }
584 /* END: MD raid10 bit definitions and helpers */
585
586 /* Check for any of the raid10 algorithms */
587 static bool __got_raid10(struct raid_type *rtp, const int layout)
588 {
589 if (rtp->level == 10) {
590 switch (rtp->algorithm) {
591 case ALGORITHM_RAID10_DEFAULT:
592 case ALGORITHM_RAID10_NEAR:
593 return __is_raid10_near(layout);
594 case ALGORITHM_RAID10_OFFSET:
595 return __is_raid10_offset(layout);
596 case ALGORITHM_RAID10_FAR:
597 return __is_raid10_far(layout);
598 default:
599 break;
600 }
601 }
602
603 return false;
604 }
605
606 /* Return raid_type for @name */
607 static struct raid_type *get_raid_type(const char *name)
608 {
609 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
610
611 while (rtp-- > raid_types)
612 if (!strcasecmp(rtp->name, name))
613 return rtp;
614
615 return NULL;
616 }
617
618 /* Return raid_type for @name based derived from @level and @layout */
619 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
620 {
621 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
622
623 while (rtp-- > raid_types) {
624 /* RAID10 special checks based on @layout flags/properties */
625 if (rtp->level == level &&
626 (__got_raid10(rtp, layout) || rtp->algorithm == layout))
627 return rtp;
628 }
629
630 return NULL;
631 }
632
633 /*
634 * Conditionally change bdev capacity of @rs
635 * in case of a disk add/remove reshape
636 */
637 static void rs_set_capacity(struct raid_set *rs)
638 {
639 struct mddev *mddev = &rs->md;
640 struct md_rdev *rdev;
641 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
642
643 /*
644 * raid10 sets rdev->sector to the device size, which
645 * is unintended in case of out-of-place reshaping
646 */
647 rdev_for_each(rdev, mddev)
648 if (!test_bit(Journal, &rdev->flags))
649 rdev->sectors = mddev->dev_sectors;
650
651 set_capacity(gendisk, mddev->array_sectors);
652 revalidate_disk(gendisk);
653 }
654
655 /*
656 * Set the mddev properties in @rs to the current
657 * ones retrieved from the freshest superblock
658 */
659 static void rs_set_cur(struct raid_set *rs)
660 {
661 struct mddev *mddev = &rs->md;
662
663 mddev->new_level = mddev->level;
664 mddev->new_layout = mddev->layout;
665 mddev->new_chunk_sectors = mddev->chunk_sectors;
666 }
667
668 /*
669 * Set the mddev properties in @rs to the new
670 * ones requested by the ctr
671 */
672 static void rs_set_new(struct raid_set *rs)
673 {
674 struct mddev *mddev = &rs->md;
675
676 mddev->level = mddev->new_level;
677 mddev->layout = mddev->new_layout;
678 mddev->chunk_sectors = mddev->new_chunk_sectors;
679 mddev->raid_disks = rs->raid_disks;
680 mddev->delta_disks = 0;
681 }
682
683 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
684 unsigned int raid_devs)
685 {
686 unsigned int i;
687 struct raid_set *rs;
688
689 if (raid_devs <= raid_type->parity_devs) {
690 ti->error = "Insufficient number of devices";
691 return ERR_PTR(-EINVAL);
692 }
693
694 rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
695 if (!rs) {
696 ti->error = "Cannot allocate raid context";
697 return ERR_PTR(-ENOMEM);
698 }
699
700 mddev_init(&rs->md);
701
702 rs->raid_disks = raid_devs;
703 rs->delta_disks = 0;
704
705 rs->ti = ti;
706 rs->raid_type = raid_type;
707 rs->stripe_cache_entries = 256;
708 rs->md.raid_disks = raid_devs;
709 rs->md.level = raid_type->level;
710 rs->md.new_level = rs->md.level;
711 rs->md.layout = raid_type->algorithm;
712 rs->md.new_layout = rs->md.layout;
713 rs->md.delta_disks = 0;
714 rs->md.recovery_cp = MaxSector;
715
716 for (i = 0; i < raid_devs; i++)
717 md_rdev_init(&rs->dev[i].rdev);
718
719 /*
720 * Remaining items to be initialized by further RAID params:
721 * rs->md.persistent
722 * rs->md.external
723 * rs->md.chunk_sectors
724 * rs->md.new_chunk_sectors
725 * rs->md.dev_sectors
726 */
727
728 return rs;
729 }
730
731 static void raid_set_free(struct raid_set *rs)
732 {
733 int i;
734
735 if (rs->journal_dev.dev) {
736 md_rdev_clear(&rs->journal_dev.rdev);
737 dm_put_device(rs->ti, rs->journal_dev.dev);
738 }
739
740 for (i = 0; i < rs->raid_disks; i++) {
741 if (rs->dev[i].meta_dev)
742 dm_put_device(rs->ti, rs->dev[i].meta_dev);
743 md_rdev_clear(&rs->dev[i].rdev);
744 if (rs->dev[i].data_dev)
745 dm_put_device(rs->ti, rs->dev[i].data_dev);
746 }
747
748 kfree(rs);
749 }
750
751 /*
752 * For every device we have two words
753 * <meta_dev>: meta device name or '-' if missing
754 * <data_dev>: data device name or '-' if missing
755 *
756 * The following are permitted:
757 * - -
758 * - <data_dev>
759 * <meta_dev> <data_dev>
760 *
761 * The following is not allowed:
762 * <meta_dev> -
763 *
764 * This code parses those words. If there is a failure,
765 * the caller must use raid_set_free() to unwind the operations.
766 */
767 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
768 {
769 int i;
770 int rebuild = 0;
771 int metadata_available = 0;
772 int r = 0;
773 const char *arg;
774
775 /* Put off the number of raid devices argument to get to dev pairs */
776 arg = dm_shift_arg(as);
777 if (!arg)
778 return -EINVAL;
779
780 for (i = 0; i < rs->raid_disks; i++) {
781 rs->dev[i].rdev.raid_disk = i;
782
783 rs->dev[i].meta_dev = NULL;
784 rs->dev[i].data_dev = NULL;
785
786 /*
787 * There are no offsets initially.
788 * Out of place reshape will set them accordingly.
789 */
790 rs->dev[i].rdev.data_offset = 0;
791 rs->dev[i].rdev.new_data_offset = 0;
792 rs->dev[i].rdev.mddev = &rs->md;
793
794 arg = dm_shift_arg(as);
795 if (!arg)
796 return -EINVAL;
797
798 if (strcmp(arg, "-")) {
799 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
800 &rs->dev[i].meta_dev);
801 if (r) {
802 rs->ti->error = "RAID metadata device lookup failure";
803 return r;
804 }
805
806 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
807 if (!rs->dev[i].rdev.sb_page) {
808 rs->ti->error = "Failed to allocate superblock page";
809 return -ENOMEM;
810 }
811 }
812
813 arg = dm_shift_arg(as);
814 if (!arg)
815 return -EINVAL;
816
817 if (!strcmp(arg, "-")) {
818 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
819 (!rs->dev[i].rdev.recovery_offset)) {
820 rs->ti->error = "Drive designated for rebuild not specified";
821 return -EINVAL;
822 }
823
824 if (rs->dev[i].meta_dev) {
825 rs->ti->error = "No data device supplied with metadata device";
826 return -EINVAL;
827 }
828
829 continue;
830 }
831
832 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
833 &rs->dev[i].data_dev);
834 if (r) {
835 rs->ti->error = "RAID device lookup failure";
836 return r;
837 }
838
839 if (rs->dev[i].meta_dev) {
840 metadata_available = 1;
841 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
842 }
843 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
844 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
845 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
846 rebuild++;
847 }
848
849 if (rs->journal_dev.dev)
850 list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks);
851
852 if (metadata_available) {
853 rs->md.external = 0;
854 rs->md.persistent = 1;
855 rs->md.major_version = 2;
856 } else if (rebuild && !rs->md.recovery_cp) {
857 /*
858 * Without metadata, we will not be able to tell if the array
859 * is in-sync or not - we must assume it is not. Therefore,
860 * it is impossible to rebuild a drive.
861 *
862 * Even if there is metadata, the on-disk information may
863 * indicate that the array is not in-sync and it will then
864 * fail at that time.
865 *
866 * User could specify 'nosync' option if desperate.
867 */
868 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
869 return -EINVAL;
870 }
871
872 return 0;
873 }
874
875 /*
876 * validate_region_size
877 * @rs
878 * @region_size: region size in sectors. If 0, pick a size (4MiB default).
879 *
880 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
881 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
882 *
883 * Returns: 0 on success, -EINVAL on failure.
884 */
885 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
886 {
887 unsigned long min_region_size = rs->ti->len / (1 << 21);
888
889 if (rs_is_raid0(rs))
890 return 0;
891
892 if (!region_size) {
893 /*
894 * Choose a reasonable default. All figures in sectors.
895 */
896 if (min_region_size > (1 << 13)) {
897 /* If not a power of 2, make it the next power of 2 */
898 region_size = roundup_pow_of_two(min_region_size);
899 DMINFO("Choosing default region size of %lu sectors",
900 region_size);
901 } else {
902 DMINFO("Choosing default region size of 4MiB");
903 region_size = 1 << 13; /* sectors */
904 }
905 } else {
906 /*
907 * Validate user-supplied value.
908 */
909 if (region_size > rs->ti->len) {
910 rs->ti->error = "Supplied region size is too large";
911 return -EINVAL;
912 }
913
914 if (region_size < min_region_size) {
915 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
916 region_size, min_region_size);
917 rs->ti->error = "Supplied region size is too small";
918 return -EINVAL;
919 }
920
921 if (!is_power_of_2(region_size)) {
922 rs->ti->error = "Region size is not a power of 2";
923 return -EINVAL;
924 }
925
926 if (region_size < rs->md.chunk_sectors) {
927 rs->ti->error = "Region size is smaller than the chunk size";
928 return -EINVAL;
929 }
930 }
931
932 /*
933 * Convert sectors to bytes.
934 */
935 rs->md.bitmap_info.chunksize = to_bytes(region_size);
936
937 return 0;
938 }
939
940 /*
941 * validate_raid_redundancy
942 * @rs
943 *
944 * Determine if there are enough devices in the array that haven't
945 * failed (or are being rebuilt) to form a usable array.
946 *
947 * Returns: 0 on success, -EINVAL on failure.
948 */
949 static int validate_raid_redundancy(struct raid_set *rs)
950 {
951 unsigned int i, rebuild_cnt = 0;
952 unsigned int rebuilds_per_group = 0, copies;
953 unsigned int group_size, last_group_start;
954
955 for (i = 0; i < rs->md.raid_disks; i++)
956 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
957 !rs->dev[i].rdev.sb_page)
958 rebuild_cnt++;
959
960 switch (rs->raid_type->level) {
961 case 0:
962 break;
963 case 1:
964 if (rebuild_cnt >= rs->md.raid_disks)
965 goto too_many;
966 break;
967 case 4:
968 case 5:
969 case 6:
970 if (rebuild_cnt > rs->raid_type->parity_devs)
971 goto too_many;
972 break;
973 case 10:
974 copies = raid10_md_layout_to_copies(rs->md.new_layout);
975 if (rebuild_cnt < copies)
976 break;
977
978 /*
979 * It is possible to have a higher rebuild count for RAID10,
980 * as long as the failed devices occur in different mirror
981 * groups (i.e. different stripes).
982 *
983 * When checking "near" format, make sure no adjacent devices
984 * have failed beyond what can be handled. In addition to the
985 * simple case where the number of devices is a multiple of the
986 * number of copies, we must also handle cases where the number
987 * of devices is not a multiple of the number of copies.
988 * E.g. dev1 dev2 dev3 dev4 dev5
989 * A A B B C
990 * C D D E E
991 */
992 if (__is_raid10_near(rs->md.new_layout)) {
993 for (i = 0; i < rs->md.raid_disks; i++) {
994 if (!(i % copies))
995 rebuilds_per_group = 0;
996 if ((!rs->dev[i].rdev.sb_page ||
997 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
998 (++rebuilds_per_group >= copies))
999 goto too_many;
1000 }
1001 break;
1002 }
1003
1004 /*
1005 * When checking "far" and "offset" formats, we need to ensure
1006 * that the device that holds its copy is not also dead or
1007 * being rebuilt. (Note that "far" and "offset" formats only
1008 * support two copies right now. These formats also only ever
1009 * use the 'use_far_sets' variant.)
