]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/dm-raid.c
Merge remote-tracking branches 'asoc/topic/sgtl5000', 'asoc/topic/simple', 'asoc...
[mirror_ubuntu-bionic-kernel.git] / drivers / md / dm-raid.c
1 /*
2 * Copyright (C) 2010-2011 Neil Brown
3 * Copyright (C) 2010-2016 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include <linux/slab.h>
9 #include <linux/module.h>
10
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "bitmap.h"
16
17 #include <linux/device-mapper.h>
18
19 #define DM_MSG_PREFIX "raid"
20 #define MAX_RAID_DEVICES 253 /* md-raid kernel limit */
21
22 /*
23 * Minimum sectors of free reshape space per raid device
24 */
25 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
26
27 static bool devices_handle_discard_safely = false;
28
29 /*
30 * The following flags are used by dm-raid.c to set up the array state.
31 * They must be cleared before md_run is called.
32 */
33 #define FirstUse 10 /* rdev flag */
34
35 struct raid_dev {
36 /*
37 * Two DM devices, one to hold metadata and one to hold the
38 * actual data/parity. The reason for this is to not confuse
39 * ti->len and give more flexibility in altering size and
40 * characteristics.
41 *
42 * While it is possible for this device to be associated
43 * with a different physical device than the data_dev, it
44 * is intended for it to be the same.
45 * |--------- Physical Device ---------|
46 * |- meta_dev -|------ data_dev ------|
47 */
48 struct dm_dev *meta_dev;
49 struct dm_dev *data_dev;
50 struct md_rdev rdev;
51 };
52
53 /*
54 * Bits for establishing rs->ctr_flags
55 *
56 * 1 = no flag value
57 * 2 = flag with value
58 */
59 #define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */
60 #define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */
61 #define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */
62 #define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */
63 #define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */
64 #define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */
65 #define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */
66 #define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */
67 #define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */
68 #define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */
69 #define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */
70 #define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */
71 /* New for v1.9.0 */
72 #define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
73 #define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
74 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
75
76 /*
77 * Flags for rs->ctr_flags field.
78 */
79 #define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC)
80 #define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC)
81 #define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD)
82 #define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP)
83 #define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
84 #define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
85 #define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
86 #define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY)
87 #define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE)
88 #define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE)
89 #define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES)
90 #define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT)
91 #define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS)
92 #define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET)
93 #define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
94
95 /*
96 * Definitions of various constructor flags to
97 * be used in checks of valid / invalid flags
98 * per raid level.
99 */
100 /* Define all any sync flags */
101 #define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
102
103 /* Define flags for options without argument (e.g. 'nosync') */
104 #define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \
105 CTR_FLAG_RAID10_USE_NEAR_SETS)
106
107 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
108 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
109 CTR_FLAG_WRITE_MOSTLY | \
110 CTR_FLAG_DAEMON_SLEEP | \
111 CTR_FLAG_MIN_RECOVERY_RATE | \
112 CTR_FLAG_MAX_RECOVERY_RATE | \
113 CTR_FLAG_MAX_WRITE_BEHIND | \
114 CTR_FLAG_STRIPE_CACHE | \
115 CTR_FLAG_REGION_SIZE | \
116 CTR_FLAG_RAID10_COPIES | \
117 CTR_FLAG_RAID10_FORMAT | \
118 CTR_FLAG_DELTA_DISKS | \
119 CTR_FLAG_DATA_OFFSET)
120
121 /* Valid options definitions per raid level... */
122
123 /* "raid0" does only accept data offset */
124 #define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET)
125
126 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
127 #define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
128 CTR_FLAG_REBUILD | \
129 CTR_FLAG_WRITE_MOSTLY | \
130 CTR_FLAG_DAEMON_SLEEP | \
131 CTR_FLAG_MIN_RECOVERY_RATE | \
132 CTR_FLAG_MAX_RECOVERY_RATE | \
133 CTR_FLAG_MAX_WRITE_BEHIND | \
134 CTR_FLAG_REGION_SIZE | \
135 CTR_FLAG_DELTA_DISKS | \
136 CTR_FLAG_DATA_OFFSET)
137
138 /* "raid10" does not accept any raid1 or stripe cache options */
139 #define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
140 CTR_FLAG_REBUILD | \
141 CTR_FLAG_DAEMON_SLEEP | \
142 CTR_FLAG_MIN_RECOVERY_RATE | \
143 CTR_FLAG_MAX_RECOVERY_RATE | \
144 CTR_FLAG_REGION_SIZE | \
145 CTR_FLAG_RAID10_COPIES | \
146 CTR_FLAG_RAID10_FORMAT | \
147 CTR_FLAG_DELTA_DISKS | \
148 CTR_FLAG_DATA_OFFSET | \
149 CTR_FLAG_RAID10_USE_NEAR_SETS)
150
151 /*
152 * "raid4/5/6" do not accept any raid1 or raid10 specific options
153 *
154 * "raid6" does not accept "nosync", because it is not guaranteed
155 * that both parity and q-syndrome are being written properly with
156 * any writes
157 */
158 #define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
159 CTR_FLAG_REBUILD | \
160 CTR_FLAG_DAEMON_SLEEP | \
161 CTR_FLAG_MIN_RECOVERY_RATE | \
162 CTR_FLAG_MAX_RECOVERY_RATE | \
163 CTR_FLAG_MAX_WRITE_BEHIND | \
164 CTR_FLAG_STRIPE_CACHE | \
165 CTR_FLAG_REGION_SIZE | \
166 CTR_FLAG_DELTA_DISKS | \
167 CTR_FLAG_DATA_OFFSET)
168
169 #define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \
170 CTR_FLAG_REBUILD | \
171 CTR_FLAG_DAEMON_SLEEP | \
172 CTR_FLAG_MIN_RECOVERY_RATE | \
173 CTR_FLAG_MAX_RECOVERY_RATE | \
174 CTR_FLAG_MAX_WRITE_BEHIND | \
175 CTR_FLAG_STRIPE_CACHE | \
176 CTR_FLAG_REGION_SIZE | \
177 CTR_FLAG_DELTA_DISKS | \
178 CTR_FLAG_DATA_OFFSET)
179 /* ...valid options definitions per raid level */
180
181 /*
182 * Flags for rs->runtime_flags field
183 * (RT_FLAG prefix meaning "runtime flag")
184 *
185 * These are all internal and used to define runtime state,
186 * e.g. to prevent another resume from preresume processing
187 * the raid set all over again.
188 */
189 #define RT_FLAG_RS_PRERESUMED 0
190 #define RT_FLAG_RS_RESUMED 1
191 #define RT_FLAG_RS_BITMAP_LOADED 2
192 #define RT_FLAG_UPDATE_SBS 3
193 #define RT_FLAG_RESHAPE_RS 4
194
195 /* Array elements of 64 bit needed for rebuild/failed disk bits */
196 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
197
198 /*
199 * raid set level, layout and chunk sectors backup/restore
200 */
201 struct rs_layout {
202 int new_level;
203 int new_layout;
204 int new_chunk_sectors;
205 };
206
207 struct raid_set {
208 struct dm_target *ti;
209
210 uint32_t bitmap_loaded;
211 uint32_t stripe_cache_entries;
212 unsigned long ctr_flags;
213 unsigned long runtime_flags;
214
215 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
216
217 int raid_disks;
218 int delta_disks;
219 int data_offset;
220 int raid10_copies;
221 int requested_bitmap_chunk_sectors;
222
223 struct mddev md;
224 struct raid_type *raid_type;
225 struct dm_target_callbacks callbacks;
226
227 struct raid_dev dev[0];
228 };
229
230 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
231 {
232 struct mddev *mddev = &rs->md;
233
234 l->new_level = mddev->new_level;
235 l->new_layout = mddev->new_layout;
236 l->new_chunk_sectors = mddev->new_chunk_sectors;
237 }
238
239 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
240 {
241 struct mddev *mddev = &rs->md;
242
243 mddev->new_level = l->new_level;
244 mddev->new_layout = l->new_layout;
245 mddev->new_chunk_sectors = l->new_chunk_sectors;
246 }
247
248 /* raid10 algorithms (i.e. formats) */
249 #define ALGORITHM_RAID10_DEFAULT 0
250 #define ALGORITHM_RAID10_NEAR 1
251 #define ALGORITHM_RAID10_OFFSET 2
252 #define ALGORITHM_RAID10_FAR 3
253
254 /* Supported raid types and properties. */
255 static struct raid_type {
256 const char *name; /* RAID algorithm. */
257 const char *descr; /* Descriptor text for logging. */
258 const unsigned int parity_devs; /* # of parity devices. */
259 const unsigned int minimal_devs;/* minimal # of devices in set. */
260 const unsigned int level; /* RAID level. */
261 const unsigned int algorithm; /* RAID algorithm. */
262 } raid_types[] = {
263 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */},
264 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */},
265 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR},
266 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET},
267 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR},
268 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT},
269 {"raid4", "raid4 (dedicated last parity disk)", 1, 2, 4, ALGORITHM_PARITY_N}, /* raid4 layout = raid5_n */
270 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N},
271 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
272 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
273 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
274 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
275 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
276 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
277 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE},
278 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6},
279 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6},
280 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6},
281 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6},
282 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6}
283 };
284
285 /* True, if @v is in inclusive range [@min, @max] */
286 static bool __within_range(long v, long min, long max)
287 {
288 return v >= min && v <= max;
289 }
290
291 /* All table line arguments are defined here */
292 static struct arg_name_flag {
293 const unsigned long flag;
294 const char *name;
295 } __arg_name_flags[] = {
296 { CTR_FLAG_SYNC, "sync"},
297 { CTR_FLAG_NOSYNC, "nosync"},
298 { CTR_FLAG_REBUILD, "rebuild"},
299 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
300 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
301 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
302 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
303 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
304 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
305 { CTR_FLAG_REGION_SIZE, "region_size"},
306 { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
307 { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
308 { CTR_FLAG_DATA_OFFSET, "data_offset"},
309 { CTR_FLAG_DELTA_DISKS, "delta_disks"},
310 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
311 };
312
313 /* Return argument name string for given @flag */
314 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
315 {
316 if (hweight32(flag) == 1) {
317 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
318
319 while (anf-- > __arg_name_flags)
320 if (flag & anf->flag)
321 return anf->name;
322
323 } else
324 DMERR("%s called with more than one flag!", __func__);
325
326 return NULL;
327 }
328
329 /*
330 * Bool helpers to test for various raid levels of a raid set.
331 * It's level as reported by the superblock rather than
332 * the requested raid_type passed to the constructor.
333 */
334 /* Return true, if raid set in @rs is raid0 */
335 static bool rs_is_raid0(struct raid_set *rs)
336 {
337 return !rs->md.level;
338 }
339
340 /* Return true, if raid set in @rs is raid1 */
341 static bool rs_is_raid1(struct raid_set *rs)
342 {
343 return rs->md.level == 1;
344 }
345
346 /* Return true, if raid set in @rs is raid10 */
347 static bool rs_is_raid10(struct raid_set *rs)
348 {
349 return rs->md.level == 10;
350 }
351
352 /* Return true, if raid set in @rs is level 6 */
353 static bool rs_is_raid6(struct raid_set *rs)
354 {
355 return rs->md.level == 6;
356 }
357
358 /* Return true, if raid set in @rs is level 4, 5 or 6 */
359 static bool rs_is_raid456(struct raid_set *rs)
360 {
361 return __within_range(rs->md.level, 4, 6);
362 }
363
364 /* Return true, if raid set in @rs is reshapable */
365 static bool __is_raid10_far(int layout);
366 static bool rs_is_reshapable(struct raid_set *rs)
367 {
368 return rs_is_raid456(rs) ||
369 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
370 }
371
372 /* Return true, if raid set in @rs is recovering */
373 static bool rs_is_recovering(struct raid_set *rs)
374 {
375 return rs->md.recovery_cp < rs->dev[0].rdev.sectors;
376 }
377
378 /* Return true, if raid set in @rs is reshaping */
379 static bool rs_is_reshaping(struct raid_set *rs)
380 {
381 return rs->md.reshape_position != MaxSector;
382 }
383
384 /*
385 * bool helpers to test for various raid levels of a raid type @rt
386 */
387
388 /* Return true, if raid type in @rt is raid0 */
389 static bool rt_is_raid0(struct raid_type *rt)
390 {
391 return !rt->level;
392 }
393
394 /* Return true, if raid type in @rt is raid1 */
395 static bool rt_is_raid1(struct raid_type *rt)
396 {
397 return rt->level == 1;
398 }
399
400 /* Return true, if raid type in @rt is raid10 */
401 static bool rt_is_raid10(struct raid_type *rt)
402 {
403 return rt->level == 10;
404 }
405
406 /* Return true, if raid type in @rt is raid4/5 */
407 static bool rt_is_raid45(struct raid_type *rt)
408 {
409 return __within_range(rt->level, 4, 5);
410 }
411
412 /* Return true, if raid type in @rt is raid6 */
413 static bool rt_is_raid6(struct raid_type *rt)
414 {
415 return rt->level == 6;
416 }
417
418 /* Return true, if raid type in @rt is raid4/5/6 */
419 static bool rt_is_raid456(struct raid_type *rt)
420 {
421 return __within_range(rt->level, 4, 6);
422 }
423 /* END: raid level bools */
424
425 /* Return valid ctr flags for the raid level of @rs */
426 static unsigned long __valid_flags(struct raid_set *rs)
427 {
428 if (rt_is_raid0(rs->raid_type))
429 return RAID0_VALID_FLAGS;
430 else if (rt_is_raid1(rs->raid_type))
431 return RAID1_VALID_FLAGS;
432 else if (rt_is_raid10(rs->raid_type))
433 return RAID10_VALID_FLAGS;
434 else if (rt_is_raid45(rs->raid_type))
435 return RAID45_VALID_FLAGS;
436 else if (rt_is_raid6(rs->raid_type))
437 return RAID6_VALID_FLAGS;
438
439 return 0;
440 }
441
442 /*
443 * Check for valid flags set on @rs
444 *
445 * Has to be called after parsing of the ctr flags!
