]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/dm-raid.c
dm raid: fix transient device failure processing
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm-raid.c
1 /*
2 * Copyright (C) 2010-2011 Neil Brown
3 * Copyright (C) 2010-2016 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include <linux/slab.h>
9 #include <linux/module.h>
10
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "bitmap.h"
16
17 #include <linux/device-mapper.h>
18
19 #define DM_MSG_PREFIX "raid"
20 #define MAX_RAID_DEVICES 253 /* md-raid kernel limit */
21
22 /*
23 * Minimum sectors of free reshape space per raid device
24 */
25 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
26
27 static bool devices_handle_discard_safely = false;
28
29 /*
30 * The following flags are used by dm-raid.c to set up the array state.
31 * They must be cleared before md_run is called.
32 */
33 #define FirstUse 10 /* rdev flag */
34
35 struct raid_dev {
36 /*
37 * Two DM devices, one to hold metadata and one to hold the
38 * actual data/parity. The reason for this is to not confuse
39 * ti->len and give more flexibility in altering size and
40 * characteristics.
41 *
42 * While it is possible for this device to be associated
43 * with a different physical device than the data_dev, it
44 * is intended for it to be the same.
45 * |--------- Physical Device ---------|
46 * |- meta_dev -|------ data_dev ------|
47 */
48 struct dm_dev *meta_dev;
49 struct dm_dev *data_dev;
50 struct md_rdev rdev;
51 };
52
53 /*
54 * Bits for establishing rs->ctr_flags
55 *
56 * 1 = no flag value
57 * 2 = flag with value
58 */
59 #define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */
60 #define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */
61 #define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */
62 #define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */
63 #define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */
64 #define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */
65 #define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */
66 #define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */
67 #define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */
68 #define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */
69 #define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */
70 #define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */
71 /* New for v1.9.0 */
72 #define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
73 #define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
74 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
75
76 /*
77 * Flags for rs->ctr_flags field.
78 */
79 #define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC)
80 #define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC)
81 #define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD)
82 #define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP)
83 #define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
84 #define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
85 #define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
86 #define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY)
87 #define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE)
88 #define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE)
89 #define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES)
90 #define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT)
91 #define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS)
92 #define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET)
93 #define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
94
95 /*
96 * Definitions of various constructor flags to
97 * be used in checks of valid / invalid flags
98 * per raid level.
99 */
100 /* Define all any sync flags */
101 #define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
102
103 /* Define flags for options without argument (e.g. 'nosync') */
104 #define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \
105 CTR_FLAG_RAID10_USE_NEAR_SETS)
106
107 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
108 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
109 CTR_FLAG_WRITE_MOSTLY | \
110 CTR_FLAG_DAEMON_SLEEP | \
111 CTR_FLAG_MIN_RECOVERY_RATE | \
112 CTR_FLAG_MAX_RECOVERY_RATE | \
113 CTR_FLAG_MAX_WRITE_BEHIND | \
114 CTR_FLAG_STRIPE_CACHE | \
115 CTR_FLAG_REGION_SIZE | \
116 CTR_FLAG_RAID10_COPIES | \
117 CTR_FLAG_RAID10_FORMAT | \
118 CTR_FLAG_DELTA_DISKS | \
119 CTR_FLAG_DATA_OFFSET)
120
121 /* Valid options definitions per raid level... */
122
123 /* "raid0" does only accept data offset */
124 #define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET)
125
126 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
127 #define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
128 CTR_FLAG_REBUILD | \
129 CTR_FLAG_WRITE_MOSTLY | \
130 CTR_FLAG_DAEMON_SLEEP | \
131 CTR_FLAG_MIN_RECOVERY_RATE | \
132 CTR_FLAG_MAX_RECOVERY_RATE | \
133 CTR_FLAG_MAX_WRITE_BEHIND | \
134 CTR_FLAG_REGION_SIZE | \
135 CTR_FLAG_DELTA_DISKS | \
136 CTR_FLAG_DATA_OFFSET)
137
138 /* "raid10" does not accept any raid1 or stripe cache options */
139 #define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
140 CTR_FLAG_REBUILD | \
141 CTR_FLAG_DAEMON_SLEEP | \
142 CTR_FLAG_MIN_RECOVERY_RATE | \
143 CTR_FLAG_MAX_RECOVERY_RATE | \
144 CTR_FLAG_REGION_SIZE | \
145 CTR_FLAG_RAID10_COPIES | \
146 CTR_FLAG_RAID10_FORMAT | \
147 CTR_FLAG_DELTA_DISKS | \
148 CTR_FLAG_DATA_OFFSET | \
149 CTR_FLAG_RAID10_USE_NEAR_SETS)
150
151 /*
152 * "raid4/5/6" do not accept any raid1 or raid10 specific options
153 *
154 * "raid6" does not accept "nosync", because it is not guaranteed
155 * that both parity and q-syndrome are being written properly with
156 * any writes
157 */
158 #define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
159 CTR_FLAG_REBUILD | \
160 CTR_FLAG_DAEMON_SLEEP | \
161 CTR_FLAG_MIN_RECOVERY_RATE | \
162 CTR_FLAG_MAX_RECOVERY_RATE | \
163 CTR_FLAG_STRIPE_CACHE | \
164 CTR_FLAG_REGION_SIZE | \
165 CTR_FLAG_DELTA_DISKS | \
166 CTR_FLAG_DATA_OFFSET)
167
168 #define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \
169 CTR_FLAG_REBUILD | \
170 CTR_FLAG_DAEMON_SLEEP | \
171 CTR_FLAG_MIN_RECOVERY_RATE | \
172 CTR_FLAG_MAX_RECOVERY_RATE | \
173 CTR_FLAG_STRIPE_CACHE | \
174 CTR_FLAG_REGION_SIZE | \
175 CTR_FLAG_DELTA_DISKS | \
176 CTR_FLAG_DATA_OFFSET)
177 /* ...valid options definitions per raid level */
178
179 /*
180 * Flags for rs->runtime_flags field
181 * (RT_FLAG prefix meaning "runtime flag")
182 *
183 * These are all internal and used to define runtime state,
184 * e.g. to prevent another resume from preresume processing
185 * the raid set all over again.
186 */
187 #define RT_FLAG_RS_PRERESUMED 0
188 #define RT_FLAG_RS_RESUMED 1
189 #define RT_FLAG_RS_BITMAP_LOADED 2
190 #define RT_FLAG_UPDATE_SBS 3
191 #define RT_FLAG_RESHAPE_RS 4
192
193 /* Array elements of 64 bit needed for rebuild/failed disk bits */
194 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
195
196 /*
197 * raid set level, layout and chunk sectors backup/restore
198 */
199 struct rs_layout {
200 int new_level;
201 int new_layout;
202 int new_chunk_sectors;
203 };
204
205 struct raid_set {
206 struct dm_target *ti;
207
208 uint32_t bitmap_loaded;
209 uint32_t stripe_cache_entries;
210 unsigned long ctr_flags;
211 unsigned long runtime_flags;
212
213 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
214
215 int raid_disks;
216 int delta_disks;
217 int data_offset;
218 int raid10_copies;
219 int requested_bitmap_chunk_sectors;
220
221 struct mddev md;
222 struct raid_type *raid_type;
223 struct dm_target_callbacks callbacks;
224
225 struct raid_dev dev[0];
226 };
227
228 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
229 {
230 struct mddev *mddev = &rs->md;
231
232 l->new_level = mddev->new_level;
233 l->new_layout = mddev->new_layout;
234 l->new_chunk_sectors = mddev->new_chunk_sectors;
235 }
236
237 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
238 {
239 struct mddev *mddev = &rs->md;
240
241 mddev->new_level = l->new_level;
242 mddev->new_layout = l->new_layout;
243 mddev->new_chunk_sectors = l->new_chunk_sectors;
244 }
245
246 /* raid10 algorithms (i.e. formats) */
247 #define ALGORITHM_RAID10_DEFAULT 0
248 #define ALGORITHM_RAID10_NEAR 1
249 #define ALGORITHM_RAID10_OFFSET 2
250 #define ALGORITHM_RAID10_FAR 3
251
252 /* Supported raid types and properties. */
253 static struct raid_type {
254 const char *name; /* RAID algorithm. */
255 const char *descr; /* Descriptor text for logging. */
256 const unsigned int parity_devs; /* # of parity devices. */
257 const unsigned int minimal_devs;/* minimal # of devices in set. */
258 const unsigned int level; /* RAID level. */
259 const unsigned int algorithm; /* RAID algorithm. */
260 } raid_types[] = {
261 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */},
262 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */},
263 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR},
264 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET},
265 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR},
266 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT},
267 {"raid4", "raid4 (dedicated first parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */
268 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N},
269 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
270 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
271 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
272 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
273 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
274 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
275 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE},
276 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6},
277 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6},
278 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6},
279 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6},
280 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6}
281 };
282
283 /* True, if @v is in inclusive range [@min, @max] */
284 static bool __within_range(long v, long min, long max)
285 {
286 return v >= min && v <= max;
287 }
288
289 /* All table line arguments are defined here */
290 static struct arg_name_flag {
291 const unsigned long flag;
292 const char *name;
293 } __arg_name_flags[] = {
294 { CTR_FLAG_SYNC, "sync"},
295 { CTR_FLAG_NOSYNC, "nosync"},
296 { CTR_FLAG_REBUILD, "rebuild"},
297 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
298 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
299 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
300 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
301 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
302 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
303 { CTR_FLAG_REGION_SIZE, "region_size"},
304 { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
305 { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
306 { CTR_FLAG_DATA_OFFSET, "data_offset"},
307 { CTR_FLAG_DELTA_DISKS, "delta_disks"},
308 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
309 };
310
311 /* Return argument name string for given @flag */
312 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
313 {
314 if (hweight32(flag) == 1) {
315 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
316
317 while (anf-- > __arg_name_flags)
318 if (flag & anf->flag)
319 return anf->name;
320
321 } else
322 DMERR("%s called with more than one flag!", __func__);
323
324 return NULL;
325 }
326
327 /*
328 * Bool helpers to test for various raid levels of a raid set.