1010 *
1011 * This check is somewhat complicated by the need to account
1012 * for arrays that are not a multiple of (far) copies. This
1013 * results in the need to treat the last (potentially larger)
1014 * set differently.
1015 */
1016 group_size = (rs->md.raid_disks / copies);
1017 last_group_start = (rs->md.raid_disks / group_size) - 1;
1018 last_group_start *= group_size;
1019 for (i = 0; i < rs->md.raid_disks; i++) {
1020 if (!(i % copies) && !(i > last_group_start))
1021 rebuilds_per_group = 0;
1022 if ((!rs->dev[i].rdev.sb_page ||
1023 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1024 (++rebuilds_per_group >= copies))
1025 goto too_many;
1026 }
1027 break;
1028 default:
1029 if (rebuild_cnt)
1030 return -EINVAL;
1031 }
1032
1033 return 0;
1034
1035 too_many:
1036 return -EINVAL;
1037 }
1038
1039 /*
1040 * Possible arguments are...
1041 * <chunk_size> [optional_args]
1042 *
1043 * Argument definitions
1044 * <chunk_size> The number of sectors per disk that
1045 * will form the "stripe"
1046 * [[no]sync] Force or prevent recovery of the
1047 * entire array
1048 * [rebuild <idx>] Rebuild the drive indicated by the index
1049 * [daemon_sleep <ms>] Time between bitmap daemon work to
1050 * clear bits
1051 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1052 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1053 * [write_mostly <idx>] Indicate a write mostly drive via index
1054 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm)
1055 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs
1056 * [region_size <sectors>] Defines granularity of bitmap
1057 * [journal_dev <dev>] raid4/5/6 journaling deviice
1058 * (i.e. write hole closing log)
1059 *
1060 * RAID10-only options:
1061 * [raid10_copies <# copies>] Number of copies. (Default: 2)
1062 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near)
1063 */
1064 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1065 unsigned int num_raid_params)
1066 {
1067 int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1068 unsigned int raid10_copies = 2;
1069 unsigned int i, write_mostly = 0;
1070 unsigned int region_size = 0;
1071 sector_t max_io_len;
1072 const char *arg, *key;
1073 struct raid_dev *rd;
1074 struct raid_type *rt = rs->raid_type;
1075
1076 arg = dm_shift_arg(as);
1077 num_raid_params--; /* Account for chunk_size argument */
1078
1079 if (kstrtoint(arg, 10, &value) < 0) {
1080 rs->ti->error = "Bad numerical argument given for chunk_size";
1081 return -EINVAL;
1082 }
1083
1084 /*
1085 * First, parse the in-order required arguments
1086 * "chunk_size" is the only argument of this type.
1087 */
1088 if (rt_is_raid1(rt)) {
1089 if (value)
1090 DMERR("Ignoring chunk size parameter for RAID 1");
1091 value = 0;
1092 } else if (!is_power_of_2(value)) {
1093 rs->ti->error = "Chunk size must be a power of 2";
1094 return -EINVAL;
1095 } else if (value < 8) {
1096 rs->ti->error = "Chunk size value is too small";
1097 return -EINVAL;
1098 }
1099
1100 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1101
1102 /*
1103 * We set each individual device as In_sync with a completed
1104 * 'recovery_offset'. If there has been a device failure or
1105 * replacement then one of the following cases applies:
1106 *
1107 * 1) User specifies 'rebuild'.
1108 * - Device is reset when param is read.
1109 * 2) A new device is supplied.
1110 * - No matching superblock found, resets device.
1111 * 3) Device failure was transient and returns on reload.
1112 * - Failure noticed, resets device for bitmap replay.
1113 * 4) Device hadn't completed recovery after previous failure.
1114 * - Superblock is read and overrides recovery_offset.
1115 *
1116 * What is found in the superblocks of the devices is always
1117 * authoritative, unless 'rebuild' or '[no]sync' was specified.
1118 */
1119 for (i = 0; i < rs->raid_disks; i++) {
1120 set_bit(In_sync, &rs->dev[i].rdev.flags);
1121 rs->dev[i].rdev.recovery_offset = MaxSector;
1122 }
1123
1124 /*
1125 * Second, parse the unordered optional arguments
1126 */
1127 for (i = 0; i < num_raid_params; i++) {
1128 key = dm_shift_arg(as);
1129 if (!key) {
1130 rs->ti->error = "Not enough raid parameters given";
1131 return -EINVAL;
1132 }
1133
1134 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1135 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1136 rs->ti->error = "Only one 'nosync' argument allowed";
1137 return -EINVAL;
1138 }
1139 continue;
1140 }
1141 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1142 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1143 rs->ti->error = "Only one 'sync' argument allowed";
1144 return -EINVAL;
1145 }
1146 continue;
1147 }
1148 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1149 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1150 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1151 return -EINVAL;
1152 }
1153 continue;
1154 }
1155
1156 arg = dm_shift_arg(as);
1157 i++; /* Account for the argument pairs */
1158 if (!arg) {
1159 rs->ti->error = "Wrong number of raid parameters given";
1160 return -EINVAL;
1161 }
1162
1163 /*
1164 * Parameters that take a string value are checked here.
1165 */
1166 /* "raid10_format {near|offset|far} */
1167 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1168 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1169 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1170 return -EINVAL;
1171 }
1172 if (!rt_is_raid10(rt)) {
1173 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1174 return -EINVAL;
1175 }
1176 raid10_format = raid10_name_to_format(arg);
1177 if (raid10_format < 0) {
1178 rs->ti->error = "Invalid 'raid10_format' value given";
1179 return raid10_format;
1180 }
1181 continue;
1182 }
1183
1184 /* "journal_dev dev" */
1185 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) {
1186 int r;
1187 struct md_rdev *jdev;
1188
1189 if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1190 rs->ti->error = "Only one raid4/5/6 set journaling device allowed";
1191 return -EINVAL;
1192 }
1193 if (!rt_is_raid456(rt)) {
1194 rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type";
1195 return -EINVAL;
1196 }
1197 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
1198 &rs->journal_dev.dev);
1199 if (r) {
1200 rs->ti->error = "raid4/5/6 journal device lookup failure";
1201 return r;
1202 }
1203 jdev = &rs->journal_dev.rdev;
1204 md_rdev_init(jdev);
1205 jdev->mddev = &rs->md;
1206 jdev->bdev = rs->journal_dev.dev->bdev;
1207 jdev->sectors = to_sector(i_size_read(jdev->bdev->bd_inode));
1208 if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) {
1209 rs->ti->error = "No space for raid4/5/6 journal";
1210 return -ENOSPC;
1211 }
1212 set_bit(Journal, &jdev->flags);
1213 continue;
1214 }
1215
1216 /*
1217 * Parameters with number values from here on.
1218 */
1219 if (kstrtoint(arg, 10, &value) < 0) {
1220 rs->ti->error = "Bad numerical argument given in raid params";
1221 return -EINVAL;
1222 }
1223
1224 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1225 /*
1226 * "rebuild" is being passed in by userspace to provide
1227 * indexes of replaced devices and to set up additional
1228 * devices on raid level takeover.
1229 */
1230 if (!__within_range(value, 0, rs->raid_disks - 1)) {
1231 rs->ti->error = "Invalid rebuild index given";
1232 return -EINVAL;
1233 }
1234
1235 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1236 rs->ti->error = "rebuild for this index already given";
1237 return -EINVAL;
1238 }
1239
1240 rd = rs->dev + value;
1241 clear_bit(In_sync, &rd->rdev.flags);
1242 clear_bit(Faulty, &rd->rdev.flags);
1243 rd->rdev.recovery_offset = 0;
1244 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1245 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1246 if (!rt_is_raid1(rt)) {
1247 rs->ti->error = "write_mostly option is only valid for RAID1";
1248 return -EINVAL;
1249 }
1250
1251 if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1252 rs->ti->error = "Invalid write_mostly index given";
1253 return -EINVAL;
1254 }
1255
1256 write_mostly++;
1257 set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1258 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1259 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1260 if (!rt_is_raid1(rt)) {
1261 rs->ti->error = "max_write_behind option is only valid for RAID1";
1262 return -EINVAL;
1263 }
1264
1265 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1266 rs->ti->error = "Only one max_write_behind argument pair allowed";
1267 return -EINVAL;
1268 }
1269
1270 /*
1271 * In device-mapper, we specify things in sectors, but
1272 * MD records this value in kB
1273 */
1274 value /= 2;
1275 if (value > COUNTER_MAX) {
1276 rs->ti->error = "Max write-behind limit out of range";
1277 return -EINVAL;
1278 }
1279
1280 rs->md.bitmap_info.max_write_behind = value;
1281 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1282 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1283 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1284 return -EINVAL;
1285 }
1286 if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
1287 rs->ti->error = "daemon sleep period out of range";
1288 return -EINVAL;
1289 }
1290 rs->md.bitmap_info.daemon_sleep = value;
1291 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1292 /* Userspace passes new data_offset after having extended the the data image LV */
1293 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1294 rs->ti->error = "Only one data_offset argument pair allowed";
1295 return -EINVAL;
1296 }
1297 /* Ensure sensible data offset */
1298 if (value < 0 ||
1299 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1300 rs->ti->error = "Bogus data_offset value";
1301 return -EINVAL;
1302 }
1303 rs->data_offset = value;
1304 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1305 /* Define the +/-# of disks to add to/remove from the given raid set */
1306 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1307 rs->ti->error = "Only one delta_disks argument pair allowed";
1308 return -EINVAL;
1309 }
1310 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1311 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1312 rs->ti->error = "Too many delta_disk requested";
1313 return -EINVAL;
1314 }
1315
1316 rs->delta_disks = value;
1317 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1318 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1319 rs->ti->error = "Only one stripe_cache argument pair allowed";
1320 return -EINVAL;
1321 }
1322
1323 if (!rt_is_raid456(rt)) {
1324 rs->ti->error = "Inappropriate argument: stripe_cache";
1325 return -EINVAL;
1326 }
1327
1328 rs->stripe_cache_entries = value;
1329 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1330 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1331 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1332 return -EINVAL;
1333 }
1334 if (value > INT_MAX) {
1335 rs->ti->error = "min_recovery_rate out of range";
1336 return -EINVAL;
1337 }
1338 rs->md.sync_speed_min = (int)value;
1339 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1340 if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1341 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1342 return -EINVAL;
1343 }
1344 if (value > INT_MAX) {
1345 rs->ti->error = "max_recovery_rate out of range";
1346 return -EINVAL;
1347 }
1348 rs->md.sync_speed_max = (int)value;
1349 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1350 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1351 rs->ti->error = "Only one region_size argument pair allowed";
1352 return -EINVAL;
1353 }
1354
1355 region_size = value;
1356 rs->requested_bitmap_chunk_sectors = value;
1357 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1358 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1359 rs->ti->error = "Only one raid10_copies argument pair allowed";
1360 return -EINVAL;
1361 }
1362
1363 if (!__within_range(value, 2, rs->md.raid_disks)) {
1364 rs->ti->error = "Bad value for 'raid10_copies'";
1365 return -EINVAL;
1366 }
1367
1368 raid10_copies = value;
1369 } else {
1370 DMERR("Unable to parse RAID parameter: %s", key);
1371 rs->ti->error = "Unable to parse RAID parameter";
1372 return -EINVAL;
1373 }
1374 }
1375
1376 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1377 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1378 rs->ti->error = "sync and nosync are mutually exclusive";
1379 return -EINVAL;
1380 }
1381
1382 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1383 (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1384 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1385 rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1386 return -EINVAL;
1387 }
1388
1389 if (write_mostly >= rs->md.raid_disks) {
1390 rs->ti->error = "Can't set all raid1 devices to write_mostly";
1391 return -EINVAL;
1392 }
1393
1394 if (validate_region_size(rs, region_size))
1395 return -EINVAL;
1396
1397 if (rs->md.chunk_sectors)
1398 max_io_len = rs->md.chunk_sectors;
1399 else
1400 max_io_len = region_size;
1401
1402 if (dm_set_target_max_io_len(rs->ti, max_io_len))
1403 return -EINVAL;
1404
1405 if (rt_is_raid10(rt)) {
1406 if (raid10_copies > rs->md.raid_disks) {
1407 rs->ti->error = "Not enough devices to satisfy specification";
1408 return -EINVAL;
1409 }
1410
1411 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1412 if (rs->md.new_layout < 0) {
1413 rs->ti->error = "Error getting raid10 format";
1414 return rs->md.new_layout;
1415 }
1416
1417 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1418 if (!rt) {
1419 rs->ti->error = "Failed to recognize new raid10 layout";
1420 return -EINVAL;
1421 }
1422
1423 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1424 rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1425 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1426 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1427 return -EINVAL;
1428 }
1429 }
1430
1431 rs->raid10_copies = raid10_copies;
1432
1433 /* Assume there are no metadata devices until the drives are parsed */
1434 rs->md.persistent = 0;
1435 rs->md.external = 1;
1436
1437 /* Check, if any invalid ctr arguments have been passed in for the raid level */
1438 return rs_check_for_valid_flags(rs);
1439 }
1440
1441 /* Set raid4/5/6 cache size */
1442 static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1443 {
1444 int r;
1445 struct r5conf *conf;
1446 struct mddev *mddev = &rs->md;
1447 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1448 uint32_t nr_stripes = rs->stripe_cache_entries;
1449
1450 if (!rt_is_raid456(rs->raid_type)) {
1451 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1452 return -EINVAL;
1453 }
1454
1455 if (nr_stripes < min_stripes) {
1456 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1457 nr_stripes, min_stripes);
1458 nr_stripes = min_stripes;
1459 }
1460
1461 conf = mddev->private;
1462 if (!conf) {
1463 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1464 return -EINVAL;
1465 }
1466
1467 /* Try setting number of stripes in raid456 stripe cache */
1468 if (conf->min_nr_stripes != nr_stripes) {
1469 r = raid5_set_cache_size(mddev, nr_stripes);
1470 if (r) {
1471 rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1472 return r;
1473 }
1474
1475 DMINFO("%u stripe cache entries", nr_stripes);
1476 }
1477
1478 return 0;
1479 }
1480
1481 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1482 static unsigned int mddev_data_stripes(struct raid_set *rs)
1483 {
1484 return rs->md.raid_disks - rs->raid_type->parity_devs;
1485 }
1486
1487 /* Return # of data stripes of @rs (i.e. as of ctr) */
1488 static unsigned int rs_data_stripes(struct raid_set *rs)
1489 {
1490 return rs->raid_disks - rs->raid_type->parity_devs;
1491 }
1492
1493 /*
1494 * Retrieve rdev->sectors from any valid raid device of @rs
1495 * to allow userpace to pass in arbitray "- -" device tupples.
