]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/dm-raid.c
dm raid: add raid4/5/6 journaling support
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm-raid.c
1 /*
2 * Copyright (C) 2010-2011 Neil Brown
3 * Copyright (C) 2010-2016 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include <linux/slab.h>
9 #include <linux/module.h>
10
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "bitmap.h"
16
17 #include <linux/device-mapper.h>
18
19 #define DM_MSG_PREFIX "raid"
20 #define MAX_RAID_DEVICES 253 /* md-raid kernel limit */
21
22 /*
23 * Minimum sectors of free reshape space per raid device
24 */
25 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
26
27 /*
28 * Minimum journal space 4 MiB in sectors.
29 */
30 #define MIN_RAID456_JOURNAL_SPACE (4*2048)
31
32 static bool devices_handle_discard_safely = false;
33
34 /*
35 * The following flags are used by dm-raid.c to set up the array state.
36 * They must be cleared before md_run is called.
37 */
38 #define FirstUse 10 /* rdev flag */
39
40 struct raid_dev {
41 /*
42 * Two DM devices, one to hold metadata and one to hold the
43 * actual data/parity. The reason for this is to not confuse
44 * ti->len and give more flexibility in altering size and
45 * characteristics.
46 *
47 * While it is possible for this device to be associated
48 * with a different physical device than the data_dev, it
49 * is intended for it to be the same.
50 * |--------- Physical Device ---------|
51 * |- meta_dev -|------ data_dev ------|
52 */
53 struct dm_dev *meta_dev;
54 struct dm_dev *data_dev;
55 struct md_rdev rdev;
56 };
57
58 /*
59 * Bits for establishing rs->ctr_flags
60 *
61 * 1 = no flag value
62 * 2 = flag with value
63 */
64 #define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */
65 #define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */
66 #define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */
67 #define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */
68 #define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */
69 #define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */
70 #define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */
71 #define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */
72 #define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */
73 #define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */
74 #define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */
75 #define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */
76 /* New for v1.9.0 */
77 #define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
78 #define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
79 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
80
81 /* New for v1.10.0 */
82 #define __CTR_FLAG_JOURNAL_DEV 15 /* 2 */ /* Only with raid4/5/6! */
83
84 /*
85 * Flags for rs->ctr_flags field.
86 */
87 #define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC)
88 #define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC)
89 #define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD)
90 #define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP)
91 #define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
92 #define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
93 #define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
94 #define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY)
95 #define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE)
96 #define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE)
97 #define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES)
98 #define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT)
99 #define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS)
100 #define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET)
101 #define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
102 #define CTR_FLAG_JOURNAL_DEV (1 << __CTR_FLAG_JOURNAL_DEV)
103
104 /*
105 * Definitions of various constructor flags to
106 * be used in checks of valid / invalid flags
107 * per raid level.
108 */
109 /* Define all any sync flags */
110 #define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
111
112 /* Define flags for options without argument (e.g. 'nosync') */
113 #define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \
114 CTR_FLAG_RAID10_USE_NEAR_SETS)
115
116 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
117 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
118 CTR_FLAG_WRITE_MOSTLY | \
119 CTR_FLAG_DAEMON_SLEEP | \
120 CTR_FLAG_MIN_RECOVERY_RATE | \
121 CTR_FLAG_MAX_RECOVERY_RATE | \
122 CTR_FLAG_MAX_WRITE_BEHIND | \
123 CTR_FLAG_STRIPE_CACHE | \
124 CTR_FLAG_REGION_SIZE | \
125 CTR_FLAG_RAID10_COPIES | \
126 CTR_FLAG_RAID10_FORMAT | \
127 CTR_FLAG_DELTA_DISKS | \
128 CTR_FLAG_DATA_OFFSET)
129
130 /* Valid options definitions per raid level... */
131
132 /* "raid0" does only accept data offset */
133 #define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET)
134
135 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
136 #define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
137 CTR_FLAG_REBUILD | \
138 CTR_FLAG_WRITE_MOSTLY | \
139 CTR_FLAG_DAEMON_SLEEP | \
140 CTR_FLAG_MIN_RECOVERY_RATE | \
141 CTR_FLAG_MAX_RECOVERY_RATE | \
142 CTR_FLAG_MAX_WRITE_BEHIND | \
143 CTR_FLAG_REGION_SIZE | \
144 CTR_FLAG_DELTA_DISKS | \
145 CTR_FLAG_DATA_OFFSET)
146
147 /* "raid10" does not accept any raid1 or stripe cache options */
148 #define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
149 CTR_FLAG_REBUILD | \
150 CTR_FLAG_DAEMON_SLEEP | \
151 CTR_FLAG_MIN_RECOVERY_RATE | \
152 CTR_FLAG_MAX_RECOVERY_RATE | \
153 CTR_FLAG_REGION_SIZE | \
154 CTR_FLAG_RAID10_COPIES | \
155 CTR_FLAG_RAID10_FORMAT | \
156 CTR_FLAG_DELTA_DISKS | \
157 CTR_FLAG_DATA_OFFSET | \
158 CTR_FLAG_RAID10_USE_NEAR_SETS)
159
160 /*
161 * "raid4/5/6" do not accept any raid1 or raid10 specific options
162 *
163 * "raid6" does not accept "nosync", because it is not guaranteed
164 * that both parity and q-syndrome are being written properly with
165 * any writes
166 */
167 #define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
168 CTR_FLAG_REBUILD | \
169 CTR_FLAG_DAEMON_SLEEP | \
170 CTR_FLAG_MIN_RECOVERY_RATE | \
171 CTR_FLAG_MAX_RECOVERY_RATE | \
172 CTR_FLAG_STRIPE_CACHE | \
173 CTR_FLAG_REGION_SIZE | \
174 CTR_FLAG_DELTA_DISKS | \
175 CTR_FLAG_DATA_OFFSET | \
176 CTR_FLAG_JOURNAL_DEV)
177
178 #define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \
179 CTR_FLAG_REBUILD | \
180 CTR_FLAG_DAEMON_SLEEP | \
181 CTR_FLAG_MIN_RECOVERY_RATE | \
182 CTR_FLAG_MAX_RECOVERY_RATE | \
183 CTR_FLAG_STRIPE_CACHE | \
184 CTR_FLAG_REGION_SIZE | \
185 CTR_FLAG_DELTA_DISKS | \
186 CTR_FLAG_DATA_OFFSET | \
187 CTR_FLAG_JOURNAL_DEV)
188 /* ...valid options definitions per raid level */
189
190 /*
191 * Flags for rs->runtime_flags field
192 * (RT_FLAG prefix meaning "runtime flag")
193 *
194 * These are all internal and used to define runtime state,
195 * e.g. to prevent another resume from preresume processing
196 * the raid set all over again.
197 */
198 #define RT_FLAG_RS_PRERESUMED 0
199 #define RT_FLAG_RS_RESUMED 1
200 #define RT_FLAG_RS_BITMAP_LOADED 2
201 #define RT_FLAG_UPDATE_SBS 3
202 #define RT_FLAG_RESHAPE_RS 4
203
204 /* Array elements of 64 bit needed for rebuild/failed disk bits */
205 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
206
207 /*
208 * raid set level, layout and chunk sectors backup/restore
209 */
210 struct rs_layout {
211 int new_level;
212 int new_layout;
213 int new_chunk_sectors;
214 };
215
216 struct raid_set {
217 struct dm_target *ti;
218
219 uint32_t bitmap_loaded;
220 uint32_t stripe_cache_entries;
221 unsigned long ctr_flags;
222 unsigned long runtime_flags;
223
224 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
225
226 int raid_disks;
227 int delta_disks;
228 int data_offset;
229 int raid10_copies;
230 int requested_bitmap_chunk_sectors;
231
232 struct mddev md;
233 struct raid_type *raid_type;
234 struct dm_target_callbacks callbacks;
235
236 /* Optional raid4/5/6 journal device */
237 struct journal_dev {
238 struct dm_dev *dev;
239 struct md_rdev rdev;
240 } journal_dev;
241
242 struct raid_dev dev[0];
243 };
244
245 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
246 {
247 struct mddev *mddev = &rs->md;
248
249 l->new_level = mddev->new_level;
250 l->new_layout = mddev->new_layout;
251 l->new_chunk_sectors = mddev->new_chunk_sectors;
252 }
253
254 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
255 {
256 struct mddev *mddev = &rs->md;
257
258 mddev->new_level = l->new_level;
259 mddev->new_layout = l->new_layout;
260 mddev->new_chunk_sectors = l->new_chunk_sectors;
261 }
262
263 /* raid10 algorithms (i.e. formats) */
264 #define ALGORITHM_RAID10_DEFAULT 0
265 #define ALGORITHM_RAID10_NEAR 1
266 #define ALGORITHM_RAID10_OFFSET 2
267 #define ALGORITHM_RAID10_FAR 3
268
269 /* Supported raid types and properties. */
270 static struct raid_type {
271 const char *name; /* RAID algorithm. */
272 const char *descr; /* Descriptor text for logging. */
273 const unsigned int parity_devs; /* # of parity devices. */
274 const unsigned int minimal_devs;/* minimal # of devices in set. */
275 const unsigned int level; /* RAID level. */
276 const unsigned int algorithm; /* RAID algorithm. */
277 } raid_types[] = {
278 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */},
279 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */},
280 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR},
281 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET},
282 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR},
283 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT},
284 {"raid4", "raid4 (dedicated first parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */
285 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N},
286 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
287 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
288 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
289 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
290 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
291 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
292 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE},
293 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6},
294 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6},
295 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6},
296 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6},
297 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6}
298 };
299
300 /* True, if @v is in inclusive range [@min, @max] */
301 static bool __within_range(long v, long min, long max)
302 {
303 return v >= min && v <= max;
304 }
305
306 /* All table line arguments are defined here */
307 static struct arg_name_flag {
308 const unsigned long flag;
309 const char *name;
310 } __arg_name_flags[] = {
311 { CTR_FLAG_SYNC, "sync"},
312 { CTR_FLAG_NOSYNC, "nosync"},
313 { CTR_FLAG_REBUILD, "rebuild"},
314 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
315 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
316 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
317 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
318 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
319 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
320 { CTR_FLAG_REGION_SIZE, "region_size"},
321 { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
322 { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
323 { CTR_FLAG_DATA_OFFSET, "data_offset"},
324 { CTR_FLAG_DELTA_DISKS, "delta_disks"},
325 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
326 { CTR_FLAG_JOURNAL_DEV, "journal_dev" },
327 };
328
329 /* Return argument name string for given @flag */
330 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
331 {
332 if (hweight32(flag) == 1) {
333 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
334
335 while (anf-- > __arg_name_flags)
336 if (flag & anf->flag)
337 return anf->name;
338
339 } else
340 DMERR("%s called with more than one flag!", __func__);
341
342 return NULL;
343 }
344
345 /*
346 * Bool helpers to test for various raid levels of a raid set.
347 * It's level as reported by the superblock rather than
348 * the requested raid_type passed to the constructor.
349 */
350 /* Return true, if raid set in @rs is raid0 */
351 static bool rs_is_raid0(struct raid_set *rs)
352 {
353 return !rs->md.level;
354 }
355
356 /* Return true, if raid set in @rs is raid1 */
357 static bool rs_is_raid1(struct raid_set *rs)
358 {
359 return rs->md.level == 1;
360 }
361
362 /* Return true, if raid set in @rs is raid10 */
363 static bool rs_is_raid10(struct raid_set *rs)
364 {
365 return rs->md.level == 10;
366 }
367
368 /* Return true, if raid set in @rs is level 6 */
369 static bool rs_is_raid6(struct raid_set *rs)
370 {
371 return rs->md.level == 6;
372 }
373
374 /* Return true, if raid set in @rs is level 4, 5 or 6 */
375 static bool rs_is_raid456(struct raid_set *rs)
376 {
377 return __within_range(rs->md.level, 4, 6);
378 }
379
380 /* Return true, if raid set in @rs is reshapable */
381 static bool __is_raid10_far(int layout);
382 static bool rs_is_reshapable(struct raid_set *rs)
383 {
384 return rs_is_raid456(rs) ||
385 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
386 }
387
388 /* Return true, if raid set in @rs is recovering */
389 static bool rs_is_recovering(struct raid_set *rs)
390 {
391 return rs->md.recovery_cp < rs->md.dev_sectors;
392 }
393
394 /* Return true, if raid set in @rs is reshaping */
395 static bool rs_is_reshaping(struct raid_set *rs)
396 {
397 return rs->md.reshape_position != MaxSector;
398 }
399
400 /*
401 * bool helpers to test for various raid levels of a raid type @rt
402 */
403
404 /* Return true, if raid type in @rt is raid0 */
405 static bool rt_is_raid0(struct raid_type *rt)
406 {
407 return !rt->level;
408 }
409
410 /* Return true, if raid type in @rt is raid1 */
411 static bool rt_is_raid1(struct raid_type *rt)
412 {
413 return rt->level == 1;
414 }
415
416 /* Return true, if raid type in @rt is raid10 */
417 static bool rt_is_raid10(struct raid_type *rt)
418 {
419 return rt->level == 10;
420 }
421
422 /* Return true, if raid type in @rt is raid4/5 */
423 static bool rt_is_raid45(struct raid_type *rt)
424 {
425 return __within_range(rt->level, 4, 5);
426 }
427
428 /* Return true, if raid type in @rt is raid6 */
429 static bool rt_is_raid6(struct raid_type *rt)
430 {
431 return rt->level == 6;
432 }
433
434 /* Return true, if raid type in @rt is raid4/5/6 */
435 static bool rt_is_raid456(struct raid_type *rt)
436 {
437 return __within_range(rt->level, 4, 6);
438 }
439 /* END: raid level bools */
440
441 /* Return valid ctr flags for the raid level of @rs */
442 static unsigned long __valid_flags(struct raid_set *rs)
443 {
444 if (rt_is_raid0(rs->raid_type))
445 return RAID0_VALID_FLAGS;
446 else if (rt_is_raid1(rs->raid_type))
447 return RAID1_VALID_FLAGS;
448 else if (rt_is_raid10(rs->raid_type))
449 return RAID10_VALID_FLAGS;
450 else if (rt_is_raid45(rs->raid_type))
451 return RAID45_VALID_FLAGS;
452 else if (rt_is_raid6(rs->raid_type))
453 return RAID6_VALID_FLAGS;
454
455 return 0;
456 }
457
458 /*
459 * Check for valid flags set on @rs
460 *
461 * Has to be called after parsing of the ctr flags!