329 * It's level as reported by the superblock rather than
330 * the requested raid_type passed to the constructor.
331 */
332 /* Return true, if raid set in @rs is raid0 */
333 static bool rs_is_raid0(struct raid_set *rs)
334 {
335 return !rs->md.level;
336 }
337
338 /* Return true, if raid set in @rs is raid1 */
339 static bool rs_is_raid1(struct raid_set *rs)
340 {
341 return rs->md.level == 1;
342 }
343
344 /* Return true, if raid set in @rs is raid10 */
345 static bool rs_is_raid10(struct raid_set *rs)
346 {
347 return rs->md.level == 10;
348 }
349
350 /* Return true, if raid set in @rs is level 6 */
351 static bool rs_is_raid6(struct raid_set *rs)
352 {
353 return rs->md.level == 6;
354 }
355
356 /* Return true, if raid set in @rs is level 4, 5 or 6 */
357 static bool rs_is_raid456(struct raid_set *rs)
358 {
359 return __within_range(rs->md.level, 4, 6);
360 }
361
362 /* Return true, if raid set in @rs is reshapable */
363 static bool __is_raid10_far(int layout);
364 static bool rs_is_reshapable(struct raid_set *rs)
365 {
366 return rs_is_raid456(rs) ||
367 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
368 }
369
370 /* Return true, if raid set in @rs is recovering */
371 static bool rs_is_recovering(struct raid_set *rs)
372 {
373 return rs->md.recovery_cp < rs->dev[0].rdev.sectors;
374 }
375
376 /* Return true, if raid set in @rs is reshaping */
377 static bool rs_is_reshaping(struct raid_set *rs)
378 {
379 return rs->md.reshape_position != MaxSector;
380 }
381
382 /*
383 * bool helpers to test for various raid levels of a raid type @rt
384 */
385
386 /* Return true, if raid type in @rt is raid0 */
387 static bool rt_is_raid0(struct raid_type *rt)
388 {
389 return !rt->level;
390 }
391
392 /* Return true, if raid type in @rt is raid1 */
393 static bool rt_is_raid1(struct raid_type *rt)
394 {
395 return rt->level == 1;
396 }
397
398 /* Return true, if raid type in @rt is raid10 */
399 static bool rt_is_raid10(struct raid_type *rt)
400 {
401 return rt->level == 10;
402 }
403
404 /* Return true, if raid type in @rt is raid4/5 */
405 static bool rt_is_raid45(struct raid_type *rt)
406 {
407 return __within_range(rt->level, 4, 5);
408 }
409
410 /* Return true, if raid type in @rt is raid6 */
411 static bool rt_is_raid6(struct raid_type *rt)
412 {
413 return rt->level == 6;
414 }
415
416 /* Return true, if raid type in @rt is raid4/5/6 */
417 static bool rt_is_raid456(struct raid_type *rt)
418 {
419 return __within_range(rt->level, 4, 6);
420 }
421 /* END: raid level bools */
422
423 /* Return valid ctr flags for the raid level of @rs */
424 static unsigned long __valid_flags(struct raid_set *rs)
425 {
426 if (rt_is_raid0(rs->raid_type))
427 return RAID0_VALID_FLAGS;
428 else if (rt_is_raid1(rs->raid_type))
429 return RAID1_VALID_FLAGS;
430 else if (rt_is_raid10(rs->raid_type))
431 return RAID10_VALID_FLAGS;
432 else if (rt_is_raid45(rs->raid_type))
433 return RAID45_VALID_FLAGS;
434 else if (rt_is_raid6(rs->raid_type))
435 return RAID6_VALID_FLAGS;
436
437 return 0;
438 }
439
440 /*
441 * Check for valid flags set on @rs
442 *
443 * Has to be called after parsing of the ctr flags!
444 */
445 static int rs_check_for_valid_flags(struct raid_set *rs)
446 {
447 if (rs->ctr_flags & ~__valid_flags(rs)) {
448 rs->ti->error = "Invalid flags combination";
449 return -EINVAL;
450 }
451
452 return 0;
453 }
454
455 /* MD raid10 bit definitions and helpers */
456 #define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */
457 #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
458 #define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */
459 #define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */
460
461 /* Return md raid10 near copies for @layout */
462 static unsigned int __raid10_near_copies(int layout)
463 {
464 return layout & 0xFF;
465 }
466
467 /* Return md raid10 far copies for @layout */
468 static unsigned int __raid10_far_copies(int layout)
469 {
470 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
471 }
472
473 /* Return true if md raid10 offset for @layout */
474 static bool __is_raid10_offset(int layout)
475 {
476 return !!(layout & RAID10_OFFSET);
477 }
478
479 /* Return true if md raid10 near for @layout */
480 static bool __is_raid10_near(int layout)
481 {
482 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
483 }
484
485 /* Return true if md raid10 far for @layout */
486 static bool __is_raid10_far(int layout)
487 {
488 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
489 }
490
491 /* Return md raid10 layout string for @layout */
492 static const char *raid10_md_layout_to_format(int layout)
493 {
494 /*
495 * Bit 16 stands for "offset"
496 * (i.e. adjacent stripes hold copies)
497 *
498 * Refer to MD's raid10.c for details
499 */
500 if (__is_raid10_offset(layout))
501 return "offset";
502
503 if (__raid10_near_copies(layout) > 1)
504 return "near";
505
506 WARN_ON(__raid10_far_copies(layout) < 2);
507
508 return "far";
509 }
510
511 /* Return md raid10 algorithm for @name */
512 static int raid10_name_to_format(const char *name)
513 {
514 if (!strcasecmp(name, "near"))
515 return ALGORITHM_RAID10_NEAR;
516 else if (!strcasecmp(name, "offset"))
517 return ALGORITHM_RAID10_OFFSET;
518 else if (!strcasecmp(name, "far"))
519 return ALGORITHM_RAID10_FAR;
520
521 return -EINVAL;
522 }
523
524 /* Return md raid10 copies for @layout */
525 static unsigned int raid10_md_layout_to_copies(int layout)
526 {
527 return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
528 }
529
530 /* Return md raid10 format id for @format string */
531 static int raid10_format_to_md_layout(struct raid_set *rs,
532 unsigned int algorithm,
533 unsigned int copies)
534 {
535 unsigned int n = 1, f = 1, r = 0;
536
537 /*
538 * MD resilienece flaw:
539 *
540 * enabling use_far_sets for far/offset formats causes copies
541 * to be colocated on the same devs together with their origins!