446 */
447 static int rs_check_for_valid_flags(struct raid_set *rs)
448 {
449 if (rs->ctr_flags & ~__valid_flags(rs)) {
450 rs->ti->error = "Invalid flags combination";
451 return -EINVAL;
452 }
453
454 return 0;
455 }
456
457 /* MD raid10 bit definitions and helpers */
458 #define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */
459 #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
460 #define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */
461 #define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */
462
463 /* Return md raid10 near copies for @layout */
464 static unsigned int __raid10_near_copies(int layout)
465 {
466 return layout & 0xFF;
467 }
468
469 /* Return md raid10 far copies for @layout */
470 static unsigned int __raid10_far_copies(int layout)
471 {
472 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
473 }
474
475 /* Return true if md raid10 offset for @layout */
476 static bool __is_raid10_offset(int layout)
477 {
478 return !!(layout & RAID10_OFFSET);
479 }
480
481 /* Return true if md raid10 near for @layout */
482 static bool __is_raid10_near(int layout)
483 {
484 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
485 }
486
487 /* Return true if md raid10 far for @layout */
488 static bool __is_raid10_far(int layout)
489 {
490 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
491 }
492
493 /* Return md raid10 layout string for @layout */
494 static const char *raid10_md_layout_to_format(int layout)
495 {
496 /*
497 * Bit 16 stands for "offset"
498 * (i.e. adjacent stripes hold copies)
499 *
500 * Refer to MD's raid10.c for details
501 */
502 if (__is_raid10_offset(layout))
503 return "offset";
504
505 if (__raid10_near_copies(layout) > 1)
506 return "near";
507
508 WARN_ON(__raid10_far_copies(layout) < 2);
509
510 return "far";
511 }
512
513 /* Return md raid10 algorithm for @name */
514 static int raid10_name_to_format(const char *name)
515 {
516 if (!strcasecmp(name, "near"))
517 return ALGORITHM_RAID10_NEAR;
518 else if (!strcasecmp(name, "offset"))
519 return ALGORITHM_RAID10_OFFSET;
520 else if (!strcasecmp(name, "far"))
521 return ALGORITHM_RAID10_FAR;
522
523 return -EINVAL;
524 }
525
526 /* Return md raid10 copies for @layout */
527 static unsigned int raid10_md_layout_to_copies(int layout)
528 {
529 return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
530 }
531
532 /* Return md raid10 format id for @format string */
533 static int raid10_format_to_md_layout(struct raid_set *rs,
534 unsigned int algorithm,
535 unsigned int copies)
536 {
537 unsigned int n = 1, f = 1, r = 0;
538
539 /*
540 * MD resilienece flaw:
541 *
542 * enabling use_far_sets for far/offset formats causes copies
543 * to be colocated on the same devs together with their origins!
544 *
545 * -> disable it for now in the definition above
546 */
547 if (algorithm == ALGORITHM_RAID10_DEFAULT ||
548 algorithm == ALGORITHM_RAID10_NEAR)
549 n = copies;
550
551 else if (algorithm == ALGORITHM_RAID10_OFFSET) {
552 f = copies;
553 r = RAID10_OFFSET;
554 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
555 r |= RAID10_USE_FAR_SETS;
556
557 } else if (algorithm == ALGORITHM_RAID10_FAR) {
558 f = copies;
559 r = !RAID10_OFFSET;
560 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
561 r |= RAID10_USE_FAR_SETS;
562
563 } else
564 return -EINVAL;
565
566 return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
567 }
568 /* END: MD raid10 bit definitions and helpers */
569
570 /* Check for any of the raid10 algorithms */
571 static bool __got_raid10(struct raid_type *rtp, const int layout)
572 {
573 if (rtp->level == 10) {
574 switch (rtp->algorithm) {
575 case ALGORITHM_RAID10_DEFAULT:
576 case ALGORITHM_RAID10_NEAR:
577 return __is_raid10_near(layout);
578 case ALGORITHM_RAID10_OFFSET:
579 return __is_raid10_offset(layout);
580 case ALGORITHM_RAID10_FAR:
581 return __is_raid10_far(layout);
582 default:
583 break;
584 }
585 }
586
587 return false;
588 }
589
590 /* Return raid_type for @name */
591 static struct raid_type *get_raid_type(const char *name)
592 {
593 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
594
595 while (rtp-- > raid_types)
596 if (!strcasecmp(rtp->name, name))
597 return rtp;
598
599 return NULL;
600 }
601
602 /* Return raid_type for @name based derived from @level and @layout */
603 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
604 {
605 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
606
607 while (rtp-- > raid_types) {
608 /* RAID10 special checks based on @layout flags/properties */
609 if (rtp->level == level &&
610 (__got_raid10(rtp, layout) || rtp->algorithm == layout))
611 return rtp;
612 }
613
614 return NULL;
615 }
616
617 /*
618 * Conditionally change bdev capacity of @rs
619 * in case of a disk add/remove reshape
620 */
621 static void rs_set_capacity(struct raid_set *rs)
622 {
623 struct mddev *mddev = &rs->md;
624 struct md_rdev *rdev;
625 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
626
627 /*
628 * raid10 sets rdev->sector to the device size, which
629 * is unintended in case of out-of-place reshaping
630 */
631 rdev_for_each(rdev, mddev)
632 rdev->sectors = mddev->dev_sectors;
633
634 set_capacity(gendisk, mddev->array_sectors);
635 revalidate_disk(gendisk);
636 }
637
638 /*
639 * Set the mddev properties in @rs to the current
640 * ones retrieved from the freshest superblock
641 */
642 static void rs_set_cur(struct raid_set *rs)
643 {
644 struct mddev *mddev = &rs->md;
645
646 mddev->new_level = mddev->level;
647 mddev->new_layout = mddev->layout;
648 mddev->new_chunk_sectors = mddev->chunk_sectors;
649 }
650
651 /*
652 * Set the mddev properties in @rs to the new
653 * ones requested by the ctr
654 */
655 static void rs_set_new(struct raid_set *rs)
656 {
657 struct mddev *mddev = &rs->md;
658
659 mddev->level = mddev->new_level;
660 mddev->layout = mddev->new_layout;
661 mddev->chunk_sectors = mddev->new_chunk_sectors;
662 mddev->raid_disks = rs->raid_disks;
663 mddev->delta_disks = 0;
664 }
665
666 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
667 unsigned int raid_devs)
668 {
669 unsigned int i;
670 struct raid_set *rs;
671
672 if (raid_devs <= raid_type->parity_devs) {
673 ti->error = "Insufficient number of devices";
674 return ERR_PTR(-EINVAL);
675 }
676
677 rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
678 if (!rs) {
679 ti->error = "Cannot allocate raid context";
680 return ERR_PTR(-ENOMEM);
681 }
682
683 mddev_init(&rs->md);
684
685 rs->raid_disks = raid_devs;
686 rs->delta_disks = 0;
687
688 rs->ti = ti;
689 rs->raid_type = raid_type;
690 rs->stripe_cache_entries = 256;
691 rs->md.raid_disks = raid_devs;
692 rs->md.level = raid_type->level;
693 rs->md.new_level = rs->md.level;
694 rs->md.layout = raid_type->algorithm;
695 rs->md.new_layout = rs->md.layout;
696 rs->md.delta_disks = 0;
697 rs->md.recovery_cp = MaxSector;
698
699 for (i = 0; i < raid_devs; i++)
700 md_rdev_init(&rs->dev[i].rdev);
701
702 /*
703 * Remaining items to be initialized by further RAID params:
704 * rs->md.persistent
705 * rs->md.external
706 * rs->md.chunk_sectors
707 * rs->md.new_chunk_sectors
708 * rs->md.dev_sectors
709 */
710
711 return rs;
712 }
713
714 static void raid_set_free(struct raid_set *rs)
715 {
716 int i;
717
718 for (i = 0; i < rs->raid_disks; i++) {
719 if (rs->dev[i].meta_dev)
720 dm_put_device(rs->ti, rs->dev[i].meta_dev);
721 md_rdev_clear(&rs->dev[i].rdev);
722 if (rs->dev[i].data_dev)
723 dm_put_device(rs->ti, rs->dev[i].data_dev);
724 }
725
726 kfree(rs);
727 }
728
729 /*
730 * For every device we have two words
731 * <meta_dev>: meta device name or '-' if missing
732 * <data_dev>: data device name or '-' if missing
733 *
734 * The following are permitted:
735 * - -
736 * - <data_dev>
737 * <meta_dev> <data_dev>
738 *
739 * The following is not allowed:
740 * <meta_dev> -
741 *
742 * This code parses those words. If there is a failure,
743 * the caller must use raid_set_free() to unwind the operations.
744 */
745 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
746 {
747 int i;
748 int rebuild = 0;
749 int metadata_available = 0;
750 int r = 0;
751 const char *arg;
752
753 /* Put off the number of raid devices argument to get to dev pairs */
754 arg = dm_shift_arg(as);
755 if (!arg)
756 return -EINVAL;
757
758 for (i = 0; i < rs->raid_disks; i++) {
759 rs->dev[i].rdev.raid_disk = i;
760
761 rs->dev[i].meta_dev = NULL;
762 rs->dev[i].data_dev = NULL;
763
764 /*
765 * There are no offsets, since there is a separate device
766 * for data and metadata.
767 */
768 rs->dev[i].rdev.data_offset = 0;
769 rs->dev[i].rdev.mddev = &rs->md;
770
771 arg = dm_shift_arg(as);
772 if (!arg)
773 return -EINVAL;
774
775 if (strcmp(arg, "-")) {
776 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
777 &rs->dev[i].meta_dev);
778 if (r) {
779 rs->ti->error = "RAID metadata device lookup failure";
780 return r;
781 }
782
783 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
784 if (!rs->dev[i].rdev.sb_page) {
785 rs->ti->error = "Failed to allocate superblock page";
786 return -ENOMEM;
787 }
788 }
789
790 arg = dm_shift_arg(as);
791 if (!arg)
792 return -EINVAL;
793
794 if (!strcmp(arg, "-")) {
795 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
796 (!rs->dev[i].rdev.recovery_offset)) {
797 rs->ti->error = "Drive designated for rebuild not specified";
798 return -EINVAL;
799 }
800
801 if (rs->dev[i].meta_dev) {
802 rs->ti->error = "No data device supplied with metadata device";
803 return -EINVAL;
804 }
805
806 continue;
807 }
808
809 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
810 &rs->dev[i].data_dev);
811 if (r) {
812 rs->ti->error = "RAID device lookup failure";
813 return r;
814 }
815
816 if (rs->dev[i].meta_dev) {
817 metadata_available = 1;
818 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
819 }
820 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
821 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
822 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
823 rebuild++;
824 }
825
826 if (metadata_available) {
827 rs->md.external = 0;
828 rs->md.persistent = 1;
829 rs->md.major_version = 2;
830 } else if (rebuild && !rs->md.recovery_cp) {
831 /*
832 * Without metadata, we will not be able to tell if the array
833 * is in-sync or not - we must assume it is not. Therefore,
834 * it is impossible to rebuild a drive.
835 *
836 * Even if there is metadata, the on-disk information may
837 * indicate that the array is not in-sync and it will then
838 * fail at that time.
839 *
840 * User could specify 'nosync' option if desperate.
841 */
842 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
843 return -EINVAL;
844 }
845
846 return 0;
847 }
848
849 /*
850 * validate_region_size
851 * @rs
852 * @region_size: region size in sectors. If 0, pick a size (4MiB default).
853 *
854 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
855 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
856 *
857 * Returns: 0 on success, -EINVAL on failure.
858 */
859 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
860 {
861 unsigned long min_region_size = rs->ti->len / (1 << 21);
862
863 if (rs_is_raid0(rs))
864 return 0;
865
866 if (!region_size) {
867 /*
868 * Choose a reasonable default. All figures in sectors.
869 */
870 if (min_region_size > (1 << 13)) {
871 /* If not a power of 2, make it the next power of 2 */
872 region_size = roundup_pow_of_two(min_region_size);
873 DMINFO("Choosing default region size of %lu sectors",
874 region_size);
875 } else {
876 DMINFO("Choosing default region size of 4MiB");
877 region_size = 1 << 13; /* sectors */
878 }
879 } else {
880 /*
881 * Validate user-supplied value.
882 */
883 if (region_size > rs->ti->len) {
884 rs->ti->error = "Supplied region size is too large";
885 return -EINVAL;
886 }
887
888 if (region_size < min_region_size) {
889 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
890 region_size, min_region_size);
891 rs->ti->error = "Supplied region size is too small";
892 return -EINVAL;
893 }
894
895 if (!is_power_of_2(region_size)) {
896 rs->ti->error = "Region size is not a power of 2";
897 return -EINVAL;
898 }
899
900 if (region_size < rs->md.chunk_sectors) {
901 rs->ti->error = "Region size is smaller than the chunk size";
902 return -EINVAL;
903 }
904 }
905
906 /*
907 * Convert sectors to bytes.
908 */
909 rs->md.bitmap_info.chunksize = to_bytes(region_size);
910
911 return 0;
912 }
913
914 /*
915 * validate_raid_redundancy
916 * @rs
917 *
918 * Determine if there are enough devices in the array that haven't
919 * failed (or are being rebuilt) to form a usable array.
920 *
921 * Returns: 0 on success, -EINVAL on failure.
922 */
923 static int validate_raid_redundancy(struct raid_set *rs)
924 {
925 unsigned int i, rebuild_cnt = 0;
926 unsigned int rebuilds_per_group = 0, copies;
927 unsigned int group_size, last_group_start;
928
929 for (i = 0; i < rs->md.raid_disks; i++)
930 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
931 !rs->dev[i].rdev.sb_page)
932 rebuild_cnt++;
933
934 switch (rs->raid_type->level) {
935 case 0:
936 break;
937 case 1:
938 if (rebuild_cnt >= rs->md.raid_disks)
939 goto too_many;
940 break;
941 case 4:
942 case 5:
943 case 6:
944 if (rebuild_cnt > rs->raid_type->parity_devs)
945 goto too_many;
946 break;
947 case 10:
948 copies = raid10_md_layout_to_copies(rs->md.new_layout);
949 if (rebuild_cnt < copies)
950 break;
951
952 /*
953 * It is possible to have a higher rebuild count for RAID10,
954 * as long as the failed devices occur in different mirror
955 * groups (i.e. different stripes).