462 */
463 static int rs_check_for_valid_flags(struct raid_set *rs)
464 {
465 if (rs->ctr_flags & ~__valid_flags(rs)) {
466 rs->ti->error = "Invalid flags combination";
467 return -EINVAL;
468 }
469
470 return 0;
471 }
472
473 /* MD raid10 bit definitions and helpers */
474 #define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */
475 #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
476 #define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */
477 #define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */
478
479 /* Return md raid10 near copies for @layout */
480 static unsigned int __raid10_near_copies(int layout)
481 {
482 return layout & 0xFF;
483 }
484
485 /* Return md raid10 far copies for @layout */
486 static unsigned int __raid10_far_copies(int layout)
487 {
488 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
489 }
490
491 /* Return true if md raid10 offset for @layout */
492 static bool __is_raid10_offset(int layout)
493 {
494 return !!(layout & RAID10_OFFSET);
495 }
496
497 /* Return true if md raid10 near for @layout */
498 static bool __is_raid10_near(int layout)
499 {
500 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
501 }
502
503 /* Return true if md raid10 far for @layout */
504 static bool __is_raid10_far(int layout)
505 {
506 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
507 }
508
509 /* Return md raid10 layout string for @layout */
510 static const char *raid10_md_layout_to_format(int layout)
511 {
512 /*
513 * Bit 16 stands for "offset"
514 * (i.e. adjacent stripes hold copies)
515 *
516 * Refer to MD's raid10.c for details
517 */
518 if (__is_raid10_offset(layout))
519 return "offset";
520
521 if (__raid10_near_copies(layout) > 1)
522 return "near";
523
524 WARN_ON(__raid10_far_copies(layout) < 2);
525
526 return "far";
527 }
528
529 /* Return md raid10 algorithm for @name */
530 static int raid10_name_to_format(const char *name)
531 {
532 if (!strcasecmp(name, "near"))
533 return ALGORITHM_RAID10_NEAR;
534 else if (!strcasecmp(name, "offset"))
535 return ALGORITHM_RAID10_OFFSET;
536 else if (!strcasecmp(name, "far"))
537 return ALGORITHM_RAID10_FAR;
538
539 return -EINVAL;
540 }
541
542 /* Return md raid10 copies for @layout */
543 static unsigned int raid10_md_layout_to_copies(int layout)
544 {
545 return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
546 }
547
548 /* Return md raid10 format id for @format string */
549 static int raid10_format_to_md_layout(struct raid_set *rs,
550 unsigned int algorithm,
551 unsigned int copies)
552 {
553 unsigned int n = 1, f = 1, r = 0;
554
555 /*
556 * MD resilienece flaw:
557 *
558 * enabling use_far_sets for far/offset formats causes copies
559 * to be colocated on the same devs together with their origins!
560 *
561 * -> disable it for now in the definition above
562 */
563 if (algorithm == ALGORITHM_RAID10_DEFAULT ||
564 algorithm == ALGORITHM_RAID10_NEAR)
565 n = copies;
566
567 else if (algorithm == ALGORITHM_RAID10_OFFSET) {
568 f = copies;
569 r = RAID10_OFFSET;
570 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
571 r |= RAID10_USE_FAR_SETS;
572
573 } else if (algorithm == ALGORITHM_RAID10_FAR) {
574 f = copies;
575 r = !RAID10_OFFSET;
576 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
577 r |= RAID10_USE_FAR_SETS;
578
579 } else
580 return -EINVAL;
581
582 return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
583 }
584 /* END: MD raid10 bit definitions and helpers */
585
586 /* Check for any of the raid10 algorithms */
587 static bool __got_raid10(struct raid_type *rtp, const int layout)
588 {
589 if (rtp->level == 10) {
590 switch (rtp->algorithm) {
591 case ALGORITHM_RAID10_DEFAULT:
592 case ALGORITHM_RAID10_NEAR:
593 return __is_raid10_near(layout);
594 case ALGORITHM_RAID10_OFFSET:
595 return __is_raid10_offset(layout);
596 case ALGORITHM_RAID10_FAR:
597 return __is_raid10_far(layout);
598 default:
599 break;
600 }
601 }
602
603 return false;
604 }
605
606 /* Return raid_type for @name */
607 static struct raid_type *get_raid_type(const char *name)
608 {
609 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
610
611 while (rtp-- > raid_types)
612 if (!strcasecmp(rtp->name, name))
613 return rtp;
614
615 return NULL;
616 }
617
618 /* Return raid_type for @name based derived from @level and @layout */
619 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
620 {
621 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
622
623 while (rtp-- > raid_types) {
624 /* RAID10 special checks based on @layout flags/properties */
625 if (rtp->level == level &&
626 (__got_raid10(rtp, layout) || rtp->algorithm == layout))
627 return rtp;
628 }
629
630 return NULL;
631 }
632
633 /*
634 * Conditionally change bdev capacity of @rs
635 * in case of a disk add/remove reshape
636 */
637 static void rs_set_capacity(struct raid_set *rs)
638 {
639 struct mddev *mddev = &rs->md;
640 struct md_rdev *rdev;
641 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
642
643 /*
644 * raid10 sets rdev->sector to the device size, which
645 * is unintended in case of out-of-place reshaping
646 */
647 rdev_for_each(rdev, mddev)
648 if (!test_bit(Journal, &rdev->flags))
649 rdev->sectors = mddev->dev_sectors;
650
651 set_capacity(gendisk, mddev->array_sectors);
652 revalidate_disk(gendisk);
653 }
654
655 /*
656 * Set the mddev properties in @rs to the current
657 * ones retrieved from the freshest superblock
658 */
659 static void rs_set_cur(struct raid_set *rs)
660 {
661 struct mddev *mddev = &rs->md;
662
663 mddev->new_level = mddev->level;
664 mddev->new_layout = mddev->layout;
665 mddev->new_chunk_sectors = mddev->chunk_sectors;
666 }
667
668 /*
669 * Set the mddev properties in @rs to the new
670 * ones requested by the ctr
671 */
672 static void rs_set_new(struct raid_set *rs)
673 {
674 struct mddev *mddev = &rs->md;
675
676 mddev->level = mddev->new_level;
677 mddev->layout = mddev->new_layout;
678 mddev->chunk_sectors = mddev->new_chunk_sectors;
679 mddev->raid_disks = rs->raid_disks;
680 mddev->delta_disks = 0;
681 }
682
683 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
684 unsigned int raid_devs)
685 {
686 unsigned int i;
687 struct raid_set *rs;
688
689 if (raid_devs <= raid_type->parity_devs) {
690 ti->error = "Insufficient number of devices";
691 return ERR_PTR(-EINVAL);
692 }
693
694 rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
695 if (!rs) {
696 ti->error = "Cannot allocate raid context";
697 return ERR_PTR(-ENOMEM);
698 }
699
700 mddev_init(&rs->md);
701
702 rs->raid_disks = raid_devs;
703 rs->delta_disks = 0;
704
705 rs->ti = ti;
706 rs->raid_type = raid_type;
707 rs->stripe_cache_entries = 256;
708 rs->md.raid_disks = raid_devs;
709 rs->md.level = raid_type->level;
710 rs->md.new_level = rs->md.level;
711 rs->md.layout = raid_type->algorithm;
712 rs->md.new_layout = rs->md.layout;
713 rs->md.delta_disks = 0;
714 rs->md.recovery_cp = MaxSector;
715
716 for (i = 0; i < raid_devs; i++)
717 md_rdev_init(&rs->dev[i].rdev);
718
719 /*
720 * Remaining items to be initialized by further RAID params:
721 * rs->md.persistent
722 * rs->md.external
723 * rs->md.chunk_sectors
724 * rs->md.new_chunk_sectors
725 * rs->md.dev_sectors
726 */
727
728 return rs;
729 }
730
731 static void raid_set_free(struct raid_set *rs)
732 {
733 int i;
734
735 if (rs->journal_dev.dev) {
736 md_rdev_clear(&rs->journal_dev.rdev);
737 dm_put_device(rs->ti, rs->journal_dev.dev);
738 }
739
740 for (i = 0; i < rs->raid_disks; i++) {
741 if (rs->dev[i].meta_dev)
742 dm_put_device(rs->ti, rs->dev[i].meta_dev);
743 md_rdev_clear(&rs->dev[i].rdev);
744 if (rs->dev[i].data_dev)
745 dm_put_device(rs->ti, rs->dev[i].data_dev);
746 }
747
748 kfree(rs);
749 }
750
751 /*
752 * For every device we have two words
753 * <meta_dev>: meta device name or '-' if missing
754 * <data_dev>: data device name or '-' if missing
755 *
756 * The following are permitted:
757 * - -
758 * - <data_dev>
759 * <meta_dev> <data_dev>
760 *
761 * The following is not allowed:
762 * <meta_dev> -
763 *
764 * This code parses those words. If there is a failure,
765 * the caller must use raid_set_free() to unwind the operations.
766 */
767 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
768 {
769 int i;
770 int rebuild = 0;
771 int metadata_available = 0;
772 int r = 0;
773 const char *arg;
774
775 /* Put off the number of raid devices argument to get to dev pairs */
776 arg = dm_shift_arg(as);
777 if (!arg)
778 return -EINVAL;
779
780 for (i = 0; i < rs->raid_disks; i++) {
781 rs->dev[i].rdev.raid_disk = i;
782
783 rs->dev[i].meta_dev = NULL;
784 rs->dev[i].data_dev = NULL;
785
786 /*
787 * There are no offsets initially.
788 * Out of place reshape will set them accordingly.
789 */
790 rs->dev[i].rdev.data_offset = 0;
791 rs->dev[i].rdev.new_data_offset = 0;
792 rs->dev[i].rdev.mddev = &rs->md;
793
794 arg = dm_shift_arg(as);
795 if (!arg)
796 return -EINVAL;
797
798 if (strcmp(arg, "-")) {
799 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
800 &rs->dev[i].meta_dev);
801 if (r) {
802 rs->ti->error = "RAID metadata device lookup failure";
803 return r;
804 }
805
806 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
807 if (!rs->dev[i].rdev.sb_page) {
808 rs->ti->error = "Failed to allocate superblock page";
809 return -ENOMEM;
810 }
811 }
812
813 arg = dm_shift_arg(as);
814 if (!arg)
815 return -EINVAL;
816
817 if (!strcmp(arg, "-")) {
818 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
819 (!rs->dev[i].rdev.recovery_offset)) {
820 rs->ti->error = "Drive designated for rebuild not specified";
821 return -EINVAL;
822 }
823
824 if (rs->dev[i].meta_dev) {
825 rs->ti->error = "No data device supplied with metadata device";
826 return -EINVAL;
827 }
828
829 continue;
830 }
831
832 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
833 &rs->dev[i].data_dev);
834 if (r) {
835 rs->ti->error = "RAID device lookup failure";
836 return r;
837 }
838
839 if (rs->dev[i].meta_dev) {
840 metadata_available = 1;
841 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
842 }
843 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
844 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
845 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
846 rebuild++;
847 }
848
849 if (rs->journal_dev.dev)
850 list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks);
851
852 if (metadata_available) {
853 rs->md.external = 0;
854 rs->md.persistent = 1;
855 rs->md.major_version = 2;
856 } else if (rebuild && !rs->md.recovery_cp) {
857 /*
858 * Without metadata, we will not be able to tell if the array
859 * is in-sync or not - we must assume it is not. Therefore,
860 * it is impossible to rebuild a drive.
861 *
862 * Even if there is metadata, the on-disk information may
863 * indicate that the array is not in-sync and it will then
864 * fail at that time.
865 *
866 * User could specify 'nosync' option if desperate.
867 */
868 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
869 return -EINVAL;
870 }
871
872 return 0;
873 }
874
875 /*
876 * validate_region_size
877 * @rs
878 * @region_size: region size in sectors. If 0, pick a size (4MiB default).
879 *
880 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
881 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
882 *
883 * Returns: 0 on success, -EINVAL on failure.
884 */
885 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
886 {
887 unsigned long min_region_size = rs->ti->len / (1 << 21);
888
889 if (rs_is_raid0(rs))
890 return 0;
891
892 if (!region_size) {
893 /*
894 * Choose a reasonable default. All figures in sectors.
895 */
896 if (min_region_size > (1 << 13)) {
897 /* If not a power of 2, make it the next power of 2 */
898 region_size = roundup_pow_of_two(min_region_size);
899 DMINFO("Choosing default region size of %lu sectors",
900 region_size);
901 } else {
902 DMINFO("Choosing default region size of 4MiB");
903 region_size = 1 << 13; /* sectors */
904 }
905 } else {
906 /*
907 * Validate user-supplied value.
908 */
909 if (region_size > rs->ti->len) {
910 rs->ti->error = "Supplied region size is too large";
911 return -EINVAL;
912 }
913
914 if (region_size < min_region_size) {
915 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
916 region_size, min_region_size);
917 rs->ti->error = "Supplied region size is too small";
918 return -EINVAL;
919 }
920
921 if (!is_power_of_2(region_size)) {
922 rs->ti->error = "Region size is not a power of 2";
923 return -EINVAL;
924 }
925
926 if (region_size < rs->md.chunk_sectors) {
927 rs->ti->error = "Region size is smaller than the chunk size";
928 return -EINVAL;
929 }
930 }
931
932 /*
933 * Convert sectors to bytes.
934 */
935 rs->md.bitmap_info.chunksize = to_bytes(region_size);
936
937 return 0;
938 }
939
940 /*
941 * validate_raid_redundancy
942 * @rs
943 *
944 * Determine if there are enough devices in the array that haven't
945 * failed (or are being rebuilt) to form a usable array.
946 *
947 * Returns: 0 on success, -EINVAL on failure.
948 */
949 static int validate_raid_redundancy(struct raid_set *rs)
950 {
951 unsigned int i, rebuild_cnt = 0;
952 unsigned int rebuilds_per_group = 0, copies;
953 unsigned int group_size, last_group_start;
954
955 for (i = 0; i < rs->md.raid_disks; i++)
956 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
957 !rs->dev[i].rdev.sb_page)
958 rebuild_cnt++;
959
960 switch (rs->raid_type->level) {
961 case 0:
962 break;
963 case 1:
964 if (rebuild_cnt >= rs->md.raid_disks)
965 goto too_many;
966 break;
967 case 4:
968 case 5:
969 case 6:
970 if (rebuild_cnt > rs->raid_type->parity_devs)
971 goto too_many;
972 break;
973 case 10:
974 copies = raid10_md_layout_to_copies(rs->md.new_layout);
975 if (rebuild_cnt < copies)
976 break;
977
978 /*
979 * It is possible to have a higher rebuild count for RAID10,
980 * as long as the failed devices occur in different mirror
981 * groups (i.e. different stripes).