542 *
543 * -> disable it for now in the definition above
544 */
545 if (algorithm == ALGORITHM_RAID10_DEFAULT ||
546 algorithm == ALGORITHM_RAID10_NEAR)
547 n = copies;
548
549 else if (algorithm == ALGORITHM_RAID10_OFFSET) {
550 f = copies;
551 r = RAID10_OFFSET;
552 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
553 r |= RAID10_USE_FAR_SETS;
554
555 } else if (algorithm == ALGORITHM_RAID10_FAR) {
556 f = copies;
557 r = !RAID10_OFFSET;
558 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
559 r |= RAID10_USE_FAR_SETS;
560
561 } else
562 return -EINVAL;
563
564 return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
565 }
566 /* END: MD raid10 bit definitions and helpers */
567
568 /* Check for any of the raid10 algorithms */
569 static bool __got_raid10(struct raid_type *rtp, const int layout)
570 {
571 if (rtp->level == 10) {
572 switch (rtp->algorithm) {
573 case ALGORITHM_RAID10_DEFAULT:
574 case ALGORITHM_RAID10_NEAR:
575 return __is_raid10_near(layout);
576 case ALGORITHM_RAID10_OFFSET:
577 return __is_raid10_offset(layout);
578 case ALGORITHM_RAID10_FAR:
579 return __is_raid10_far(layout);
580 default:
581 break;
582 }
583 }
584
585 return false;
586 }
587
588 /* Return raid_type for @name */
589 static struct raid_type *get_raid_type(const char *name)
590 {
591 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
592
593 while (rtp-- > raid_types)
594 if (!strcasecmp(rtp->name, name))
595 return rtp;
596
597 return NULL;
598 }
599
600 /* Return raid_type for @name based derived from @level and @layout */
601 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
602 {
603 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
604
605 while (rtp-- > raid_types) {
606 /* RAID10 special checks based on @layout flags/properties */
607 if (rtp->level == level &&
608 (__got_raid10(rtp, layout) || rtp->algorithm == layout))
609 return rtp;
610 }
611
612 return NULL;
613 }
614
615 /*
616 * Conditionally change bdev capacity of @rs
617 * in case of a disk add/remove reshape
618 */
619 static void rs_set_capacity(struct raid_set *rs)
620 {
621 struct mddev *mddev = &rs->md;
622 struct md_rdev *rdev;
623 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
624
625 /*
626 * raid10 sets rdev->sector to the device size, which
627 * is unintended in case of out-of-place reshaping
628 */
629 rdev_for_each(rdev, mddev)
630 rdev->sectors = mddev->dev_sectors;
631
632 set_capacity(gendisk, mddev->array_sectors);
633 revalidate_disk(gendisk);
634 }
635
636 /*
637 * Set the mddev properties in @rs to the current
638 * ones retrieved from the freshest superblock
639 */
640 static void rs_set_cur(struct raid_set *rs)
641 {
642 struct mddev *mddev = &rs->md;
643
644 mddev->new_level = mddev->level;
645 mddev->new_layout = mddev->layout;
646 mddev->new_chunk_sectors = mddev->chunk_sectors;
647 }
648
649 /*
650 * Set the mddev properties in @rs to the new
651 * ones requested by the ctr
652 */
653 static void rs_set_new(struct raid_set *rs)
654 {
655 struct mddev *mddev = &rs->md;
656
657 mddev->level = mddev->new_level;
658 mddev->layout = mddev->new_layout;
659 mddev->chunk_sectors = mddev->new_chunk_sectors;
660 mddev->raid_disks = rs->raid_disks;
661 mddev->delta_disks = 0;
662 }
663
664 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
665 unsigned int raid_devs)
666 {
667 unsigned int i;
668 struct raid_set *rs;
669
670 if (raid_devs <= raid_type->parity_devs) {
671 ti->error = "Insufficient number of devices";
672 return ERR_PTR(-EINVAL);
673 }
674
675 rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
676 if (!rs) {
677 ti->error = "Cannot allocate raid context";
678 return ERR_PTR(-ENOMEM);
679 }
680
681 mddev_init(&rs->md);
682
683 rs->raid_disks = raid_devs;
684 rs->delta_disks = 0;
685
686 rs->ti = ti;
687 rs->raid_type = raid_type;
688 rs->stripe_cache_entries = 256;
689 rs->md.raid_disks = raid_devs;
690 rs->md.level = raid_type->level;
691 rs->md.new_level = rs->md.level;
692 rs->md.layout = raid_type->algorithm;
693 rs->md.new_layout = rs->md.layout;
694 rs->md.delta_disks = 0;
695 rs->md.recovery_cp = MaxSector;
696
697 for (i = 0; i < raid_devs; i++)
698 md_rdev_init(&rs->dev[i].rdev);
699
700 /*
701 * Remaining items to be initialized by further RAID params:
702 * rs->md.persistent
703 * rs->md.external
704 * rs->md.chunk_sectors
705 * rs->md.new_chunk_sectors
706 * rs->md.dev_sectors
707 */
708
709 return rs;
710 }
711
712 static void raid_set_free(struct raid_set *rs)
713 {
714 int i;
715
716 for (i = 0; i < rs->raid_disks; i++) {
717 if (rs->dev[i].meta_dev)
718 dm_put_device(rs->ti, rs->dev[i].meta_dev);
719 md_rdev_clear(&rs->dev[i].rdev);
720 if (rs->dev[i].data_dev)
721 dm_put_device(rs->ti, rs->dev[i].data_dev);
722 }
723
724 kfree(rs);
725 }
726
727 /*
728 * For every device we have two words
729 * <meta_dev>: meta device name or '-' if missing
730 * <data_dev>: data device name or '-' if missing
731 *
732 * The following are permitted:
733 * - -
734 * - <data_dev>
735 * <meta_dev> <data_dev>
736 *
737 * The following is not allowed:
738 * <meta_dev> -
739 *
740 * This code parses those words. If there is a failure,
741 * the caller must use raid_set_free() to unwind the operations.
742 */
743 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
744 {
745 int i;
746 int rebuild = 0;
747 int metadata_available = 0;
748 int r = 0;
749 const char *arg;
750
751 /* Put off the number of raid devices argument to get to dev pairs */
752 arg = dm_shift_arg(as);
753 if (!arg)
754 return -EINVAL;
755
756 for (i = 0; i < rs->raid_disks; i++) {
757 rs->dev[i].rdev.raid_disk = i;
758
759 rs->dev[i].meta_dev = NULL;
760 rs->dev[i].data_dev = NULL;
761
762 /*
763 * There are no offsets, since there is a separate device
764 * for data and metadata.
765 */
766 rs->dev[i].rdev.data_offset = 0;
767 rs->dev[i].rdev.mddev = &rs->md;
768
769 arg = dm_shift_arg(as);
770 if (!arg)
771 return -EINVAL;
772
773 if (strcmp(arg, "-")) {
774 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
775 &rs->dev[i].meta_dev);
776 if (r) {
777 rs->ti->error = "RAID metadata device lookup failure";
778 return r;
779 }
780
781 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
782 if (!rs->dev[i].rdev.sb_page) {
783 rs->ti->error = "Failed to allocate superblock page";
784 return -ENOMEM;
785 }
786 }
787
788 arg = dm_shift_arg(as);
789 if (!arg)
790 return -EINVAL;
791
792 if (!strcmp(arg, "-")) {
793 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
794 (!rs->dev[i].rdev.recovery_offset)) {
795 rs->ti->error = "Drive designated for rebuild not specified";
796 return -EINVAL;
797 }
798
799 if (rs->dev[i].meta_dev) {
800 rs->ti->error = "No data device supplied with metadata device";
801 return -EINVAL;
802 }
803
804 continue;
805 }
806
807 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
808 &rs->dev[i].data_dev);
809 if (r) {
810 rs->ti->error = "RAID device lookup failure";
811 return r;
812 }
813
814 if (rs->dev[i].meta_dev) {
815 metadata_available = 1;
816 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
817 }
818 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
819 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
820 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
821 rebuild++;
822 }
823
824 if (metadata_available) {
825 rs->md.external = 0;
826 rs->md.persistent = 1;
827 rs->md.major_version = 2;
828 } else if (rebuild && !rs->md.recovery_cp) {
829 /*
830 * Without metadata, we will not be able to tell if the array
831 * is in-sync or not - we must assume it is not. Therefore,
832 * it is impossible to rebuild a drive.
833 *
834 * Even if there is metadata, the on-disk information may
835 * indicate that the array is not in-sync and it will then
836 * fail at that time.
837 *
838 * User could specify 'nosync' option if desperate.
839 */
840 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
841 return -EINVAL;
842 }
843
844 return 0;
845 }
846
847 /*
848 * validate_region_size
849 * @rs
850 * @region_size: region size in sectors. If 0, pick a size (4MiB default).
851 *
852 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
853 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
854 *
855 * Returns: 0 on success, -EINVAL on failure.