1496 */
1497 static sector_t __rdev_sectors(struct raid_set *rs)
1498 {
1499 int i;
1500
1501 for (i = 0; i < rs->md.raid_disks; i++) {
1502 struct md_rdev *rdev = &rs->dev[i].rdev;
1503
1504 if (!test_bit(Journal, &rdev->flags) &&
1505 rdev->bdev && rdev->sectors)
1506 return rdev->sectors;
1507 }
1508
1509 BUG(); /* Constructor ensures we got some. */
1510 }
1511
1512 /* Calculate the sectors per device and per array used for @rs */
1513 static int rs_set_dev_and_array_sectors(struct raid_set *rs, bool use_mddev)
1514 {
1515 int delta_disks;
1516 unsigned int data_stripes;
1517 struct mddev *mddev = &rs->md;
1518 struct md_rdev *rdev;
1519 sector_t array_sectors = rs->ti->len, dev_sectors = rs->ti->len;
1520
1521 if (use_mddev) {
1522 delta_disks = mddev->delta_disks;
1523 data_stripes = mddev_data_stripes(rs);
1524 } else {
1525 delta_disks = rs->delta_disks;
1526 data_stripes = rs_data_stripes(rs);
1527 }
1528
1529 /* Special raid1 case w/o delta_disks support (yet) */
1530 if (rt_is_raid1(rs->raid_type))
1531 ;
1532 else if (rt_is_raid10(rs->raid_type)) {
1533 if (rs->raid10_copies < 2 ||
1534 delta_disks < 0) {
1535 rs->ti->error = "Bogus raid10 data copies or delta disks";
1536 return -EINVAL;
1537 }
1538
1539 dev_sectors *= rs->raid10_copies;
1540 if (sector_div(dev_sectors, data_stripes))
1541 goto bad;
1542
1543 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1544 if (sector_div(array_sectors, rs->raid10_copies))
1545 goto bad;
1546
1547 } else if (sector_div(dev_sectors, data_stripes))
1548 goto bad;
1549
1550 else
1551 /* Striped layouts */
1552 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1553
1554 rdev_for_each(rdev, mddev)
1555 if (!test_bit(Journal, &rdev->flags))
1556 rdev->sectors = dev_sectors;
1557
1558 mddev->array_sectors = array_sectors;
1559 mddev->dev_sectors = dev_sectors;
1560
1561 return 0;
1562 bad:
1563 rs->ti->error = "Target length not divisible by number of data devices";
1564 return -EINVAL;
1565 }
1566
1567 /* Setup recovery on @rs */
1568 static void __rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1569 {
1570 /* raid0 does not recover */
1571 if (rs_is_raid0(rs))
1572 rs->md.recovery_cp = MaxSector;
1573 /*
1574 * A raid6 set has to be recovered either
1575 * completely or for the grown part to
1576 * ensure proper parity and Q-Syndrome
1577 */
1578 else if (rs_is_raid6(rs))
1579 rs->md.recovery_cp = dev_sectors;
1580 /*
1581 * Other raid set types may skip recovery
1582 * depending on the 'nosync' flag.
1583 */
1584 else
1585 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1586 ? MaxSector : dev_sectors;
1587 }
1588
1589 /* Setup recovery on @rs based on raid type, device size and 'nosync' flag */
1590 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1591 {
1592 if (!dev_sectors)
1593 /* New raid set or 'sync' flag provided */
1594 __rs_setup_recovery(rs, 0);
1595 else if (dev_sectors == MaxSector)
1596 /* Prevent recovery */
1597 __rs_setup_recovery(rs, MaxSector);
1598 else if (__rdev_sectors(rs) < dev_sectors)
1599 /* Grown raid set */
1600 __rs_setup_recovery(rs, __rdev_sectors(rs));
1601 else
1602 __rs_setup_recovery(rs, MaxSector);
1603 }
1604
1605 static void do_table_event(struct work_struct *ws)
1606 {
1607 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1608
1609 smp_rmb(); /* Make sure we access most actual mddev properties */
1610 if (!rs_is_reshaping(rs))
1611 rs_set_capacity(rs);
1612 dm_table_event(rs->ti->table);
1613 }
1614
1615 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
1616 {
1617 struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
1618
1619 return mddev_congested(&rs->md, bits);
1620 }
1621
1622 /*
1623 * Make sure a valid takover (level switch) is being requested on @rs
1624 *
1625 * Conversions of raid sets from one MD personality to another
1626 * have to conform to restrictions which are enforced here.
1627 */
1628 static int rs_check_takeover(struct raid_set *rs)
1629 {
1630 struct mddev *mddev = &rs->md;
1631 unsigned int near_copies;
1632
1633 if (rs->md.degraded) {
1634 rs->ti->error = "Can't takeover degraded raid set";
1635 return -EPERM;
1636 }
1637
1638 if (rs_is_reshaping(rs)) {
1639 rs->ti->error = "Can't takeover reshaping raid set";
1640 return -EPERM;
1641 }
1642
1643 switch (mddev->level) {
1644 case 0:
1645 /* raid0 -> raid1/5 with one disk */
1646 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1647 mddev->raid_disks == 1)
1648 return 0;
1649
1650 /* raid0 -> raid10 */
1651 if (mddev->new_level == 10 &&
1652 !(rs->raid_disks % mddev->raid_disks))
1653 return 0;
1654
1655 /* raid0 with multiple disks -> raid4/5/6 */
1656 if (__within_range(mddev->new_level, 4, 6) &&
1657 mddev->new_layout == ALGORITHM_PARITY_N &&
1658 mddev->raid_disks > 1)
1659 return 0;
1660
1661 break;
1662
1663 case 10:
1664 /* Can't takeover raid10_offset! */
1665 if (__is_raid10_offset(mddev->layout))
1666 break;
1667
1668 near_copies = __raid10_near_copies(mddev->layout);
1669
1670 /* raid10* -> raid0 */
1671 if (mddev->new_level == 0) {
1672 /* Can takeover raid10_near with raid disks divisable by data copies! */
1673 if (near_copies > 1 &&
1674 !(mddev->raid_disks % near_copies)) {
1675 mddev->raid_disks /= near_copies;
1676 mddev->delta_disks = mddev->raid_disks;
1677 return 0;
1678 }
1679
1680 /* Can takeover raid10_far */
1681 if (near_copies == 1 &&
1682 __raid10_far_copies(mddev->layout) > 1)
1683 return 0;
1684
1685 break;
1686 }
1687
1688 /* raid10_{near,far} -> raid1 */
1689 if (mddev->new_level == 1 &&
1690 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1691 return 0;
1692
1693 /* raid10_{near,far} with 2 disks -> raid4/5 */
1694 if (__within_range(mddev->new_level, 4, 5) &&
1695 mddev->raid_disks == 2)
1696 return 0;
1697 break;
1698
1699 case 1:
1700 /* raid1 with 2 disks -> raid4/5 */
1701 if (__within_range(mddev->new_level, 4, 5) &&
1702 mddev->raid_disks == 2) {
1703 mddev->degraded = 1;
1704 return 0;
1705 }
1706
1707 /* raid1 -> raid0 */
1708 if (mddev->new_level == 0 &&
1709 mddev->raid_disks == 1)
1710 return 0;
1711
1712 /* raid1 -> raid10 */
1713 if (mddev->new_level == 10)
1714 return 0;
1715 break;
1716
1717 case 4:
1718 /* raid4 -> raid0 */
1719 if (mddev->new_level == 0)
1720 return 0;
1721
1722 /* raid4 -> raid1/5 with 2 disks */
1723 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1724 mddev->raid_disks == 2)
1725 return 0;
1726
1727 /* raid4 -> raid5/6 with parity N */
1728 if (__within_range(mddev->new_level, 5, 6) &&
1729 mddev->layout == ALGORITHM_PARITY_N)
1730 return 0;
1731 break;
1732
1733 case 5:
1734 /* raid5 with parity N -> raid0 */
1735 if (mddev->new_level == 0 &&
1736 mddev->layout == ALGORITHM_PARITY_N)
1737 return 0;
1738
1739 /* raid5 with parity N -> raid4 */
1740 if (mddev->new_level == 4 &&
1741 mddev->layout == ALGORITHM_PARITY_N)
1742 return 0;
1743
1744 /* raid5 with 2 disks -> raid1/4/10 */
1745 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1746 mddev->raid_disks == 2)
1747 return 0;
1748
1749 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1750 if (mddev->new_level == 6 &&
1751 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1752 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1753 return 0;
1754 break;
1755
1756 case 6:
1757 /* raid6 with parity N -> raid0 */
1758 if (mddev->new_level == 0 &&
1759 mddev->layout == ALGORITHM_PARITY_N)
1760 return 0;
1761
1762 /* raid6 with parity N -> raid4 */
1763 if (mddev->new_level == 4 &&
1764 mddev->layout == ALGORITHM_PARITY_N)
1765 return 0;
1766
1767 /* raid6_*_n with Q-Syndrome N -> raid5_* */
1768 if (mddev->new_level == 5 &&
1769 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1770 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1771 return 0;
1772
1773 default:
1774 break;
1775 }
1776
1777 rs->ti->error = "takeover not possible";
1778 return -EINVAL;
1779 }
1780
1781 /* True if @rs requested to be taken over */
1782 static bool rs_takeover_requested(struct raid_set *rs)
1783 {
1784 return rs->md.new_level != rs->md.level;
1785 }
1786
1787 /* True if @rs is requested to reshape by ctr */
1788 static bool rs_reshape_requested(struct raid_set *rs)
1789 {
1790 bool change;
1791 struct mddev *mddev = &rs->md;
1792
1793 if (rs_takeover_requested(rs))
1794 return false;
1795
1796 if (!mddev->level)
1797 return false;
1798
1799 change = mddev->new_layout != mddev->layout ||
1800 mddev->new_chunk_sectors != mddev->chunk_sectors ||
1801 rs->delta_disks;
1802
1803 /* Historical case to support raid1 reshape without delta disks */
1804 if (mddev->level == 1) {
1805 if (rs->delta_disks)
1806 return !!rs->delta_disks;
1807
1808 return !change &&
1809 mddev->raid_disks != rs->raid_disks;
1810 }
1811
1812 if (mddev->level == 10)
1813 return change &&
1814 !__is_raid10_far(mddev->new_layout) &&
1815 rs->delta_disks >= 0;
1816
1817 return change;
1818 }
1819
1820 /* Features */
1821 #define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */
1822
1823 /* State flags for sb->flags */
1824 #define SB_FLAG_RESHAPE_ACTIVE 0x1
1825 #define SB_FLAG_RESHAPE_BACKWARDS 0x2
1826
1827 /*
1828 * This structure is never routinely used by userspace, unlike md superblocks.