982 *
983 * When checking "near" format, make sure no adjacent devices
984 * have failed beyond what can be handled. In addition to the
985 * simple case where the number of devices is a multiple of the
986 * number of copies, we must also handle cases where the number
987 * of devices is not a multiple of the number of copies.
988 * E.g. dev1 dev2 dev3 dev4 dev5
989 * A A B B C
990 * C D D E E
991 */
992 if (__is_raid10_near(rs->md.new_layout)) {
993 for (i = 0; i < rs->md.raid_disks; i++) {
994 if (!(i % copies))
995 rebuilds_per_group = 0;
996 if ((!rs->dev[i].rdev.sb_page ||
997 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
998 (++rebuilds_per_group >= copies))
999 goto too_many;
1000 }
1001 break;
1002 }
1003
1004 /*
1005 * When checking "far" and "offset" formats, we need to ensure
1006 * that the device that holds its copy is not also dead or
1007 * being rebuilt. (Note that "far" and "offset" formats only
1008 * support two copies right now. These formats also only ever
1009 * use the 'use_far_sets' variant.)
1010 *
1011 * This check is somewhat complicated by the need to account
1012 * for arrays that are not a multiple of (far) copies. This
1013 * results in the need to treat the last (potentially larger)
1014 * set differently.
1015 */
1016 group_size = (rs->md.raid_disks / copies);
1017 last_group_start = (rs->md.raid_disks / group_size) - 1;
1018 last_group_start *= group_size;
1019 for (i = 0; i < rs->md.raid_disks; i++) {
1020 if (!(i % copies) && !(i > last_group_start))
1021 rebuilds_per_group = 0;
1022 if ((!rs->dev[i].rdev.sb_page ||
1023 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1024 (++rebuilds_per_group >= copies))
1025 goto too_many;
1026 }
1027 break;
1028 default:
1029 if (rebuild_cnt)
1030 return -EINVAL;
1031 }
1032
1033 return 0;
1034
1035 too_many:
1036 return -EINVAL;
1037 }
1038
1039 /*
1040 * Possible arguments are...
1041 * <chunk_size> [optional_args]
1042 *
1043 * Argument definitions
1044 * <chunk_size> The number of sectors per disk that
1045 * will form the "stripe"
1046 * [[no]sync] Force or prevent recovery of the
1047 * entire array
1048 * [rebuild <idx>] Rebuild the drive indicated by the index
1049 * [daemon_sleep <ms>] Time between bitmap daemon work to
1050 * clear bits
1051 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1052 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1053 * [write_mostly <idx>] Indicate a write mostly drive via index
1054 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm)
1055 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs
1056 * [region_size <sectors>] Defines granularity of bitmap
1057 * [journal_dev <dev>] raid4/5/6 journaling deviice
1058 * (i.e. write hole closing log)
1059 *
1060 * RAID10-only options:
1061 * [raid10_copies <# copies>] Number of copies. (Default: 2)
1062 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near)
1063 */
1064 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1065 unsigned int num_raid_params)
1066 {
1067 int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1068 unsigned int raid10_copies = 2;
1069 unsigned int i, write_mostly = 0;
1070 unsigned int region_size = 0;
1071 sector_t max_io_len;
1072 const char *arg, *key;
1073 struct raid_dev *rd;
1074 struct raid_type *rt = rs->raid_type;
1075
1076 arg = dm_shift_arg(as);
1077 num_raid_params--; /* Account for chunk_size argument */
1078
1079 if (kstrtoint(arg, 10, &value) < 0) {
1080 rs->ti->error = "Bad numerical argument given for chunk_size";
1081 return -EINVAL;
1082 }
1083
1084 /*
1085 * First, parse the in-order required arguments
1086 * "chunk_size" is the only argument of this type.
1087 */
1088 if (rt_is_raid1(rt)) {
1089 if (value)
1090 DMERR("Ignoring chunk size parameter for RAID 1");
1091 value = 0;
1092 } else if (!is_power_of_2(value)) {
1093 rs->ti->error = "Chunk size must be a power of 2";
1094 return -EINVAL;
1095 } else if (value < 8) {
1096 rs->ti->error = "Chunk size value is too small";
1097 return -EINVAL;
1098 }
1099
1100 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1101
1102 /*
1103 * We set each individual device as In_sync with a completed
1104 * 'recovery_offset'. If there has been a device failure or
1105 * replacement then one of the following cases applies:
1106 *
1107 * 1) User specifies 'rebuild'.
1108 * - Device is reset when param is read.
1109 * 2) A new device is supplied.
1110 * - No matching superblock found, resets device.
1111 * 3) Device failure was transient and returns on reload.
1112 * - Failure noticed, resets device for bitmap replay.
1113 * 4) Device hadn't completed recovery after previous failure.
1114 * - Superblock is read and overrides recovery_offset.
1115 *
1116 * What is found in the superblocks of the devices is always
1117 * authoritative, unless 'rebuild' or '[no]sync' was specified.
1118 */
1119 for (i = 0; i < rs->raid_disks; i++) {
1120 set_bit(In_sync, &rs->dev[i].rdev.flags);
1121 rs->dev[i].rdev.recovery_offset = MaxSector;
1122 }
1123
1124 /*
1125 * Second, parse the unordered optional arguments
1126 */
1127 for (i = 0; i < num_raid_params; i++) {
1128 key = dm_shift_arg(as);
1129 if (!key) {
1130 rs->ti->error = "Not enough raid parameters given";
1131 return -EINVAL;
1132 }
1133
1134 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1135 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1136 rs->ti->error = "Only one 'nosync' argument allowed";
1137 return -EINVAL;
1138 }
1139 continue;
1140 }
1141 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1142 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1143 rs->ti->error = "Only one 'sync' argument allowed";
1144 return -EINVAL;
1145 }
1146 continue;
1147 }
1148 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1149 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1150 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1151 return -EINVAL;
1152 }
1153 continue;
1154 }
1155
1156 arg = dm_shift_arg(as);
1157 i++; /* Account for the argument pairs */
1158 if (!arg) {
1159 rs->ti->error = "Wrong number of raid parameters given";
1160 return -EINVAL;
1161 }
1162
1163 /*
1164 * Parameters that take a string value are checked here.
1165 */
1166 /* "raid10_format {near|offset|far} */
1167 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1168 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1169 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1170 return -EINVAL;
1171 }
1172 if (!rt_is_raid10(rt)) {
1173 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1174 return -EINVAL;
1175 }
1176 raid10_format = raid10_name_to_format(arg);
1177 if (raid10_format < 0) {
1178 rs->ti->error = "Invalid 'raid10_format' value given";
1179 return raid10_format;
1180 }
1181 continue;
1182 }
1183
1184 /* "journal_dev dev" */
1185 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) {
1186 int r;
1187 struct md_rdev *jdev;
1188
1189 if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1190 rs->ti->error = "Only one raid4/5/6 set journaling device allowed";
1191 return -EINVAL;
1192 }
1193 if (!rt_is_raid456(rt)) {
1194 rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type";
1195 return -EINVAL;
1196 }
1197 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
1198 &rs->journal_dev.dev);
1199 if (r) {
1200 rs->ti->error = "raid4/5/6 journal device lookup failure";
1201 return r;
1202 }
1203 jdev = &rs->journal_dev.rdev;
1204 md_rdev_init(jdev);
1205 jdev->mddev = &rs->md;
1206 jdev->bdev = rs->journal_dev.dev->bdev;
1207 jdev->sectors = to_sector(i_size_read(jdev->bdev->bd_inode));
1208 if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) {
1209 rs->ti->error = "No space for raid4/5/6 journal";
1210 return -ENOSPC;
1211 }
1212 set_bit(Journal, &jdev->flags);
1213 continue;
1214 }
1215
1216 /*
1217 * Parameters with number values from here on.
1218 */
1219 if (kstrtoint(arg, 10, &value) < 0) {
1220 rs->ti->error = "Bad numerical argument given in raid params";
1221 return -EINVAL;
1222 }
1223
1224 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1225 /*
1226 * "rebuild" is being passed in by userspace to provide
1227 * indexes of replaced devices and to set up additional
1228 * devices on raid level takeover.
1229 */
1230 if (!__within_range(value, 0, rs->raid_disks - 1)) {
1231 rs->ti->error = "Invalid rebuild index given";
1232 return -EINVAL;
1233 }
1234
1235 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1236 rs->ti->error = "rebuild for this index already given";
1237 return -EINVAL;
1238 }
1239
1240 rd = rs->dev + value;
1241 clear_bit(In_sync, &rd->rdev.flags);
1242 clear_bit(Faulty, &rd->rdev.flags);
1243 rd->rdev.recovery_offset = 0;
1244 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1245 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1246 if (!rt_is_raid1(rt)) {
1247 rs->ti->error = "write_mostly option is only valid for RAID1";
1248 return -EINVAL;
1249 }
1250
1251 if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1252 rs->ti->error = "Invalid write_mostly index given";
1253 return -EINVAL;
1254 }
1255
1256 write_mostly++;
1257 set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1258 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1259 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1260 if (!rt_is_raid1(rt)) {
1261 rs->ti->error = "max_write_behind option is only valid for RAID1";
1262 return -EINVAL;
1263 }
1264
1265 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1266 rs->ti->error = "Only one max_write_behind argument pair allowed";
1267 return -EINVAL;
1268 }
1269
1270 /*
1271 * In device-mapper, we specify things in sectors, but
1272 * MD records this value in kB
1273 */
1274 value /= 2;
1275 if (value > COUNTER_MAX) {
1276 rs->ti->error = "Max write-behind limit out of range";
1277 return -EINVAL;
1278 }
1279
1280 rs->md.bitmap_info.max_write_behind = value;
1281 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1282 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1283 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1284 return -EINVAL;
1285 }
1286 if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
1287 rs->ti->error = "daemon sleep period out of range";
1288 return -EINVAL;
1289 }
1290 rs->md.bitmap_info.daemon_sleep = value;
1291 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1292 /* Userspace passes new data_offset after having extended the the data image LV */
1293 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1294 rs->ti->error = "Only one data_offset argument pair allowed";
1295 return -EINVAL;
1296 }
1297 /* Ensure sensible data offset */
1298 if (value < 0 ||
1299 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1300 rs->ti->error = "Bogus data_offset value";
1301 return -EINVAL;
1302 }
1303 rs->data_offset = value;
1304 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1305 /* Define the +/-# of disks to add to/remove from the given raid set */
1306 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1307 rs->ti->error = "Only one delta_disks argument pair allowed";
1308 return -EINVAL;
1309 }
1310 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1311 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1312 rs->ti->error = "Too many delta_disk requested";
1313 return -EINVAL;
1314 }
1315
1316 rs->delta_disks = value;
1317 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1318 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1319 rs->ti->error = "Only one stripe_cache argument pair allowed";
1320 return -EINVAL;
1321 }
1322
1323 if (!rt_is_raid456(rt)) {
1324 rs->ti->error = "Inappropriate argument: stripe_cache";
1325 return -EINVAL;
1326 }
1327
1328 rs->stripe_cache_entries = value;
1329 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1330 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1331 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1332 return -EINVAL;
1333 }
1334 if (value > INT_MAX) {
1335 rs->ti->error = "min_recovery_rate out of range";
1336 return -EINVAL;
1337 }
1338 rs->md.sync_speed_min = (int)value;
1339 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1340 if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1341 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1342 return -EINVAL;
1343 }
1344 if (value > INT_MAX) {
1345 rs->ti->error = "max_recovery_rate out of range";
1346 return -EINVAL;
1347 }
1348 rs->md.sync_speed_max = (int)value;
1349 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1350 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1351 rs->ti->error = "Only one region_size argument pair allowed";
1352 return -EINVAL;
1353 }
1354
1355 region_size = value;
1356 rs->requested_bitmap_chunk_sectors = value;
1357 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1358 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1359 rs->ti->error = "Only one raid10_copies argument pair allowed";
1360 return -EINVAL;
1361 }
1362
1363 if (!__within_range(value, 2, rs->md.raid_disks)) {
1364 rs->ti->error = "Bad value for 'raid10_copies'";
1365 return -EINVAL;
1366 }
1367
1368 raid10_copies = value;
1369 } else {
1370 DMERR("Unable to parse RAID parameter: %s", key);
1371 rs->ti->error = "Unable to parse RAID parameter";
1372 return -EINVAL;
1373 }
1374 }
1375
1376 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1377 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1378 rs->ti->error = "sync and nosync are mutually exclusive";
1379 return -EINVAL;
1380 }
1381
1382 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1383 (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1384 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1385 rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1386 return -EINVAL;
1387 }
1388
1389 if (write_mostly >= rs->md.raid_disks) {
1390 rs->ti->error = "Can't set all raid1 devices to write_mostly";
1391 return -EINVAL;
1392 }
1393
1394 if (validate_region_size(rs, region_size))
1395 return -EINVAL;
1396
1397 if (rs->md.chunk_sectors)
1398 max_io_len = rs->md.chunk_sectors;
1399 else
1400 max_io_len = region_size;
1401
1402 if (dm_set_target_max_io_len(rs->ti, max_io_len))
1403 return -EINVAL;
1404
1405 if (rt_is_raid10(rt)) {
1406 if (raid10_copies > rs->md.raid_disks) {
1407 rs->ti->error = "Not enough devices to satisfy specification";
1408 return -EINVAL;
1409 }
1410
1411 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1412 if (rs->md.new_layout < 0) {
1413 rs->ti->error = "Error getting raid10 format";
1414 return rs->md.new_layout;
1415 }
1416
1417 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1418 if (!rt) {
1419 rs->ti->error = "Failed to recognize new raid10 layout";
1420 return -EINVAL;
1421 }
1422
1423 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1424 rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1425 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1426 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1427 return -EINVAL;
1428 }
1429 }
1430
1431 rs->raid10_copies = raid10_copies;
1432
1433 /* Assume there are no metadata devices until the drives are parsed */
1434 rs->md.persistent = 0;
1435 rs->md.external = 1;
1436
1437 /* Check, if any invalid ctr arguments have been passed in for the raid level */
1438 return rs_check_for_valid_flags(rs);
1439 }
1440
1441 /* Set raid4/5/6 cache size */
1442 static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1443 {
1444 int r;
1445 struct r5conf *conf;
1446 struct mddev *mddev = &rs->md;
1447 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1448 uint32_t nr_stripes = rs->stripe_cache_entries;
1449
1450 if (!rt_is_raid456(rs->raid_type)) {
1451 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1452 return -EINVAL;
1453 }
1454
1455 if (nr_stripes < min_stripes) {
1456 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1457 nr_stripes, min_stripes);
1458 nr_stripes = min_stripes;
1459 }
1460
1461 conf = mddev->private;
1462 if (!conf) {
1463 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1464 return -EINVAL;
1465 }
1466
1467 /* Try setting number of stripes in raid456 stripe cache */
1468 if (conf->min_nr_stripes != nr_stripes) {
1469 r = raid5_set_cache_size(mddev, nr_stripes);
1470 if (r) {
1471 rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1472 return r;
1473 }
1474
1475 DMINFO("%u stripe cache entries", nr_stripes);
1476 }
1477
1478 return 0;
1479 }
1480
1481 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1482 static unsigned int mddev_data_stripes(struct raid_set *rs)
1483 {
1484 return rs->md.raid_disks - rs->raid_type->parity_devs;
1485 }
1486
1487 /* Return # of data stripes of @rs (i.e. as of ctr) */
1488 static unsigned int rs_data_stripes(struct raid_set *rs)
1489 {
1490 return rs->raid_disks - rs->raid_type->parity_devs;
1491 }
1492
1493 /*
1494 * Retrieve rdev->sectors from any valid raid device of @rs
1495 * to allow userpace to pass in arbitray "- -" device tupples.