856 */
857 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
858 {
859 unsigned long min_region_size = rs->ti->len / (1 << 21);
860
861 if (rs_is_raid0(rs))
862 return 0;
863
864 if (!region_size) {
865 /*
866 * Choose a reasonable default. All figures in sectors.
867 */
868 if (min_region_size > (1 << 13)) {
869 /* If not a power of 2, make it the next power of 2 */
870 region_size = roundup_pow_of_two(min_region_size);
871 DMINFO("Choosing default region size of %lu sectors",
872 region_size);
873 } else {
874 DMINFO("Choosing default region size of 4MiB");
875 region_size = 1 << 13; /* sectors */
876 }
877 } else {
878 /*
879 * Validate user-supplied value.
880 */
881 if (region_size > rs->ti->len) {
882 rs->ti->error = "Supplied region size is too large";
883 return -EINVAL;
884 }
885
886 if (region_size < min_region_size) {
887 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
888 region_size, min_region_size);
889 rs->ti->error = "Supplied region size is too small";
890 return -EINVAL;
891 }
892
893 if (!is_power_of_2(region_size)) {
894 rs->ti->error = "Region size is not a power of 2";
895 return -EINVAL;
896 }
897
898 if (region_size < rs->md.chunk_sectors) {
899 rs->ti->error = "Region size is smaller than the chunk size";
900 return -EINVAL;
901 }
902 }
903
904 /*
905 * Convert sectors to bytes.
906 */
907 rs->md.bitmap_info.chunksize = to_bytes(region_size);
908
909 return 0;
910 }
911
912 /*
913 * validate_raid_redundancy
914 * @rs
915 *
916 * Determine if there are enough devices in the array that haven't
917 * failed (or are being rebuilt) to form a usable array.
918 *
919 * Returns: 0 on success, -EINVAL on failure.
920 */
921 static int validate_raid_redundancy(struct raid_set *rs)
922 {
923 unsigned int i, rebuild_cnt = 0;
924 unsigned int rebuilds_per_group = 0, copies;
925 unsigned int group_size, last_group_start;
926
927 for (i = 0; i < rs->md.raid_disks; i++)
928 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
929 !rs->dev[i].rdev.sb_page)
930 rebuild_cnt++;
931
932 switch (rs->raid_type->level) {
933 case 0:
934 break;
935 case 1:
936 if (rebuild_cnt >= rs->md.raid_disks)
937 goto too_many;
938 break;
939 case 4:
940 case 5:
941 case 6:
942 if (rebuild_cnt > rs->raid_type->parity_devs)
943 goto too_many;
944 break;
945 case 10:
946 copies = raid10_md_layout_to_copies(rs->md.new_layout);
947 if (rebuild_cnt < copies)
948 break;
949
950 /*
951 * It is possible to have a higher rebuild count for RAID10,
952 * as long as the failed devices occur in different mirror
953 * groups (i.e. different stripes).
954 *
955 * When checking "near" format, make sure no adjacent devices
956 * have failed beyond what can be handled. In addition to the
957 * simple case where the number of devices is a multiple of the
958 * number of copies, we must also handle cases where the number
959 * of devices is not a multiple of the number of copies.
960 * E.g. dev1 dev2 dev3 dev4 dev5
961 * A A B B C
962 * C D D E E
963 */
964 if (__is_raid10_near(rs->md.new_layout)) {
965 for (i = 0; i < rs->md.raid_disks; i++) {
966 if (!(i % copies))
967 rebuilds_per_group = 0;
968 if ((!rs->dev[i].rdev.sb_page ||
969 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
970 (++rebuilds_per_group >= copies))
971 goto too_many;
972 }
973 break;
974 }
975
976 /*
977 * When checking "far" and "offset" formats, we need to ensure
978 * that the device that holds its copy is not also dead or
979 * being rebuilt. (Note that "far" and "offset" formats only
980 * support two copies right now. These formats also only ever
981 * use the 'use_far_sets' variant.)
982 *
983 * This check is somewhat complicated by the need to account
984 * for arrays that are not a multiple of (far) copies. This
985 * results in the need to treat the last (potentially larger)
986 * set differently.
987 */
988 group_size = (rs->md.raid_disks / copies);
989 last_group_start = (rs->md.raid_disks / group_size) - 1;
990 last_group_start *= group_size;
991 for (i = 0; i < rs->md.raid_disks; i++) {
992 if (!(i % copies) && !(i > last_group_start))
993 rebuilds_per_group = 0;
994 if ((!rs->dev[i].rdev.sb_page ||
995 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
996 (++rebuilds_per_group >= copies))
997 goto too_many;
998 }
999 break;
1000 default:
1001 if (rebuild_cnt)
1002 return -EINVAL;
1003 }
1004
1005 return 0;
1006
1007 too_many:
1008 return -EINVAL;
1009 }
1010
1011 /*
1012 * Possible arguments are...
1013 * <chunk_size> [optional_args]
1014 *
1015 * Argument definitions
1016 * <chunk_size> The number of sectors per disk that
1017 * will form the "stripe"
1018 * [[no]sync] Force or prevent recovery of the
1019 * entire array
1020 * [rebuild <idx>] Rebuild the drive indicated by the index
1021 * [daemon_sleep <ms>] Time between bitmap daemon work to
1022 * clear bits
1023 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1024 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1025 * [write_mostly <idx>] Indicate a write mostly drive via index
1026 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm)
1027 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs
1028 * [region_size <sectors>] Defines granularity of bitmap
1029 *
1030 * RAID10-only options:
1031 * [raid10_copies <# copies>] Number of copies. (Default: 2)
1032 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near)
1033 */
1034 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1035 unsigned int num_raid_params)
1036 {
1037 int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1038 unsigned int raid10_copies = 2;
1039 unsigned int i, write_mostly = 0;
1040 unsigned int region_size = 0;
1041 sector_t max_io_len;
1042 const char *arg, *key;
1043 struct raid_dev *rd;
1044 struct raid_type *rt = rs->raid_type;
1045
1046 arg = dm_shift_arg(as);
1047 num_raid_params--; /* Account for chunk_size argument */
1048
1049 if (kstrtoint(arg, 10, &value) < 0) {
1050 rs->ti->error = "Bad numerical argument given for chunk_size";
1051 return -EINVAL;
1052 }
1053
1054 /*
1055 * First, parse the in-order required arguments
1056 * "chunk_size" is the only argument of this type.
1057 */
1058 if (rt_is_raid1(rt)) {
1059 if (value)
1060 DMERR("Ignoring chunk size parameter for RAID 1");
1061 value = 0;
1062 } else if (!is_power_of_2(value)) {
1063 rs->ti->error = "Chunk size must be a power of 2";
1064 return -EINVAL;
1065 } else if (value < 8) {
1066 rs->ti->error = "Chunk size value is too small";
1067 return -EINVAL;
1068 }
1069
1070 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1071
1072 /*
1073 * We set each individual device as In_sync with a completed
1074 * 'recovery_offset'. If there has been a device failure or
1075 * replacement then one of the following cases applies:
1076 *
1077 * 1) User specifies 'rebuild'.
1078 * - Device is reset when param is read.
1079 * 2) A new device is supplied.
1080 * - No matching superblock found, resets device.
1081 * 3) Device failure was transient and returns on reload.
1082 * - Failure noticed, resets device for bitmap replay.
1083 * 4) Device hadn't completed recovery after previous failure.
1084 * - Superblock is read and overrides recovery_offset.
1085 *
1086 * What is found in the superblocks of the devices is always
1087 * authoritative, unless 'rebuild' or '[no]sync' was specified.
1088 */
1089 for (i = 0; i < rs->raid_disks; i++) {
1090 set_bit(In_sync, &rs->dev[i].rdev.flags);
1091 rs->dev[i].rdev.recovery_offset = MaxSector;
1092 }
1093
1094 /*
1095 * Second, parse the unordered optional arguments
1096 */
1097 for (i = 0; i < num_raid_params; i++) {
1098 key = dm_shift_arg(as);
1099 if (!key) {
1100 rs->ti->error = "Not enough raid parameters given";
1101 return -EINVAL;
1102 }
1103
1104 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1105 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1106 rs->ti->error = "Only one 'nosync' argument allowed";
1107 return -EINVAL;
1108 }
1109 continue;
1110 }
1111 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1112 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1113 rs->ti->error = "Only one 'sync' argument allowed";
1114 return -EINVAL;
1115 }
1116 continue;
1117 }
1118 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1119 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1120 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1121 return -EINVAL;
1122 }
1123 continue;
1124 }
1125
1126 arg = dm_shift_arg(as);
1127 i++; /* Account for the argument pairs */
1128 if (!arg) {
1129 rs->ti->error = "Wrong number of raid parameters given";
1130 return -EINVAL;
1131 }
1132
1133 /*
1134 * Parameters that take a string value are checked here.