1829 * Devices with this superblock should only ever be accessed via device-mapper.
1830 */
1831 #define DM_RAID_MAGIC 0x64526D44
1832 struct dm_raid_superblock {
1833 __le32 magic; /* "DmRd" */
1834 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1835
1836 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */
1837 __le32 array_position; /* The position of this drive in the raid set */
1838
1839 __le64 events; /* Incremented by md when superblock updated */
1840 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */
1841 /* indicate failures (see extension below) */
1842
1843 /*
1844 * This offset tracks the progress of the repair or replacement of
1845 * an individual drive.
1846 */
1847 __le64 disk_recovery_offset;
1848
1849 /*
1850 * This offset tracks the progress of the initial raid set
1851 * synchronisation/parity calculation.
1852 */
1853 __le64 array_resync_offset;
1854
1855 /*
1856 * raid characteristics
1857 */
1858 __le32 level;
1859 __le32 layout;
1860 __le32 stripe_sectors;
1861
1862 /********************************************************************
1863 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1864 *
1865 * FEATURE_FLAG_SUPPORTS_V190 in the features member indicates that those exist
1866 */
1867
1868 __le32 flags; /* Flags defining array states for reshaping */
1869
1870 /*
1871 * This offset tracks the progress of a raid
1872 * set reshape in order to be able to restart it
1873 */
1874 __le64 reshape_position;
1875
1876 /*
1877 * These define the properties of the array in case of an interrupted reshape
1878 */
1879 __le32 new_level;
1880 __le32 new_layout;
1881 __le32 new_stripe_sectors;
1882 __le32 delta_disks;
1883
1884 __le64 array_sectors; /* Array size in sectors */
1885
1886 /*
1887 * Sector offsets to data on devices (reshaping).
1888 * Needed to support out of place reshaping, thus
1889 * not writing over any stripes whilst converting
1890 * them from old to new layout
1891 */
1892 __le64 data_offset;
1893 __le64 new_data_offset;
1894
1895 __le64 sectors; /* Used device size in sectors */
1896
1897 /*
1898 * Additonal Bit field of devices indicating failures to support
1899 * up to 256 devices with the 1.9.0 on-disk metadata format
1900 */
1901 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1902
1903 __le32 incompat_features; /* Used to indicate any incompatible features */
1904
1905 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
1906 } __packed;
1907
1908 /*
1909 * Check for reshape constraints on raid set @rs:
1910 *
1911 * - reshape function non-existent
1912 * - degraded set
1913 * - ongoing recovery
1914 * - ongoing reshape
1915 *
1916 * Returns 0 if none or -EPERM if given constraint
1917 * and error message reference in @errmsg
1918 */
1919 static int rs_check_reshape(struct raid_set *rs)
1920 {
1921 struct mddev *mddev = &rs->md;
1922
1923 if (!mddev->pers || !mddev->pers->check_reshape)
1924 rs->ti->error = "Reshape not supported";
1925 else if (mddev->degraded)
1926 rs->ti->error = "Can't reshape degraded raid set";
1927 else if (rs_is_recovering(rs))
1928 rs->ti->error = "Convert request on recovering raid set prohibited";
1929 else if (rs_is_reshaping(rs))
1930 rs->ti->error = "raid set already reshaping!";
1931 else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
1932 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
1933 else
1934 return 0;
1935
1936 return -EPERM;
1937 }
1938
1939 static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload)
1940 {
1941 BUG_ON(!rdev->sb_page);
1942
1943 if (rdev->sb_loaded && !force_reload)
1944 return 0;
1945
1946 rdev->sb_loaded = 0;
1947
1948 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) {
1949 DMERR("Failed to read superblock of device at position %d",
1950 rdev->raid_disk);
1951 md_error(rdev->mddev, rdev);
1952 set_bit(Faulty, &rdev->flags);
1953 return -EIO;
1954 }
1955
1956 rdev->sb_loaded = 1;
1957
1958 return 0;
1959 }
1960
1961 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1962 {
1963 failed_devices[0] = le64_to_cpu(sb->failed_devices);
1964 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
1965
1966 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
1967 int i = ARRAY_SIZE(sb->extended_failed_devices);
1968
1969 while (i--)
1970 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
1971 }
1972 }
1973
1974 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1975 {
1976 int i = ARRAY_SIZE(sb->extended_failed_devices);
1977
1978 sb->failed_devices = cpu_to_le64(failed_devices[0]);
1979 while (i--)
1980 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
1981 }
1982
1983 /*
1984 * Synchronize the superblock members with the raid set properties
1985 *
1986 * All superblock data is little endian.
1987 */
1988 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
1989 {
1990 bool update_failed_devices = false;
1991 unsigned int i;
1992 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
1993 struct dm_raid_superblock *sb;
1994 struct raid_set *rs = container_of(mddev, struct raid_set, md);
1995
1996 /* No metadata device, no superblock */
1997 if (!rdev->meta_bdev)
1998 return;
1999
2000 BUG_ON(!rdev->sb_page);
2001
2002 sb = page_address(rdev->sb_page);
2003
2004 sb_retrieve_failed_devices(sb, failed_devices);
2005
2006 for (i = 0; i < rs->raid_disks; i++)
2007 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
2008 update_failed_devices = true;
2009 set_bit(i, (void *) failed_devices);
2010 }
2011
2012 if (update_failed_devices)
2013 sb_update_failed_devices(sb, failed_devices);
2014
2015 sb->magic = cpu_to_le32(DM_RAID_MAGIC);
2016 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2017
2018 sb->num_devices = cpu_to_le32(mddev->raid_disks);
2019 sb->array_position = cpu_to_le32(rdev->raid_disk);
2020
2021 sb->events = cpu_to_le64(mddev->events);
2022
2023 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
2024 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
2025
2026 sb->level = cpu_to_le32(mddev->level);
2027 sb->layout = cpu_to_le32(mddev->layout);
2028 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
2029
2030 sb->new_level = cpu_to_le32(mddev->new_level);
2031 sb->new_layout = cpu_to_le32(mddev->new_layout);
2032 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
2033
2034 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2035
2036 smp_rmb(); /* Make sure we access most recent reshape position */
2037 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2038 if (le64_to_cpu(sb->reshape_position) != MaxSector) {
2039 /* Flag ongoing reshape */
2040 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
2041
2042 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
2043 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
2044 } else {
2045 /* Clear reshape flags */
2046 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
2047 }
2048
2049 sb->array_sectors = cpu_to_le64(mddev->array_sectors);
2050 sb->data_offset = cpu_to_le64(rdev->data_offset);
2051 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
2052 sb->sectors = cpu_to_le64(rdev->sectors);
2053 sb->incompat_features = cpu_to_le32(0);
2054
2055 /* Zero out the rest of the payload after the size of the superblock */
2056 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
2057 }
2058
2059 /*
2060 * super_load
2061 *
2062 * This function creates a superblock if one is not found on the device
2063 * and will decide which superblock to use if there's a choice.
2064 *
2065 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
2066 */
2067 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
2068 {
2069 int r;
2070 struct dm_raid_superblock *sb;
2071 struct dm_raid_superblock *refsb;
2072 uint64_t events_sb, events_refsb;
2073
2074 rdev->sb_start = 0;
2075 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
2076 if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
2077 DMERR("superblock size of a logical block is no longer valid");
2078 return -EINVAL;
2079 }
2080
2081 r = read_disk_sb(rdev, rdev->sb_size, false);
2082 if (r)
2083 return r;
2084
2085 sb = page_address(rdev->sb_page);
2086
2087 /*
2088 * Two cases that we want to write new superblocks and rebuild:
2089 * 1) New device (no matching magic number)
2090 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2091 */
2092 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2093 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2094 super_sync(rdev->mddev, rdev);
2095
2096 set_bit(FirstUse, &rdev->flags);
2097 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2098
2099 /* Force writing of superblocks to disk */
2100 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags);
2101
2102 /* Any superblock is better than none, choose that if given */
2103 return refdev ? 0 : 1;
2104 }
2105
2106 if (!refdev)
2107 return 1;
2108
2109 events_sb = le64_to_cpu(sb->events);
2110
2111 refsb = page_address(refdev->sb_page);
2112 events_refsb = le64_to_cpu(refsb->events);
2113
2114 return (events_sb > events_refsb) ? 1 : 0;
2115 }
2116
2117 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2118 {
2119 int role;
2120 unsigned int d;
2121 struct mddev *mddev = &rs->md;
2122 uint64_t events_sb;
2123 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2124 struct dm_raid_superblock *sb;
2125 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2126 struct md_rdev *r;
2127 struct dm_raid_superblock *sb2;
2128
2129 sb = page_address(rdev->sb_page);
2130 events_sb = le64_to_cpu(sb->events);
2131
2132 /*
2133 * Initialise to 1 if this is a new superblock.
2134 */
2135 mddev->events = events_sb ? : 1;
2136
2137 mddev->reshape_position = MaxSector;
2138
2139 mddev->raid_disks = le32_to_cpu(sb->num_devices);
2140 mddev->level = le32_to_cpu(sb->level);
2141 mddev->layout = le32_to_cpu(sb->layout);
2142 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2143
2144 /*
2145 * Reshaping is supported, e.g. reshape_position is valid
2146 * in superblock and superblock content is authoritative.
2147 */
2148 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2149 /* Superblock is authoritative wrt given raid set layout! */
2150 mddev->new_level = le32_to_cpu(sb->new_level);
2151 mddev->new_layout = le32_to_cpu(sb->new_layout);
2152 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2153 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2154 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2155
2156 /* raid was reshaping and got interrupted */
2157 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2158 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2159 DMERR("Reshape requested but raid set is still reshaping");
2160 return -EINVAL;
2161 }
2162
2163 if (mddev->delta_disks < 0 ||
2164 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2165 mddev->reshape_backwards = 1;
2166 else
2167 mddev->reshape_backwards = 0;
2168
2169 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2170 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2171 }
2172
2173 } else {
2174 /*
2175 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2176 */
2177 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout);
2178 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2179
2180 if (rs_takeover_requested(rs)) {
2181 if (rt_cur && rt_new)
2182 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)",
2183 rt_cur->name, rt_new->name);
2184 else
2185 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)");
2186 return -EINVAL;
2187 } else if (rs_reshape_requested(rs)) {
2188 DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)");
2189 if (mddev->layout != mddev->new_layout) {
2190 if (rt_cur && rt_new)
2191 DMERR(" current layout %s vs new layout %s",
2192 rt_cur->name, rt_new->name);
2193 else
2194 DMERR(" current layout 0x%X vs new layout 0x%X",
2195 le32_to_cpu(sb->layout), mddev->new_layout);
2196 }
2197 if (mddev->chunk_sectors != mddev->new_chunk_sectors)
2198 DMERR(" current stripe sectors %u vs new stripe sectors %u",
2199 mddev->chunk_sectors, mddev->new_chunk_sectors);
2200 if (rs->delta_disks)
2201 DMERR(" current %u disks vs new %u disks",
2202 mddev->raid_disks, mddev->raid_disks + rs->delta_disks);
2203 if (rs_is_raid10(rs)) {
2204 DMERR(" Old layout: %s w/ %u copies",
2205 raid10_md_layout_to_format(mddev->layout),
2206 raid10_md_layout_to_copies(mddev->layout));
2207 DMERR(" New layout: %s w/ %u copies",
2208 raid10_md_layout_to_format(mddev->new_layout),
2209 raid10_md_layout_to_copies(mddev->new_layout));
2210 }
2211 return -EINVAL;
2212 }
2213
2214 DMINFO("Discovered old metadata format; upgrading to extended metadata format");
2215 }
2216
2217 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2218 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2219
2220 /*
2221 * During load, we set FirstUse if a new superblock was written.
2222 * There are two reasons we might not have a superblock:
2223 * 1) The raid set is brand new - in which case, all of the
2224 * devices must have their In_sync bit set. Also,
2225 * recovery_cp must be 0, unless forced.
2226 * 2) This is a new device being added to an old raid set
2227 * and the new device needs to be rebuilt - in which
2228 * case the In_sync bit will /not/ be set and
2229 * recovery_cp must be MaxSector.