1496 */
1497 static sector_t __rdev_sectors(struct raid_set *rs)
1498 {
1499 int i;
1500
1501 for (i = 0; i < rs->md.raid_disks; i++) {
1502 struct md_rdev *rdev = &rs->dev[i].rdev;
1503
1504 if (!test_bit(Journal, &rdev->flags) &&
1505 rdev->bdev && rdev->sectors)
1506 return rdev->sectors;
1507 }
1508
1509 BUG(); /* Constructor ensures we got some. */
1510 }
1511
1512 /* Calculate the sectors per device and per array used for @rs */
1513 static int rs_set_dev_and_array_sectors(struct raid_set *rs, bool use_mddev)
1514 {
1515 int delta_disks;
1516 unsigned int data_stripes;
1517 struct mddev *mddev = &rs->md;
1518 struct md_rdev *rdev;
1519 sector_t array_sectors = rs->ti->len, dev_sectors = rs->ti->len;
1520
1521 if (use_mddev) {
1522 delta_disks = mddev->delta_disks;
1523 data_stripes = mddev_data_stripes(rs);
1524 } else {
1525 delta_disks = rs->delta_disks;
1526 data_stripes = rs_data_stripes(rs);
1527 }
1528
1529 /* Special raid1 case w/o delta_disks support (yet) */
1530 if (rt_is_raid1(rs->raid_type))
1531 ;
1532 else if (rt_is_raid10(rs->raid_type)) {
1533 if (rs->raid10_copies < 2 ||
1534 delta_disks < 0) {
1535 rs->ti->error = "Bogus raid10 data copies or delta disks";
1536 return -EINVAL;
1537 }
1538
1539 dev_sectors *= rs->raid10_copies;
1540 if (sector_div(dev_sectors, data_stripes))
1541 goto bad;
1542
1543 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1544 if (sector_div(array_sectors, rs->raid10_copies))
1545 goto bad;
1546
1547 } else if (sector_div(dev_sectors, data_stripes))
1548 goto bad;
1549
1550 else
1551 /* Striped layouts */
1552 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1553
1554 rdev_for_each(rdev, mddev)
1555 if (!test_bit(Journal, &rdev->flags))
1556 rdev->sectors = dev_sectors;
1557
1558 mddev->array_sectors = array_sectors;
1559 mddev->dev_sectors = dev_sectors;
1560
1561 return 0;
1562 bad:
1563 rs->ti->error = "Target length not divisible by number of data devices";
1564 return -EINVAL;
1565 }
1566
1567 /* Setup recovery on @rs */
1568 static void __rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1569 {
1570 /* raid0 does not recover */
1571 if (rs_is_raid0(rs))
1572 rs->md.recovery_cp = MaxSector;
1573 /*
1574 * A raid6 set has to be recovered either
1575 * completely or for the grown part to
1576 * ensure proper parity and Q-Syndrome
1577 */
1578 else if (rs_is_raid6(rs))
1579 rs->md.recovery_cp = dev_sectors;
1580 /*
1581 * Other raid set types may skip recovery
1582 * depending on the 'nosync' flag.
1583 */
1584 else
1585 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1586 ? MaxSector : dev_sectors;
1587 }
1588
1589 /* Setup recovery on @rs based on raid type, device size and 'nosync' flag */
1590 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1591 {
1592 if (!dev_sectors)
1593 /* New raid set or 'sync' flag provided */
1594 __rs_setup_recovery(rs, 0);
1595 else if (dev_sectors == MaxSector)
1596 /* Prevent recovery */
1597 __rs_setup_recovery(rs, MaxSector);
1598 else if (__rdev_sectors(rs) < dev_sectors)
1599 /* Grown raid set */
1600 __rs_setup_recovery(rs, __rdev_sectors(rs));
1601 else
1602 __rs_setup_recovery(rs, MaxSector);
1603 }
1604
1605 static void do_table_event(struct work_struct *ws)
1606 {
1607 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1608
1609 smp_rmb(); /* Make sure we access most actual mddev properties */
1610 if (!rs_is_reshaping(rs))
1611 rs_set_capacity(rs);
1612 dm_table_event(rs->ti->table);
1613 }
1614
1615 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
1616 {
1617 struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
1618
1619 return mddev_congested(&rs->md, bits);
1620 }
1621
1622 /*
1623 * Make sure a valid takover (level switch) is being requested on @rs
1624 *
1625 * Conversions of raid sets from one MD personality to another
1626 * have to conform to restrictions which are enforced here.
1627 */
1628 static int rs_check_takeover(struct raid_set *rs)
1629 {
1630 struct mddev *mddev = &rs->md;
1631 unsigned int near_copies;
1632
1633 if (rs->md.degraded) {
1634 rs->ti->error = "Can't takeover degraded raid set";
1635 return -EPERM;
1636 }
1637
1638 if (rs_is_reshaping(rs)) {
1639 rs->ti->error = "Can't takeover reshaping raid set";
1640 return -EPERM;
1641 }
1642
1643 switch (mddev->level) {
1644 case 0:
1645 /* raid0 -> raid1/5 with one disk */
1646 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1647 mddev->raid_disks == 1)
1648 return 0;
1649
1650 /* raid0 -> raid10 */
1651 if (mddev->new_level == 10 &&
1652 !(rs->raid_disks % mddev->raid_disks))
1653 return 0;
1654
1655 /* raid0 with multiple disks -> raid4/5/6 */
1656 if (__within_range(mddev->new_level, 4, 6) &&
1657 mddev->new_layout == ALGORITHM_PARITY_N &&
1658 mddev->raid_disks > 1)
1659 return 0;
1660
1661 break;
1662
1663 case 10:
1664 /* Can't takeover raid10_offset! */
1665 if (__is_raid10_offset(mddev->layout))
1666 break;
1667
1668 near_copies = __raid10_near_copies(mddev->layout);
1669
1670 /* raid10* -> raid0 */
1671 if (mddev->new_level == 0) {
1672 /* Can takeover raid10_near with raid disks divisable by data copies! */
1673 if (near_copies > 1 &&
1674 !(mddev->raid_disks % near_copies)) {
1675 mddev->raid_disks /= near_copies;
1676 mddev->delta_disks = mddev->raid_disks;
1677 return 0;
1678 }
1679
1680 /* Can takeover raid10_far */
1681 if (near_copies == 1 &&
1682 __raid10_far_copies(mddev->layout) > 1)
1683 return 0;
1684
1685 break;
1686 }
1687
1688 /* raid10_{near,far} -> raid1 */
1689 if (mddev->new_level == 1 &&
1690 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1691 return 0;
1692
1693 /* raid10_{near,far} with 2 disks -> raid4/5 */
1694 if (__within_range(mddev->new_level, 4, 5) &&
1695 mddev->raid_disks == 2)
1696 return 0;
1697 break;
1698
1699 case 1:
1700 /* raid1 with 2 disks -> raid4/5 */
1701 if (__within_range(mddev->new_level, 4, 5) &&
1702 mddev->raid_disks == 2) {
1703 mddev->degraded = 1;
1704 return 0;
1705 }
1706
1707 /* raid1 -> raid0 */
1708 if (mddev->new_level == 0 &&
1709 mddev->raid_disks == 1)
1710 return 0;
1711
1712 /* raid1 -> raid10 */
1713 if (mddev->new_level == 10)
1714 return 0;
1715 break;
1716
1717 case 4:
1718 /* raid4 -> raid0 */
1719 if (mddev->new_level == 0)
1720 return 0;
1721
1722 /* raid4 -> raid1/5 with 2 disks */
1723 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1724 mddev->raid_disks == 2)
1725 return 0;
1726
1727 /* raid4 -> raid5/6 with parity N */
1728 if (__within_range(mddev->new_level, 5, 6) &&
1729 mddev->layout == ALGORITHM_PARITY_N)
1730 return 0;
1731 break;
1732
1733 case 5:
1734 /* raid5 with parity N -> raid0 */
1735 if (mddev->new_level == 0 &&
1736 mddev->layout == ALGORITHM_PARITY_N)
1737 return 0;
1738
1739 /* raid5 with parity N -> raid4 */
1740 if (mddev->new_level == 4 &&
1741 mddev->layout == ALGORITHM_PARITY_N)
1742 return 0;
1743
1744 /* raid5 with 2 disks -> raid1/4/10 */
1745 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1746 mddev->raid_disks == 2)
1747 return 0;
1748
1749 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1750 if (mddev->new_level == 6 &&
1751 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1752 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1753 return 0;
1754 break;
1755
1756 case 6:
1757 /* raid6 with parity N -> raid0 */
1758 if (mddev->new_level == 0 &&
1759 mddev->layout == ALGORITHM_PARITY_N)
1760 return 0;
1761
1762 /* raid6 with parity N -> raid4 */
1763 if (mddev->new_level == 4 &&
1764 mddev->layout == ALGORITHM_PARITY_N)
1765 return 0;
1766
1767 /* raid6_*_n with Q-Syndrome N -> raid5_* */
1768 if (mddev->new_level == 5 &&
1769 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1770 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1771 return 0;
1772
1773 default:
1774 break;
1775 }
1776
1777 rs->ti->error = "takeover not possible";
1778 return -EINVAL;
1779 }
1780
1781 /* True if @rs requested to be taken over */
1782 static bool rs_takeover_requested(struct raid_set *rs)
1783 {
1784 return rs->md.new_level != rs->md.level;
1785 }
1786
1787 /* True if @rs is requested to reshape by ctr */
1788 static bool rs_reshape_requested(struct raid_set *rs)
1789 {
1790 bool change;
1791 struct mddev *mddev = &rs->md;
1792
1793 if (rs_takeover_requested(rs))
1794 return false;
1795
1796 if (!mddev->level)
1797 return false;
1798
1799 change = mddev->new_layout != mddev->layout ||
1800 mddev->new_chunk_sectors != mddev->chunk_sectors ||
1801 rs->delta_disks;
1802
1803 /* Historical case to support raid1 reshape without delta disks */
1804 if (mddev->level == 1) {
1805 if (rs->delta_disks)
1806 return !!rs->delta_disks;
1807
1808 return !change &&
1809 mddev->raid_disks != rs->raid_disks;
1810 }
1811
1812 if (mddev->level == 10)
1813 return change &&
1814 !__is_raid10_far(mddev->new_layout) &&
1815 rs->delta_disks >= 0;
1816
1817 return change;
1818 }
1819
1820 /* Features */
1821 #define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */
1822
1823 /* State flags for sb->flags */
1824 #define SB_FLAG_RESHAPE_ACTIVE 0x1
1825 #define SB_FLAG_RESHAPE_BACKWARDS 0x2
1826
1827 /*
1828 * This structure is never routinely used by userspace, unlike md superblocks.
1829 * Devices with this superblock should only ever be accessed via device-mapper.
1830 */
1831 #define DM_RAID_MAGIC 0x64526D44
1832 struct dm_raid_superblock {
1833 __le32 magic; /* "DmRd" */
1834 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1835
1836 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */
1837 __le32 array_position; /* The position of this drive in the raid set */
1838
1839 __le64 events; /* Incremented by md when superblock updated */
1840 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */
1841 /* indicate failures (see extension below) */
1842
1843 /*
1844 * This offset tracks the progress of the repair or replacement of
1845 * an individual drive.
1846 */
1847 __le64 disk_recovery_offset;
1848
1849 /*
1850 * This offset tracks the progress of the initial raid set
1851 * synchronisation/parity calculation.
1852 */
1853 __le64 array_resync_offset;
1854
1855 /*
1856 * raid characteristics
1857 */
1858 __le32 level;
1859 __le32 layout;
1860 __le32 stripe_sectors;
1861
1862 /********************************************************************
1863 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1864 *
1865 * FEATURE_FLAG_SUPPORTS_V190 in the features member indicates that those exist
1866 */
1867
1868 __le32 flags; /* Flags defining array states for reshaping */
1869
1870 /*
1871 * This offset tracks the progress of a raid
1872 * set reshape in order to be able to restart it
1873 */
1874 __le64 reshape_position;
1875
1876 /*
1877 * These define the properties of the array in case of an interrupted reshape
1878 */
1879 __le32 new_level;
1880 __le32 new_layout;
1881 __le32 new_stripe_sectors;
1882 __le32 delta_disks;
1883
1884 __le64 array_sectors; /* Array size in sectors */
1885
1886 /*
1887 * Sector offsets to data on devices (reshaping).
1888 * Needed to support out of place reshaping, thus
1889 * not writing over any stripes whilst converting
1890 * them from old to new layout
1891 */
1892 __le64 data_offset;
1893 __le64 new_data_offset;
1894
1895 __le64 sectors; /* Used device size in sectors */
1896
1897 /*
1898 * Additonal Bit field of devices indicating failures to support
1899 * up to 256 devices with the 1.9.0 on-disk metadata format
1900 */
1901 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1902
1903 __le32 incompat_features; /* Used to indicate any incompatible features */
1904
1905 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
1906 } __packed;
1907
1908 /*
1909 * Check for reshape constraints on raid set @rs:
1910 *
1911 * - reshape function non-existent
1912 * - degraded set
1913 * - ongoing recovery
1914 * - ongoing reshape
1915 *
1916 * Returns 0 if none or -EPERM if given constraint
1917 * and error message reference in @errmsg
1918 */
1919 static int rs_check_reshape(struct raid_set *rs)
1920 {
1921 struct mddev *mddev = &rs->md;
1922
1923 if (!mddev->pers || !mddev->pers->check_reshape)
1924 rs->ti->error = "Reshape not supported";
1925 else if (mddev->degraded)
1926 rs->ti->error = "Can't reshape degraded raid set";
1927 else if (rs_is_recovering(rs))
1928 rs->ti->error = "Convert request on recovering raid set prohibited";
1929 else if (rs_is_reshaping(rs))
1930 rs->ti->error = "raid set already reshaping!";
1931 else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
1932 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
1933 else
1934 return 0;
1935
1936 return -EPERM;
1937 }
1938
1939 static int read_disk_sb(struct md_rdev *rdev, int size)
1940 {
1941 BUG_ON(!rdev->sb_page);
1942
1943 if (rdev->sb_loaded)
1944 return 0;
1945
1946 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) {
1947 DMERR("Failed to read superblock of device at position %d",
1948 rdev->raid_disk);
1949 md_error(rdev->mddev, rdev);
1950 return -EINVAL;
1951 }
1952
1953 rdev->sb_loaded = 1;
1954
1955 return 0;
1956 }
1957
1958 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1959 {
1960 failed_devices[0] = le64_to_cpu(sb->failed_devices);
1961 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
1962
1963 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
1964 int i = ARRAY_SIZE(sb->extended_failed_devices);
1965
1966 while (i--)
1967 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
1968 }
1969 }
1970
1971 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1972 {
1973 int i = ARRAY_SIZE(sb->extended_failed_devices);
1974
1975 sb->failed_devices = cpu_to_le64(failed_devices[0]);
1976 while (i--)
1977 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
1978 }
1979
1980 /*
1981 * Synchronize the superblock members with the raid set properties
1982 *
1983 * All superblock data is little endian.