1135 */
1136
1137 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1138 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1139 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1140 return -EINVAL;
1141 }
1142 if (!rt_is_raid10(rt)) {
1143 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1144 return -EINVAL;
1145 }
1146 raid10_format = raid10_name_to_format(arg);
1147 if (raid10_format < 0) {
1148 rs->ti->error = "Invalid 'raid10_format' value given";
1149 return raid10_format;
1150 }
1151 continue;
1152 }
1153
1154 if (kstrtoint(arg, 10, &value) < 0) {
1155 rs->ti->error = "Bad numerical argument given in raid params";
1156 return -EINVAL;
1157 }
1158
1159 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1160 /*
1161 * "rebuild" is being passed in by userspace to provide
1162 * indexes of replaced devices and to set up additional
1163 * devices on raid level takeover.
1164 */
1165 if (!__within_range(value, 0, rs->raid_disks - 1)) {
1166 rs->ti->error = "Invalid rebuild index given";
1167 return -EINVAL;
1168 }
1169
1170 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1171 rs->ti->error = "rebuild for this index already given";
1172 return -EINVAL;
1173 }
1174
1175 rd = rs->dev + value;
1176 clear_bit(In_sync, &rd->rdev.flags);
1177 clear_bit(Faulty, &rd->rdev.flags);
1178 rd->rdev.recovery_offset = 0;
1179 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1180 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1181 if (!rt_is_raid1(rt)) {
1182 rs->ti->error = "write_mostly option is only valid for RAID1";
1183 return -EINVAL;
1184 }
1185
1186 if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1187 rs->ti->error = "Invalid write_mostly index given";
1188 return -EINVAL;
1189 }
1190
1191 write_mostly++;
1192 set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1193 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1194 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1195 if (!rt_is_raid1(rt)) {
1196 rs->ti->error = "max_write_behind option is only valid for RAID1";
1197 return -EINVAL;
1198 }
1199
1200 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1201 rs->ti->error = "Only one max_write_behind argument pair allowed";
1202 return -EINVAL;
1203 }
1204
1205 /*
1206 * In device-mapper, we specify things in sectors, but
1207 * MD records this value in kB
1208 */
1209 value /= 2;
1210 if (value > COUNTER_MAX) {
1211 rs->ti->error = "Max write-behind limit out of range";
1212 return -EINVAL;
1213 }
1214
1215 rs->md.bitmap_info.max_write_behind = value;
1216 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1217 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1218 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1219 return -EINVAL;
1220 }
1221 if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
1222 rs->ti->error = "daemon sleep period out of range";
1223 return -EINVAL;
1224 }
1225 rs->md.bitmap_info.daemon_sleep = value;
1226 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1227 /* Userspace passes new data_offset after having extended the the data image LV */
1228 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1229 rs->ti->error = "Only one data_offset argument pair allowed";
1230 return -EINVAL;
1231 }
1232 /* Ensure sensible data offset */
1233 if (value < 0 ||
1234 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1235 rs->ti->error = "Bogus data_offset value";
1236 return -EINVAL;
1237 }
1238 rs->data_offset = value;
1239 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1240 /* Define the +/-# of disks to add to/remove from the given raid set */
1241 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1242 rs->ti->error = "Only one delta_disks argument pair allowed";
1243 return -EINVAL;
1244 }
1245 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1246 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1247 rs->ti->error = "Too many delta_disk requested";
1248 return -EINVAL;
1249 }
1250
1251 rs->delta_disks = value;
1252 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1253 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1254 rs->ti->error = "Only one stripe_cache argument pair allowed";
1255 return -EINVAL;
1256 }
1257
1258 if (!rt_is_raid456(rt)) {
1259 rs->ti->error = "Inappropriate argument: stripe_cache";
1260 return -EINVAL;
1261 }
1262
1263 rs->stripe_cache_entries = value;
1264 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1265 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1266 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1267 return -EINVAL;
1268 }
1269 if (value > INT_MAX) {
1270 rs->ti->error = "min_recovery_rate out of range";
1271 return -EINVAL;
1272 }
1273 rs->md.sync_speed_min = (int)value;
1274 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1275 if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1276 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1277 return -EINVAL;
1278 }
1279 if (value > INT_MAX) {
1280 rs->ti->error = "max_recovery_rate out of range";
1281 return -EINVAL;
1282 }
1283 rs->md.sync_speed_max = (int)value;
1284 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1285 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1286 rs->ti->error = "Only one region_size argument pair allowed";
1287 return -EINVAL;
1288 }
1289
1290 region_size = value;
1291 rs->requested_bitmap_chunk_sectors = value;
1292 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1293 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1294 rs->ti->error = "Only one raid10_copies argument pair allowed";
1295 return -EINVAL;
1296 }
1297
1298 if (!__within_range(value, 2, rs->md.raid_disks)) {
1299 rs->ti->error = "Bad value for 'raid10_copies'";
1300 return -EINVAL;
1301 }
1302
1303 raid10_copies = value;
1304 } else {
1305 DMERR("Unable to parse RAID parameter: %s", key);
1306 rs->ti->error = "Unable to parse RAID parameter";
1307 return -EINVAL;
1308 }
1309 }
1310
1311 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1312 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1313 rs->ti->error = "sync and nosync are mutually exclusive";
1314 return -EINVAL;
1315 }
1316
1317 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1318 (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1319 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1320 rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1321 return -EINVAL;
1322 }
1323
1324 if (write_mostly >= rs->md.raid_disks) {
1325 rs->ti->error = "Can't set all raid1 devices to write_mostly";
1326 return -EINVAL;
1327 }
1328
1329 if (validate_region_size(rs, region_size))
1330 return -EINVAL;
1331
1332 if (rs->md.chunk_sectors)
1333 max_io_len = rs->md.chunk_sectors;
1334 else
1335 max_io_len = region_size;
1336
1337 if (dm_set_target_max_io_len(rs->ti, max_io_len))
1338 return -EINVAL;
1339
1340 if (rt_is_raid10(rt)) {
1341 if (raid10_copies > rs->md.raid_disks) {
1342 rs->ti->error = "Not enough devices to satisfy specification";
1343 return -EINVAL;
1344 }
1345
1346 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1347 if (rs->md.new_layout < 0) {
1348 rs->ti->error = "Error getting raid10 format";
1349 return rs->md.new_layout;
1350 }
1351
1352 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1353 if (!rt) {
1354 rs->ti->error = "Failed to recognize new raid10 layout";
1355 return -EINVAL;
1356 }
1357
1358 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1359 rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1360 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1361 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1362 return -EINVAL;
1363 }
1364 }
1365
1366 rs->raid10_copies = raid10_copies;
1367
1368 /* Assume there are no metadata devices until the drives are parsed */
1369 rs->md.persistent = 0;
1370 rs->md.external = 1;
1371
1372 /* Check, if any invalid ctr arguments have been passed in for the raid level */
1373 return rs_check_for_valid_flags(rs);
1374 }
1375
1376 /* Set raid4/5/6 cache size */
1377 static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1378 {
1379 int r;
1380 struct r5conf *conf;
1381 struct mddev *mddev = &rs->md;
1382 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1383 uint32_t nr_stripes = rs->stripe_cache_entries;
1384
1385 if (!rt_is_raid456(rs->raid_type)) {
1386 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1387 return -EINVAL;
1388 }
1389
1390 if (nr_stripes < min_stripes) {
1391 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1392 nr_stripes, min_stripes);
1393 nr_stripes = min_stripes;
1394 }
1395
1396 conf = mddev->private;
1397 if (!conf) {
1398 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1399 return -EINVAL;
1400 }
1401
1402 /* Try setting number of stripes in raid456 stripe cache */
1403 if (conf->min_nr_stripes != nr_stripes) {
1404 r = raid5_set_cache_size(mddev, nr_stripes);
1405 if (r) {
1406 rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1407 return r;
1408 }
1409
1410 DMINFO("%u stripe cache entries", nr_stripes);
1411 }
1412
1413 return 0;
1414 }
1415
1416 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1417 static unsigned int mddev_data_stripes(struct raid_set *rs)
1418 {
1419 return rs->md.raid_disks - rs->raid_type->parity_devs;
1420 }
1421
1422 /* Return # of data stripes of @rs (i.e. as of ctr) */
1423 static unsigned int rs_data_stripes(struct raid_set *rs)
1424 {
1425 return rs->raid_disks - rs->raid_type->parity_devs;
1426 }
1427
1428 /* Calculate the sectors per device and per array used for @rs */
1429 static int rs_set_dev_and_array_sectors(struct raid_set *rs, bool use_mddev)
1430 {
1431 int delta_disks;
1432 unsigned int data_stripes;
1433 struct mddev *mddev = &rs->md;
1434 struct md_rdev *rdev;
1435 sector_t array_sectors = rs->ti->len, dev_sectors = rs->ti->len;
1436
1437 if (use_mddev) {
1438 delta_disks = mddev->delta_disks;
1439 data_stripes = mddev_data_stripes(rs);
1440 } else {
1441 delta_disks = rs->delta_disks;
1442 data_stripes = rs_data_stripes(rs);
1443 }
1444
1445 /* Special raid1 case w/o delta_disks support (yet) */
1446 if (rt_is_raid1(rs->raid_type))
1447 ;
1448 else if (rt_is_raid10(rs->raid_type)) {
1449 if (rs->raid10_copies < 2 ||
1450 delta_disks < 0) {
1451 rs->ti->error = "Bogus raid10 data copies or delta disks";
1452 return -EINVAL;
1453 }
1454
1455 dev_sectors *= rs->raid10_copies;
1456 if (sector_div(dev_sectors, data_stripes))
1457 goto bad;
1458
1459 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1460 if (sector_div(array_sectors, rs->raid10_copies))
1461 goto bad;
1462
1463 } else if (sector_div(dev_sectors, data_stripes))
1464 goto bad;
1465
1466 else
1467 /* Striped layouts */
1468 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1469
1470 rdev_for_each(rdev, mddev)
1471 rdev->sectors = dev_sectors;
1472
1473 mddev->array_sectors = array_sectors;
1474 mddev->dev_sectors = dev_sectors;
1475
1476 return 0;
1477 bad:
1478 rs->ti->error = "Target length not divisible by number of data devices";
1479 return -EINVAL;
1480 }
1481
1482 /* Setup recovery on @rs */
1483 static void __rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1484 {
1485 /* raid0 does not recover */
1486 if (rs_is_raid0(rs))
1487 rs->md.recovery_cp = MaxSector;
1488 /*
1489 * A raid6 set has to be recovered either
1490 * completely or for the grown part to
1491 * ensure proper parity and Q-Syndrome
1492 */
1493 else if (rs_is_raid6(rs))
1494 rs->md.recovery_cp = dev_sectors;
1495 /*
1496 * Other raid set types may skip recovery
1497 * depending on the 'nosync' flag.