2230 * 3) This is/are a new device(s) being added to an old
2231 * raid set during takeover to a higher raid level
2232 * to provide capacity for redundancy or during reshape
2233 * to add capacity to grow the raid set.
2234 */
2235 d = 0;
2236 rdev_for_each(r, mddev) {
2237 if (test_bit(Journal, &rdev->flags))
2238 continue;
2239
2240 if (test_bit(FirstUse, &r->flags))
2241 new_devs++;
2242
2243 if (!test_bit(In_sync, &r->flags)) {
2244 DMINFO("Device %d specified for rebuild; clearing superblock",
2245 r->raid_disk);
2246 rebuilds++;
2247
2248 if (test_bit(FirstUse, &r->flags))
2249 rebuild_and_new++;
2250 }
2251
2252 d++;
2253 }
2254
2255 if (new_devs == rs->raid_disks || !rebuilds) {
2256 /* Replace a broken device */
2257 if (new_devs == 1 && !rs->delta_disks)
2258 ;
2259 if (new_devs == rs->raid_disks) {
2260 DMINFO("Superblocks created for new raid set");
2261 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2262 } else if (new_devs != rebuilds &&
2263 new_devs != rs->delta_disks) {
2264 DMERR("New device injected into existing raid set without "
2265 "'delta_disks' or 'rebuild' parameter specified");
2266 return -EINVAL;
2267 }
2268 } else if (new_devs && new_devs != rebuilds) {
2269 DMERR("%u 'rebuild' devices cannot be injected into"
2270 " a raid set with %u other first-time devices",
2271 rebuilds, new_devs);
2272 return -EINVAL;
2273 } else if (rebuilds) {
2274 if (rebuild_and_new && rebuilds != rebuild_and_new) {
2275 DMERR("new device%s provided without 'rebuild'",
2276 new_devs > 1 ? "s" : "");
2277 return -EINVAL;
2278 } else if (rs_is_recovering(rs)) {
2279 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2280 (unsigned long long) mddev->recovery_cp);
2281 return -EINVAL;
2282 } else if (rs_is_reshaping(rs)) {
2283 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2284 (unsigned long long) mddev->reshape_position);
2285 return -EINVAL;
2286 }
2287 }
2288
2289 /*
2290 * Now we set the Faulty bit for those devices that are
2291 * recorded in the superblock as failed.
2292 */
2293 sb_retrieve_failed_devices(sb, failed_devices);
2294 rdev_for_each(r, mddev) {
2295 if (test_bit(Journal, &rdev->flags) ||
2296 !r->sb_page)
2297 continue;
2298 sb2 = page_address(r->sb_page);
2299 sb2->failed_devices = 0;
2300 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2301
2302 /*
2303 * Check for any device re-ordering.
2304 */
2305 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2306 role = le32_to_cpu(sb2->array_position);
2307 if (role < 0)
2308 continue;
2309
2310 if (role != r->raid_disk) {
2311 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) {
2312 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2313 rs->raid_disks % rs->raid10_copies) {
2314 rs->ti->error =
2315 "Cannot change raid10 near set to odd # of devices!";
2316 return -EINVAL;
2317 }
2318
2319 sb2->array_position = cpu_to_le32(r->raid_disk);
2320
2321 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2322 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2323 !rt_is_raid1(rs->raid_type)) {
2324 rs->ti->error = "Cannot change device positions in raid set";
2325 return -EINVAL;
2326 }
2327
2328 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2329 }
2330
2331 /*
2332 * Partial recovery is performed on
2333 * returning failed devices.
2334 */
2335 if (test_bit(role, (void *) failed_devices))
2336 set_bit(Faulty, &r->flags);
2337 }
2338 }
2339
2340 return 0;
2341 }
2342
2343 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2344 {
2345 struct mddev *mddev = &rs->md;
2346 struct dm_raid_superblock *sb;
2347
2348 if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0)
2349 return 0;
2350
2351 sb = page_address(rdev->sb_page);
2352
2353 /*
2354 * If mddev->events is not set, we know we have not yet initialized
2355 * the array.
2356 */
2357 if (!mddev->events && super_init_validation(rs, rdev))
2358 return -EINVAL;
2359
2360 if (le32_to_cpu(sb->compat_features) &&
2361 le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2362 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2363 return -EINVAL;
2364 }
2365
2366 if (sb->incompat_features) {
2367 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2368 return -EINVAL;
2369 }
2370
2371 /* Enable bitmap creation for RAID levels != 0 */
2372 mddev->bitmap_info.offset = rt_is_raid0(rs->raid_type) ? 0 : to_sector(4096);
2373 mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2374
2375 if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2376 /* Retrieve device size stored in superblock to be prepared for shrink */
2377 rdev->sectors = le64_to_cpu(sb->sectors);
2378 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2379 if (rdev->recovery_offset == MaxSector)
2380 set_bit(In_sync, &rdev->flags);
2381 /*
2382 * If no reshape in progress -> we're recovering single
2383 * disk(s) and have to set the device(s) to out-of-sync
2384 */
2385 else if (!rs_is_reshaping(rs))
2386 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2387 }
2388
2389 /*
2390 * If a device comes back, set it as not In_sync and no longer faulty.
2391 */
2392 if (test_and_clear_bit(Faulty, &rdev->flags)) {
2393 rdev->recovery_offset = 0;
2394 clear_bit(In_sync, &rdev->flags);
2395 rdev->saved_raid_disk = rdev->raid_disk;
2396 }
2397
2398 /* Reshape support -> restore repective data offsets */
2399 rdev->data_offset = le64_to_cpu(sb->data_offset);
2400 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2401
2402 return 0;
2403 }
2404
2405 /*
2406 * Analyse superblocks and select the freshest.
2407 */
2408 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2409 {
2410 int r;
2411 struct md_rdev *rdev, *freshest;
2412 struct mddev *mddev = &rs->md;
2413
2414 freshest = NULL;
2415 rdev_for_each(rdev, mddev) {
2416 if (test_bit(Journal, &rdev->flags))
2417 continue;
2418
2419 /*
2420 * Skipping super_load due to CTR_FLAG_SYNC will cause
2421 * the array to undergo initialization again as
2422 * though it were new. This is the intended effect
2423 * of the "sync" directive.
2424 *
2425 * With reshaping capability added, we must ensure that
2426 * that the "sync" directive is disallowed during the reshape.
2427 */
2428 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2429 continue;
2430
2431 if (!rdev->meta_bdev)
2432 continue;
2433
2434 r = super_load(rdev, freshest);
2435
2436 switch (r) {
2437 case 1:
2438 freshest = rdev;
2439 break;
2440 case 0:
2441 break;
2442 default:
2443 /* This is a failure to read the superblock from the metadata device. */
2444 /*
2445 * We have to keep any raid0 data/metadata device pairs or
2446 * the MD raid0 personality will fail to start the array.
2447 */
2448 if (rs_is_raid0(rs))
2449 continue;
2450
2451 /*
2452 * We keep the dm_devs to be able to emit the device tuple
2453 * properly on the table line in raid_status() (rather than
2454 * mistakenly acting as if '- -' got passed into the constructor).
2455 *
2456 * The rdev has to stay on the same_set list to allow for
2457 * the attempt to restore faulty devices on second resume.
2458 */
2459 rdev->raid_disk = rdev->saved_raid_disk = -1;
2460 break;
2461 }
2462 }
2463
2464 if (!freshest)
2465 return 0;
2466
2467 if (validate_raid_redundancy(rs)) {
2468 rs->ti->error = "Insufficient redundancy to activate array";
2469 return -EINVAL;
2470 }
2471
2472 /*
2473 * Validation of the freshest device provides the source of
2474 * validation for the remaining devices.
2475 */
2476 rs->ti->error = "Unable to assemble array: Invalid superblocks";
2477 if (super_validate(rs, freshest))
2478 return -EINVAL;
2479
2480 rdev_for_each(rdev, mddev)
2481 if (!test_bit(Journal, &rdev->flags) &&
2482 rdev != freshest &&
2483 super_validate(rs, rdev))
2484 return -EINVAL;
2485 return 0;
2486 }
2487
2488 /*
2489 * Adjust data_offset and new_data_offset on all disk members of @rs
2490 * for out of place reshaping if requested by contructor
2491 *
2492 * We need free space at the beginning of each raid disk for forward
2493 * and at the end for backward reshapes which userspace has to provide
2494 * via remapping/reordering of space.
2495 */
2496 static int rs_adjust_data_offsets(struct raid_set *rs)
2497 {
2498 sector_t data_offset = 0, new_data_offset = 0;
2499 struct md_rdev *rdev;
2500
2501 /* Constructor did not request data offset change */
2502 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2503 if (!rs_is_reshapable(rs))
2504 goto out;
2505
2506 return 0;
2507 }
2508
2509 /* HM FIXME: get InSync raid_dev? */
2510 rdev = &rs->dev[0].rdev;
2511
2512 if (rs->delta_disks < 0) {
2513 /*
2514 * Removing disks (reshaping backwards):
2515 *
2516 * - before reshape: data is at offset 0 and free space
2517 * is at end of each component LV
2518 *
2519 * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2520 */
2521 data_offset = 0;
2522 new_data_offset = rs->data_offset;
2523
2524 } else if (rs->delta_disks > 0) {
2525 /*
2526 * Adding disks (reshaping forwards):
2527 *
2528 * - before reshape: data is at offset rs->data_offset != 0 and
2529 * free space is at begin of each component LV
2530 *
2531 * - after reshape: data is at offset 0 on each component LV
2532 */
2533 data_offset = rs->data_offset;
2534 new_data_offset = 0;
2535
2536 } else {
2537 /*
2538 * User space passes in 0 for data offset after having removed reshape space
2539 *
2540 * - or - (data offset != 0)
2541 *
2542 * Changing RAID layout or chunk size -> toggle offsets
2543 *
2544 * - before reshape: data is at offset rs->data_offset 0 and
2545 * free space is at end of each component LV
2546 * -or-
2547 * data is at offset rs->data_offset != 0 and
2548 * free space is at begin of each component LV
2549 *
2550 * - after reshape: data is at offset 0 if it was at offset != 0
2551 * or at offset != 0 if it was at offset 0
2552 * on each component LV
2553 *
2554 */
2555 data_offset = rs->data_offset ? rdev->data_offset : 0;
2556 new_data_offset = data_offset ? 0 : rs->data_offset;
2557 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2558 }
2559
2560 /*
2561 * Make sure we got a minimum amount of free sectors per device
2562 */
2563 if (rs->data_offset &&
2564 to_sector(i_size_read(rdev->bdev->bd_inode)) - rdev->sectors < MIN_FREE_RESHAPE_SPACE) {
2565 rs->ti->error = data_offset ? "No space for forward reshape" :
2566 "No space for backward reshape";
2567 return -ENOSPC;
2568 }
2569 out:
2570 /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */
2571 rdev_for_each(rdev, &rs->md) {
2572 if (!test_bit(Journal, &rdev->flags)) {
2573 rdev->data_offset = data_offset;
2574 rdev->new_data_offset = new_data_offset;
2575 }
2576 }
2577
2578 return 0;
2579 }
2580
2581 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2582 static void __reorder_raid_disk_indexes(struct raid_set *rs)
2583 {
2584 int i = 0;
2585 struct md_rdev *rdev;
2586
2587 rdev_for_each(rdev, &rs->md) {
2588 if (!test_bit(Journal, &rdev->flags)) {
2589 rdev->raid_disk = i++;
2590 rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2591 }
2592 }
2593 }
2594
2595 /*
2596 * Setup @rs for takeover by a different raid level
2597 */
2598 static int rs_setup_takeover(struct raid_set *rs)
2599 {
2600 struct mddev *mddev = &rs->md;
2601 struct md_rdev *rdev;
2602 unsigned int d = mddev->raid_disks = rs->raid_disks;
2603 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2604
2605 if (rt_is_raid10(rs->raid_type)) {
2606 if (mddev->level == 0) {
2607 /* Userpace reordered disks -> adjust raid_disk indexes */
2608 __reorder_raid_disk_indexes(rs);
2609
2610 /* raid0 -> raid10_far layout */
2611 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2612 rs->raid10_copies);
2613 } else if (mddev->level == 1)
2614 /* raid1 -> raid10_near layout */
2615 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2616 rs->raid_disks);
2617 else
2618 return -EINVAL;
2619
2620 }
2621
2622 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2623 mddev->recovery_cp = MaxSector;