1984 */
1985 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
1986 {
1987 bool update_failed_devices = false;
1988 unsigned int i;
1989 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
1990 struct dm_raid_superblock *sb;
1991 struct raid_set *rs = container_of(mddev, struct raid_set, md);
1992
1993 /* No metadata device, no superblock */
1994 if (!rdev->meta_bdev)
1995 return;
1996
1997 BUG_ON(!rdev->sb_page);
1998
1999 sb = page_address(rdev->sb_page);
2000
2001 sb_retrieve_failed_devices(sb, failed_devices);
2002
2003 for (i = 0; i < rs->raid_disks; i++)
2004 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
2005 update_failed_devices = true;
2006 set_bit(i, (void *) failed_devices);
2007 }
2008
2009 if (update_failed_devices)
2010 sb_update_failed_devices(sb, failed_devices);
2011
2012 sb->magic = cpu_to_le32(DM_RAID_MAGIC);
2013 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2014
2015 sb->num_devices = cpu_to_le32(mddev->raid_disks);
2016 sb->array_position = cpu_to_le32(rdev->raid_disk);
2017
2018 sb->events = cpu_to_le64(mddev->events);
2019
2020 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
2021 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
2022
2023 sb->level = cpu_to_le32(mddev->level);
2024 sb->layout = cpu_to_le32(mddev->layout);
2025 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
2026
2027 sb->new_level = cpu_to_le32(mddev->new_level);
2028 sb->new_layout = cpu_to_le32(mddev->new_layout);
2029 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
2030
2031 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2032
2033 smp_rmb(); /* Make sure we access most recent reshape position */
2034 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2035 if (le64_to_cpu(sb->reshape_position) != MaxSector) {
2036 /* Flag ongoing reshape */
2037 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
2038
2039 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
2040 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
2041 } else {
2042 /* Clear reshape flags */
2043 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
2044 }
2045
2046 sb->array_sectors = cpu_to_le64(mddev->array_sectors);
2047 sb->data_offset = cpu_to_le64(rdev->data_offset);
2048 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
2049 sb->sectors = cpu_to_le64(rdev->sectors);
2050 sb->incompat_features = cpu_to_le32(0);
2051
2052 /* Zero out the rest of the payload after the size of the superblock */
2053 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
2054 }
2055
2056 /*
2057 * super_load
2058 *
2059 * This function creates a superblock if one is not found on the device
2060 * and will decide which superblock to use if there's a choice.
2061 *
2062 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
2063 */
2064 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
2065 {
2066 int r;
2067 struct dm_raid_superblock *sb;
2068 struct dm_raid_superblock *refsb;
2069 uint64_t events_sb, events_refsb;
2070
2071 rdev->sb_start = 0;
2072 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
2073 if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
2074 DMERR("superblock size of a logical block is no longer valid");
2075 return -EINVAL;
2076 }
2077
2078 r = read_disk_sb(rdev, rdev->sb_size);
2079 if (r)
2080 return r;
2081
2082 sb = page_address(rdev->sb_page);
2083
2084 /*
2085 * Two cases that we want to write new superblocks and rebuild:
2086 * 1) New device (no matching magic number)
2087 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2088 */
2089 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2090 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2091 super_sync(rdev->mddev, rdev);
2092
2093 set_bit(FirstUse, &rdev->flags);
2094 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2095
2096 /* Force writing of superblocks to disk */
2097 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags);
2098
2099 /* Any superblock is better than none, choose that if given */
2100 return refdev ? 0 : 1;
2101 }
2102
2103 if (!refdev)
2104 return 1;
2105
2106 events_sb = le64_to_cpu(sb->events);
2107
2108 refsb = page_address(refdev->sb_page);
2109 events_refsb = le64_to_cpu(refsb->events);
2110
2111 return (events_sb > events_refsb) ? 1 : 0;
2112 }
2113
2114 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2115 {
2116 int role;
2117 unsigned int d;
2118 struct mddev *mddev = &rs->md;
2119 uint64_t events_sb;
2120 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2121 struct dm_raid_superblock *sb;
2122 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2123 struct md_rdev *r;
2124 struct dm_raid_superblock *sb2;
2125
2126 sb = page_address(rdev->sb_page);
2127 events_sb = le64_to_cpu(sb->events);
2128
2129 /*
2130 * Initialise to 1 if this is a new superblock.
2131 */
2132 mddev->events = events_sb ? : 1;
2133
2134 mddev->reshape_position = MaxSector;
2135
2136 mddev->raid_disks = le32_to_cpu(sb->num_devices);
2137 mddev->level = le32_to_cpu(sb->level);
2138 mddev->layout = le32_to_cpu(sb->layout);
2139 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2140
2141 /*
2142 * Reshaping is supported, e.g. reshape_position is valid
2143 * in superblock and superblock content is authoritative.
2144 */
2145 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2146 /* Superblock is authoritative wrt given raid set layout! */
2147 mddev->new_level = le32_to_cpu(sb->new_level);
2148 mddev->new_layout = le32_to_cpu(sb->new_layout);
2149 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2150 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2151 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2152
2153 /* raid was reshaping and got interrupted */
2154 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2155 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2156 DMERR("Reshape requested but raid set is still reshaping");
2157 return -EINVAL;
2158 }
2159
2160 if (mddev->delta_disks < 0 ||
2161 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2162 mddev->reshape_backwards = 1;
2163 else
2164 mddev->reshape_backwards = 0;
2165
2166 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2167 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2168 }
2169
2170 } else {
2171 /*
2172 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2173 */
2174 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout);
2175 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2176
2177 if (rs_takeover_requested(rs)) {
2178 if (rt_cur && rt_new)
2179 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)",
2180 rt_cur->name, rt_new->name);
2181 else
2182 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)");
2183 return -EINVAL;
2184 } else if (rs_reshape_requested(rs)) {
2185 DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)");
2186 if (mddev->layout != mddev->new_layout) {
2187 if (rt_cur && rt_new)
2188 DMERR(" current layout %s vs new layout %s",
2189 rt_cur->name, rt_new->name);
2190 else
2191 DMERR(" current layout 0x%X vs new layout 0x%X",
2192 le32_to_cpu(sb->layout), mddev->new_layout);
2193 }
2194 if (mddev->chunk_sectors != mddev->new_chunk_sectors)
2195 DMERR(" current stripe sectors %u vs new stripe sectors %u",
2196 mddev->chunk_sectors, mddev->new_chunk_sectors);
2197 if (rs->delta_disks)
2198 DMERR(" current %u disks vs new %u disks",
2199 mddev->raid_disks, mddev->raid_disks + rs->delta_disks);
2200 if (rs_is_raid10(rs)) {
2201 DMERR(" Old layout: %s w/ %u copies",
2202 raid10_md_layout_to_format(mddev->layout),
2203 raid10_md_layout_to_copies(mddev->layout));
2204 DMERR(" New layout: %s w/ %u copies",
2205 raid10_md_layout_to_format(mddev->new_layout),
2206 raid10_md_layout_to_copies(mddev->new_layout));
2207 }
2208 return -EINVAL;
2209 }
2210
2211 DMINFO("Discovered old metadata format; upgrading to extended metadata format");
2212 }
2213
2214 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2215 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2216
2217 /*
2218 * During load, we set FirstUse if a new superblock was written.
2219 * There are two reasons we might not have a superblock:
2220 * 1) The raid set is brand new - in which case, all of the
2221 * devices must have their In_sync bit set. Also,
2222 * recovery_cp must be 0, unless forced.
2223 * 2) This is a new device being added to an old raid set
2224 * and the new device needs to be rebuilt - in which
2225 * case the In_sync bit will /not/ be set and
2226 * recovery_cp must be MaxSector.
2227 * 3) This is/are a new device(s) being added to an old
2228 * raid set during takeover to a higher raid level
2229 * to provide capacity for redundancy or during reshape
2230 * to add capacity to grow the raid set.
2231 */
2232 d = 0;
2233 rdev_for_each(r, mddev) {
2234 if (test_bit(Journal, &rdev->flags))
2235 continue;
2236
2237 if (test_bit(FirstUse, &r->flags))
2238 new_devs++;
2239
2240 if (!test_bit(In_sync, &r->flags)) {
2241 DMINFO("Device %d specified for rebuild; clearing superblock",
2242 r->raid_disk);
2243 rebuilds++;
2244
2245 if (test_bit(FirstUse, &r->flags))
2246 rebuild_and_new++;
2247 }
2248
2249 d++;
2250 }
2251
2252 if (new_devs == rs->raid_disks || !rebuilds) {
2253 /* Replace a broken device */
2254 if (new_devs == 1 && !rs->delta_disks)
2255 ;
2256 if (new_devs == rs->raid_disks) {
2257 DMINFO("Superblocks created for new raid set");
2258 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2259 } else if (new_devs != rebuilds &&
2260 new_devs != rs->delta_disks) {
2261 DMERR("New device injected into existing raid set without "
2262 "'delta_disks' or 'rebuild' parameter specified");
2263 return -EINVAL;
2264 }
2265 } else if (new_devs && new_devs != rebuilds) {
2266 DMERR("%u 'rebuild' devices cannot be injected into"
2267 " a raid set with %u other first-time devices",
2268 rebuilds, new_devs);
2269 return -EINVAL;
2270 } else if (rebuilds) {
2271 if (rebuild_and_new && rebuilds != rebuild_and_new) {
2272 DMERR("new device%s provided without 'rebuild'",
2273 new_devs > 1 ? "s" : "");
2274 return -EINVAL;
2275 } else if (rs_is_recovering(rs)) {
2276 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2277 (unsigned long long) mddev->recovery_cp);
2278 return -EINVAL;
2279 } else if (rs_is_reshaping(rs)) {
2280 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2281 (unsigned long long) mddev->reshape_position);
2282 return -EINVAL;
2283 }
2284 }
2285
2286 /*
2287 * Now we set the Faulty bit for those devices that are
2288 * recorded in the superblock as failed.
2289 */
2290 sb_retrieve_failed_devices(sb, failed_devices);
2291 rdev_for_each(r, mddev) {
2292 if (test_bit(Journal, &rdev->flags) ||
2293 !r->sb_page)
2294 continue;
2295 sb2 = page_address(r->sb_page);
2296 sb2->failed_devices = 0;
2297 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2298
2299 /*
2300 * Check for any device re-ordering.
2301 */
2302 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2303 role = le32_to_cpu(sb2->array_position);
2304 if (role < 0)
2305 continue;
2306
2307 if (role != r->raid_disk) {
2308 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) {
2309 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2310 rs->raid_disks % rs->raid10_copies) {
2311 rs->ti->error =
2312 "Cannot change raid10 near set to odd # of devices!";
2313 return -EINVAL;
2314 }
2315
2316 sb2->array_position = cpu_to_le32(r->raid_disk);
2317
2318 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2319 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2320 !rt_is_raid1(rs->raid_type)) {
2321 rs->ti->error = "Cannot change device positions in raid set";
2322 return -EINVAL;
2323 }
2324
2325 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2326 }
2327
2328 /*
2329 * Partial recovery is performed on
2330 * returning failed devices.
2331 */
2332 if (test_bit(role, (void *) failed_devices))
2333 set_bit(Faulty, &r->flags);
2334 }
2335 }
2336
2337 return 0;
2338 }
2339
2340 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2341 {
2342 struct mddev *mddev = &rs->md;
2343 struct dm_raid_superblock *sb;
2344
2345 if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0)
2346 return 0;
2347
2348 sb = page_address(rdev->sb_page);
2349
2350 /*
2351 * If mddev->events is not set, we know we have not yet initialized
2352 * the array.
2353 */
2354 if (!mddev->events && super_init_validation(rs, rdev))
2355 return -EINVAL;
2356
2357 if (le32_to_cpu(sb->compat_features) &&
2358 le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2359 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2360 return -EINVAL;
2361 }
2362
2363 if (sb->incompat_features) {
2364 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2365 return -EINVAL;
2366 }
2367
2368 /* Enable bitmap creation for RAID levels != 0 */
2369 mddev->bitmap_info.offset = rt_is_raid0(rs->raid_type) ? 0 : to_sector(4096);
2370 rdev->mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2371
2372 if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2373 /* Retrieve device size stored in superblock to be prepared for shrink */
2374 rdev->sectors = le64_to_cpu(sb->sectors);
2375 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2376 if (rdev->recovery_offset == MaxSector)
2377 set_bit(In_sync, &rdev->flags);
2378 /*
2379 * If no reshape in progress -> we're recovering single
2380 * disk(s) and have to set the device(s) to out-of-sync
2381 */
2382 else if (!rs_is_reshaping(rs))
2383 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2384 }
2385
2386 /*
2387 * If a device comes back, set it as not In_sync and no longer faulty.
2388 */
2389 if (test_and_clear_bit(Faulty, &rdev->flags)) {
2390 rdev->recovery_offset = 0;
2391 clear_bit(In_sync, &rdev->flags);
2392 rdev->saved_raid_disk = rdev->raid_disk;
2393 }
2394
2395 /* Reshape support -> restore repective data offsets */
2396 rdev->data_offset = le64_to_cpu(sb->data_offset);
2397 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2398
2399 return 0;
2400 }
2401
2402 /*
2403 * Analyse superblocks and select the freshest.