1498 */
1499 else
1500 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1501 ? MaxSector : dev_sectors;
1502 }
1503
1504 /* Setup recovery on @rs based on raid type, device size and 'nosync' flag */
1505 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1506 {
1507 if (!dev_sectors)
1508 /* New raid set or 'sync' flag provided */
1509 __rs_setup_recovery(rs, 0);
1510 else if (dev_sectors == MaxSector)
1511 /* Prevent recovery */
1512 __rs_setup_recovery(rs, MaxSector);
1513 else if (rs->dev[0].rdev.sectors < dev_sectors)
1514 /* Grown raid set */
1515 __rs_setup_recovery(rs, rs->dev[0].rdev.sectors);
1516 else
1517 __rs_setup_recovery(rs, MaxSector);
1518 }
1519
1520 static void do_table_event(struct work_struct *ws)
1521 {
1522 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1523
1524 smp_rmb(); /* Make sure we access most actual mddev properties */
1525 if (!rs_is_reshaping(rs))
1526 rs_set_capacity(rs);
1527 dm_table_event(rs->ti->table);
1528 }
1529
1530 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
1531 {
1532 struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
1533
1534 return mddev_congested(&rs->md, bits);
1535 }
1536
1537 /*
1538 * Make sure a valid takover (level switch) is being requested on @rs
1539 *
1540 * Conversions of raid sets from one MD personality to another
1541 * have to conform to restrictions which are enforced here.
1542 */
1543 static int rs_check_takeover(struct raid_set *rs)
1544 {
1545 struct mddev *mddev = &rs->md;
1546 unsigned int near_copies;
1547
1548 if (rs->md.degraded) {
1549 rs->ti->error = "Can't takeover degraded raid set";
1550 return -EPERM;
1551 }
1552
1553 if (rs_is_reshaping(rs)) {
1554 rs->ti->error = "Can't takeover reshaping raid set";
1555 return -EPERM;
1556 }
1557
1558 switch (mddev->level) {
1559 case 0:
1560 /* raid0 -> raid1/5 with one disk */
1561 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1562 mddev->raid_disks == 1)
1563 return 0;
1564
1565 /* raid0 -> raid10 */
1566 if (mddev->new_level == 10 &&
1567 !(rs->raid_disks % mddev->raid_disks))
1568 return 0;
1569
1570 /* raid0 with multiple disks -> raid4/5/6 */
1571 if (__within_range(mddev->new_level, 4, 6) &&
1572 mddev->new_layout == ALGORITHM_PARITY_N &&
1573 mddev->raid_disks > 1)
1574 return 0;
1575
1576 break;
1577
1578 case 10:
1579 /* Can't takeover raid10_offset! */
1580 if (__is_raid10_offset(mddev->layout))
1581 break;
1582
1583 near_copies = __raid10_near_copies(mddev->layout);
1584
1585 /* raid10* -> raid0 */
1586 if (mddev->new_level == 0) {
1587 /* Can takeover raid10_near with raid disks divisable by data copies! */
1588 if (near_copies > 1 &&
1589 !(mddev->raid_disks % near_copies)) {
1590 mddev->raid_disks /= near_copies;
1591 mddev->delta_disks = mddev->raid_disks;
1592 return 0;
1593 }
1594
1595 /* Can takeover raid10_far */
1596 if (near_copies == 1 &&
1597 __raid10_far_copies(mddev->layout) > 1)
1598 return 0;
1599
1600 break;
1601 }
1602
1603 /* raid10_{near,far} -> raid1 */
1604 if (mddev->new_level == 1 &&
1605 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1606 return 0;
1607
1608 /* raid10_{near,far} with 2 disks -> raid4/5 */
1609 if (__within_range(mddev->new_level, 4, 5) &&
1610 mddev->raid_disks == 2)
1611 return 0;
1612 break;
1613
1614 case 1:
1615 /* raid1 with 2 disks -> raid4/5 */
1616 if (__within_range(mddev->new_level, 4, 5) &&
1617 mddev->raid_disks == 2) {
1618 mddev->degraded = 1;
1619 return 0;
1620 }
1621
1622 /* raid1 -> raid0 */
1623 if (mddev->new_level == 0 &&
1624 mddev->raid_disks == 1)
1625 return 0;
1626
1627 /* raid1 -> raid10 */
1628 if (mddev->new_level == 10)
1629 return 0;
1630 break;
1631
1632 case 4:
1633 /* raid4 -> raid0 */
1634 if (mddev->new_level == 0)
1635 return 0;
1636
1637 /* raid4 -> raid1/5 with 2 disks */
1638 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1639 mddev->raid_disks == 2)
1640 return 0;
1641
1642 /* raid4 -> raid5/6 with parity N */
1643 if (__within_range(mddev->new_level, 5, 6) &&
1644 mddev->layout == ALGORITHM_PARITY_N)
1645 return 0;
1646 break;
1647
1648 case 5:
1649 /* raid5 with parity N -> raid0 */
1650 if (mddev->new_level == 0 &&
1651 mddev->layout == ALGORITHM_PARITY_N)
1652 return 0;
1653
1654 /* raid5 with parity N -> raid4 */
1655 if (mddev->new_level == 4 &&
1656 mddev->layout == ALGORITHM_PARITY_N)
1657 return 0;
1658
1659 /* raid5 with 2 disks -> raid1/4/10 */
1660 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1661 mddev->raid_disks == 2)
1662 return 0;
1663
1664 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1665 if (mddev->new_level == 6 &&
1666 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1667 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1668 return 0;
1669 break;
1670
1671 case 6:
1672 /* raid6 with parity N -> raid0 */
1673 if (mddev->new_level == 0 &&
1674 mddev->layout == ALGORITHM_PARITY_N)
1675 return 0;
1676
1677 /* raid6 with parity N -> raid4 */
1678 if (mddev->new_level == 4 &&
1679 mddev->layout == ALGORITHM_PARITY_N)
1680 return 0;
1681
1682 /* raid6_*_n with Q-Syndrome N -> raid5_* */
1683 if (mddev->new_level == 5 &&
1684 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1685 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1686 return 0;
1687
1688 default:
1689 break;
1690 }
1691
1692 rs->ti->error = "takeover not possible";
1693 return -EINVAL;
1694 }
1695
1696 /* True if @rs requested to be taken over */
1697 static bool rs_takeover_requested(struct raid_set *rs)
1698 {
1699 return rs->md.new_level != rs->md.level;
1700 }
1701
1702 /* True if @rs is requested to reshape by ctr */
1703 static bool rs_reshape_requested(struct raid_set *rs)
1704 {
1705 bool change;
1706 struct mddev *mddev = &rs->md;
1707
1708 if (rs_takeover_requested(rs))
1709 return false;
1710
1711 if (!mddev->level)
1712 return false;
1713
1714 change = mddev->new_layout != mddev->layout ||
1715 mddev->new_chunk_sectors != mddev->chunk_sectors ||
1716 rs->delta_disks;
1717
1718 /* Historical case to support raid1 reshape without delta disks */
1719 if (mddev->level == 1) {
1720 if (rs->delta_disks)
1721 return !!rs->delta_disks;
1722
1723 return !change &&
1724 mddev->raid_disks != rs->raid_disks;
1725 }
1726
1727 if (mddev->level == 10)
1728 return change &&
1729 !__is_raid10_far(mddev->new_layout) &&
1730 rs->delta_disks >= 0;
1731
1732 return change;
1733 }
1734
1735 /* Features */
1736 #define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */
1737
1738 /* State flags for sb->flags */
1739 #define SB_FLAG_RESHAPE_ACTIVE 0x1
1740 #define SB_FLAG_RESHAPE_BACKWARDS 0x2
1741
1742 /*
1743 * This structure is never routinely used by userspace, unlike md superblocks.