2624
2625 while (d--) {
2626 rdev = &rs->dev[d].rdev;
2627
2628 if (test_bit(d, (void *) rs->rebuild_disks)) {
2629 clear_bit(In_sync, &rdev->flags);
2630 clear_bit(Faulty, &rdev->flags);
2631 mddev->recovery_cp = rdev->recovery_offset = 0;
2632 /* Bitmap has to be created when we do an "up" takeover */
2633 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2634 }
2635
2636 rdev->new_data_offset = new_data_offset;
2637 }
2638
2639 return 0;
2640 }
2641
2642 /* Prepare @rs for reshape */
2643 static int rs_prepare_reshape(struct raid_set *rs)
2644 {
2645 bool reshape;
2646 struct mddev *mddev = &rs->md;
2647
2648 if (rs_is_raid10(rs)) {
2649 if (rs->raid_disks != mddev->raid_disks &&
2650 __is_raid10_near(mddev->layout) &&
2651 rs->raid10_copies &&
2652 rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2653 /*
2654 * raid disk have to be multiple of data copies to allow this conversion,
2655 *
2656 * This is actually not a reshape it is a
2657 * rebuild of any additional mirrors per group
2658 */
2659 if (rs->raid_disks % rs->raid10_copies) {
2660 rs->ti->error = "Can't reshape raid10 mirror groups";
2661 return -EINVAL;
2662 }
2663
2664 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2665 __reorder_raid_disk_indexes(rs);
2666 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2667 rs->raid10_copies);
2668 mddev->new_layout = mddev->layout;
2669 reshape = false;
2670 } else
2671 reshape = true;
2672
2673 } else if (rs_is_raid456(rs))
2674 reshape = true;
2675
2676 else if (rs_is_raid1(rs)) {
2677 if (rs->delta_disks) {
2678 /* Process raid1 via delta_disks */
2679 mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2680 reshape = true;
2681 } else {
2682 /* Process raid1 without delta_disks */
2683 mddev->raid_disks = rs->raid_disks;
2684 reshape = false;
2685 }
2686 } else {
2687 rs->ti->error = "Called with bogus raid type";
2688 return -EINVAL;
2689 }
2690
2691 if (reshape) {
2692 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2693 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2694 } else if (mddev->raid_disks < rs->raid_disks)
2695 /* Create new superblocks and bitmaps, if any new disks */
2696 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2697
2698 return 0;
2699 }
2700
2701 /*
2702 *
2703 * - change raid layout
2704 * - change chunk size
2705 * - add disks
2706 * - remove disks
2707 */
2708 static int rs_setup_reshape(struct raid_set *rs)
2709 {
2710 int r = 0;
2711 unsigned int cur_raid_devs, d;
2712 struct mddev *mddev = &rs->md;
2713 struct md_rdev *rdev;
2714
2715 mddev->delta_disks = rs->delta_disks;
2716 cur_raid_devs = mddev->raid_disks;
2717
2718 /* Ignore impossible layout change whilst adding/removing disks */
2719 if (mddev->delta_disks &&
2720 mddev->layout != mddev->new_layout) {
2721 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2722 mddev->new_layout = mddev->layout;
2723 }
2724
2725 /*
2726 * Adjust array size:
2727 *
2728 * - in case of adding disks, array size has
2729 * to grow after the disk adding reshape,
2730 * which'll hapen in the event handler;
2731 * reshape will happen forward, so space has to
2732 * be available at the beginning of each disk
2733 *
2734 * - in case of removing disks, array size
2735 * has to shrink before starting the reshape,
2736 * which'll happen here;
2737 * reshape will happen backward, so space has to
2738 * be available at the end of each disk
2739 *
2740 * - data_offset and new_data_offset are
2741 * adjusted for aforementioned out of place
2742 * reshaping based on userspace passing in
2743 * the "data_offset <sectors>" key/value
2744 * pair via the constructor
2745 */
2746
2747 /* Add disk(s) */
2748 if (rs->delta_disks > 0) {
2749 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2750 for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2751 rdev = &rs->dev[d].rdev;
2752 clear_bit(In_sync, &rdev->flags);
2753
2754 /*
2755 * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2756 * by md, which'll store that erroneously in the superblock on reshape
2757 */
2758 rdev->saved_raid_disk = -1;
2759 rdev->raid_disk = d;
2760
2761 rdev->sectors = mddev->dev_sectors;
2762 rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2763 }
2764
2765 mddev->reshape_backwards = 0; /* adding disks -> forward reshape */
2766
2767 /* Remove disk(s) */
2768 } else if (rs->delta_disks < 0) {
2769 r = rs_set_dev_and_array_sectors(rs, true);
2770 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2771
2772 /* Change layout and/or chunk size */
2773 } else {
2774 /*
2775 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2776 *
2777 * keeping number of disks and do layout change ->
2778 *
2779 * toggle reshape_backward depending on data_offset:
2780 *
2781 * - free space upfront -> reshape forward
2782 *
2783 * - free space at the end -> reshape backward
2784 *
2785 *
2786 * This utilizes free reshape space avoiding the need
2787 * for userspace to move (parts of) LV segments in
2788 * case of layout/chunksize change (for disk
2789 * adding/removing reshape space has to be at
2790 * the proper address (see above with delta_disks):
2791 *
2792 * add disk(s) -> begin
2793 * remove disk(s)-> end
2794 */
2795 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2796 }
2797
2798 return r;
2799 }
2800
2801 /*
2802 * Enable/disable discard support on RAID set depending on
2803 * RAID level and discard properties of underlying RAID members.
2804 */
2805 static void configure_discard_support(struct raid_set *rs)
2806 {
2807 int i;
2808 bool raid456;
2809 struct dm_target *ti = rs->ti;
2810
2811 /* Assume discards not supported until after checks below. */
2812 ti->discards_supported = false;
2813
2814 /* RAID level 4,5,6 require discard_zeroes_data for data integrity! */
2815 raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6);
2816
2817 for (i = 0; i < rs->raid_disks; i++) {
2818 struct request_queue *q;
2819
2820 if (!rs->dev[i].rdev.bdev)
2821 continue;
2822
2823 q = bdev_get_queue(rs->dev[i].rdev.bdev);
2824 if (!q || !blk_queue_discard(q))
2825 return;
2826
2827 if (raid456) {
2828 if (!q->limits.discard_zeroes_data)
2829 return;
2830 if (!devices_handle_discard_safely) {
2831 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2832 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2833 return;
2834 }
2835 }
2836 }
2837
2838 /* All RAID members properly support discards */
2839 ti->discards_supported = true;
2840
2841 /*
2842 * RAID1 and RAID10 personalities require bio splitting,
2843 * RAID0/4/5/6 don't and process large discard bios properly.
2844 */
2845 ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10);
2846 ti->num_discard_bios = 1;
2847 }
2848
2849 /*
2850 * Construct a RAID0/1/10/4/5/6 mapping:
2851 * Args:
2852 * <raid_type> <#raid_params> <raid_params>{0,} \
2853 * <#raid_devs> [<meta_dev1> <dev1>]{1,}
2854 *
2855 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for
2856 * details on possible <raid_params>.
2857 *
2858 * Userspace is free to initialize the metadata devices, hence the superblocks to
2859 * enforce recreation based on the passed in table parameters.
2860 *
2861 */
2862 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2863 {
2864 int r;
2865 bool resize;
2866 struct raid_type *rt;
2867 unsigned int num_raid_params, num_raid_devs;
2868 sector_t calculated_dev_sectors;
2869 struct raid_set *rs = NULL;
2870 const char *arg;
2871 struct rs_layout rs_layout;
2872 struct dm_arg_set as = { argc, argv }, as_nrd;
2873 struct dm_arg _args[] = {
2874 { 0, as.argc, "Cannot understand number of raid parameters" },
2875 { 1, 254, "Cannot understand number of raid devices parameters" }
2876 };
2877
2878 /* Must have <raid_type> */
2879 arg = dm_shift_arg(&as);
2880 if (!arg) {
2881 ti->error = "No arguments";
2882 return -EINVAL;
2883 }
2884
2885 rt = get_raid_type(arg);
2886 if (!rt) {
2887 ti->error = "Unrecognised raid_type";
2888 return -EINVAL;
2889 }
2890
2891 /* Must have <#raid_params> */
2892 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
2893 return -EINVAL;
2894
2895 /* number of raid device tupples <meta_dev data_dev> */
2896 as_nrd = as;
2897 dm_consume_args(&as_nrd, num_raid_params);
2898 _args[1].max = (as_nrd.argc - 1) / 2;
2899 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
2900 return -EINVAL;
2901
2902 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
2903 ti->error = "Invalid number of supplied raid devices";
2904 return -EINVAL;
2905 }
2906
2907 rs = raid_set_alloc(ti, rt, num_raid_devs);
2908 if (IS_ERR(rs))
2909 return PTR_ERR(rs);
2910
2911 r = parse_raid_params(rs, &as, num_raid_params);
2912 if (r)
2913 goto bad;
2914
2915 r = parse_dev_params(rs, &as);
2916 if (r)
2917 goto bad;
2918
2919 rs->md.sync_super = super_sync;
2920
2921 /*
2922 * Calculate ctr requested array and device sizes to allow
2923 * for superblock analysis needing device sizes defined.
2924 *
2925 * Any existing superblock will overwrite the array and device sizes
2926 */
2927 r = rs_set_dev_and_array_sectors(rs, false);
2928 if (r)
2929 goto bad;
2930
2931 calculated_dev_sectors = rs->md.dev_sectors;
2932
2933 /*
2934 * Backup any new raid set level, layout, ...
2935 * requested to be able to compare to superblock
2936 * members for conversion decisions.
2937 */
2938 rs_config_backup(rs, &rs_layout);
2939
2940 r = analyse_superblocks(ti, rs);
2941 if (r)
2942 goto bad;
2943
2944 resize = calculated_dev_sectors != __rdev_sectors(rs);
2945
2946 INIT_WORK(&rs->md.event_work, do_table_event);
2947 ti->private = rs;
2948 ti->num_flush_bios = 1;
2949
2950 /* Restore any requested new layout for conversion decision */
2951 rs_config_restore(rs, &rs_layout);
2952
2953 /*
2954 * Now that we have any superblock metadata available,
2955 * check for new, recovering, reshaping, to be taken over,
2956 * to be reshaped or an existing, unchanged raid set to
2957 * run in sequence.
2958 */
2959 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
2960 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
2961 if (rs_is_raid6(rs) &&
2962 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
2963 ti->error = "'nosync' not allowed for new raid6 set";
2964 r = -EINVAL;
2965 goto bad;
2966 }
2967 rs_setup_recovery(rs, 0);
2968 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2969 rs_set_new(rs);
2970 } else if (rs_is_recovering(rs)) {
2971 /* A recovering raid set may be resized */
2972 ; /* skip setup rs */
2973 } else if (rs_is_reshaping(rs)) {
2974 /* Have to reject size change request during reshape */
2975 if (resize) {
2976 ti->error = "Can't resize a reshaping raid set";
2977 r = -EPERM;
2978 goto bad;
2979 }
2980 /* skip setup rs */
2981 } else if (rs_takeover_requested(rs)) {
2982 if (rs_is_reshaping(rs)) {
2983 ti->error = "Can't takeover a reshaping raid set";
2984 r = -EPERM;
2985 goto bad;
2986 }
2987
2988 /* We can't takeover a journaled raid4/5/6 */
2989 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
2990 ti->error = "Can't takeover a journaled raid4/5/6 set";
2991 r = -EPERM;
2992 goto bad;
2993 }
2994
2995 /*
2996 * If a takeover is needed, userspace sets any additional
2997 * devices to rebuild and we can check for a valid request here.
2998 *
2999 * If acceptible, set the level to the new requested
3000 * one, prohibit requesting recovery, allow the raid
3001 * set to run and store superblocks during resume.
3002 */
3003 r = rs_check_takeover(rs);
3004 if (r)
3005 goto bad;
3006
3007 r = rs_setup_takeover(rs);
3008 if (r)
3009 goto bad;
3010
3011 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3012 /* Takeover ain't recovery, so disable recovery */
3013 rs_setup_recovery(rs, MaxSector);
3014 rs_set_new(rs);
3015 } else if (rs_reshape_requested(rs)) {
3016 /*
3017 * No need to check for 'ongoing' takeover here, because takeover
3018 * is an instant operation as oposed to an ongoing reshape.