2404 */
2405 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2406 {
2407 int r;
2408 struct md_rdev *rdev, *freshest;
2409 struct mddev *mddev = &rs->md;
2410
2411 freshest = NULL;
2412 rdev_for_each(rdev, mddev) {
2413 if (test_bit(Journal, &rdev->flags))
2414 continue;
2415
2416 /*
2417 * Skipping super_load due to CTR_FLAG_SYNC will cause
2418 * the array to undergo initialization again as
2419 * though it were new. This is the intended effect
2420 * of the "sync" directive.
2421 *
2422 * With reshaping capability added, we must ensure that
2423 * that the "sync" directive is disallowed during the reshape.
2424 */
2425 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2426 continue;
2427
2428 if (!rdev->meta_bdev)
2429 continue;
2430
2431 r = super_load(rdev, freshest);
2432
2433 switch (r) {
2434 case 1:
2435 freshest = rdev;
2436 break;
2437 case 0:
2438 break;
2439 default:
2440 /* This is a failure to read the superblock from the metadata device. */
2441 /*
2442 * We have to keep any raid0 data/metadata device pairs or
2443 * the MD raid0 personality will fail to start the array.
2444 */
2445 if (rs_is_raid0(rs))
2446 continue;
2447
2448 /*
2449 * We keep the dm_devs to be able to emit the device tuple
2450 * properly on the table line in raid_status() (rather than
2451 * mistakenly acting as if '- -' got passed into the constructor).
2452 *
2453 * The rdev has to stay on the same_set list to allow for
2454 * the attempt to restore faulty devices on second resume.
2455 */
2456 set_bit(Faulty, &rdev->flags);
2457 rdev->raid_disk = rdev->saved_raid_disk = -1;
2458 break;
2459 }
2460 }
2461
2462 if (!freshest)
2463 return 0;
2464
2465 if (validate_raid_redundancy(rs)) {
2466 rs->ti->error = "Insufficient redundancy to activate array";
2467 return -EINVAL;
2468 }
2469
2470 /*
2471 * Validation of the freshest device provides the source of
2472 * validation for the remaining devices.
2473 */
2474 rs->ti->error = "Unable to assemble array: Invalid superblocks";
2475 if (super_validate(rs, freshest))
2476 return -EINVAL;
2477
2478 rdev_for_each(rdev, mddev)
2479 if (!test_bit(Journal, &rdev->flags) &&
2480 rdev != freshest &&
2481 super_validate(rs, rdev))
2482 return -EINVAL;
2483 return 0;
2484 }
2485
2486 /*
2487 * Adjust data_offset and new_data_offset on all disk members of @rs
2488 * for out of place reshaping if requested by contructor
2489 *
2490 * We need free space at the beginning of each raid disk for forward
2491 * and at the end for backward reshapes which userspace has to provide
2492 * via remapping/reordering of space.
2493 */
2494 static int rs_adjust_data_offsets(struct raid_set *rs)
2495 {
2496 sector_t data_offset = 0, new_data_offset = 0;
2497 struct md_rdev *rdev;
2498
2499 /* Constructor did not request data offset change */
2500 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2501 if (!rs_is_reshapable(rs))
2502 goto out;
2503
2504 return 0;
2505 }
2506
2507 /* HM FIXME: get InSync raid_dev? */
2508 rdev = &rs->dev[0].rdev;
2509
2510 if (rs->delta_disks < 0) {
2511 /*
2512 * Removing disks (reshaping backwards):
2513 *
2514 * - before reshape: data is at offset 0 and free space
2515 * is at end of each component LV
2516 *
2517 * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2518 */
2519 data_offset = 0;
2520 new_data_offset = rs->data_offset;
2521
2522 } else if (rs->delta_disks > 0) {
2523 /*
2524 * Adding disks (reshaping forwards):
2525 *
2526 * - before reshape: data is at offset rs->data_offset != 0 and
2527 * free space is at begin of each component LV
2528 *
2529 * - after reshape: data is at offset 0 on each component LV
2530 */
2531 data_offset = rs->data_offset;
2532 new_data_offset = 0;
2533
2534 } else {
2535 /*
2536 * User space passes in 0 for data offset after having removed reshape space
2537 *
2538 * - or - (data offset != 0)
2539 *
2540 * Changing RAID layout or chunk size -> toggle offsets
2541 *
2542 * - before reshape: data is at offset rs->data_offset 0 and
2543 * free space is at end of each component LV
2544 * -or-
2545 * data is at offset rs->data_offset != 0 and
2546 * free space is at begin of each component LV
2547 *
2548 * - after reshape: data is at offset 0 if it was at offset != 0
2549 * or at offset != 0 if it was at offset 0
2550 * on each component LV
2551 *
2552 */
2553 data_offset = rs->data_offset ? rdev->data_offset : 0;
2554 new_data_offset = data_offset ? 0 : rs->data_offset;
2555 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2556 }
2557
2558 /*
2559 * Make sure we got a minimum amount of free sectors per device
2560 */
2561 if (rs->data_offset &&
2562 to_sector(i_size_read(rdev->bdev->bd_inode)) - rdev->sectors < MIN_FREE_RESHAPE_SPACE) {
2563 rs->ti->error = data_offset ? "No space for forward reshape" :
2564 "No space for backward reshape";
2565 return -ENOSPC;
2566 }
2567 out:
2568 /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */
2569 rdev_for_each(rdev, &rs->md) {
2570 if (!test_bit(Journal, &rdev->flags)) {
2571 rdev->data_offset = data_offset;
2572 rdev->new_data_offset = new_data_offset;
2573 }
2574 }
2575
2576 return 0;
2577 }
2578
2579 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2580 static void __reorder_raid_disk_indexes(struct raid_set *rs)
2581 {
2582 int i = 0;
2583 struct md_rdev *rdev;
2584
2585 rdev_for_each(rdev, &rs->md) {
2586 if (!test_bit(Journal, &rdev->flags)) {
2587 rdev->raid_disk = i++;
2588 rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2589 }
2590 }
2591 }
2592
2593 /*
2594 * Setup @rs for takeover by a different raid level
2595 */
2596 static int rs_setup_takeover(struct raid_set *rs)
2597 {
2598 struct mddev *mddev = &rs->md;
2599 struct md_rdev *rdev;
2600 unsigned int d = mddev->raid_disks = rs->raid_disks;
2601 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2602
2603 if (rt_is_raid10(rs->raid_type)) {
2604 if (mddev->level == 0) {
2605 /* Userpace reordered disks -> adjust raid_disk indexes */
2606 __reorder_raid_disk_indexes(rs);
2607
2608 /* raid0 -> raid10_far layout */
2609 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2610 rs->raid10_copies);
2611 } else if (mddev->level == 1)
2612 /* raid1 -> raid10_near layout */
2613 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2614 rs->raid_disks);
2615 else
2616 return -EINVAL;
2617
2618 }
2619
2620 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2621 mddev->recovery_cp = MaxSector;
2622
2623 while (d--) {
2624 rdev = &rs->dev[d].rdev;
2625
2626 if (test_bit(d, (void *) rs->rebuild_disks)) {
2627 clear_bit(In_sync, &rdev->flags);
2628 clear_bit(Faulty, &rdev->flags);
2629 mddev->recovery_cp = rdev->recovery_offset = 0;
2630 /* Bitmap has to be created when we do an "up" takeover */
2631 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2632 }
2633
2634 rdev->new_data_offset = new_data_offset;
2635 }
2636
2637 return 0;
2638 }
2639
2640 /* Prepare @rs for reshape */
2641 static int rs_prepare_reshape(struct raid_set *rs)
2642 {
2643 bool reshape;
2644 struct mddev *mddev = &rs->md;
2645
2646 if (rs_is_raid10(rs)) {
2647 if (rs->raid_disks != mddev->raid_disks &&
2648 __is_raid10_near(mddev->layout) &&
2649 rs->raid10_copies &&
2650 rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2651 /*
2652 * raid disk have to be multiple of data copies to allow this conversion,
2653 *
2654 * This is actually not a reshape it is a
2655 * rebuild of any additional mirrors per group
2656 */
2657 if (rs->raid_disks % rs->raid10_copies) {
2658 rs->ti->error = "Can't reshape raid10 mirror groups";
2659 return -EINVAL;
2660 }
2661
2662 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2663 __reorder_raid_disk_indexes(rs);
2664 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2665 rs->raid10_copies);
2666 mddev->new_layout = mddev->layout;
2667 reshape = false;
2668 } else
2669 reshape = true;
2670
2671 } else if (rs_is_raid456(rs))
2672 reshape = true;
2673
2674 else if (rs_is_raid1(rs)) {
2675 if (rs->delta_disks) {
2676 /* Process raid1 via delta_disks */
2677 mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2678 reshape = true;
2679 } else {
2680 /* Process raid1 without delta_disks */
2681 mddev->raid_disks = rs->raid_disks;
2682 reshape = false;
2683 }
2684 } else {
2685 rs->ti->error = "Called with bogus raid type";
2686 return -EINVAL;
2687 }
2688
2689 if (reshape) {
2690 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2691 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2692 } else if (mddev->raid_disks < rs->raid_disks)
2693 /* Create new superblocks and bitmaps, if any new disks */
2694 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2695
2696 return 0;
2697 }
2698
2699 /*
2700 *
2701 * - change raid layout
2702 * - change chunk size
2703 * - add disks
2704 * - remove disks
2705 */
2706 static int rs_setup_reshape(struct raid_set *rs)
2707 {
2708 int r = 0;
2709 unsigned int cur_raid_devs, d;
2710 struct mddev *mddev = &rs->md;
2711 struct md_rdev *rdev;
2712
2713 mddev->delta_disks = rs->delta_disks;
2714 cur_raid_devs = mddev->raid_disks;
2715
2716 /* Ignore impossible layout change whilst adding/removing disks */
2717 if (mddev->delta_disks &&
2718 mddev->layout != mddev->new_layout) {
2719 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2720 mddev->new_layout = mddev->layout;
2721 }
2722
2723 /*
2724 * Adjust array size:
2725 *
2726 * - in case of adding disks, array size has
2727 * to grow after the disk adding reshape,
2728 * which'll hapen in the event handler;
2729 * reshape will happen forward, so space has to
2730 * be available at the beginning of each disk
2731 *
2732 * - in case of removing disks, array size
2733 * has to shrink before starting the reshape,
2734 * which'll happen here;
2735 * reshape will happen backward, so space has to
2736 * be available at the end of each disk
2737 *
2738 * - data_offset and new_data_offset are
2739 * adjusted for aforementioned out of place
2740 * reshaping based on userspace passing in
2741 * the "data_offset <sectors>" key/value
2742 * pair via the constructor
2743 */
2744
2745 /* Add disk(s) */
2746 if (rs->delta_disks > 0) {
2747 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2748 for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2749 rdev = &rs->dev[d].rdev;
2750 clear_bit(In_sync, &rdev->flags);
2751
2752 /*
2753 * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2754 * by md, which'll store that erroneously in the superblock on reshape
2755 */
2756 rdev->saved_raid_disk = -1;
2757 rdev->raid_disk = d;
2758
2759 rdev->sectors = mddev->dev_sectors;
2760 rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2761 }
2762
2763 mddev->reshape_backwards = 0; /* adding disks -> forward reshape */
2764
2765 /* Remove disk(s) */
2766 } else if (rs->delta_disks < 0) {
2767 r = rs_set_dev_and_array_sectors(rs, true);
2768 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2769
2770 /* Change layout and/or chunk size */
2771 } else {
2772 /*
2773 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2774 *
2775 * keeping number of disks and do layout change ->
2776 *
2777 * toggle reshape_backward depending on data_offset:
2778 *
2779 * - free space upfront -> reshape forward
2780 *
2781 * - free space at the end -> reshape backward
2782 *
2783 *
2784 * This utilizes free reshape space avoiding the need
2785 * for userspace to move (parts of) LV segments in
2786 * case of layout/chunksize change (for disk
2787 * adding/removing reshape space has to be at
2788 * the proper address (see above with delta_disks):
2789 *
2790 * add disk(s) -> begin
2791 * remove disk(s)-> end
2792 */
2793 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2794 }
2795
2796 return r;
2797 }
2798
2799 /*
2800 * Enable/disable discard support on RAID set depending on
2801 * RAID level and discard properties of underlying RAID members.
2802 */
2803 static void configure_discard_support(struct raid_set *rs)
2804 {
2805 int i;
2806 bool raid456;
2807 struct dm_target *ti = rs->ti;
2808
2809 /* Assume discards not supported until after checks below. */
2810 ti->discards_supported = false;
2811
2812 /* RAID level 4,5,6 require discard_zeroes_data for data integrity! */
2813 raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6);
2814
2815 for (i = 0; i < rs->raid_disks; i++) {
2816 struct request_queue *q;
2817
2818 if (!rs->dev[i].rdev.bdev)
2819 continue;
2820
2821 q = bdev_get_queue(rs->dev[i].rdev.bdev);
2822 if (!q || !blk_queue_discard(q))
2823 return;
2824
2825 if (raid456) {
2826 if (!q->limits.discard_zeroes_data)
2827 return;
2828 if (!devices_handle_discard_safely) {
2829 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2830 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2831 return;
2832 }
2833 }
2834 }
2835
2836 /* All RAID members properly support discards */
2837 ti->discards_supported = true;
2838
2839 /*
2840 * RAID1 and RAID10 personalities require bio splitting,
2841 * RAID0/4/5/6 don't and process large discard bios properly.
2842 */
2843 ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10);
2844 ti->num_discard_bios = 1;
2845 }
2846
2847 /*
2848 * Construct a RAID0/1/10/4/5/6 mapping:
2849 * Args:
2850 * <raid_type> <#raid_params> <raid_params>{0,} \
2851 * <#raid_devs> [<meta_dev1> <dev1>]{1,}
2852 *
2853 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for
2854 * details on possible <raid_params>.
2855 *
2856 * Userspace is free to initialize the metadata devices, hence the superblocks to
2857 * enforce recreation based on the passed in table parameters.