956 *
957 * When checking "near" format, make sure no adjacent devices
958 * have failed beyond what can be handled. In addition to the
959 * simple case where the number of devices is a multiple of the
960 * number of copies, we must also handle cases where the number
961 * of devices is not a multiple of the number of copies.
962 * E.g. dev1 dev2 dev3 dev4 dev5
963 * A A B B C
964 * C D D E E
965 */
966 if (__is_raid10_near(rs->md.new_layout)) {
967 for (i = 0; i < rs->md.raid_disks; i++) {
968 if (!(i % copies))
969 rebuilds_per_group = 0;
970 if ((!rs->dev[i].rdev.sb_page ||
971 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
972 (++rebuilds_per_group >= copies))
973 goto too_many;
974 }
975 break;
976 }
977
978 /*
979 * When checking "far" and "offset" formats, we need to ensure
980 * that the device that holds its copy is not also dead or
981 * being rebuilt. (Note that "far" and "offset" formats only
982 * support two copies right now. These formats also only ever
983 * use the 'use_far_sets' variant.)
984 *
985 * This check is somewhat complicated by the need to account
986 * for arrays that are not a multiple of (far) copies. This
987 * results in the need to treat the last (potentially larger)
988 * set differently.
989 */
990 group_size = (rs->md.raid_disks / copies);
991 last_group_start = (rs->md.raid_disks / group_size) - 1;
992 last_group_start *= group_size;
993 for (i = 0; i < rs->md.raid_disks; i++) {
994 if (!(i % copies) && !(i > last_group_start))
995 rebuilds_per_group = 0;
996 if ((!rs->dev[i].rdev.sb_page ||
997 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
998 (++rebuilds_per_group >= copies))
999 goto too_many;
1000 }
1001 break;
1002 default:
1003 if (rebuild_cnt)
1004 return -EINVAL;
1005 }
1006
1007 return 0;
1008
1009 too_many:
1010 return -EINVAL;
1011 }
1012
1013 /*
1014 * Possible arguments are...
1015 * <chunk_size> [optional_args]
1016 *
1017 * Argument definitions
1018 * <chunk_size> The number of sectors per disk that
1019 * will form the "stripe"
1020 * [[no]sync] Force or prevent recovery of the
1021 * entire array
1022 * [rebuild <idx>] Rebuild the drive indicated by the index
1023 * [daemon_sleep <ms>] Time between bitmap daemon work to
1024 * clear bits
1025 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1026 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1027 * [write_mostly <idx>] Indicate a write mostly drive via index
1028 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm)
1029 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs
1030 * [region_size <sectors>] Defines granularity of bitmap
1031 *
1032 * RAID10-only options:
1033 * [raid10_copies <# copies>] Number of copies. (Default: 2)
1034 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near)
1035 */
1036 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1037 unsigned int num_raid_params)
1038 {
1039 int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1040 unsigned int raid10_copies = 2;
1041 unsigned int i, write_mostly = 0;
1042 unsigned int region_size = 0;
1043 sector_t max_io_len;
1044 const char *arg, *key;
1045 struct raid_dev *rd;
1046 struct raid_type *rt = rs->raid_type;
1047
1048 arg = dm_shift_arg(as);
1049 num_raid_params--; /* Account for chunk_size argument */
1050
1051 if (kstrtoint(arg, 10, &value) < 0) {
1052 rs->ti->error = "Bad numerical argument given for chunk_size";
1053 return -EINVAL;
1054 }
1055
1056 /*
1057 * First, parse the in-order required arguments
1058 * "chunk_size" is the only argument of this type.
1059 */
1060 if (rt_is_raid1(rt)) {
1061 if (value)
1062 DMERR("Ignoring chunk size parameter for RAID 1");
1063 value = 0;
1064 } else if (!is_power_of_2(value)) {
1065 rs->ti->error = "Chunk size must be a power of 2";
1066 return -EINVAL;
1067 } else if (value < 8) {
1068 rs->ti->error = "Chunk size value is too small";
1069 return -EINVAL;
1070 }
1071
1072 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1073
1074 /*
1075 * We set each individual device as In_sync with a completed
1076 * 'recovery_offset'. If there has been a device failure or
1077 * replacement then one of the following cases applies:
1078 *
1079 * 1) User specifies 'rebuild'.
1080 * - Device is reset when param is read.
1081 * 2) A new device is supplied.
1082 * - No matching superblock found, resets device.
1083 * 3) Device failure was transient and returns on reload.
1084 * - Failure noticed, resets device for bitmap replay.
1085 * 4) Device hadn't completed recovery after previous failure.
1086 * - Superblock is read and overrides recovery_offset.
1087 *
1088 * What is found in the superblocks of the devices is always
1089 * authoritative, unless 'rebuild' or '[no]sync' was specified.
1090 */
1091 for (i = 0; i < rs->raid_disks; i++) {
1092 set_bit(In_sync, &rs->dev[i].rdev.flags);
1093 rs->dev[i].rdev.recovery_offset = MaxSector;
1094 }
1095
1096 /*
1097 * Second, parse the unordered optional arguments
1098 */
1099 for (i = 0; i < num_raid_params; i++) {
1100 key = dm_shift_arg(as);
1101 if (!key) {
1102 rs->ti->error = "Not enough raid parameters given";
1103 return -EINVAL;
1104 }
1105
1106 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1107 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1108 rs->ti->error = "Only one 'nosync' argument allowed";
1109 return -EINVAL;
1110 }
1111 continue;
1112 }
1113 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1114 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1115 rs->ti->error = "Only one 'sync' argument allowed";
1116 return -EINVAL;
1117 }
1118 continue;
1119 }
1120 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1121 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1122 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1123 return -EINVAL;
1124 }
1125 continue;
1126 }
1127
1128 arg = dm_shift_arg(as);
1129 i++; /* Account for the argument pairs */
1130 if (!arg) {
1131 rs->ti->error = "Wrong number of raid parameters given";
1132 return -EINVAL;
1133 }
1134
1135 /*
1136 * Parameters that take a string value are checked here.
1137 */
1138
1139 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1140 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1141 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1142 return -EINVAL;
1143 }
1144 if (!rt_is_raid10(rt)) {
1145 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1146 return -EINVAL;
1147 }
1148 raid10_format = raid10_name_to_format(arg);
1149 if (raid10_format < 0) {
1150 rs->ti->error = "Invalid 'raid10_format' value given";
1151 return raid10_format;
1152 }
1153 continue;
1154 }
1155
1156 if (kstrtoint(arg, 10, &value) < 0) {
1157 rs->ti->error = "Bad numerical argument given in raid params";
1158 return -EINVAL;
1159 }
1160
1161 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1162 /*
1163 * "rebuild" is being passed in by userspace to provide
1164 * indexes of replaced devices and to set up additional
1165 * devices on raid level takeover.
1166 */
1167 if (!__within_range(value, 0, rs->raid_disks - 1)) {
1168 rs->ti->error = "Invalid rebuild index given";
1169 return -EINVAL;
1170 }
1171
1172 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1173 rs->ti->error = "rebuild for this index already given";
1174 return -EINVAL;
1175 }
1176
1177 rd = rs->dev + value;
1178 clear_bit(In_sync, &rd->rdev.flags);
1179 clear_bit(Faulty, &rd->rdev.flags);
1180 rd->rdev.recovery_offset = 0;
1181 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1182 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1183 if (!rt_is_raid1(rt)) {
1184 rs->ti->error = "write_mostly option is only valid for RAID1";
1185 return -EINVAL;
1186 }
1187
1188 if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1189 rs->ti->error = "Invalid write_mostly index given";
1190 return -EINVAL;
1191 }
1192
1193 write_mostly++;
1194 set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1195 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1196 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1197 if (!rt_is_raid1(rt)) {
1198 rs->ti->error = "max_write_behind option is only valid for RAID1";
1199 return -EINVAL;
1200 }
1201
1202 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1203 rs->ti->error = "Only one max_write_behind argument pair allowed";
1204 return -EINVAL;
1205 }
1206
1207 /*
1208 * In device-mapper, we specify things in sectors, but
1209 * MD records this value in kB
1210 */
1211 value /= 2;
1212 if (value > COUNTER_MAX) {
1213 rs->ti->error = "Max write-behind limit out of range";
1214 return -EINVAL;
1215 }
1216
1217 rs->md.bitmap_info.max_write_behind = value;
1218 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1219 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1220 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1221 return -EINVAL;
1222 }
1223 if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
1224 rs->ti->error = "daemon sleep period out of range";
1225 return -EINVAL;
1226 }
1227 rs->md.bitmap_info.daemon_sleep = value;
1228 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1229 /* Userspace passes new data_offset after having extended the the data image LV */
1230 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1231 rs->ti->error = "Only one data_offset argument pair allowed";
1232 return -EINVAL;
1233 }
1234 /* Ensure sensible data offset */
1235 if (value < 0 ||
1236 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1237 rs->ti->error = "Bogus data_offset value";
1238 return -EINVAL;
1239 }
1240 rs->data_offset = value;
1241 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1242 /* Define the +/-# of disks to add to/remove from the given raid set */
1243 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1244 rs->ti->error = "Only one delta_disks argument pair allowed";
1245 return -EINVAL;
1246 }
1247 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1248 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1249 rs->ti->error = "Too many delta_disk requested";
1250 return -EINVAL;
1251 }
1252
1253 rs->delta_disks = value;
1254 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1255 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1256 rs->ti->error = "Only one stripe_cache argument pair allowed";
1257 return -EINVAL;
1258 }
1259
1260 if (!rt_is_raid456(rt)) {
1261 rs->ti->error = "Inappropriate argument: stripe_cache";
1262 return -EINVAL;
1263 }
1264
1265 rs->stripe_cache_entries = value;
1266 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1267 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1268 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1269 return -EINVAL;
1270 }
1271 if (value > INT_MAX) {
1272 rs->ti->error = "min_recovery_rate out of range";
1273 return -EINVAL;
1274 }
1275 rs->md.sync_speed_min = (int)value;
1276 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1277 if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1278 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1279 return -EINVAL;
1280 }
1281 if (value > INT_MAX) {
1282 rs->ti->error = "max_recovery_rate out of range";
1283 return -EINVAL;
1284 }
1285 rs->md.sync_speed_max = (int)value;
1286 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1287 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1288 rs->ti->error = "Only one region_size argument pair allowed";
1289 return -EINVAL;
1290 }
1291
1292 region_size = value;
1293 rs->requested_bitmap_chunk_sectors = value;
1294 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1295 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1296 rs->ti->error = "Only one raid10_copies argument pair allowed";
1297 return -EINVAL;
1298 }
1299
1300 if (!__within_range(value, 2, rs->md.raid_disks)) {
1301 rs->ti->error = "Bad value for 'raid10_copies'";
1302 return -EINVAL;
1303 }
1304
1305 raid10_copies = value;
1306 } else {
1307 DMERR("Unable to parse RAID parameter: %s", key);
1308 rs->ti->error = "Unable to parse RAID parameter";
1309 return -EINVAL;
1310 }
1311 }
1312
1313 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1314 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1315 rs->ti->error = "sync and nosync are mutually exclusive";
1316 return -EINVAL;
1317 }
1318
1319 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1320 (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1321 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1322 rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1323 return -EINVAL;
1324 }
1325
1326 if (write_mostly >= rs->md.raid_disks) {
1327 rs->ti->error = "Can't set all raid1 devices to write_mostly";
1328 return -EINVAL;
1329 }
1330
1331 if (validate_region_size(rs, region_size))
1332 return -EINVAL;
1333
1334 if (rs->md.chunk_sectors)
1335 max_io_len = rs->md.chunk_sectors;
1336 else
1337 max_io_len = region_size;
1338
1339 if (dm_set_target_max_io_len(rs->ti, max_io_len))
1340 return -EINVAL;
1341
1342 if (rt_is_raid10(rt)) {
1343 if (raid10_copies > rs->md.raid_disks) {
1344 rs->ti->error = "Not enough devices to satisfy specification";
1345 return -EINVAL;
1346 }
1347
1348 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1349 if (rs->md.new_layout < 0) {
1350 rs->ti->error = "Error getting raid10 format";
1351 return rs->md.new_layout;
1352 }
1353
1354 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1355 if (!rt) {
1356 rs->ti->error = "Failed to recognize new raid10 layout";
1357 return -EINVAL;
1358 }
1359
1360 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1361 rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1362 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1363 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1364 return -EINVAL;
1365 }
1366 }
1367
1368 rs->raid10_copies = raid10_copies;
1369
1370 /* Assume there are no metadata devices until the drives are parsed */
1371 rs->md.persistent = 0;
1372 rs->md.external = 1;
1373
1374 /* Check, if any invalid ctr arguments have been passed in for the raid level */
1375 return rs_check_for_valid_flags(rs);
1376 }
1377
1378 /* Set raid4/5/6 cache size */
1379 static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1380 {
1381 int r;
1382 struct r5conf *conf;
1383 struct mddev *mddev = &rs->md;
1384 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1385 uint32_t nr_stripes = rs->stripe_cache_entries;
1386
1387 if (!rt_is_raid456(rs->raid_type)) {
1388 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1389 return -EINVAL;
1390 }
1391
1392 if (nr_stripes < min_stripes) {
1393 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1394 nr_stripes, min_stripes);
1395 nr_stripes = min_stripes;
1396 }
1397
1398 conf = mddev->private;
1399 if (!conf) {
1400 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1401 return -EINVAL;
1402 }
1403
1404 /* Try setting number of stripes in raid456 stripe cache */
1405 if (conf->min_nr_stripes != nr_stripes) {
1406 r = raid5_set_cache_size(mddev, nr_stripes);
1407 if (r) {
1408 rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1409 return r;
1410 }
1411
1412 DMINFO("%u stripe cache entries", nr_stripes);
1413 }
1414
1415 return 0;
1416 }
1417
1418 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1419 static unsigned int mddev_data_stripes(struct raid_set *rs)
1420 {
1421 return rs->md.raid_disks - rs->raid_type->parity_devs;
1422 }
1423
1424 /* Return # of data stripes of @rs (i.e. as of ctr) */
1425 static unsigned int rs_data_stripes(struct raid_set *rs)
1426 {
1427 return rs->raid_disks - rs->raid_type->parity_devs;
1428 }
1429
1430 /* Calculate the sectors per device and per array used for @rs */
1431 static int rs_set_dev_and_array_sectors(struct raid_set *rs, bool use_mddev)
1432 {
1433 int delta_disks;
1434 unsigned int data_stripes;
1435 struct mddev *mddev = &rs->md;
1436 struct md_rdev *rdev;
1437 sector_t array_sectors = rs->ti->len, dev_sectors = rs->ti->len;
1438
1439 if (use_mddev) {
1440 delta_disks = mddev->delta_disks;
1441 data_stripes = mddev_data_stripes(rs);
1442 } else {
1443 delta_disks = rs->delta_disks;
1444 data_stripes = rs_data_stripes(rs);
1445 }
1446
1447 /* Special raid1 case w/o delta_disks support (yet) */
1448 if (rt_is_raid1(rs->raid_type))
1449 ;
1450 else if (rt_is_raid10(rs->raid_type)) {
1451 if (rs->raid10_copies < 2 ||
1452 delta_disks < 0) {
1453 rs->ti->error = "Bogus raid10 data copies or delta disks";
1454 return -EINVAL;
1455 }
1456
1457 dev_sectors *= rs->raid10_copies;
1458 if (sector_div(dev_sectors, data_stripes))
1459 goto bad;
1460
1461 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1462 if (sector_div(array_sectors, rs->raid10_copies))
1463 goto bad;
1464
1465 } else if (sector_div(dev_sectors, data_stripes))
1466 goto bad;
1467
1468 else
1469 /* Striped layouts */
1470 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1471
1472 rdev_for_each(rdev, mddev)
1473 rdev->sectors = dev_sectors;
1474
1475 mddev->array_sectors = array_sectors;
1476 mddev->dev_sectors = dev_sectors;
1477
1478 return 0;
1479 bad:
1480 rs->ti->error = "Target length not divisible by number of data devices";
1481 return -EINVAL;
1482 }
1483
1484 /* Setup recovery on @rs */
1485 static void __rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1486 {
1487 /* raid0 does not recover */
1488 if (rs_is_raid0(rs))
1489 rs->md.recovery_cp = MaxSector;
1490 /*
1491 * A raid6 set has to be recovered either
1492 * completely or for the grown part to
1493 * ensure proper parity and Q-Syndrome
1494 */
1495 else if (rs_is_raid6(rs))
1496 rs->md.recovery_cp = dev_sectors;
1497 /*
1498 * Other raid set types may skip recovery
1499 * depending on the 'nosync' flag.