3019 */
3020
3021 /* We can't reshape a journaled raid4/5/6 */
3022 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3023 ti->error = "Can't reshape a journaled raid4/5/6 set";
3024 r = -EPERM;
3025 goto bad;
3026 }
3027
3028 /*
3029 * We can only prepare for a reshape here, because the
3030 * raid set needs to run to provide the repective reshape
3031 * check functions via its MD personality instance.
3032 *
3033 * So do the reshape check after md_run() succeeded.
3034 */
3035 r = rs_prepare_reshape(rs);
3036 if (r)
3037 return r;
3038
3039 /* Reshaping ain't recovery, so disable recovery */
3040 rs_setup_recovery(rs, MaxSector);
3041 rs_set_cur(rs);
3042 } else {
3043 /* May not set recovery when a device rebuild is requested */
3044 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
3045 rs_setup_recovery(rs, MaxSector);
3046 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3047 } else
3048 rs_setup_recovery(rs, test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ?
3049 0 : (resize ? calculated_dev_sectors : MaxSector));
3050 rs_set_cur(rs);
3051 }
3052
3053 /* If constructor requested it, change data and new_data offsets */
3054 r = rs_adjust_data_offsets(rs);
3055 if (r)
3056 goto bad;
3057
3058 /* Start raid set read-only and assumed clean to change in raid_resume() */
3059 rs->md.ro = 1;
3060 rs->md.in_sync = 1;
3061 set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
3062
3063 /* Has to be held on running the array */
3064 mddev_lock_nointr(&rs->md);
3065 r = md_run(&rs->md);
3066 rs->md.in_sync = 0; /* Assume already marked dirty */
3067
3068 if (r) {
3069 ti->error = "Failed to run raid array";
3070 mddev_unlock(&rs->md);
3071 goto bad;
3072 }
3073
3074 rs->callbacks.congested_fn = raid_is_congested;
3075 dm_table_add_target_callbacks(ti->table, &rs->callbacks);
3076
3077 mddev_suspend(&rs->md);
3078
3079 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
3080 if (rs_is_raid456(rs)) {
3081 r = rs_set_raid456_stripe_cache(rs);
3082 if (r)
3083 goto bad_stripe_cache;
3084 }
3085
3086 /* Now do an early reshape check */
3087 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3088 r = rs_check_reshape(rs);
3089 if (r)
3090 goto bad_check_reshape;
3091
3092 /* Restore new, ctr requested layout to perform check */
3093 rs_config_restore(rs, &rs_layout);
3094
3095 if (rs->md.pers->start_reshape) {
3096 r = rs->md.pers->check_reshape(&rs->md);
3097 if (r) {
3098 ti->error = "Reshape check failed";
3099 goto bad_check_reshape;
3100 }
3101 }
3102 }
3103
3104 /* Disable/enable discard support on raid set. */
3105 configure_discard_support(rs);
3106
3107 mddev_unlock(&rs->md);
3108 return 0;
3109
3110 bad_stripe_cache:
3111 bad_check_reshape:
3112 md_stop(&rs->md);
3113 bad:
3114 raid_set_free(rs);
3115
3116 return r;
3117 }
3118
3119 static void raid_dtr(struct dm_target *ti)
3120 {
3121 struct raid_set *rs = ti->private;
3122
3123 list_del_init(&rs->callbacks.list);
3124 md_stop(&rs->md);
3125 raid_set_free(rs);
3126 }
3127
3128 static int raid_map(struct dm_target *ti, struct bio *bio)
3129 {
3130 struct raid_set *rs = ti->private;
3131 struct mddev *mddev = &rs->md;
3132
3133 /*
3134 * If we're reshaping to add disk(s)), ti->len and
3135 * mddev->array_sectors will differ during the process
3136 * (ti->len > mddev->array_sectors), so we have to requeue
3137 * bios with addresses > mddev->array_sectors here or
3138 * there will occur accesses past EOD of the component
3139 * data images thus erroring the raid set.
3140 */
3141 if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
3142 return DM_MAPIO_REQUEUE;
3143
3144 mddev->pers->make_request(mddev, bio);
3145
3146 return DM_MAPIO_SUBMITTED;
3147 }
3148
3149 /* Return string describing the current sync action of @mddev */
3150 static const char *decipher_sync_action(struct mddev *mddev)
3151 {
3152 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3153 return "frozen";
3154
3155 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3156 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3157 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3158 return "reshape";
3159
3160 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3161 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3162 return "resync";
3163 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3164 return "check";
3165 return "repair";
3166 }
3167
3168 if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3169 return "recover";
3170 }
3171
3172 return "idle";
3173 }
3174
3175 /*
3176 * Return status string for @rdev
3177 *
3178 * Status characters:
3179 *
3180 * 'D' = Dead/Failed raid set component or raid4/5/6 journal device
3181 * 'a' = Alive but not in-sync
3182 * 'A' = Alive and in-sync raid set component or alive raid4/5/6 journal device
3183 * '-' = Non-existing device (i.e. uspace passed '- -' into the ctr)
3184 */
3185 static const char *__raid_dev_status(struct md_rdev *rdev, bool array_in_sync)
3186 {
3187 if (!rdev->bdev)
3188 return "-";
3189 else if (test_bit(Faulty, &rdev->flags))
3190 return "D";
3191 else if (test_bit(Journal, &rdev->flags))
3192 return "A";
3193 else if (!array_in_sync || !test_bit(In_sync, &rdev->flags))
3194 return "a";
3195 else
3196 return "A";
3197 }
3198
3199 /* Helper to return resync/reshape progress for @rs and @array_in_sync */
3200 static sector_t rs_get_progress(struct raid_set *rs,
3201 sector_t resync_max_sectors, bool *array_in_sync)
3202 {
3203 sector_t r, recovery_cp, curr_resync_completed;
3204 struct mddev *mddev = &rs->md;
3205
3206 curr_resync_completed = mddev->curr_resync_completed ?: mddev->recovery_cp;
3207 recovery_cp = mddev->recovery_cp;
3208 *array_in_sync = false;
3209
3210 if (rs_is_raid0(rs)) {
3211 r = resync_max_sectors;
3212 *array_in_sync = true;
3213
3214 } else {
3215 r = mddev->reshape_position;
3216
3217 /* Reshape is relative to the array size */
3218 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
3219 r != MaxSector) {
3220 if (r == MaxSector) {
3221 *array_in_sync = true;
3222 r = resync_max_sectors;
3223 } else {
3224 /* Got to reverse on backward reshape */
3225 if (mddev->reshape_backwards)
3226 r = mddev->array_sectors - r;
3227
3228 /* Devide by # of data stripes */
3229 sector_div(r, mddev_data_stripes(rs));
3230 }
3231
3232 /* Sync is relative to the component device size */
3233 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3234 r = curr_resync_completed;
3235 else
3236 r = recovery_cp;
3237
3238 if (r == MaxSector) {
3239 /*
3240 * Sync complete.
3241 */
3242 *array_in_sync = true;
3243 r = resync_max_sectors;
3244 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3245 /*
3246 * If "check" or "repair" is occurring, the raid set has
3247 * undergone an initial sync and the health characters
3248 * should not be 'a' anymore.
3249 */
3250 *array_in_sync = true;
3251 } else {
3252 struct md_rdev *rdev;
3253
3254 /*
3255 * The raid set may be doing an initial sync, or it may
3256 * be rebuilding individual components. If all the
3257 * devices are In_sync, then it is the raid set that is
3258 * being initialized.
3259 */
3260 rdev_for_each(rdev, mddev)
3261 if (!test_bit(Journal, &rdev->flags) &&
3262 !test_bit(In_sync, &rdev->flags))
3263 *array_in_sync = true;
3264 #if 0
3265 r = 0; /* HM FIXME: TESTME: https://bugzilla.redhat.com/show_bug.cgi?id=1210637 ? */
3266 #endif
3267 }
3268 }
3269
3270 return r;
3271 }
3272
3273 /* Helper to return @dev name or "-" if !@dev */
3274 static const char *__get_dev_name(struct dm_dev *dev)
3275 {
3276 return dev ? dev->name : "-";
3277 }
3278
3279 static void raid_status(struct dm_target *ti, status_type_t type,
3280 unsigned int status_flags, char *result, unsigned int maxlen)
3281 {
3282 struct raid_set *rs = ti->private;
3283 struct mddev *mddev = &rs->md;
3284 struct r5conf *conf = mddev->private;
3285 int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3286 bool array_in_sync;
3287 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3288 unsigned int sz = 0;
3289 unsigned int rebuild_disks;
3290 unsigned int write_mostly_params = 0;
3291 sector_t progress, resync_max_sectors, resync_mismatches;
3292 const char *sync_action;
3293 struct raid_type *rt;
3294
3295 switch (type) {
3296 case STATUSTYPE_INFO:
3297 /* *Should* always succeed */
3298 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3299 if (!rt)
3300 return;
3301
3302 DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3303
3304 /* Access most recent mddev properties for status output */
3305 smp_rmb();
3306 /* Get sensible max sectors even if raid set not yet started */
3307 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3308 mddev->resync_max_sectors : mddev->dev_sectors;
3309 progress = rs_get_progress(rs, resync_max_sectors, &array_in_sync);
3310 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3311 atomic64_read(&mddev->resync_mismatches) : 0;
3312 sync_action = decipher_sync_action(&rs->md);
3313
3314 /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */
3315 for (i = 0; i < rs->raid_disks; i++)
3316 DMEMIT(__raid_dev_status(&rs->dev[i].rdev, array_in_sync));
3317
3318 /*
3319 * In-sync/Reshape ratio:
3320 * The in-sync ratio shows the progress of:
3321 * - Initializing the raid set
3322 * - Rebuilding a subset of devices of the raid set
3323 * The user can distinguish between the two by referring
3324 * to the status characters.
3325 *
3326 * The reshape ratio shows the progress of
3327 * changing the raid layout or the number of
3328 * disks of a raid set
3329 */
3330 DMEMIT(" %llu/%llu", (unsigned long long) progress,
3331 (unsigned long long) resync_max_sectors);
3332
3333 /*
3334 * v1.5.0+:
3335 *
3336 * Sync action:
3337 * See Documentation/device-mapper/dm-raid.txt for
3338 * information on each of these states.
3339 */
3340 DMEMIT(" %s", sync_action);
3341
3342 /*
3343 * v1.5.0+:
3344 *
3345 * resync_mismatches/mismatch_cnt
3346 * This field shows the number of discrepancies found when
3347 * performing a "check" of the raid set.
3348 */
3349 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3350
3351 /*
3352 * v1.9.0+:
3353 *
3354 * data_offset (needed for out of space reshaping)
3355 * This field shows the data offset into the data
3356 * image LV where the first stripes data starts.
3357 *
3358 * We keep data_offset equal on all raid disks of the set,
3359 * so retrieving it from the first raid disk is sufficient.