2858 *
2859 */
2860 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2861 {
2862 int r;
2863 bool resize;
2864 struct raid_type *rt;
2865 unsigned int num_raid_params, num_raid_devs;
2866 sector_t calculated_dev_sectors;
2867 struct raid_set *rs = NULL;
2868 const char *arg;
2869 struct rs_layout rs_layout;
2870 struct dm_arg_set as = { argc, argv }, as_nrd;
2871 struct dm_arg _args[] = {
2872 { 0, as.argc, "Cannot understand number of raid parameters" },
2873 { 1, 254, "Cannot understand number of raid devices parameters" }
2874 };
2875
2876 /* Must have <raid_type> */
2877 arg = dm_shift_arg(&as);
2878 if (!arg) {
2879 ti->error = "No arguments";
2880 return -EINVAL;
2881 }
2882
2883 rt = get_raid_type(arg);
2884 if (!rt) {
2885 ti->error = "Unrecognised raid_type";
2886 return -EINVAL;
2887 }
2888
2889 /* Must have <#raid_params> */
2890 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
2891 return -EINVAL;
2892
2893 /* number of raid device tupples <meta_dev data_dev> */
2894 as_nrd = as;
2895 dm_consume_args(&as_nrd, num_raid_params);
2896 _args[1].max = (as_nrd.argc - 1) / 2;
2897 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
2898 return -EINVAL;
2899
2900 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
2901 ti->error = "Invalid number of supplied raid devices";
2902 return -EINVAL;
2903 }
2904
2905 rs = raid_set_alloc(ti, rt, num_raid_devs);
2906 if (IS_ERR(rs))
2907 return PTR_ERR(rs);
2908
2909 r = parse_raid_params(rs, &as, num_raid_params);
2910 if (r)
2911 goto bad;
2912
2913 r = parse_dev_params(rs, &as);
2914 if (r)
2915 goto bad;
2916
2917 rs->md.sync_super = super_sync;
2918
2919 /*
2920 * Calculate ctr requested array and device sizes to allow
2921 * for superblock analysis needing device sizes defined.
2922 *
2923 * Any existing superblock will overwrite the array and device sizes
2924 */
2925 r = rs_set_dev_and_array_sectors(rs, false);
2926 if (r)
2927 goto bad;
2928
2929 calculated_dev_sectors = rs->md.dev_sectors;
2930
2931 /*
2932 * Backup any new raid set level, layout, ...
2933 * requested to be able to compare to superblock
2934 * members for conversion decisions.
2935 */
2936 rs_config_backup(rs, &rs_layout);
2937
2938 r = analyse_superblocks(ti, rs);
2939 if (r)
2940 goto bad;
2941
2942 resize = calculated_dev_sectors != __rdev_sectors(rs);
2943
2944 INIT_WORK(&rs->md.event_work, do_table_event);
2945 ti->private = rs;
2946 ti->num_flush_bios = 1;
2947
2948 /* Restore any requested new layout for conversion decision */
2949 rs_config_restore(rs, &rs_layout);
2950
2951 /*
2952 * Now that we have any superblock metadata available,
2953 * check for new, recovering, reshaping, to be taken over,
2954 * to be reshaped or an existing, unchanged raid set to
2955 * run in sequence.
2956 */
2957 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
2958 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
2959 if (rs_is_raid6(rs) &&
2960 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
2961 ti->error = "'nosync' not allowed for new raid6 set";
2962 r = -EINVAL;
2963 goto bad;
2964 }
2965 rs_setup_recovery(rs, 0);
2966 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2967 rs_set_new(rs);
2968 } else if (rs_is_recovering(rs)) {
2969 /* A recovering raid set may be resized */
2970 ; /* skip setup rs */
2971 } else if (rs_is_reshaping(rs)) {
2972 /* Have to reject size change request during reshape */
2973 if (resize) {
2974 ti->error = "Can't resize a reshaping raid set";
2975 r = -EPERM;
2976 goto bad;
2977 }
2978 /* skip setup rs */
2979 } else if (rs_takeover_requested(rs)) {
2980 if (rs_is_reshaping(rs)) {
2981 ti->error = "Can't takeover a reshaping raid set";
2982 r = -EPERM;
2983 goto bad;
2984 }
2985
2986 /* We can't takeover a journaled raid4/5/6 */
2987 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
2988 ti->error = "Can't takeover a journaled raid4/5/6 set";
2989 r = -EPERM;
2990 goto bad;
2991 }
2992
2993 /*
2994 * If a takeover is needed, userspace sets any additional
2995 * devices to rebuild and we can check for a valid request here.
2996 *
2997 * If acceptible, set the level to the new requested
2998 * one, prohibit requesting recovery, allow the raid
2999 * set to run and store superblocks during resume.
3000 */
3001 r = rs_check_takeover(rs);
3002 if (r)
3003 goto bad;
3004
3005 r = rs_setup_takeover(rs);
3006 if (r)
3007 goto bad;
3008
3009 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3010 /* Takeover ain't recovery, so disable recovery */
3011 rs_setup_recovery(rs, MaxSector);
3012 rs_set_new(rs);
3013 } else if (rs_reshape_requested(rs)) {
3014 /*
3015 * No need to check for 'ongoing' takeover here, because takeover
3016 * is an instant operation as oposed to an ongoing reshape.
3017 */
3018
3019 /* We can't reshape a journaled raid4/5/6 */
3020 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3021 ti->error = "Can't reshape a journaled raid4/5/6 set";
3022 r = -EPERM;
3023 goto bad;
3024 }
3025
3026 /*
3027 * We can only prepare for a reshape here, because the
3028 * raid set needs to run to provide the repective reshape
3029 * check functions via its MD personality instance.
3030 *
3031 * So do the reshape check after md_run() succeeded.
3032 */
3033 r = rs_prepare_reshape(rs);
3034 if (r)
3035 return r;
3036
3037 /* Reshaping ain't recovery, so disable recovery */
3038 rs_setup_recovery(rs, MaxSector);
3039 rs_set_cur(rs);
3040 } else {
3041 /* May not set recovery when a device rebuild is requested */
3042 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
3043 rs_setup_recovery(rs, MaxSector);
3044 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3045 } else
3046 rs_setup_recovery(rs, test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ?
3047 0 : (resize ? calculated_dev_sectors : MaxSector));
3048 rs_set_cur(rs);
3049 }
3050
3051 /* If constructor requested it, change data and new_data offsets */
3052 r = rs_adjust_data_offsets(rs);
3053 if (r)
3054 goto bad;
3055
3056 /* Start raid set read-only and assumed clean to change in raid_resume() */
3057 rs->md.ro = 1;
3058 rs->md.in_sync = 1;
3059 set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
3060
3061 /* Has to be held on running the array */
3062 mddev_lock_nointr(&rs->md);
3063 r = md_run(&rs->md);
3064 rs->md.in_sync = 0; /* Assume already marked dirty */
3065
3066 if (r) {
3067 ti->error = "Failed to run raid array";
3068 mddev_unlock(&rs->md);
3069 goto bad;
3070 }
3071
3072 rs->callbacks.congested_fn = raid_is_congested;
3073 dm_table_add_target_callbacks(ti->table, &rs->callbacks);
3074
3075 mddev_suspend(&rs->md);
3076
3077 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
3078 if (rs_is_raid456(rs)) {
3079 r = rs_set_raid456_stripe_cache(rs);
3080 if (r)
3081 goto bad_stripe_cache;
3082 }
3083
3084 /* Now do an early reshape check */
3085 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3086 r = rs_check_reshape(rs);
3087 if (r)
3088 goto bad_check_reshape;
3089
3090 /* Restore new, ctr requested layout to perform check */
3091 rs_config_restore(rs, &rs_layout);
3092
3093 if (rs->md.pers->start_reshape) {
3094 r = rs->md.pers->check_reshape(&rs->md);
3095 if (r) {
3096 ti->error = "Reshape check failed";
3097 goto bad_check_reshape;
3098 }
3099 }
3100 }
3101
3102 /* Disable/enable discard support on raid set. */
3103 configure_discard_support(rs);
3104
3105 mddev_unlock(&rs->md);
3106 return 0;
3107
3108 bad_stripe_cache:
3109 bad_check_reshape:
3110 md_stop(&rs->md);
3111 bad:
3112 raid_set_free(rs);
3113
3114 return r;
3115 }
3116
3117 static void raid_dtr(struct dm_target *ti)
3118 {
3119 struct raid_set *rs = ti->private;
3120
3121 list_del_init(&rs->callbacks.list);
3122 md_stop(&rs->md);
3123 raid_set_free(rs);
3124 }
3125
3126 static int raid_map(struct dm_target *ti, struct bio *bio)
3127 {
3128 struct raid_set *rs = ti->private;
3129 struct mddev *mddev = &rs->md;
3130
3131 /*
3132 * If we're reshaping to add disk(s)), ti->len and
3133 * mddev->array_sectors will differ during the process
3134 * (ti->len > mddev->array_sectors), so we have to requeue
3135 * bios with addresses > mddev->array_sectors here or
3136 * there will occur accesses past EOD of the component
3137 * data images thus erroring the raid set.
3138 */
3139 if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
3140 return DM_MAPIO_REQUEUE;
3141
3142 mddev->pers->make_request(mddev, bio);
3143
3144 return DM_MAPIO_SUBMITTED;
3145 }
3146
3147 /* Return string describing the current sync action of @mddev */
3148 static const char *decipher_sync_action(struct mddev *mddev)
3149 {
3150 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3151 return "frozen";
3152
3153 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3154 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3155 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3156 return "reshape";
3157
3158 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3159 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3160 return "resync";
3161 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3162 return "check";
3163 return "repair";
3164 }
3165
3166 if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3167 return "recover";
3168 }
3169
3170 return "idle";
3171 }
3172
3173 /*
3174 * Return status string for @rdev
3175 *
3176 * Status characters:
3177 *
3178 * 'D' = Dead/Failed raid set component or raid4/5/6 journal device
3179 * 'a' = Alive but not in-sync
3180 * 'A' = Alive and in-sync raid set component or alive raid4/5/6 journal device
3181 * '-' = Non-existing device (i.e. uspace passed '- -' into the ctr)
3182 */
3183 static const char *__raid_dev_status(struct md_rdev *rdev, bool array_in_sync)
3184 {
3185 if (!rdev->bdev)
3186 return "-";
3187 else if (test_bit(Faulty, &rdev->flags))
3188 return "D";
3189 else if (test_bit(Journal, &rdev->flags))
3190 return "A";
3191 else if (!array_in_sync || !test_bit(In_sync, &rdev->flags))
3192 return "a";
3193 else
3194 return "A";
3195 }
3196
3197 /* Helper to return resync/reshape progress for @rs and @array_in_sync */
3198 static sector_t rs_get_progress(struct raid_set *rs,
3199 sector_t resync_max_sectors, bool *array_in_sync)
3200 {
3201 sector_t r, recovery_cp, curr_resync_completed;
3202 struct mddev *mddev = &rs->md;
3203
3204 curr_resync_completed = mddev->curr_resync_completed ?: mddev->recovery_cp;
3205 recovery_cp = mddev->recovery_cp;
3206 *array_in_sync = false;
3207
3208 if (rs_is_raid0(rs)) {
3209 r = resync_max_sectors;
3210 *array_in_sync = true;
3211
3212 } else {
3213 r = mddev->reshape_position;
3214
3215 /* Reshape is relative to the array size */
3216 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
3217 r != MaxSector) {
3218 if (r == MaxSector) {
3219 *array_in_sync = true;
3220 r = resync_max_sectors;
3221 } else {
3222 /* Got to reverse on backward reshape */
3223 if (mddev->reshape_backwards)
3224 r = mddev->array_sectors - r;
3225
3226 /* Devide by # of data stripes */
3227 sector_div(r, mddev_data_stripes(rs));
3228 }
3229
3230 /* Sync is relative to the component device size */
3231 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3232 r = curr_resync_completed;
3233 else
3234 r = recovery_cp;
3235
3236 if (r == MaxSector) {
3237 /*
3238 * Sync complete.
3239 */
3240 *array_in_sync = true;
3241 r = resync_max_sectors;
3242 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3243 /*
3244 * If "check" or "repair" is occurring, the raid set has
3245 * undergone an initial sync and the health characters
3246 * should not be 'a' anymore.
3247 */
3248 *array_in_sync = true;
3249 } else {
3250 struct md_rdev *rdev;
3251
3252 /*
3253 * The raid set may be doing an initial sync, or it may
3254 * be rebuilding individual components. If all the
3255 * devices are In_sync, then it is the raid set that is
3256 * being initialized.
3257 */
3258 rdev_for_each(rdev, mddev)
3259 if (!test_bit(Journal, &rdev->flags) &&
3260 !test_bit(In_sync, &rdev->flags))
3261 *array_in_sync = true;
3262 #if 0
3263 r = 0; /* HM FIXME: TESTME: https://bugzilla.redhat.com/show_bug.cgi?id=1210637 ? */
3264 #endif
3265 }
3266 }
3267
3268 return r;
3269 }
3270
3271 /* Helper to return @dev name or "-" if !@dev */
3272 static const char *__get_dev_name(struct dm_dev *dev)
3273 {
3274 return dev ? dev->name : "-";
3275 }
3276
3277 static void raid_status(struct dm_target *ti, status_type_t type,
3278 unsigned int status_flags, char *result, unsigned int maxlen)
3279 {
3280 struct raid_set *rs = ti->private;
3281 struct mddev *mddev = &rs->md;
3282 struct r5conf *conf = mddev->private;
3283 int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3284 bool array_in_sync;
3285 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3286 unsigned int sz = 0;
3287 unsigned int rebuild_disks;
3288 unsigned int write_mostly_params = 0;
3289 sector_t progress, resync_max_sectors, resync_mismatches;
3290 const char *sync_action;
3291 struct raid_type *rt;
3292
3293 switch (type) {
3294 case STATUSTYPE_INFO:
3295 /* *Should* always succeed */
3296 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3297 if (!rt)
3298 return;
3299
3300 DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3301
3302 /* Access most recent mddev properties for status output */
3303 smp_rmb();
3304 /* Get sensible max sectors even if raid set not yet started */
3305 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3306 mddev->resync_max_sectors : mddev->dev_sectors;
3307 progress = rs_get_progress(rs, resync_max_sectors, &array_in_sync);
3308 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3309 atomic64_read(&mddev->resync_mismatches) : 0;
3310 sync_action = decipher_sync_action(&rs->md);
3311
3312 /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */
3313 for (i = 0; i < rs->raid_disks; i++)
3314 DMEMIT(__raid_dev_status(&rs->dev[i].rdev, array_in_sync));
3315
3316 /*
3317 * In-sync/Reshape ratio:
3318 * The in-sync ratio shows the progress of:
3319 * - Initializing the raid set
3320 * - Rebuilding a subset of devices of the raid set
3321 * The user can distinguish between the two by referring
3322 * to the status characters.
3323 *
3324 * The reshape ratio shows the progress of
3325 * changing the raid layout or the number of
3326 * disks of a raid set
3327 */
3328 DMEMIT(" %llu/%llu", (unsigned long long) progress,
3329 (unsigned long long) resync_max_sectors);
3330
3331 /*
3332 * v1.5.0+:
3333 *
3334 * Sync action:
3335 * See Documentation/device-mapper/dm-raid.txt for
3336 * information on each of these states.
3337 */
3338 DMEMIT(" %s", sync_action);
3339
3340 /*
3341 * v1.5.0+:
3342 *
3343 * resync_mismatches/mismatch_cnt
3344 * This field shows the number of discrepancies found when
3345 * performing a "check" of the raid set.