1500 */
1501 else
1502 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1503 ? MaxSector : dev_sectors;
1504 }
1505
1506 /* Setup recovery on @rs based on raid type, device size and 'nosync' flag */
1507 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1508 {
1509 if (!dev_sectors)
1510 /* New raid set or 'sync' flag provided */
1511 __rs_setup_recovery(rs, 0);
1512 else if (dev_sectors == MaxSector)
1513 /* Prevent recovery */
1514 __rs_setup_recovery(rs, MaxSector);
1515 else if (rs->dev[0].rdev.sectors < dev_sectors)
1516 /* Grown raid set */
1517 __rs_setup_recovery(rs, rs->dev[0].rdev.sectors);
1518 else
1519 __rs_setup_recovery(rs, MaxSector);
1520 }
1521
1522 static void do_table_event(struct work_struct *ws)
1523 {
1524 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1525
1526 smp_rmb(); /* Make sure we access most actual mddev properties */
1527 if (!rs_is_reshaping(rs))
1528 rs_set_capacity(rs);
1529 dm_table_event(rs->ti->table);
1530 }
1531
1532 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
1533 {
1534 struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
1535
1536 return mddev_congested(&rs->md, bits);
1537 }
1538
1539 /*
1540 * Make sure a valid takover (level switch) is being requested on @rs
1541 *
1542 * Conversions of raid sets from one MD personality to another
1543 * have to conform to restrictions which are enforced here.
1544 */
1545 static int rs_check_takeover(struct raid_set *rs)
1546 {
1547 struct mddev *mddev = &rs->md;
1548 unsigned int near_copies;
1549
1550 if (rs->md.degraded) {
1551 rs->ti->error = "Can't takeover degraded raid set";
1552 return -EPERM;
1553 }
1554
1555 if (rs_is_reshaping(rs)) {
1556 rs->ti->error = "Can't takeover reshaping raid set";
1557 return -EPERM;
1558 }
1559
1560 switch (mddev->level) {
1561 case 0:
1562 /* raid0 -> raid1/5 with one disk */
1563 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1564 mddev->raid_disks == 1)
1565 return 0;
1566
1567 /* raid0 -> raid10 */
1568 if (mddev->new_level == 10 &&
1569 !(rs->raid_disks % mddev->raid_disks))
1570 return 0;
1571
1572 /* raid0 with multiple disks -> raid4/5/6 */
1573 if (__within_range(mddev->new_level, 4, 6) &&
1574 mddev->new_layout == ALGORITHM_PARITY_N &&
1575 mddev->raid_disks > 1)
1576 return 0;
1577
1578 break;
1579
1580 case 10:
1581 /* Can't takeover raid10_offset! */
1582 if (__is_raid10_offset(mddev->layout))
1583 break;
1584
1585 near_copies = __raid10_near_copies(mddev->layout);
1586
1587 /* raid10* -> raid0 */
1588 if (mddev->new_level == 0) {
1589 /* Can takeover raid10_near with raid disks divisable by data copies! */
1590 if (near_copies > 1 &&
1591 !(mddev->raid_disks % near_copies)) {
1592 mddev->raid_disks /= near_copies;
1593 mddev->delta_disks = mddev->raid_disks;
1594 return 0;
1595 }
1596
1597 /* Can takeover raid10_far */
1598 if (near_copies == 1 &&
1599 __raid10_far_copies(mddev->layout) > 1)
1600 return 0;
1601
1602 break;
1603 }
1604
1605 /* raid10_{near,far} -> raid1 */
1606 if (mddev->new_level == 1 &&
1607 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1608 return 0;
1609
1610 /* raid10_{near,far} with 2 disks -> raid4/5 */
1611 if (__within_range(mddev->new_level, 4, 5) &&
1612 mddev->raid_disks == 2)
1613 return 0;
1614 break;
1615
1616 case 1:
1617 /* raid1 with 2 disks -> raid4/5 */
1618 if (__within_range(mddev->new_level, 4, 5) &&
1619 mddev->raid_disks == 2) {
1620 mddev->degraded = 1;
1621 return 0;
1622 }
1623
1624 /* raid1 -> raid0 */
1625 if (mddev->new_level == 0 &&
1626 mddev->raid_disks == 1)
1627 return 0;
1628
1629 /* raid1 -> raid10 */
1630 if (mddev->new_level == 10)
1631 return 0;
1632 break;
1633
1634 case 4:
1635 /* raid4 -> raid0 */
1636 if (mddev->new_level == 0)
1637 return 0;
1638
1639 /* raid4 -> raid1/5 with 2 disks */
1640 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1641 mddev->raid_disks == 2)
1642 return 0;
1643
1644 /* raid4 -> raid5/6 with parity N */
1645 if (__within_range(mddev->new_level, 5, 6) &&
1646 mddev->layout == ALGORITHM_PARITY_N)
1647 return 0;
1648 break;
1649
1650 case 5:
1651 /* raid5 with parity N -> raid0 */
1652 if (mddev->new_level == 0 &&
1653 mddev->layout == ALGORITHM_PARITY_N)
1654 return 0;
1655
1656 /* raid5 with parity N -> raid4 */
1657 if (mddev->new_level == 4 &&
1658 mddev->layout == ALGORITHM_PARITY_N)
1659 return 0;
1660
1661 /* raid5 with 2 disks -> raid1/4/10 */
1662 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1663 mddev->raid_disks == 2)
1664 return 0;
1665
1666 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1667 if (mddev->new_level == 6 &&
1668 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1669 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1670 return 0;
1671 break;
1672
1673 case 6:
1674 /* raid6 with parity N -> raid0 */
1675 if (mddev->new_level == 0 &&
1676 mddev->layout == ALGORITHM_PARITY_N)
1677 return 0;
1678
1679 /* raid6 with parity N -> raid4 */
1680 if (mddev->new_level == 4 &&
1681 mddev->layout == ALGORITHM_PARITY_N)
1682 return 0;
1683
1684 /* raid6_*_n with Q-Syndrome N -> raid5_* */
1685 if (mddev->new_level == 5 &&
1686 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1687 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1688 return 0;
1689
1690 default:
1691 break;
1692 }
1693
1694 rs->ti->error = "takeover not possible";
1695 return -EINVAL;
1696 }
1697
1698 /* True if @rs requested to be taken over */
1699 static bool rs_takeover_requested(struct raid_set *rs)
1700 {
1701 return rs->md.new_level != rs->md.level;
1702 }
1703
1704 /* True if @rs is requested to reshape by ctr */
1705 static bool rs_reshape_requested(struct raid_set *rs)
1706 {
1707 bool change;
1708 struct mddev *mddev = &rs->md;
1709
1710 if (rs_takeover_requested(rs))
1711 return false;
1712
1713 if (!mddev->level)
1714 return false;
1715
1716 change = mddev->new_layout != mddev->layout ||
1717 mddev->new_chunk_sectors != mddev->chunk_sectors ||
1718 rs->delta_disks;
1719
1720 /* Historical case to support raid1 reshape without delta disks */
1721 if (mddev->level == 1) {
1722 if (rs->delta_disks)
1723 return !!rs->delta_disks;
1724
1725 return !change &&
1726 mddev->raid_disks != rs->raid_disks;
1727 }
1728
1729 if (mddev->level == 10)
1730 return change &&
1731 !__is_raid10_far(mddev->new_layout) &&
1732 rs->delta_disks >= 0;
1733
1734 return change;
1735 }
1736
1737 /* Features */
1738 #define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */
1739
1740 /* State flags for sb->flags */
1741 #define SB_FLAG_RESHAPE_ACTIVE 0x1
1742 #define SB_FLAG_RESHAPE_BACKWARDS 0x2
1743
1744 /*
1745 * This structure is never routinely used by userspace, unlike md superblocks.
1746 * Devices with this superblock should only ever be accessed via device-mapper.
1747 */
1748 #define DM_RAID_MAGIC 0x64526D44
1749 struct dm_raid_superblock {
1750 __le32 magic; /* "DmRd" */
1751 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1752
1753 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */
1754 __le32 array_position; /* The position of this drive in the raid set */
1755
1756 __le64 events; /* Incremented by md when superblock updated */
1757 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */
1758 /* indicate failures (see extension below) */
1759
1760 /*
1761 * This offset tracks the progress of the repair or replacement of
1762 * an individual drive.
1763 */
1764 __le64 disk_recovery_offset;
1765
1766 /*
1767 * This offset tracks the progress of the initial raid set
1768 * synchronisation/parity calculation.
1769 */
1770 __le64 array_resync_offset;
1771
1772 /*
1773 * raid characteristics
1774 */
1775 __le32 level;
1776 __le32 layout;
1777 __le32 stripe_sectors;
1778
1779 /********************************************************************
1780 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1781 *
1782 * FEATURE_FLAG_SUPPORTS_V190 in the features member indicates that those exist
1783 */
1784
1785 __le32 flags; /* Flags defining array states for reshaping */
1786
1787 /*
1788 * This offset tracks the progress of a raid
1789 * set reshape in order to be able to restart it
1790 */
1791 __le64 reshape_position;
1792
1793 /*
1794 * These define the properties of the array in case of an interrupted reshape
1795 */
1796 __le32 new_level;
1797 __le32 new_layout;
1798 __le32 new_stripe_sectors;
1799 __le32 delta_disks;
1800
1801 __le64 array_sectors; /* Array size in sectors */
1802
1803 /*
1804 * Sector offsets to data on devices (reshaping).
1805 * Needed to support out of place reshaping, thus
1806 * not writing over any stripes whilst converting
1807 * them from old to new layout
1808 */
1809 __le64 data_offset;
1810 __le64 new_data_offset;
1811
1812 __le64 sectors; /* Used device size in sectors */
1813
1814 /*
1815 * Additonal Bit field of devices indicating failures to support
1816 * up to 256 devices with the 1.9.0 on-disk metadata format
1817 */
1818 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1819
1820 __le32 incompat_features; /* Used to indicate any incompatible features */
1821
1822 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
1823 } __packed;
1824
1825 /*
1826 * Check for reshape constraints on raid set @rs:
1827 *
1828 * - reshape function non-existent
1829 * - degraded set
1830 * - ongoing recovery
1831 * - ongoing reshape
1832 *
1833 * Returns 0 if none or -EPERM if given constraint
1834 * and error message reference in @errmsg
1835 */
1836 static int rs_check_reshape(struct raid_set *rs)
1837 {
1838 struct mddev *mddev = &rs->md;
1839
1840 if (!mddev->pers || !mddev->pers->check_reshape)
1841 rs->ti->error = "Reshape not supported";
1842 else if (mddev->degraded)
1843 rs->ti->error = "Can't reshape degraded raid set";
1844 else if (rs_is_recovering(rs))
1845 rs->ti->error = "Convert request on recovering raid set prohibited";
1846 else if (rs_is_reshaping(rs))
1847 rs->ti->error = "raid set already reshaping!";
1848 else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
1849 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
1850 else
1851 return 0;
1852
1853 return -EPERM;
1854 }
1855
1856 static int read_disk_sb(struct md_rdev *rdev, int size)
1857 {
1858 BUG_ON(!rdev->sb_page);
1859
1860 if (rdev->sb_loaded)
1861 return 0;
1862
1863 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) {
1864 DMERR("Failed to read superblock of device at position %d",
1865 rdev->raid_disk);
1866 md_error(rdev->mddev, rdev);
1867 return -EINVAL;
1868 }
1869
1870 rdev->sb_loaded = 1;
1871
1872 return 0;
1873 }
1874
1875 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1876 {
1877 failed_devices[0] = le64_to_cpu(sb->failed_devices);
1878 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
1879
1880 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
1881 int i = ARRAY_SIZE(sb->extended_failed_devices);
1882
1883 while (i--)
1884 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
1885 }
1886 }
1887
1888 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1889 {
1890 int i = ARRAY_SIZE(sb->extended_failed_devices);
1891
1892 sb->failed_devices = cpu_to_le64(failed_devices[0]);
1893 while (i--)
1894 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
1895 }
1896
1897 /*
1898 * Synchronize the superblock members with the raid set properties
1899 *
1900 * All superblock data is little endian.