3360 */
3361 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3362
3363 /*
3364 * v1.10.0+:
3365 */
3366 DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ?
3367 __raid_dev_status(&rs->journal_dev.rdev, 0) : "-");
3368 break;
3369
3370 case STATUSTYPE_TABLE:
3371 /* Report the table line string you would use to construct this raid set */
3372
3373 /* Calculate raid parameter count */
3374 for (i = 0; i < rs->raid_disks; i++)
3375 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3376 write_mostly_params += 2;
3377 rebuild_disks = memweight(rs->rebuild_disks, DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks));
3378 raid_param_cnt += rebuild_disks * 2 +
3379 write_mostly_params +
3380 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3381 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2 +
3382 (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ? 2 : 0);
3383 /* Emit table line */
3384 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3385 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3386 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3387 raid10_md_layout_to_format(mddev->layout));
3388 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3389 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3390 raid10_md_layout_to_copies(mddev->layout));
3391 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3392 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3393 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3394 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3395 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3396 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3397 (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3398 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3399 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3400 (unsigned long long) rs->data_offset);
3401 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3402 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3403 mddev->bitmap_info.daemon_sleep);
3404 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3405 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3406 max(rs->delta_disks, mddev->delta_disks));
3407 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3408 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3409 max_nr_stripes);
3410 if (rebuild_disks)
3411 for (i = 0; i < rs->raid_disks; i++)
3412 if (test_bit(rs->dev[i].rdev.raid_disk, (void *) rs->rebuild_disks))
3413 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD),
3414 rs->dev[i].rdev.raid_disk);
3415 if (write_mostly_params)
3416 for (i = 0; i < rs->raid_disks; i++)
3417 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3418 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3419 rs->dev[i].rdev.raid_disk);
3420 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3421 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3422 mddev->bitmap_info.max_write_behind);
3423 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3424 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3425 mddev->sync_speed_max);
3426 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3427 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3428 mddev->sync_speed_min);
3429 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags))
3430 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV),
3431 __get_dev_name(rs->journal_dev.dev));
3432 DMEMIT(" %d", rs->raid_disks);
3433 for (i = 0; i < rs->raid_disks; i++)
3434 DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3435 __get_dev_name(rs->dev[i].data_dev));
3436 }
3437 }
3438
3439 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv)
3440 {
3441 struct raid_set *rs = ti->private;
3442 struct mddev *mddev = &rs->md;
3443
3444 if (!mddev->pers || !mddev->pers->sync_request)
3445 return -EINVAL;
3446
3447 if (!strcasecmp(argv[0], "frozen"))
3448 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3449 else
3450 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3451
3452 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3453 if (mddev->sync_thread) {
3454 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3455 md_reap_sync_thread(mddev);
3456 }
3457 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3458 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3459 return -EBUSY;
3460 else if (!strcasecmp(argv[0], "resync"))
3461 ; /* MD_RECOVERY_NEEDED set below */
3462 else if (!strcasecmp(argv[0], "recover"))
3463 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3464 else {
3465 if (!strcasecmp(argv[0], "check"))
3466 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3467 else if (!strcasecmp(argv[0], "repair")) {
3468 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3469 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3470 } else
3471 return -EINVAL;
3472 }
3473 if (mddev->ro == 2) {
3474 /* A write to sync_action is enough to justify
3475 * canceling read-auto mode
3476 */
3477 mddev->ro = 0;
3478 if (!mddev->suspended && mddev->sync_thread)
3479 md_wakeup_thread(mddev->sync_thread);
3480 }
3481 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3482 if (!mddev->suspended && mddev->thread)
3483 md_wakeup_thread(mddev->thread);
3484
3485 return 0;
3486 }
3487
3488 static int raid_iterate_devices(struct dm_target *ti,
3489 iterate_devices_callout_fn fn, void *data)
3490 {
3491 struct raid_set *rs = ti->private;
3492 unsigned int i;
3493 int r = 0;
3494
3495 for (i = 0; !r && i < rs->md.raid_disks; i++)
3496 if (rs->dev[i].data_dev)
3497 r = fn(ti,
3498 rs->dev[i].data_dev,
3499 0, /* No offset on data devs */
3500 rs->md.dev_sectors,
3501 data);
3502
3503 return r;
3504 }
3505
3506 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3507 {
3508 struct raid_set *rs = ti->private;
3509 unsigned int chunk_size = to_bytes(rs->md.chunk_sectors);
3510
3511 blk_limits_io_min(limits, chunk_size);
3512 blk_limits_io_opt(limits, chunk_size * mddev_data_stripes(rs));
3513 }
3514
3515 static void raid_presuspend(struct dm_target *ti)
3516 {
3517 struct raid_set *rs = ti->private;
3518
3519 md_stop_writes(&rs->md);
3520 }
3521
3522 static void raid_postsuspend(struct dm_target *ti)
3523 {
3524 struct raid_set *rs = ti->private;
3525
3526 if (!rs->md.suspended)
3527 mddev_suspend(&rs->md);
3528
3529 rs->md.ro = 1;
3530 }
3531
3532 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3533 {
3534 int i;
3535 uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS];
3536 unsigned long flags;
3537 bool cleared = false;
3538 struct dm_raid_superblock *sb;
3539 struct mddev *mddev = &rs->md;
3540 struct md_rdev *r;
3541
3542 /* RAID personalities have to provide hot add/remove methods or we need to bail out. */
3543 if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk)
3544 return;
3545
3546 memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices));
3547
3548 for (i = 0; i < mddev->raid_disks; i++) {
3549 r = &rs->dev[i].rdev;
3550 /* HM FIXME: enhance journal device recovery processing */
3551 if (test_bit(Journal, &r->flags))
3552 continue;
3553
3554 if (test_bit(Faulty, &r->flags) &&
3555 r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) {
3556 DMINFO("Faulty %s device #%d has readable super block."
3557 " Attempting to revive it.",
3558 rs->raid_type->name, i);
3559
3560 /*
3561 * Faulty bit may be set, but sometimes the array can
3562 * be suspended before the personalities can respond
3563 * by removing the device from the array (i.e. calling
3564 * 'hot_remove_disk'). If they haven't yet removed
3565 * the failed device, its 'raid_disk' number will be
3566 * '>= 0' - meaning we must call this function
3567 * ourselves.
3568 */
3569 flags = r->flags;
3570 clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */
3571 if (r->raid_disk >= 0) {
3572 if (mddev->pers->hot_remove_disk(mddev, r)) {
3573 /* Failed to revive this device, try next */
3574 r->flags = flags;
3575 continue;
3576 }
3577 } else
3578 r->raid_disk = r->saved_raid_disk = i;
3579
3580 clear_bit(Faulty, &r->flags);
3581 clear_bit(WriteErrorSeen, &r->flags);
3582
3583 if (mddev->pers->hot_add_disk(mddev, r)) {
3584 /* Failed to revive this device, try next */
3585 r->raid_disk = r->saved_raid_disk = -1;
3586 r->flags = flags;
3587 } else {
3588 clear_bit(In_sync, &r->flags);
3589 r->recovery_offset = 0;
3590 set_bit(i, (void *) cleared_failed_devices);
3591 cleared = true;
3592 }
3593 }
3594 }
3595
3596 /* If any failed devices could be cleared, update all sbs failed_devices bits */
3597 if (cleared) {
3598 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
3599
3600 rdev_for_each(r, &rs->md) {
3601 if (test_bit(Journal, &r->flags))
3602 continue;
3603
3604 sb = page_address(r->sb_page);
3605 sb_retrieve_failed_devices(sb, failed_devices);
3606
3607 for (i = 0; i < DISKS_ARRAY_ELEMS; i++)
3608 failed_devices[i] &= ~cleared_failed_devices[i];
3609
3610 sb_update_failed_devices(sb, failed_devices);
3611 }
3612 }
3613 }
3614
3615 static int __load_dirty_region_bitmap(struct raid_set *rs)
3616 {
3617 int r = 0;
3618
3619 /* Try loading the bitmap unless "raid0", which does not have one */
3620 if (!rs_is_raid0(rs) &&
3621 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3622 r = bitmap_load(&rs->md);
3623 if (r)
3624 DMERR("Failed to load bitmap");
3625 }
3626
3627 return r;
3628 }
3629
3630 /* Enforce updating all superblocks */
3631 static void rs_update_sbs(struct raid_set *rs)
3632 {
3633 struct mddev *mddev = &rs->md;
3634 int ro = mddev->ro;
3635
3636 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3637 mddev->ro = 0;
3638 md_update_sb(mddev, 1);
3639 mddev->ro = ro;
3640 }
3641
3642 /*
3643 * Reshape changes raid algorithm of @rs to new one within personality
3644 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3645 * disks from a raid set thus growing/shrinking it or resizes the set
3646 *
3647 * Call mddev_lock_nointr() before!
3648 */
3649 static int rs_start_reshape(struct raid_set *rs)
3650 {
3651 int r;
3652 struct mddev *mddev = &rs->md;
3653 struct md_personality *pers = mddev->pers;
3654
3655 r = rs_setup_reshape(rs);
3656 if (r)
3657 return r;
3658
3659 /* Need to be resumed to be able to start reshape, recovery is frozen until raid_resume() though */
3660 if (mddev->suspended)
3661 mddev_resume(mddev);
3662
3663 /*
3664 * Check any reshape constraints enforced by the personalility
3665 *
3666 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3667 */
3668 r = pers->check_reshape(mddev);
3669 if (r) {
3670 rs->ti->error = "pers->check_reshape() failed";
3671 return r;
3672 }
3673
3674 /*
3675 * Personality may not provide start reshape method in which
3676 * case check_reshape above has already covered everything
3677 */
3678 if (pers->start_reshape) {
3679 r = pers->start_reshape(mddev);
3680 if (r) {
3681 rs->ti->error = "pers->start_reshape() failed";
3682 return r;
3683 }
3684 }
3685
3686 /* Suspend because a resume will happen in raid_resume() */
3687 if (!mddev->suspended)
3688 mddev_suspend(mddev);
3689
3690 /*
3691 * Now reshape got set up, update superblocks to
3692 * reflect the fact so that a table reload will
3693 * access proper superblock content in the ctr.
3694 */
3695 rs_update_sbs(rs);
3696
3697 return 0;
3698 }
3699
3700 static int raid_preresume(struct dm_target *ti)
3701 {
3702 int r;
3703 struct raid_set *rs = ti->private;
3704 struct mddev *mddev = &rs->md;
3705
3706 /* This is a resume after a suspend of the set -> it's already started */
3707 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3708 return 0;
3709
3710 /*
3711 * The superblocks need to be updated on disk if the
3712 * array is new or new devices got added (thus zeroed
3713 * out by userspace) or __load_dirty_region_bitmap
3714 * will overwrite them in core with old data or fail.
3715 */
3716 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3717 rs_update_sbs(rs);
3718
3719 /* Load the bitmap from disk unless raid0 */
3720 r = __load_dirty_region_bitmap(rs);
3721 if (r)
3722 return r;
3723
3724 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) */
3725 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) &&
3726 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)) {
3727 r = bitmap_resize(mddev->bitmap, mddev->dev_sectors,
3728 to_bytes(rs->requested_bitmap_chunk_sectors), 0);
3729 if (r)
3730 DMERR("Failed to resize bitmap");
3731 }
3732
3733 /* Check for any resize/reshape on @rs and adjust/initiate */
3734 /* Be prepared for mddev_resume() in raid_resume() */
3735 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3736 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
3737 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3738 mddev->resync_min = mddev->recovery_cp;
3739 }
3740
3741 rs_set_capacity(rs);
3742
3743 /* Check for any reshape request unless new raid set */
3744 if (test_and_clear_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3745 /* Initiate a reshape. */
3746 mddev_lock_nointr(mddev);
3747 r = rs_start_reshape(rs);
3748 mddev_unlock(mddev);
3749 if (r)
3750 DMWARN("Failed to check/start reshape, continuing without change");
3751 r = 0;
3752 }
3753
3754 return r;
3755 }
3756
3757 static void raid_resume(struct dm_target *ti)
3758 {
3759 struct raid_set *rs = ti->private;
3760 struct mddev *mddev = &rs->md;
3761
3762 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
3763 /*
3764 * A secondary resume while the device is active.
3765 * Take this opportunity to check whether any failed
3766 * devices are reachable again.
3767 */
3768 attempt_restore_of_faulty_devices(rs);
3769 }
3770
3771 mddev->ro = 0;
3772 mddev->in_sync = 0;
3773
3774 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3775
3776 if (mddev->suspended)
3777 mddev_resume(mddev);
3778 }
3779
3780 static struct target_type raid_target = {
3781 .name = "raid",
3782 .version = {1, 10, 0},
3783 .module = THIS_MODULE,
3784 .ctr = raid_ctr,
3785 .dtr = raid_dtr,
3786 .map = raid_map,
3787 .status = raid_status,
3788 .message = raid_message,
3789 .iterate_devices = raid_iterate_devices,
3790 .io_hints = raid_io_hints,
3791 .presuspend = raid_presuspend,
3792 .postsuspend = raid_postsuspend,
3793 .preresume = raid_preresume,
3794 .resume = raid_resume,
3795 };
3796
3797 static int __init dm_raid_init(void)
3798 {
3799 DMINFO("Loading target version %u.%u.%u",
3800 raid_target.version[0],
3801 raid_target.version[1],
3802 raid_target.version[2]);
3803 return dm_register_target(&raid_target);
3804 }
3805
3806 static void __exit dm_raid_exit(void)
3807 {
3808 dm_unregister_target(&raid_target);
3809 }
3810
3811 module_init(dm_raid_init);
3812 module_exit(dm_raid_exit);
3813
3814 module_param(devices_handle_discard_safely, bool, 0644);
3815 MODULE_PARM_DESC(devices_handle_discard_safely,
3816 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
3817
3818 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
3819 MODULE_ALIAS("dm-raid0");
3820 MODULE_ALIAS("dm-raid1");
3821 MODULE_ALIAS("dm-raid10");
3822 MODULE_ALIAS("dm-raid4");
3823 MODULE_ALIAS("dm-raid5");
3824 MODULE_ALIAS("dm-raid6");
3825 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
3826 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
3827 MODULE_LICENSE("GPL");