1744 * Devices with this superblock should only ever be accessed via device-mapper.
1745 */
1746 #define DM_RAID_MAGIC 0x64526D44
1747 struct dm_raid_superblock {
1748 __le32 magic; /* "DmRd" */
1749 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1750
1751 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */
1752 __le32 array_position; /* The position of this drive in the raid set */
1753
1754 __le64 events; /* Incremented by md when superblock updated */
1755 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */
1756 /* indicate failures (see extension below) */
1757
1758 /*
1759 * This offset tracks the progress of the repair or replacement of
1760 * an individual drive.
1761 */
1762 __le64 disk_recovery_offset;
1763
1764 /*
1765 * This offset tracks the progress of the initial raid set
1766 * synchronisation/parity calculation.
1767 */
1768 __le64 array_resync_offset;
1769
1770 /*
1771 * raid characteristics
1772 */
1773 __le32 level;
1774 __le32 layout;
1775 __le32 stripe_sectors;
1776
1777 /********************************************************************
1778 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1779 *
1780 * FEATURE_FLAG_SUPPORTS_V190 in the features member indicates that those exist
1781 */
1782
1783 __le32 flags; /* Flags defining array states for reshaping */
1784
1785 /*
1786 * This offset tracks the progress of a raid
1787 * set reshape in order to be able to restart it
1788 */
1789 __le64 reshape_position;
1790
1791 /*
1792 * These define the properties of the array in case of an interrupted reshape
1793 */
1794 __le32 new_level;
1795 __le32 new_layout;
1796 __le32 new_stripe_sectors;
1797 __le32 delta_disks;
1798
1799 __le64 array_sectors; /* Array size in sectors */
1800
1801 /*
1802 * Sector offsets to data on devices (reshaping).
1803 * Needed to support out of place reshaping, thus
1804 * not writing over any stripes whilst converting
1805 * them from old to new layout
1806 */
1807 __le64 data_offset;
1808 __le64 new_data_offset;
1809
1810 __le64 sectors; /* Used device size in sectors */
1811
1812 /*
1813 * Additonal Bit field of devices indicating failures to support
1814 * up to 256 devices with the 1.9.0 on-disk metadata format
1815 */
1816 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1817
1818 __le32 incompat_features; /* Used to indicate any incompatible features */
1819
1820 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
1821 } __packed;
1822
1823 /*
1824 * Check for reshape constraints on raid set @rs:
1825 *
1826 * - reshape function non-existent
1827 * - degraded set
1828 * - ongoing recovery
1829 * - ongoing reshape
1830 *
1831 * Returns 0 if none or -EPERM if given constraint
1832 * and error message reference in @errmsg
1833 */
1834 static int rs_check_reshape(struct raid_set *rs)
1835 {
1836 struct mddev *mddev = &rs->md;
1837
1838 if (!mddev->pers || !mddev->pers->check_reshape)
1839 rs->ti->error = "Reshape not supported";
1840 else if (mddev->degraded)
1841 rs->ti->error = "Can't reshape degraded raid set";
1842 else if (rs_is_recovering(rs))
1843 rs->ti->error = "Convert request on recovering raid set prohibited";
1844 else if (rs_is_reshaping(rs))
1845 rs->ti->error = "raid set already reshaping!";
1846 else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
1847 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
1848 else
1849 return 0;
1850
1851 return -EPERM;
1852 }
1853
1854 static int read_disk_sb(struct md_rdev *rdev, int size)
1855 {
1856 BUG_ON(!rdev->sb_page);
1857
1858 if (rdev->sb_loaded)
1859 return 0;
1860
1861 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) {
1862 DMERR("Failed to read superblock of device at position %d",
1863 rdev->raid_disk);
1864 md_error(rdev->mddev, rdev);
1865 return -EINVAL;
1866 }
1867
1868 rdev->sb_loaded = 1;
1869
1870 return 0;
1871 }
1872
1873 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1874 {
1875 failed_devices[0] = le64_to_cpu(sb->failed_devices);
1876 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
1877
1878 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
1879 int i = ARRAY_SIZE(sb->extended_failed_devices);
1880
1881 while (i--)
1882 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
1883 }
1884 }
1885
1886 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1887 {
1888 int i = ARRAY_SIZE(sb->extended_failed_devices);
1889
1890 sb->failed_devices = cpu_to_le64(failed_devices[0]);
1891 while (i--)
1892 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
1893 }
1894
1895 /*
1896 * Synchronize the superblock members with the raid set properties
1897 *
1898 * All superblock data is little endian.
1899 */
1900 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
1901 {
1902 bool update_failed_devices = false;
1903 unsigned int i;
1904 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
1905 struct dm_raid_superblock *sb;
1906 struct raid_set *rs = container_of(mddev, struct raid_set, md);
1907
1908 /* No metadata device, no superblock */
1909 if (!rdev->meta_bdev)
1910 return;
1911
1912 BUG_ON(!rdev->sb_page);
1913
1914 sb = page_address(rdev->sb_page);
1915
1916 sb_retrieve_failed_devices(sb, failed_devices);
1917
1918 for (i = 0; i < rs->raid_disks; i++)
1919 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
1920 update_failed_devices = true;
1921 set_bit(i, (void *) failed_devices);
1922 }
1923
1924 if (update_failed_devices)
1925 sb_update_failed_devices(sb, failed_devices);
1926
1927 sb->magic = cpu_to_le32(DM_RAID_MAGIC);
1928 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
1929
1930 sb->num_devices = cpu_to_le32(mddev->raid_disks);
1931 sb->array_position = cpu_to_le32(rdev->raid_disk);
1932
1933 sb->events = cpu_to_le64(mddev->events);
1934
1935 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
1936 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
1937
1938 sb->level = cpu_to_le32(mddev->level);
1939 sb->layout = cpu_to_le32(mddev->layout);
1940 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
1941
1942 sb->new_level = cpu_to_le32(mddev->new_level);
1943 sb->new_layout = cpu_to_le32(mddev->new_layout);
1944 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
1945
1946 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1947
1948 smp_rmb(); /* Make sure we access most recent reshape position */
1949 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1950 if (le64_to_cpu(sb->reshape_position) != MaxSector) {
1951 /* Flag ongoing reshape */
1952 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
1953
1954 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
1955 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
1956 } else {
1957 /* Clear reshape flags */
1958 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
1959 }
1960
1961 sb->array_sectors = cpu_to_le64(mddev->array_sectors);
1962 sb->data_offset = cpu_to_le64(rdev->data_offset);
1963 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
1964 sb->sectors = cpu_to_le64(rdev->sectors);
1965 sb->incompat_features = cpu_to_le32(0);
1966
1967 /* Zero out the rest of the payload after the size of the superblock */
1968 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
1969 }
1970
1971 /*
1972 * super_load
1973 *
1974 * This function creates a superblock if one is not found on the device
1975 * and will decide which superblock to use if there's a choice.