1901 */
1902 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
1903 {
1904 bool update_failed_devices = false;
1905 unsigned int i;
1906 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
1907 struct dm_raid_superblock *sb;
1908 struct raid_set *rs = container_of(mddev, struct raid_set, md);
1909
1910 /* No metadata device, no superblock */
1911 if (!rdev->meta_bdev)
1912 return;
1913
1914 BUG_ON(!rdev->sb_page);
1915
1916 sb = page_address(rdev->sb_page);
1917
1918 sb_retrieve_failed_devices(sb, failed_devices);
1919
1920 for (i = 0; i < rs->raid_disks; i++)
1921 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
1922 update_failed_devices = true;
1923 set_bit(i, (void *) failed_devices);
1924 }
1925
1926 if (update_failed_devices)
1927 sb_update_failed_devices(sb, failed_devices);
1928
1929 sb->magic = cpu_to_le32(DM_RAID_MAGIC);
1930 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
1931
1932 sb->num_devices = cpu_to_le32(mddev->raid_disks);
1933 sb->array_position = cpu_to_le32(rdev->raid_disk);
1934
1935 sb->events = cpu_to_le64(mddev->events);
1936
1937 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
1938 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
1939
1940 sb->level = cpu_to_le32(mddev->level);
1941 sb->layout = cpu_to_le32(mddev->layout);
1942 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
1943
1944 sb->new_level = cpu_to_le32(mddev->new_level);
1945 sb->new_layout = cpu_to_le32(mddev->new_layout);
1946 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
1947
1948 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1949
1950 smp_rmb(); /* Make sure we access most recent reshape position */
1951 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1952 if (le64_to_cpu(sb->reshape_position) != MaxSector) {
1953 /* Flag ongoing reshape */
1954 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
1955
1956 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
1957 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
1958 } else {
1959 /* Clear reshape flags */
1960 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
1961 }
1962
1963 sb->array_sectors = cpu_to_le64(mddev->array_sectors);
1964 sb->data_offset = cpu_to_le64(rdev->data_offset);
1965 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
1966 sb->sectors = cpu_to_le64(rdev->sectors);
1967 sb->incompat_features = cpu_to_le32(0);
1968
1969 /* Zero out the rest of the payload after the size of the superblock */
1970 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
1971 }
1972
1973 /*
1974 * super_load
1975 *
1976 * This function creates a superblock if one is not found on the device
1977 * and will decide which superblock to use if there's a choice.
1978 *
1979 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
1980 */
1981 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
1982 {
1983 int r;
1984 struct dm_raid_superblock *sb;
1985 struct dm_raid_superblock *refsb;
1986 uint64_t events_sb, events_refsb;
1987
1988 rdev->sb_start = 0;
1989 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
1990 if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
1991 DMERR("superblock size of a logical block is no longer valid");
1992 return -EINVAL;
1993 }
1994
1995 r = read_disk_sb(rdev, rdev->sb_size);
1996 if (r)
1997 return r;
1998
1999 sb = page_address(rdev->sb_page);
2000
2001 /*
2002 * Two cases that we want to write new superblocks and rebuild:
2003 * 1) New device (no matching magic number)
2004 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2005 */
2006 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2007 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2008 super_sync(rdev->mddev, rdev);
2009
2010 set_bit(FirstUse, &rdev->flags);
2011 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2012
2013 /* Force writing of superblocks to disk */
2014 set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
2015
2016 /* Any superblock is better than none, choose that if given */
2017 return refdev ? 0 : 1;
2018 }
2019
2020 if (!refdev)
2021 return 1;
2022
2023 events_sb = le64_to_cpu(sb->events);
2024
2025 refsb = page_address(refdev->sb_page);
2026 events_refsb = le64_to_cpu(refsb->events);
2027
2028 return (events_sb > events_refsb) ? 1 : 0;
2029 }
2030
2031 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2032 {
2033 int role;
2034 unsigned int d;
2035 struct mddev *mddev = &rs->md;
2036 uint64_t events_sb;
2037 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2038 struct dm_raid_superblock *sb;
2039 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2040 struct md_rdev *r;
2041 struct dm_raid_superblock *sb2;
2042
2043 sb = page_address(rdev->sb_page);
2044 events_sb = le64_to_cpu(sb->events);
2045
2046 /*
2047 * Initialise to 1 if this is a new superblock.
2048 */
2049 mddev->events = events_sb ? : 1;
2050
2051 mddev->reshape_position = MaxSector;
2052
2053 /*
2054 * Reshaping is supported, e.g. reshape_position is valid
2055 * in superblock and superblock content is authoritative.
2056 */
2057 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2058 /* Superblock is authoritative wrt given raid set layout! */
2059 mddev->raid_disks = le32_to_cpu(sb->num_devices);
2060 mddev->level = le32_to_cpu(sb->level);
2061 mddev->layout = le32_to_cpu(sb->layout);
2062 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2063 mddev->new_level = le32_to_cpu(sb->new_level);
2064 mddev->new_layout = le32_to_cpu(sb->new_layout);
2065 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2066 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2067 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2068
2069 /* raid was reshaping and got interrupted */
2070 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2071 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2072 DMERR("Reshape requested but raid set is still reshaping");
2073 return -EINVAL;
2074 }
2075
2076 if (mddev->delta_disks < 0 ||
2077 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2078 mddev->reshape_backwards = 1;
2079 else
2080 mddev->reshape_backwards = 0;
2081
2082 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2083 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2084 }
2085
2086 } else {
2087 /*
2088 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2089 */
2090 if (le32_to_cpu(sb->level) != mddev->level) {
2091 DMERR("Reshaping/takeover raid sets not yet supported. (raid level/stripes/size change)");
2092 return -EINVAL;
2093 }
2094 if (le32_to_cpu(sb->layout) != mddev->layout) {
2095 DMERR("Reshaping raid sets not yet supported. (raid layout change)");
2096 DMERR(" 0x%X vs 0x%X", le32_to_cpu(sb->layout), mddev->layout);
2097 DMERR(" Old layout: %s w/ %d copies",
2098 raid10_md_layout_to_format(le32_to_cpu(sb->layout)),
2099 raid10_md_layout_to_copies(le32_to_cpu(sb->layout)));
2100 DMERR(" New layout: %s w/ %d copies",
2101 raid10_md_layout_to_format(mddev->layout),
2102 raid10_md_layout_to_copies(mddev->layout));
2103 return -EINVAL;
2104 }
2105 if (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors) {
2106 DMERR("Reshaping raid sets not yet supported. (stripe sectors change)");
2107 return -EINVAL;
2108 }
2109
2110 /* We can only change the number of devices in raid1 with old (i.e. pre 1.0.7) metadata */
2111 if (!rt_is_raid1(rs->raid_type) &&
2112 (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
2113 DMERR("Reshaping raid sets not yet supported. (device count change from %u to %u)",
2114 sb->num_devices, mddev->raid_disks);
2115 return -EINVAL;
2116 }
2117
2118 /* Table line is checked vs. authoritative superblock */
2119 rs_set_new(rs);
2120 }
2121
2122 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2123 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2124
2125 /*
2126 * During load, we set FirstUse if a new superblock was written.
2127 * There are two reasons we might not have a superblock:
2128 * 1) The raid set is brand new - in which case, all of the
2129 * devices must have their In_sync bit set. Also,
2130 * recovery_cp must be 0, unless forced.
2131 * 2) This is a new device being added to an old raid set
2132 * and the new device needs to be rebuilt - in which
2133 * case the In_sync bit will /not/ be set and
2134 * recovery_cp must be MaxSector.
2135 * 3) This is/are a new device(s) being added to an old
2136 * raid set during takeover to a higher raid level
2137 * to provide capacity for redundancy or during reshape
2138 * to add capacity to grow the raid set.
2139 */
2140 d = 0;
2141 rdev_for_each(r, mddev) {
2142 if (test_bit(FirstUse, &r->flags))
2143 new_devs++;
2144
2145 if (!test_bit(In_sync, &r->flags)) {
2146 DMINFO("Device %d specified for rebuild; clearing superblock",
2147 r->raid_disk);
2148 rebuilds++;
2149
2150 if (test_bit(FirstUse, &r->flags))
2151 rebuild_and_new++;
2152 }
2153
2154 d++;
2155 }
2156
2157 if (new_devs == rs->raid_disks || !rebuilds) {
2158 /* Replace a broken device */
2159 if (new_devs == 1 && !rs->delta_disks)
2160 ;
2161 if (new_devs == rs->raid_disks) {
2162 DMINFO("Superblocks created for new raid set");
2163 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2164 } else if (new_devs != rebuilds &&
2165 new_devs != rs->delta_disks) {
2166 DMERR("New device injected into existing raid set without "
2167 "'delta_disks' or 'rebuild' parameter specified");
2168 return -EINVAL;
2169 }
2170 } else if (new_devs && new_devs != rebuilds) {
2171 DMERR("%u 'rebuild' devices cannot be injected into"
2172 " a raid set with %u other first-time devices",
2173 rebuilds, new_devs);
2174 return -EINVAL;
2175 } else if (rebuilds) {
2176 if (rebuild_and_new && rebuilds != rebuild_and_new) {
2177 DMERR("new device%s provided without 'rebuild'",
2178 new_devs > 1 ? "s" : "");
2179 return -EINVAL;
2180 } else if (rs_is_recovering(rs)) {
2181 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2182 (unsigned long long) mddev->recovery_cp);
2183 return -EINVAL;
2184 } else if (rs_is_reshaping(rs)) {
2185 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2186 (unsigned long long) mddev->reshape_position);
2187 return -EINVAL;
2188 }
2189 }
2190
2191 /*
2192 * Now we set the Faulty bit for those devices that are
2193 * recorded in the superblock as failed.
2194 */
2195 sb_retrieve_failed_devices(sb, failed_devices);
2196 rdev_for_each(r, mddev) {
2197 if (!r->sb_page)
2198 continue;
2199 sb2 = page_address(r->sb_page);
2200 sb2->failed_devices = 0;
2201 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2202
2203 /*
2204 * Check for any device re-ordering.
2205 */
2206 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2207 role = le32_to_cpu(sb2->array_position);
2208 if (role < 0)
2209 continue;
2210
2211 if (role != r->raid_disk) {
2212 if (__is_raid10_near(mddev->layout)) {
2213 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2214 rs->raid_disks % rs->raid10_copies) {
2215 rs->ti->error =
2216 "Cannot change raid10 near set to odd # of devices!";
2217 return -EINVAL;
2218 }
2219
2220 sb2->array_position = cpu_to_le32(r->raid_disk);
2221
2222 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2223 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2224 !rt_is_raid1(rs->raid_type)) {
2225 rs->ti->error = "Cannot change device positions in raid set";
2226 return -EINVAL;
2227 }
2228
2229 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2230 }
2231
2232 /*
2233 * Partial recovery is performed on
2234 * returning failed devices.
2235 */
2236 if (test_bit(role, (void *) failed_devices))
2237 set_bit(Faulty, &r->flags);
2238 }
2239 }
2240
2241 return 0;
2242 }
2243
2244 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2245 {
2246 struct mddev *mddev = &rs->md;
2247 struct dm_raid_superblock *sb;
2248
2249 if (rs_is_raid0(rs) || !rdev->sb_page)
2250 return 0;
2251
2252 sb = page_address(rdev->sb_page);
2253
2254 /*
2255 * If mddev->events is not set, we know we have not yet initialized
2256 * the array.
2257 */
2258 if (!mddev->events && super_init_validation(rs, rdev))
2259 return -EINVAL;
2260
2261 if (le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2262 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2263 return -EINVAL;
2264 }
2265
2266 if (sb->incompat_features) {
2267 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2268 return -EINVAL;
2269 }
2270
2271 /* Enable bitmap creation for RAID levels != 0 */
2272 mddev->bitmap_info.offset = rt_is_raid0(rs->raid_type) ? 0 : to_sector(4096);
2273 rdev->mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2274
2275 if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2276 /* Retrieve device size stored in superblock to be prepared for shrink */
2277 rdev->sectors = le64_to_cpu(sb->sectors);
2278 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2279 if (rdev->recovery_offset == MaxSector)
2280 set_bit(In_sync, &rdev->flags);
2281 /*
2282 * If no reshape in progress -> we're recovering single
2283 * disk(s) and have to set the device(s) to out-of-sync
2284 */
2285 else if (!rs_is_reshaping(rs))
2286 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2287 }
2288
2289 /*
2290 * If a device comes back, set it as not In_sync and no longer faulty.
2291 */
2292 if (test_and_clear_bit(Faulty, &rdev->flags)) {
2293 rdev->recovery_offset = 0;
2294 clear_bit(In_sync, &rdev->flags);
2295 rdev->saved_raid_disk = rdev->raid_disk;
2296 }
2297
2298 /* Reshape support -> restore repective data offsets */
2299 rdev->data_offset = le64_to_cpu(sb->data_offset);
2300 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2301
2302 return 0;
2303 }
2304
2305 /*
2306 * Analyse superblocks and select the freshest.
2307 */
2308 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2309 {
2310 int r;
2311 struct raid_dev *dev;
2312 struct md_rdev *rdev, *tmp, *freshest;
2313 struct mddev *mddev = &rs->md;
2314
2315 freshest = NULL;
2316 rdev_for_each_safe(rdev, tmp, mddev) {
2317 /*
2318 * Skipping super_load due to CTR_FLAG_SYNC will cause
2319 * the array to undergo initialization again as
2320 * though it were new. This is the intended effect
2321 * of the "sync" directive.