3346 */
3347 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3348
3349 /*
3350 * v1.9.0+:
3351 *
3352 * data_offset (needed for out of space reshaping)
3353 * This field shows the data offset into the data
3354 * image LV where the first stripes data starts.
3355 *
3356 * We keep data_offset equal on all raid disks of the set,
3357 * so retrieving it from the first raid disk is sufficient.
3358 */
3359 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3360
3361 /*
3362 * v1.10.0+:
3363 */
3364 DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ?
3365 __raid_dev_status(&rs->journal_dev.rdev, 0) : "-");
3366 break;
3367
3368 case STATUSTYPE_TABLE:
3369 /* Report the table line string you would use to construct this raid set */
3370
3371 /* Calculate raid parameter count */
3372 for (i = 0; i < rs->raid_disks; i++)
3373 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3374 write_mostly_params += 2;
3375 rebuild_disks = memweight(rs->rebuild_disks, DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks));
3376 raid_param_cnt += rebuild_disks * 2 +
3377 write_mostly_params +
3378 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3379 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2 +
3380 (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ? 2 : 0);
3381 /* Emit table line */
3382 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3383 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3384 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3385 raid10_md_layout_to_format(mddev->layout));
3386 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3387 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3388 raid10_md_layout_to_copies(mddev->layout));
3389 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3390 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3391 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3392 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3393 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3394 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3395 (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3396 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3397 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3398 (unsigned long long) rs->data_offset);
3399 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3400 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3401 mddev->bitmap_info.daemon_sleep);
3402 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3403 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3404 max(rs->delta_disks, mddev->delta_disks));
3405 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3406 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3407 max_nr_stripes);
3408 if (rebuild_disks)
3409 for (i = 0; i < rs->raid_disks; i++)
3410 if (test_bit(rs->dev[i].rdev.raid_disk, (void *) rs->rebuild_disks))
3411 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD),
3412 rs->dev[i].rdev.raid_disk);
3413 if (write_mostly_params)
3414 for (i = 0; i < rs->raid_disks; i++)
3415 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3416 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3417 rs->dev[i].rdev.raid_disk);
3418 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3419 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3420 mddev->bitmap_info.max_write_behind);
3421 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3422 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3423 mddev->sync_speed_max);
3424 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3425 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3426 mddev->sync_speed_min);
3427 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags))
3428 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV),
3429 __get_dev_name(rs->journal_dev.dev));
3430 DMEMIT(" %d", rs->raid_disks);
3431 for (i = 0; i < rs->raid_disks; i++)
3432 DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3433 __get_dev_name(rs->dev[i].data_dev));
3434 }
3435 }
3436
3437 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv)
3438 {
3439 struct raid_set *rs = ti->private;
3440 struct mddev *mddev = &rs->md;
3441
3442 if (!mddev->pers || !mddev->pers->sync_request)
3443 return -EINVAL;
3444
3445 if (!strcasecmp(argv[0], "frozen"))
3446 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3447 else
3448 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3449
3450 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3451 if (mddev->sync_thread) {
3452 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3453 md_reap_sync_thread(mddev);
3454 }
3455 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3456 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3457 return -EBUSY;
3458 else if (!strcasecmp(argv[0], "resync"))
3459 ; /* MD_RECOVERY_NEEDED set below */
3460 else if (!strcasecmp(argv[0], "recover"))
3461 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3462 else {
3463 if (!strcasecmp(argv[0], "check"))
3464 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3465 else if (!!strcasecmp(argv[0], "repair"))
3466 return -EINVAL;
3467 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3468 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3469 }
3470 if (mddev->ro == 2) {
3471 /* A write to sync_action is enough to justify
3472 * canceling read-auto mode
3473 */
3474 mddev->ro = 0;
3475 if (!mddev->suspended && mddev->sync_thread)
3476 md_wakeup_thread(mddev->sync_thread);
3477 }
3478 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3479 if (!mddev->suspended && mddev->thread)
3480 md_wakeup_thread(mddev->thread);
3481
3482 return 0;
3483 }
3484
3485 static int raid_iterate_devices(struct dm_target *ti,
3486 iterate_devices_callout_fn fn, void *data)
3487 {
3488 struct raid_set *rs = ti->private;
3489 unsigned int i;
3490 int r = 0;
3491
3492 for (i = 0; !r && i < rs->md.raid_disks; i++)
3493 if (rs->dev[i].data_dev)
3494 r = fn(ti,
3495 rs->dev[i].data_dev,
3496 0, /* No offset on data devs */
3497 rs->md.dev_sectors,
3498 data);
3499
3500 return r;
3501 }
3502
3503 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3504 {
3505 struct raid_set *rs = ti->private;
3506 unsigned int chunk_size = to_bytes(rs->md.chunk_sectors);
3507
3508 blk_limits_io_min(limits, chunk_size);
3509 blk_limits_io_opt(limits, chunk_size * mddev_data_stripes(rs));
3510 }
3511
3512 static void raid_presuspend(struct dm_target *ti)
3513 {
3514 struct raid_set *rs = ti->private;
3515
3516 md_stop_writes(&rs->md);
3517 }
3518
3519 static void raid_postsuspend(struct dm_target *ti)
3520 {
3521 struct raid_set *rs = ti->private;
3522
3523 if (!rs->md.suspended)
3524 mddev_suspend(&rs->md);
3525
3526 rs->md.ro = 1;
3527 }
3528
3529 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3530 {
3531 int i;
3532 uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS];
3533 unsigned long flags;
3534 bool cleared = false;
3535 struct dm_raid_superblock *sb;
3536 struct mddev *mddev = &rs->md;
3537 struct md_rdev *r;
3538
3539 /* RAID personalities have to provide hot add/remove methods or we need to bail out. */
3540 if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk)
3541 return;
3542
3543 memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices));
3544
3545 for (i = 0; i < mddev->raid_disks; i++) {
3546 r = &rs->dev[i].rdev;
3547 /* HM FIXME: enhance journal device recovery processing */
3548 if (test_bit(Journal, &r->flags))
3549 continue;
3550
3551 if (test_bit(Faulty, &r->flags) && r->sb_page &&
3552 sync_page_io(r, 0, r->sb_size, r->sb_page,
3553 REQ_OP_READ, 0, true)) {
3554 DMINFO("Faulty %s device #%d has readable super block."
3555 " Attempting to revive it.",
3556 rs->raid_type->name, i);
3557
3558 /*
3559 * Faulty bit may be set, but sometimes the array can
3560 * be suspended before the personalities can respond
3561 * by removing the device from the array (i.e. calling
3562 * 'hot_remove_disk'). If they haven't yet removed
3563 * the failed device, its 'raid_disk' number will be
3564 * '>= 0' - meaning we must call this function
3565 * ourselves.
3566 */
3567 flags = r->flags;
3568 clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */
3569 if (r->raid_disk >= 0) {
3570 if (mddev->pers->hot_remove_disk(mddev, r)) {
3571 /* Failed to revive this device, try next */
3572 r->flags = flags;
3573 continue;
3574 }
3575 } else
3576 r->raid_disk = r->saved_raid_disk = i;
3577
3578 clear_bit(Faulty, &r->flags);
3579 clear_bit(WriteErrorSeen, &r->flags);
3580
3581 if (mddev->pers->hot_add_disk(mddev, r)) {
3582 /* Failed to revive this device, try next */
3583 r->raid_disk = r->saved_raid_disk = -1;
3584 r->flags = flags;
3585 } else {
3586 clear_bit(In_sync, &r->flags);
3587 r->recovery_offset = 0;
3588 set_bit(i, (void *) cleared_failed_devices);
3589 cleared = true;
3590 }
3591 }
3592 }
3593
3594 /* If any failed devices could be cleared, update all sbs failed_devices bits */
3595 if (cleared) {
3596 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
3597
3598 rdev_for_each(r, &rs->md) {
3599 if (test_bit(Journal, &r->flags))
3600 continue;
3601
3602 sb = page_address(r->sb_page);
3603 sb_retrieve_failed_devices(sb, failed_devices);
3604
3605 for (i = 0; i < DISKS_ARRAY_ELEMS; i++)
3606 failed_devices[i] &= ~cleared_failed_devices[i];
3607
3608 sb_update_failed_devices(sb, failed_devices);
3609 }
3610 }
3611 }
3612
3613 static int __load_dirty_region_bitmap(struct raid_set *rs)
3614 {
3615 int r = 0;
3616
3617 /* Try loading the bitmap unless "raid0", which does not have one */
3618 if (!rs_is_raid0(rs) &&
3619 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3620 r = bitmap_load(&rs->md);
3621 if (r)
3622 DMERR("Failed to load bitmap");
3623 }
3624
3625 return r;
3626 }
3627
3628 /* Enforce updating all superblocks */
3629 static void rs_update_sbs(struct raid_set *rs)
3630 {
3631 struct mddev *mddev = &rs->md;
3632 int ro = mddev->ro;
3633
3634 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3635 mddev->ro = 0;
3636 md_update_sb(mddev, 1);
3637 mddev->ro = ro;
3638 }
3639
3640 /*
3641 * Reshape changes raid algorithm of @rs to new one within personality
3642 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3643 * disks from a raid set thus growing/shrinking it or resizes the set
3644 *
3645 * Call mddev_lock_nointr() before!
3646 */
3647 static int rs_start_reshape(struct raid_set *rs)
3648 {
3649 int r;
3650 struct mddev *mddev = &rs->md;
3651 struct md_personality *pers = mddev->pers;
3652
3653 r = rs_setup_reshape(rs);
3654 if (r)
3655 return r;
3656
3657 /* Need to be resumed to be able to start reshape, recovery is frozen until raid_resume() though */
3658 if (mddev->suspended)
3659 mddev_resume(mddev);
3660
3661 /*
3662 * Check any reshape constraints enforced by the personalility
3663 *
3664 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3665 */
3666 r = pers->check_reshape(mddev);
3667 if (r) {
3668 rs->ti->error = "pers->check_reshape() failed";
3669 return r;
3670 }
3671
3672 /*
3673 * Personality may not provide start reshape method in which
3674 * case check_reshape above has already covered everything
3675 */
3676 if (pers->start_reshape) {
3677 r = pers->start_reshape(mddev);
3678 if (r) {
3679 rs->ti->error = "pers->start_reshape() failed";
3680 return r;
3681 }
3682 }
3683
3684 /* Suspend because a resume will happen in raid_resume() */
3685 if (!mddev->suspended)
3686 mddev_suspend(mddev);
3687
3688 /*
3689 * Now reshape got set up, update superblocks to
3690 * reflect the fact so that a table reload will
3691 * access proper superblock content in the ctr.
3692 */
3693 rs_update_sbs(rs);
3694
3695 return 0;
3696 }
3697
3698 static int raid_preresume(struct dm_target *ti)
3699 {
3700 int r;
3701 struct raid_set *rs = ti->private;
3702 struct mddev *mddev = &rs->md;
3703
3704 /* This is a resume after a suspend of the set -> it's already started */
3705 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3706 return 0;
3707
3708 /*
3709 * The superblocks need to be updated on disk if the
3710 * array is new or new devices got added (thus zeroed
3711 * out by userspace) or __load_dirty_region_bitmap
3712 * will overwrite them in core with old data or fail.
3713 */
3714 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3715 rs_update_sbs(rs);
3716
3717 /* Load the bitmap from disk unless raid0 */
3718 r = __load_dirty_region_bitmap(rs);
3719 if (r)
3720 return r;
3721
3722 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) */
3723 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) &&
3724 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)) {
3725 r = bitmap_resize(mddev->bitmap, mddev->dev_sectors,
3726 to_bytes(rs->requested_bitmap_chunk_sectors), 0);
3727 if (r)
3728 DMERR("Failed to resize bitmap");
3729 }
3730
3731 /* Check for any resize/reshape on @rs and adjust/initiate */
3732 /* Be prepared for mddev_resume() in raid_resume() */
3733 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3734 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
3735 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3736 mddev->resync_min = mddev->recovery_cp;
3737 }
3738
3739 rs_set_capacity(rs);
3740
3741 /* Check for any reshape request unless new raid set */
3742 if (test_and_clear_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3743 /* Initiate a reshape. */
3744 mddev_lock_nointr(mddev);
3745 r = rs_start_reshape(rs);
3746 mddev_unlock(mddev);
3747 if (r)
3748 DMWARN("Failed to check/start reshape, continuing without change");
3749 r = 0;
3750 }
3751
3752 return r;
3753 }
3754
3755 static void raid_resume(struct dm_target *ti)
3756 {
3757 struct raid_set *rs = ti->private;
3758 struct mddev *mddev = &rs->md;
3759
3760 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
3761 /*
3762 * A secondary resume while the device is active.
3763 * Take this opportunity to check whether any failed
3764 * devices are reachable again.
3765 */
3766 attempt_restore_of_faulty_devices(rs);
3767 }
3768
3769 mddev->ro = 0;
3770 mddev->in_sync = 0;
3771
3772 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3773
3774 if (mddev->suspended)
3775 mddev_resume(mddev);
3776 }
3777
3778 static struct target_type raid_target = {
3779 .name = "raid",
3780 .version = {1, 10, 0},
3781 .module = THIS_MODULE,
3782 .ctr = raid_ctr,
3783 .dtr = raid_dtr,
3784 .map = raid_map,
3785 .status = raid_status,
3786 .message = raid_message,
3787 .iterate_devices = raid_iterate_devices,
3788 .io_hints = raid_io_hints,
3789 .presuspend = raid_presuspend,
3790 .postsuspend = raid_postsuspend,
3791 .preresume = raid_preresume,
3792 .resume = raid_resume,
3793 };
3794
3795 static int __init dm_raid_init(void)
3796 {
3797 DMINFO("Loading target version %u.%u.%u",
3798 raid_target.version[0],
3799 raid_target.version[1],
3800 raid_target.version[2]);
3801 return dm_register_target(&raid_target);
3802 }
3803
3804 static void __exit dm_raid_exit(void)
3805 {
3806 dm_unregister_target(&raid_target);
3807 }
3808
3809 module_init(dm_raid_init);
3810 module_exit(dm_raid_exit);
3811
3812 module_param(devices_handle_discard_safely, bool, 0644);
3813 MODULE_PARM_DESC(devices_handle_discard_safely,
3814 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
3815
3816 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
3817 MODULE_ALIAS("dm-raid0");
3818 MODULE_ALIAS("dm-raid1");
3819 MODULE_ALIAS("dm-raid10");
3820 MODULE_ALIAS("dm-raid4");
3821 MODULE_ALIAS("dm-raid5");
3822 MODULE_ALIAS("dm-raid6");
3823 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
3824 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
3825 MODULE_LICENSE("GPL");