2322 *
2323 * When reshaping capability is added, we must ensure
2324 * that the "sync" directive is disallowed during the
2325 * reshape.
2326 */
2327 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2328 continue;
2329
2330 if (!rdev->meta_bdev)
2331 continue;
2332
2333 r = super_load(rdev, freshest);
2334
2335 switch (r) {
2336 case 1:
2337 freshest = rdev;
2338 break;
2339 case 0:
2340 break;
2341 default:
2342 /*
2343 * We have to keep any raid0 data/metadata device pairs or
2344 * the MD raid0 personality will fail to start the array.
2345 */
2346 if (rs_is_raid0(rs))
2347 continue;
2348
2349 dev = container_of(rdev, struct raid_dev, rdev);
2350 if (dev->meta_dev)
2351 dm_put_device(ti, dev->meta_dev);
2352
2353 dev->meta_dev = NULL;
2354 rdev->meta_bdev = NULL;
2355
2356 if (rdev->sb_page)
2357 put_page(rdev->sb_page);
2358
2359 rdev->sb_page = NULL;
2360
2361 rdev->sb_loaded = 0;
2362
2363 /*
2364 * We might be able to salvage the data device
2365 * even though the meta device has failed. For
2366 * now, we behave as though '- -' had been
2367 * set for this device in the table.
2368 */
2369 if (dev->data_dev)
2370 dm_put_device(ti, dev->data_dev);
2371
2372 dev->data_dev = NULL;
2373 rdev->bdev = NULL;
2374
2375 list_del(&rdev->same_set);
2376 }
2377 }
2378
2379 if (!freshest)
2380 return 0;
2381
2382 if (validate_raid_redundancy(rs)) {
2383 rs->ti->error = "Insufficient redundancy to activate array";
2384 return -EINVAL;
2385 }
2386
2387 /*
2388 * Validation of the freshest device provides the source of
2389 * validation for the remaining devices.
2390 */
2391 rs->ti->error = "Unable to assemble array: Invalid superblocks";
2392 if (super_validate(rs, freshest))
2393 return -EINVAL;
2394
2395 rdev_for_each(rdev, mddev)
2396 if ((rdev != freshest) && super_validate(rs, rdev))
2397 return -EINVAL;
2398 return 0;
2399 }
2400
2401 /*
2402 * Adjust data_offset and new_data_offset on all disk members of @rs
2403 * for out of place reshaping if requested by contructor
2404 *
2405 * We need free space at the beginning of each raid disk for forward
2406 * and at the end for backward reshapes which userspace has to provide
2407 * via remapping/reordering of space.
2408 */
2409 static int rs_adjust_data_offsets(struct raid_set *rs)
2410 {
2411 sector_t data_offset = 0, new_data_offset = 0;
2412 struct md_rdev *rdev;
2413
2414 /* Constructor did not request data offset change */
2415 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2416 if (!rs_is_reshapable(rs))
2417 goto out;
2418
2419 return 0;
2420 }
2421
2422 /* HM FIXME: get InSync raid_dev? */
2423 rdev = &rs->dev[0].rdev;
2424
2425 if (rs->delta_disks < 0) {
2426 /*
2427 * Removing disks (reshaping backwards):
2428 *
2429 * - before reshape: data is at offset 0 and free space
2430 * is at end of each component LV
2431 *
2432 * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2433 */
2434 data_offset = 0;
2435 new_data_offset = rs->data_offset;
2436
2437 } else if (rs->delta_disks > 0) {
2438 /*
2439 * Adding disks (reshaping forwards):
2440 *
2441 * - before reshape: data is at offset rs->data_offset != 0 and
2442 * free space is at begin of each component LV
2443 *
2444 * - after reshape: data is at offset 0 on each component LV
2445 */
2446 data_offset = rs->data_offset;
2447 new_data_offset = 0;
2448
2449 } else {
2450 /*
2451 * User space passes in 0 for data offset after having removed reshape space
2452 *
2453 * - or - (data offset != 0)
2454 *
2455 * Changing RAID layout or chunk size -> toggle offsets
2456 *
2457 * - before reshape: data is at offset rs->data_offset 0 and
2458 * free space is at end of each component LV
2459 * -or-
2460 * data is at offset rs->data_offset != 0 and
2461 * free space is at begin of each component LV
2462 *
2463 * - after reshape: data is at offset 0 if it was at offset != 0
2464 * or at offset != 0 if it was at offset 0
2465 * on each component LV
2466 *
2467 */
2468 data_offset = rs->data_offset ? rdev->data_offset : 0;
2469 new_data_offset = data_offset ? 0 : rs->data_offset;
2470 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2471 }
2472
2473 /*
2474 * Make sure we got a minimum amount of free sectors per device
2475 */
2476 if (rs->data_offset &&
2477 to_sector(i_size_read(rdev->bdev->bd_inode)) - rdev->sectors < MIN_FREE_RESHAPE_SPACE) {
2478 rs->ti->error = data_offset ? "No space for forward reshape" :
2479 "No space for backward reshape";
2480 return -ENOSPC;
2481 }
2482 out:
2483 /* Adjust data offsets on all rdevs */
2484 rdev_for_each(rdev, &rs->md) {
2485 rdev->data_offset = data_offset;
2486 rdev->new_data_offset = new_data_offset;
2487 }
2488
2489 return 0;
2490 }
2491
2492 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2493 static void __reorder_raid_disk_indexes(struct raid_set *rs)
2494 {
2495 int i = 0;
2496 struct md_rdev *rdev;
2497
2498 rdev_for_each(rdev, &rs->md) {
2499 rdev->raid_disk = i++;
2500 rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2501 }
2502 }
2503
2504 /*
2505 * Setup @rs for takeover by a different raid level
2506 */
2507 static int rs_setup_takeover(struct raid_set *rs)
2508 {
2509 struct mddev *mddev = &rs->md;
2510 struct md_rdev *rdev;
2511 unsigned int d = mddev->raid_disks = rs->raid_disks;
2512 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2513
2514 if (rt_is_raid10(rs->raid_type)) {
2515 if (mddev->level == 0) {
2516 /* Userpace reordered disks -> adjust raid_disk indexes */
2517 __reorder_raid_disk_indexes(rs);
2518
2519 /* raid0 -> raid10_far layout */
2520 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2521 rs->raid10_copies);
2522 } else if (mddev->level == 1)
2523 /* raid1 -> raid10_near layout */
2524 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2525 rs->raid_disks);
2526 else
2527 return -EINVAL;
2528
2529 }
2530
2531 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2532 mddev->recovery_cp = MaxSector;
2533
2534 while (d--) {
2535 rdev = &rs->dev[d].rdev;
2536
2537 if (test_bit(d, (void *) rs->rebuild_disks)) {
2538 clear_bit(In_sync, &rdev->flags);
2539 clear_bit(Faulty, &rdev->flags);
2540 mddev->recovery_cp = rdev->recovery_offset = 0;
2541 /* Bitmap has to be created when we do an "up" takeover */
2542 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2543 }
2544
2545 rdev->new_data_offset = new_data_offset;
2546 }
2547
2548 return 0;
2549 }
2550
2551 /* Prepare @rs for reshape */
2552 static int rs_prepare_reshape(struct raid_set *rs)
2553 {
2554 bool reshape;
2555 struct mddev *mddev = &rs->md;
2556
2557 if (rs_is_raid10(rs)) {
2558 if (rs->raid_disks != mddev->raid_disks &&
2559 __is_raid10_near(mddev->layout) &&
2560 rs->raid10_copies &&
2561 rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2562 /*
2563 * raid disk have to be multiple of data copies to allow this conversion,
2564 *
2565 * This is actually not a reshape it is a
2566 * rebuild of any additional mirrors per group
2567 */
2568 if (rs->raid_disks % rs->raid10_copies) {
2569 rs->ti->error = "Can't reshape raid10 mirror groups";
2570 return -EINVAL;
2571 }
2572
2573 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2574 __reorder_raid_disk_indexes(rs);
2575 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2576 rs->raid10_copies);
2577 mddev->new_layout = mddev->layout;
2578 reshape = false;
2579 } else
2580 reshape = true;
2581
2582 } else if (rs_is_raid456(rs))
2583 reshape = true;
2584
2585 else if (rs_is_raid1(rs)) {
2586 if (rs->delta_disks) {
2587 /* Process raid1 via delta_disks */
2588 mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2589 reshape = true;
2590 } else {
2591 /* Process raid1 without delta_disks */
2592 mddev->raid_disks = rs->raid_disks;
2593 reshape = false;
2594 }
2595 } else {
2596 rs->ti->error = "Called with bogus raid type";
2597 return -EINVAL;
2598 }
2599
2600 if (reshape) {
2601 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2602 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2603 } else if (mddev->raid_disks < rs->raid_disks)
2604 /* Create new superblocks and bitmaps, if any new disks */
2605 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2606
2607 return 0;
2608 }
2609
2610 /*
2611 *
2612 * - change raid layout
2613 * - change chunk size
2614 * - add disks
2615 * - remove disks
2616 */
2617 static int rs_setup_reshape(struct raid_set *rs)
2618 {
2619 int r = 0;
2620 unsigned int cur_raid_devs, d;
2621 struct mddev *mddev = &rs->md;
2622 struct md_rdev *rdev;
2623
2624 mddev->delta_disks = rs->delta_disks;
2625 cur_raid_devs = mddev->raid_disks;
2626
2627 /* Ignore impossible layout change whilst adding/removing disks */
2628 if (mddev->delta_disks &&
2629 mddev->layout != mddev->new_layout) {
2630 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2631 mddev->new_layout = mddev->layout;
2632 }
2633
2634 /*
2635 * Adjust array size:
2636 *
2637 * - in case of adding disks, array size has
2638 * to grow after the disk adding reshape,
2639 * which'll hapen in the event handler;
2640 * reshape will happen forward, so space has to
2641 * be available at the beginning of each disk
2642 *
2643 * - in case of removing disks, array size
2644 * has to shrink before starting the reshape,
2645 * which'll happen here;
2646 * reshape will happen backward, so space has to
2647 * be available at the end of each disk
2648 *
2649 * - data_offset and new_data_offset are
2650 * adjusted for aforementioned out of place
2651 * reshaping based on userspace passing in
2652 * the "data_offset <sectors>" key/value
2653 * pair via the constructor
2654 */
2655
2656 /* Add disk(s) */
2657 if (rs->delta_disks > 0) {
2658 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2659 for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2660 rdev = &rs->dev[d].rdev;
2661 clear_bit(In_sync, &rdev->flags);
2662
2663 /*
2664 * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2665 * by md, which'll store that erroneously in the superblock on reshape
2666 */
2667 rdev->saved_raid_disk = -1;
2668 rdev->raid_disk = d;
2669
2670 rdev->sectors = mddev->dev_sectors;
2671 rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2672 }
2673
2674 mddev->reshape_backwards = 0; /* adding disks -> forward reshape */
2675
2676 /* Remove disk(s) */
2677 } else if (rs->delta_disks < 0) {
2678 r = rs_set_dev_and_array_sectors(rs, true);
2679 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2680
2681 /* Change layout and/or chunk size */
2682 } else {
2683 /*
2684 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2685 *
2686 * keeping number of disks and do layout change ->
2687 *
2688 * toggle reshape_backward depending on data_offset:
2689 *
2690 * - free space upfront -> reshape forward
2691 *
2692 * - free space at the end -> reshape backward
2693 *
2694 *
2695 * This utilizes free reshape space avoiding the need
2696 * for userspace to move (parts of) LV segments in
2697 * case of layout/chunksize change (for disk
2698 * adding/removing reshape space has to be at
2699 * the proper address (see above with delta_disks):
2700 *
2701 * add disk(s) -> begin
2702 * remove disk(s)-> end
2703 */
2704 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2705 }
2706
2707 return r;
2708 }
2709
2710 /*
2711 * Enable/disable discard support on RAID set depending on
2712 * RAID level and discard properties of underlying RAID members.
2713 */
2714 static void configure_discard_support(struct raid_set *rs)
2715 {
2716 int i;
2717 bool raid456;
2718 struct dm_target *ti = rs->ti;
2719
2720 /* Assume discards not supported until after checks below. */
2721 ti->discards_supported = false;
2722
2723 /* RAID level 4,5,6 require discard_zeroes_data for data integrity! */
2724 raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6);
2725
2726 for (i = 0; i < rs->raid_disks; i++) {
2727 struct request_queue *q;
2728
2729 if (!rs->dev[i].rdev.bdev)
2730 continue;
2731
2732 q = bdev_get_queue(rs->dev[i].rdev.bdev);
2733 if (!q || !blk_queue_discard(q))
2734 return;
2735
2736 if (raid456) {
2737 if (!q->limits.discard_zeroes_data)
2738 return;
2739 if (!devices_handle_discard_safely) {
2740 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2741 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2742 return;
2743 }
2744 }
2745 }
2746
2747 /* All RAID members properly support discards */
2748 ti->discards_supported = true;
2749
2750 /*
2751 * RAID1 and RAID10 personalities require bio splitting,
2752 * RAID0/4/5/6 don't and process large discard bios properly.
2753 */
2754 ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10);
2755 ti->num_discard_bios = 1;
2756 }
2757
2758 /*
2759 * Construct a RAID0/1/10/4/5/6 mapping:
2760 * Args:
2761 * <raid_type> <#raid_params> <raid_params>{0,} \
2762 * <#raid_devs> [<meta_dev1> <dev1>]{1,}
2763 *
2764 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for
2765 * details on possible <raid_params>.
2766 *
2767 * Userspace is free to initialize the metadata devices, hence the superblocks to
2768 * enforce recreation based on the passed in table parameters.
2769 *
2770 */
2771 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2772 {
2773 int r;
2774 bool resize;
2775 struct raid_type *rt;
2776 unsigned int num_raid_params, num_raid_devs;
2777 sector_t calculated_dev_sectors;
2778 struct raid_set *rs = NULL;
2779 const char *arg;
2780 struct rs_layout rs_layout;
2781 struct dm_arg_set as = { argc, argv }, as_nrd;
2782 struct dm_arg _args[] = {
2783 { 0, as.argc, "Cannot understand number of raid parameters" },
2784 { 1, 254, "Cannot understand number of raid devices parameters" }
2785 };
2786
2787 /* Must have <raid_type> */
2788 arg = dm_shift_arg(&as);
2789 if (!arg) {
2790 ti->error = "No arguments";
2791 return -EINVAL;
2792 }
2793
2794 rt = get_raid_type(arg);
2795 if (!rt) {
2796 ti->error = "Unrecognised raid_type";
2797 return -EINVAL;
2798 }
2799
2800 /* Must have <#raid_params> */
2801 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
2802 return -EINVAL;
2803
2804 /* number of raid device tupples <meta_dev data_dev> */
2805 as_nrd = as;
2806 dm_consume_args(&as_nrd, num_raid_params);
2807 _args[1].max = (as_nrd.argc - 1) / 2;
2808 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
2809 return -EINVAL;
2810
2811 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
2812 ti->error = "Invalid number of supplied raid devices";
2813 return -EINVAL;
2814 }
2815
2816 rs = raid_set_alloc(ti, rt, num_raid_devs);
2817 if (IS_ERR(rs))
2818 return PTR_ERR(rs);
2819
2820 r = parse_raid_params(rs, &as, num_raid_params);
2821 if (r)
2822 goto bad;
2823
2824 r = parse_dev_params(rs, &as);
2825 if (r)
2826 goto bad;
2827
2828 rs->md.sync_super = super_sync;
2829
2830 /*
2831 * Calculate ctr requested array and device sizes to allow
2832 * for superblock analysis needing device sizes defined.
2833 *
2834 * Any existing superblock will overwrite the array and device sizes
2835 */
2836 r = rs_set_dev_and_array_sectors(rs, false);
2837 if (r)
2838 goto bad;
2839
2840 calculated_dev_sectors = rs->dev[0].rdev.sectors;
2841
2842 /*
2843 * Backup any new raid set level, layout, ...
2844 * requested to be able to compare to superblock
2845 * members for conversion decisions.
2846 */
2847 rs_config_backup(rs, &rs_layout);
2848
2849 r = analyse_superblocks(ti, rs);
2850 if (r)
2851 goto bad;
2852
2853 resize = calculated_dev_sectors != rs->dev[0].rdev.sectors;
2854
2855 INIT_WORK(&rs->md.event_work, do_table_event);
2856 ti->private = rs;
2857 ti->num_flush_bios = 1;
2858
2859 /* Restore any requested new layout for conversion decision */
2860 rs_config_restore(rs, &rs_layout);
2861
2862 /*
2863 * Now that we have any superblock metadata available,
2864 * check for new, recovering, reshaping, to be taken over,
2865 * to be reshaped or an existing, unchanged raid set to
2866 * run in sequence.
2867 */
2868 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
2869 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
2870 if (rs_is_raid6(rs) &&
2871 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
2872 ti->error = "'nosync' not allowed for new raid6 set";
2873 r = -EINVAL;
2874 goto bad;
2875 }
2876 rs_setup_recovery(rs, 0);
2877 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2878 rs_set_new(rs);
2879 } else if (rs_is_recovering(rs)) {
2880 /* A recovering raid set may be resized */
2881 ; /* skip setup rs */
2882 } else if (rs_is_reshaping(rs)) {
2883 /* Have to reject size change request during reshape */
2884 if (resize) {
2885 ti->error = "Can't resize a reshaping raid set";
2886 r = -EPERM;
2887 goto bad;
2888 }
2889 /* skip setup rs */
2890 } else if (rs_takeover_requested(rs)) {
2891 if (rs_is_reshaping(rs)) {
2892 ti->error = "Can't takeover a reshaping raid set";
2893 r = -EPERM;
2894 goto bad;
2895 }
2896
2897 /*
2898 * If a takeover is needed, userspace sets any additional
2899 * devices to rebuild and we can check for a valid request here.
2900 *
2901 * If acceptible, set the level to the new requested
2902 * one, prohibit requesting recovery, allow the raid
2903 * set to run and store superblocks during resume.
2904 */
2905 r = rs_check_takeover(rs);
2906 if (r)
2907 goto bad;
2908
2909 r = rs_setup_takeover(rs);
2910 if (r)
2911 goto bad;
2912
2913 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2914 /* Takeover ain't recovery, so disable recovery */
2915 rs_setup_recovery(rs, MaxSector);
2916 rs_set_new(rs);
2917 } else if (rs_reshape_requested(rs)) {
2918 /*
2919 * We can only prepare for a reshape here, because the
2920 * raid set needs to run to provide the repective reshape
2921 * check functions via its MD personality instance.
2922 *
2923 * So do the reshape check after md_run() succeeded.
2924 */
2925 r = rs_prepare_reshape(rs);
2926 if (r)
2927 return r;
2928
2929 /* Reshaping ain't recovery, so disable recovery */
2930 rs_setup_recovery(rs, MaxSector);
2931 rs_set_cur(rs);
2932 } else {
2933 /* May not set recovery when a device rebuild is requested */
2934 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
2935 rs_setup_recovery(rs, MaxSector);
2936 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2937 } else
2938 rs_setup_recovery(rs, test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ?
2939 0 : (resize ? calculated_dev_sectors : MaxSector));
2940 rs_set_cur(rs);
2941 }
2942
2943 /* If constructor requested it, change data and new_data offsets */
2944 r = rs_adjust_data_offsets(rs);
2945 if (r)
2946 goto bad;
2947
2948 /* Start raid set read-only and assumed clean to change in raid_resume() */
2949 rs->md.ro = 1;
2950 rs->md.in_sync = 1;
2951 set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
2952
2953 /* Has to be held on running the array */
2954 mddev_lock_nointr(&rs->md);
2955 r = md_run(&rs->md);
2956 rs->md.in_sync = 0; /* Assume already marked dirty */
2957
2958 if (r) {
2959 ti->error = "Failed to run raid array";
2960 mddev_unlock(&rs->md);
2961 goto bad;
2962 }
2963
2964 rs->callbacks.congested_fn = raid_is_congested;
2965 dm_table_add_target_callbacks(ti->table, &rs->callbacks);
2966
2967 mddev_suspend(&rs->md);
2968
2969 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
2970 if (rs_is_raid456(rs)) {
2971 r = rs_set_raid456_stripe_cache(rs);
2972 if (r)
2973 goto bad_stripe_cache;
2974 }
2975
2976 /* Now do an early reshape check */
2977 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
2978 r = rs_check_reshape(rs);
2979 if (r)
2980 goto bad_check_reshape;
2981
2982 /* Restore new, ctr requested layout to perform check */
2983 rs_config_restore(rs, &rs_layout);
2984
2985 if (rs->md.pers->start_reshape) {
2986 r = rs->md.pers->check_reshape(&rs->md);
2987 if (r) {
2988 ti->error = "Reshape check failed";
2989 goto bad_check_reshape;
2990 }
2991 }
2992 }
2993
2994 mddev_unlock(&rs->md);
2995 return 0;
2996
2997 bad_stripe_cache:
2998 bad_check_reshape:
2999 md_stop(&rs->md);
3000 bad:
3001 raid_set_free(rs);
3002
3003 return r;
3004 }
3005
3006 static void raid_dtr(struct dm_target *ti)
3007 {
3008 struct raid_set *rs = ti->private;
3009
3010 list_del_init(&rs->callbacks.list);
3011 md_stop(&rs->md);
3012 raid_set_free(rs);
3013 }
3014
3015 static int raid_map(struct dm_target *ti, struct bio *bio)
3016 {
3017 struct raid_set *rs = ti->private;
3018 struct mddev *mddev = &rs->md;
3019
3020 /*
3021 * If we're reshaping to add disk(s)), ti->len and
3022 * mddev->array_sectors will differ during the process
3023 * (ti->len > mddev->array_sectors), so we have to requeue
3024 * bios with addresses > mddev->array_sectors here or
3025 * there will occur accesses past EOD of the component
3026 * data images thus erroring the raid set.
3027 */
3028 if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
3029 return DM_MAPIO_REQUEUE;
3030
3031 mddev->pers->make_request(mddev, bio);
3032
3033 return DM_MAPIO_SUBMITTED;
3034 }
3035
3036 /* Return string describing the current sync action of @mddev */
3037 static const char *decipher_sync_action(struct mddev *mddev)
3038 {
3039 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3040 return "frozen";
3041
3042 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3043 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3044 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3045 return "reshape";
3046
3047 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3048 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3049 return "resync";
3050 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3051 return "check";
3052 return "repair";
3053 }
3054
3055 if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3056 return "recover";
3057 }
3058
3059 return "idle";
3060 }
3061
3062 /*
3063 * Return status string @rdev
3064 *
3065 * Status characters:
3066 *
3067 * 'D' = Dead/Failed device
3068 * 'a' = Alive but not in-sync
3069 * 'A' = Alive and in-sync
3070 */
3071 static const char *__raid_dev_status(struct md_rdev *rdev, bool array_in_sync)
3072 {
3073 if (test_bit(Faulty, &rdev->flags))
3074 return "D";
3075 else if (!array_in_sync || !test_bit(In_sync, &rdev->flags))
3076 return "a";
3077 else
3078 return "A";
3079 }
3080
3081 /* Helper to return resync/reshape progress for @rs and @array_in_sync */
3082 static sector_t rs_get_progress(struct raid_set *rs,
3083 sector_t resync_max_sectors, bool *array_in_sync)
3084 {
3085 sector_t r, recovery_cp, curr_resync_completed;
3086 struct mddev *mddev = &rs->md;
3087
3088 curr_resync_completed = mddev->curr_resync_completed ?: mddev->recovery_cp;
3089 recovery_cp = mddev->recovery_cp;
3090 *array_in_sync = false;
3091
3092 if (rs_is_raid0(rs)) {
3093 r = resync_max_sectors;
3094 *array_in_sync = true;
3095
3096 } else {
3097 r = mddev->reshape_position;
3098
3099 /* Reshape is relative to the array size */
3100 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
3101 r != MaxSector) {
3102 if (r == MaxSector) {
3103 *array_in_sync = true;
3104 r = resync_max_sectors;
3105 } else {
3106 /* Got to reverse on backward reshape */
3107 if (mddev->reshape_backwards)
3108 r = mddev->array_sectors - r;
3109
3110 /* Devide by # of data stripes */
3111 sector_div(r, mddev_data_stripes(rs));
3112 }
3113
3114 /* Sync is relative to the component device size */
3115 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3116 r = curr_resync_completed;
3117 else
3118 r = recovery_cp;
3119
3120 if (r == MaxSector) {
3121 /*
3122 * Sync complete.
3123 */
3124 *array_in_sync = true;
3125 r = resync_max_sectors;
3126 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3127 /*
3128 * If "check" or "repair" is occurring, the raid set has
3129 * undergone an initial sync and the health characters
3130 * should not be 'a' anymore.
3131 */
3132 *array_in_sync = true;
3133 } else {
3134 struct md_rdev *rdev;
3135
3136 /*
3137 * The raid set may be doing an initial sync, or it may
3138 * be rebuilding individual components. If all the
3139 * devices are In_sync, then it is the raid set that is
3140 * being initialized.
3141 */
3142 rdev_for_each(rdev, mddev)
3143 if (!test_bit(In_sync, &rdev->flags))
3144 *array_in_sync = true;
3145 #if 0
3146 r = 0; /* HM FIXME: TESTME: https://bugzilla.redhat.com/show_bug.cgi?id=1210637 ? */
3147 #endif
3148 }
3149 }
3150
3151 return r;
3152 }
3153
3154 /* Helper to return @dev name or "-" if !@dev */
3155 static const char *__get_dev_name(struct dm_dev *dev)
3156 {
3157 return dev ? dev->name : "-";
3158 }
3159
3160 static void raid_status(struct dm_target *ti, status_type_t type,
3161 unsigned int status_flags, char *result, unsigned int maxlen)
3162 {
3163 struct raid_set *rs = ti->private;
3164 struct mddev *mddev = &rs->md;
3165 struct r5conf *conf = mddev->private;
3166 int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3167 bool array_in_sync;
3168 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3169 unsigned int sz = 0;
3170 unsigned int rebuild_disks;
3171 unsigned int write_mostly_params = 0;
3172 sector_t progress, resync_max_sectors, resync_mismatches;
3173 const char *sync_action;
3174 struct raid_type *rt;
3175 struct md_rdev *rdev;
3176
3177 switch (type) {
3178 case STATUSTYPE_INFO:
3179 /* *Should* always succeed */
3180 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3181 if (!rt)
3182 return;
3183
3184 DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3185
3186 /* Access most recent mddev properties for status output */
3187 smp_rmb();
3188 /* Get sensible max sectors even if raid set not yet started */
3189 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3190 mddev->resync_max_sectors : mddev->dev_sectors;
3191 progress = rs_get_progress(rs, resync_max_sectors, &array_in_sync);
3192 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3193 atomic64_read(&mddev->resync_mismatches) : 0;
3194 sync_action = decipher_sync_action(&rs->md);
3195
3196 /* HM FIXME: do we want another state char for raid0? It shows 'D' or 'A' now */
3197 rdev_for_each(rdev, mddev)
3198 DMEMIT(__raid_dev_status(rdev, array_in_sync));
3199
3200 /*
3201 * In-sync/Reshape ratio:
3202 * The in-sync ratio shows the progress of:
3203 * - Initializing the raid set
3204 * - Rebuilding a subset of devices of the raid set
3205 * The user can distinguish between the two by referring
3206 * to the status characters.
3207 *
3208 * The reshape ratio shows the progress of
3209 * changing the raid layout or the number of
3210 * disks of a raid set
3211 */
3212 DMEMIT(" %llu/%llu", (unsigned long long) progress,
3213 (unsigned long long) resync_max_sectors);
3214
3215 /*
3216 * v1.5.0+:
3217 *
3218 * Sync action:
3219 * See Documentation/device-mapper/dm-raid.txt for
3220 * information on each of these states.
3221 */
3222 DMEMIT(" %s", sync_action);
3223
3224 /*
3225 * v1.5.0+:
3226 *
3227 * resync_mismatches/mismatch_cnt
3228 * This field shows the number of discrepancies found when
3229 * performing a "check" of the raid set.
3230 */
3231 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3232
3233 /*
3234 * v1.9.0+:
3235 *
3236 * data_offset (needed for out of space reshaping)
3237 * This field shows the data offset into the data
3238 * image LV where the first stripes data starts.
3239 *
3240 * We keep data_offset equal on all raid disks of the set,
3241 * so retrieving it from the first raid disk is sufficient.
3242 */
3243 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3244 break;
3245
3246 case STATUSTYPE_TABLE:
3247 /* Report the table line string you would use to construct this raid set */
3248
3249 /* Calculate raid parameter count */
3250 for (i = 0; i < rs->raid_disks; i++)
3251 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3252 write_mostly_params += 2;
3253 rebuild_disks = memweight(rs->rebuild_disks, DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks));
3254 raid_param_cnt += rebuild_disks * 2 +
3255 write_mostly_params +
3256 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3257 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
3258 /* Emit table line */
3259 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3260 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3261 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3262 raid10_md_layout_to_format(mddev->layout));
3263 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3264 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3265 raid10_md_layout_to_copies(mddev->layout));
3266 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3267 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3268 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3269 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3270 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3271 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3272 (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3273 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3274 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3275 (unsigned long long) rs->data_offset);
3276 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3277 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3278 mddev->bitmap_info.daemon_sleep);
3279 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3280 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3281 max(rs->delta_disks, mddev->delta_disks));
3282 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3283 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3284 max_nr_stripes);
3285 if (rebuild_disks)
3286 for (i = 0; i < rs->raid_disks; i++)
3287 if (test_bit(rs->dev[i].rdev.raid_disk, (void *) rs->rebuild_disks))
3288 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD),
3289 rs->dev[i].rdev.raid_disk);
3290 if (write_mostly_params)
3291 for (i = 0; i < rs->raid_disks; i++)
3292 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3293 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3294 rs->dev[i].rdev.raid_disk);
3295 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3296 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3297 mddev->bitmap_info.max_write_behind);
3298 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3299 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3300 mddev->sync_speed_max);
3301 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3302 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3303 mddev->sync_speed_min);
3304 DMEMIT(" %d", rs->raid_disks);
3305 for (i = 0; i < rs->raid_disks; i++)
3306 DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3307 __get_dev_name(rs->dev[i].data_dev));
3308 }
3309 }
3310
3311 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv)
3312 {
3313 struct raid_set *rs = ti->private;
3314 struct mddev *mddev = &rs->md;
3315
3316 if (!mddev->pers || !mddev->pers->sync_request)
3317 return -EINVAL;
3318
3319 if (!strcasecmp(argv[0], "frozen"))
3320 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3321 else
3322 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3323
3324 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3325 if (mddev->sync_thread) {
3326 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3327 md_reap_sync_thread(mddev);
3328 }
3329 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3330 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3331 return -EBUSY;
3332 else if (!strcasecmp(argv[0], "resync"))
3333 ; /* MD_RECOVERY_NEEDED set below */
3334 else if (!strcasecmp(argv[0], "recover"))
3335 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3336 else {
3337 if (!strcasecmp(argv[0], "check"))
3338 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3339 else if (!!strcasecmp(argv[0], "repair"))
3340 return -EINVAL;
3341 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3342 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3343 }
3344 if (mddev->ro == 2) {
3345 /* A write to sync_action is enough to justify
3346 * canceling read-auto mode
3347 */
3348 mddev->ro = 0;
3349 if (!mddev->suspended && mddev->sync_thread)
3350 md_wakeup_thread(mddev->sync_thread);
3351 }
3352 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3353 if (!mddev->suspended && mddev->thread)
3354 md_wakeup_thread(mddev->thread);
3355
3356 return 0;
3357 }
3358
3359 static int raid_iterate_devices(struct dm_target *ti,
3360 iterate_devices_callout_fn fn, void *data)
3361 {
3362 struct raid_set *rs = ti->private;
3363 unsigned int i;
3364 int r = 0;
3365
3366 for (i = 0; !r && i < rs->md.raid_disks; i++)
3367 if (rs->dev[i].data_dev)
3368 r = fn(ti,
3369 rs->dev[i].data_dev,
3370 0, /* No offset on data devs */
3371 rs->md.dev_sectors,
3372 data);
3373
3374 return r;
3375 }
3376
3377 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3378 {
3379 struct raid_set *rs = ti->private;
3380 unsigned int chunk_size = to_bytes(rs->md.chunk_sectors);
3381
3382 blk_limits_io_min(limits, chunk_size);
3383 blk_limits_io_opt(limits, chunk_size * mddev_data_stripes(rs));
3384 }
3385
3386 static void raid_presuspend(struct dm_target *ti)
3387 {
3388 struct raid_set *rs = ti->private;
3389
3390 md_stop_writes(&rs->md);
3391 }
3392
3393 static void raid_postsuspend(struct dm_target *ti)
3394 {
3395 struct raid_set *rs = ti->private;
3396
3397 if (!rs->md.suspended)
3398 mddev_suspend(&rs->md);
3399
3400 rs->md.ro = 1;
3401 }
3402
3403 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3404 {
3405 int i;
3406 uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS];
3407 unsigned long flags;
3408 bool cleared = false;
3409 struct dm_raid_superblock *sb;
3410 struct mddev *mddev = &rs->md;
3411 struct md_rdev *r;
3412
3413 /* RAID personalities have to provide hot add/remove methods or we need to bail out. */
3414 if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk)
3415 return;
3416
3417 memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices));
3418
3419 for (i = 0; i < rs->md.raid_disks; i++) {
3420 r = &rs->dev[i].rdev;
3421 if (test_bit(Faulty, &r->flags) && r->sb_page &&
3422 sync_page_io(r, 0, r->sb_size, r->sb_page,
3423 REQ_OP_READ, 0, true)) {
3424 DMINFO("Faulty %s device #%d has readable super block."
3425 " Attempting to revive it.",
3426 rs->raid_type->name, i);
3427
3428 /*
3429 * Faulty bit may be set, but sometimes the array can
3430 * be suspended before the personalities can respond
3431 * by removing the device from the array (i.e. calling
3432 * 'hot_remove_disk'). If they haven't yet removed
3433 * the failed device, its 'raid_disk' number will be
3434 * '>= 0' - meaning we must call this function
3435 * ourselves.
3436 */
3437 if ((r->raid_disk >= 0) &&
3438 (mddev->pers->hot_remove_disk(mddev, r) != 0))
3439 /* Failed to revive this device, try next */
3440 continue;
3441
3442 r->raid_disk = i;
3443 r->saved_raid_disk = i;
3444 flags = r->flags;
3445 clear_bit(Faulty, &r->flags);
3446 clear_bit(WriteErrorSeen, &r->flags);
3447 clear_bit(In_sync, &r->flags);
3448 if (mddev->pers->hot_add_disk(mddev, r)) {
3449 r->raid_disk = -1;
3450 r->saved_raid_disk = -1;
3451 r->flags = flags;
3452 } else {
3453 r->recovery_offset = 0;
3454 set_bit(i, (void *) cleared_failed_devices);
3455 cleared = true;
3456 }
3457 }
3458 }
3459
3460 /* If any failed devices could be cleared, update all sbs failed_devices bits */
3461 if (cleared) {
3462 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
3463
3464 rdev_for_each(r, &rs->md) {
3465 sb = page_address(r->sb_page);
3466 sb_retrieve_failed_devices(sb, failed_devices);
3467
3468 for (i = 0; i < DISKS_ARRAY_ELEMS; i++)
3469 failed_devices[i] &= ~cleared_failed_devices[i];
3470
3471 sb_update_failed_devices(sb, failed_devices);
3472 }
3473 }
3474 }
3475
3476 static int __load_dirty_region_bitmap(struct raid_set *rs)
3477 {
3478 int r = 0;
3479
3480 /* Try loading the bitmap unless "raid0", which does not have one */
3481 if (!rs_is_raid0(rs) &&
3482 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3483 r = bitmap_load(&rs->md);
3484 if (r)
3485 DMERR("Failed to load bitmap");
3486 }
3487
3488 return r;
3489 }
3490
3491 /* Enforce updating all superblocks */
3492 static void rs_update_sbs(struct raid_set *rs)
3493 {
3494 struct mddev *mddev = &rs->md;
3495 int ro = mddev->ro;
3496
3497 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3498 mddev->ro = 0;
3499 md_update_sb(mddev, 1);
3500 mddev->ro = ro;
3501 }
3502
3503 /*
3504 * Reshape changes raid algorithm of @rs to new one within personality
3505 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3506 * disks from a raid set thus growing/shrinking it or resizes the set
3507 *
3508 * Call mddev_lock_nointr() before!
3509 */
3510 static int rs_start_reshape(struct raid_set *rs)
3511 {
3512 int r;
3513 struct mddev *mddev = &rs->md;
3514 struct md_personality *pers = mddev->pers;
3515
3516 r = rs_setup_reshape(rs);
3517 if (r)
3518 return r;
3519
3520 /* Need to be resumed to be able to start reshape, recovery is frozen until raid_resume() though */
3521 if (mddev->suspended)
3522 mddev_resume(mddev);
3523
3524 /*
3525 * Check any reshape constraints enforced by the personalility
3526 *
3527 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3528 */
3529 r = pers->check_reshape(mddev);
3530 if (r) {
3531 rs->ti->error = "pers->check_reshape() failed";
3532 return r;
3533 }
3534
3535 /*
3536 * Personality may not provide start reshape method in which
3537 * case check_reshape above has already covered everything
3538 */
3539 if (pers->start_reshape) {
3540 r = pers->start_reshape(mddev);
3541 if (r) {
3542 rs->ti->error = "pers->start_reshape() failed";
3543 return r;
3544 }
3545 }
3546
3547 /* Suspend because a resume will happen in raid_resume() */
3548 if (!mddev->suspended)
3549 mddev_suspend(mddev);
3550
3551 /*
3552 * Now reshape got set up, update superblocks to
3553 * reflect the fact so that a table reload will
3554 * access proper superblock content in the ctr.
3555 */
3556 rs_update_sbs(rs);
3557
3558 return 0;
3559 }
3560
3561 static int raid_preresume(struct dm_target *ti)
3562 {
3563 int r;
3564 struct raid_set *rs = ti->private;
3565 struct mddev *mddev = &rs->md;
3566
3567 /* This is a resume after a suspend of the set -> it's already started */
3568 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3569 return 0;
3570
3571 /*
3572 * The superblocks need to be updated on disk if the
3573 * array is new or new devices got added (thus zeroed
3574 * out by userspace) or __load_dirty_region_bitmap
3575 * will overwrite them in core with old data or fail.
3576 */
3577 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3578 rs_update_sbs(rs);
3579
3580 /*
3581 * Disable/enable discard support on raid set after any
3582 * conversion, because devices can have been added
3583 */
3584 configure_discard_support(rs);
3585
3586 /* Load the bitmap from disk unless raid0 */
3587 r = __load_dirty_region_bitmap(rs);
3588 if (r)
3589 return r;
3590
3591 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) */
3592 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) &&
3593 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)) {
3594 r = bitmap_resize(mddev->bitmap, mddev->dev_sectors,
3595 to_bytes(rs->requested_bitmap_chunk_sectors), 0);
3596 if (r)
3597 DMERR("Failed to resize bitmap");
3598 }
3599
3600 /* Check for any resize/reshape on @rs and adjust/initiate */
3601 /* Be prepared for mddev_resume() in raid_resume() */
3602 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3603 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
3604 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3605 mddev->resync_min = mddev->recovery_cp;
3606 }
3607
3608 rs_set_capacity(rs);
3609
3610 /* Check for any reshape request unless new raid set */
3611 if (test_and_clear_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3612 /* Initiate a reshape. */
3613 mddev_lock_nointr(mddev);
3614 r = rs_start_reshape(rs);
3615 mddev_unlock(mddev);
3616 if (r)
3617 DMWARN("Failed to check/start reshape, continuing without change");
3618 r = 0;
3619 }
3620
3621 return r;
3622 }
3623
3624 static void raid_resume(struct dm_target *ti)
3625 {
3626 struct raid_set *rs = ti->private;
3627 struct mddev *mddev = &rs->md;
3628
3629 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
3630 /*
3631 * A secondary resume while the device is active.
3632 * Take this opportunity to check whether any failed
3633 * devices are reachable again.
3634 */
3635 attempt_restore_of_faulty_devices(rs);
3636 }
3637
3638 mddev->ro = 0;
3639 mddev->in_sync = 0;
3640
3641 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3642
3643 if (mddev->suspended)
3644 mddev_resume(mddev);
3645 }
3646
3647 static struct target_type raid_target = {
3648 .name = "raid",
3649 .version = {1, 9, 0},
3650 .module = THIS_MODULE,
3651 .ctr = raid_ctr,
3652 .dtr = raid_dtr,
3653 .map = raid_map,
3654 .status = raid_status,
3655 .message = raid_message,
3656 .iterate_devices = raid_iterate_devices,
3657 .io_hints = raid_io_hints,
3658 .presuspend = raid_presuspend,
3659 .postsuspend = raid_postsuspend,
3660 .preresume = raid_preresume,
3661 .resume = raid_resume,
3662 };
3663
3664 static int __init dm_raid_init(void)
3665 {
3666 DMINFO("Loading target version %u.%u.%u",
3667 raid_target.version[0],
3668 raid_target.version[1],
3669 raid_target.version[2]);
3670 return dm_register_target(&raid_target);
3671 }
3672
3673 static void __exit dm_raid_exit(void)
3674 {
3675 dm_unregister_target(&raid_target);
3676 }
3677
3678 module_init(dm_raid_init);
3679 module_exit(dm_raid_exit);
3680
3681 module_param(devices_handle_discard_safely, bool, 0644);
3682 MODULE_PARM_DESC(devices_handle_discard_safely,
3683 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
3684
3685 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
3686 MODULE_ALIAS("dm-raid0");
3687 MODULE_ALIAS("dm-raid1");
3688 MODULE_ALIAS("dm-raid10");
3689 MODULE_ALIAS("dm-raid4");
3690 MODULE_ALIAS("dm-raid5");
3691 MODULE_ALIAS("dm-raid6");
3692 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
3693 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
3694 MODULE_LICENSE("GPL");