1976 *
1977 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
1978 */
1979 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
1980 {
1981 int r;
1982 struct dm_raid_superblock *sb;
1983 struct dm_raid_superblock *refsb;
1984 uint64_t events_sb, events_refsb;
1985
1986 rdev->sb_start = 0;
1987 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
1988 if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
1989 DMERR("superblock size of a logical block is no longer valid");
1990 return -EINVAL;
1991 }
1992
1993 r = read_disk_sb(rdev, rdev->sb_size);
1994 if (r)
1995 return r;
1996
1997 sb = page_address(rdev->sb_page);
1998
1999 /*
2000 * Two cases that we want to write new superblocks and rebuild:
2001 * 1) New device (no matching magic number)
2002 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2003 */
2004 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2005 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2006 super_sync(rdev->mddev, rdev);
2007
2008 set_bit(FirstUse, &rdev->flags);
2009 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2010
2011 /* Force writing of superblocks to disk */
2012 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags);
2013
2014 /* Any superblock is better than none, choose that if given */
2015 return refdev ? 0 : 1;
2016 }
2017
2018 if (!refdev)
2019 return 1;
2020
2021 events_sb = le64_to_cpu(sb->events);
2022
2023 refsb = page_address(refdev->sb_page);
2024 events_refsb = le64_to_cpu(refsb->events);
2025
2026 return (events_sb > events_refsb) ? 1 : 0;
2027 }
2028
2029 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2030 {
2031 int role;
2032 unsigned int d;
2033 struct mddev *mddev = &rs->md;
2034 uint64_t events_sb;
2035 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2036 struct dm_raid_superblock *sb;
2037 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2038 struct md_rdev *r;
2039 struct dm_raid_superblock *sb2;
2040
2041 sb = page_address(rdev->sb_page);
2042 events_sb = le64_to_cpu(sb->events);
2043
2044 /*
2045 * Initialise to 1 if this is a new superblock.
2046 */
2047 mddev->events = events_sb ? : 1;
2048
2049 mddev->reshape_position = MaxSector;
2050
2051 mddev->raid_disks = le32_to_cpu(sb->num_devices);
2052 mddev->level = le32_to_cpu(sb->level);
2053 mddev->layout = le32_to_cpu(sb->layout);
2054 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2055
2056 /*
2057 * Reshaping is supported, e.g. reshape_position is valid
2058 * in superblock and superblock content is authoritative.
2059 */
2060 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2061 /* Superblock is authoritative wrt given raid set layout! */
2062 mddev->new_level = le32_to_cpu(sb->new_level);
2063 mddev->new_layout = le32_to_cpu(sb->new_layout);
2064 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2065 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2066 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2067
2068 /* raid was reshaping and got interrupted */
2069 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2070 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2071 DMERR("Reshape requested but raid set is still reshaping");
2072 return -EINVAL;
2073 }
2074
2075 if (mddev->delta_disks < 0 ||
2076 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2077 mddev->reshape_backwards = 1;
2078 else
2079 mddev->reshape_backwards = 0;
2080
2081 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2082 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2083 }
2084
2085 } else {
2086 /*
2087 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2088 */
2089 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout);
2090 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2091
2092 if (rs_takeover_requested(rs)) {
2093 if (rt_cur && rt_new)
2094 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)",
2095 rt_cur->name, rt_new->name);
2096 else
2097 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)");
2098 return -EINVAL;
2099 } else if (rs_reshape_requested(rs)) {
2100 DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)");
2101 if (mddev->layout != mddev->new_layout) {
2102 if (rt_cur && rt_new)
2103 DMERR(" current layout %s vs new layout %s",
2104 rt_cur->name, rt_new->name);
2105 else
2106 DMERR(" current layout 0x%X vs new layout 0x%X",
2107 le32_to_cpu(sb->layout), mddev->new_layout);
2108 }
2109 if (mddev->chunk_sectors != mddev->new_chunk_sectors)
2110 DMERR(" current stripe sectors %u vs new stripe sectors %u",
2111 mddev->chunk_sectors, mddev->new_chunk_sectors);
2112 if (rs->delta_disks)
2113 DMERR(" current %u disks vs new %u disks",
2114 mddev->raid_disks, mddev->raid_disks + rs->delta_disks);
2115 if (rs_is_raid10(rs)) {
2116 DMERR(" Old layout: %s w/ %u copies",
2117 raid10_md_layout_to_format(mddev->layout),
2118 raid10_md_layout_to_copies(mddev->layout));
2119 DMERR(" New layout: %s w/ %u copies",
2120 raid10_md_layout_to_format(mddev->new_layout),
2121 raid10_md_layout_to_copies(mddev->new_layout));
2122 }
2123 return -EINVAL;
2124 }
2125
2126 DMINFO("Discovered old metadata format; upgrading to extended metadata format");
2127 }
2128
2129 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2130 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2131
2132 /*
2133 * During load, we set FirstUse if a new superblock was written.
2134 * There are two reasons we might not have a superblock:
2135 * 1) The raid set is brand new - in which case, all of the
2136 * devices must have their In_sync bit set. Also,
2137 * recovery_cp must be 0, unless forced.
2138 * 2) This is a new device being added to an old raid set
2139 * and the new device needs to be rebuilt - in which
2140 * case the In_sync bit will /not/ be set and
2141 * recovery_cp must be MaxSector.
2142 * 3) This is/are a new device(s) being added to an old
2143 * raid set during takeover to a higher raid level
2144 * to provide capacity for redundancy or during reshape
2145 * to add capacity to grow the raid set.
2146 */
2147 d = 0;
2148 rdev_for_each(r, mddev) {
2149 if (test_bit(FirstUse, &r->flags))
2150 new_devs++;
2151
2152 if (!test_bit(In_sync, &r->flags)) {
2153 DMINFO("Device %d specified for rebuild; clearing superblock",
2154 r->raid_disk);
2155 rebuilds++;
2156
2157 if (test_bit(FirstUse, &r->flags))
2158 rebuild_and_new++;
2159 }
2160
2161 d++;
2162 }
2163
2164 if (new_devs == rs->raid_disks || !rebuilds) {
2165 /* Replace a broken device */
2166 if (new_devs == 1 && !rs->delta_disks)
2167 ;
2168 if (new_devs == rs->raid_disks) {
2169 DMINFO("Superblocks created for new raid set");
2170 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2171 } else if (new_devs != rebuilds &&
2172 new_devs != rs->delta_disks) {
2173 DMERR("New device injected into existing raid set without "
2174 "'delta_disks' or 'rebuild' parameter specified");
2175 return -EINVAL;
2176 }
2177 } else if (new_devs && new_devs != rebuilds) {
2178 DMERR("%u 'rebuild' devices cannot be injected into"
2179 " a raid set with %u other first-time devices",
2180 rebuilds, new_devs);
2181 return -EINVAL;
2182 } else if (rebuilds) {
2183 if (rebuild_and_new && rebuilds != rebuild_and_new) {
2184 DMERR("new device%s provided without 'rebuild'",
2185 new_devs > 1 ? "s" : "");
2186 return -EINVAL;
2187 } else if (rs_is_recovering(rs)) {
2188 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2189 (unsigned long long) mddev->recovery_cp);
2190 return -EINVAL;
2191 } else if (rs_is_reshaping(rs)) {
2192 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2193 (unsigned long long) mddev->reshape_position);
2194 return -EINVAL;
2195 }
2196 }
2197
2198 /*
2199 * Now we set the Faulty bit for those devices that are
2200 * recorded in the superblock as failed.
2201 */
2202 sb_retrieve_failed_devices(sb, failed_devices);
2203 rdev_for_each(r, mddev) {
2204 if (!r->sb_page)
2205 continue;
2206 sb2 = page_address(r->sb_page);
2207 sb2->failed_devices = 0;
2208 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2209
2210 /*
2211 * Check for any device re-ordering.
2212 */
2213 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2214 role = le32_to_cpu(sb2->array_position);
2215 if (role < 0)
2216 continue;
2217
2218 if (role != r->raid_disk) {
2219 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) {
2220 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2221 rs->raid_disks % rs->raid10_copies) {
2222 rs->ti->error =
2223 "Cannot change raid10 near set to odd # of devices!";
2224 return -EINVAL;
2225 }
2226
2227 sb2->array_position = cpu_to_le32(r->raid_disk);
2228
2229 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2230 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2231 !rt_is_raid1(rs->raid_type)) {
2232 rs->ti->error = "Cannot change device positions in raid set";
2233 return -EINVAL;
2234 }
2235
2236 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2237 }
2238
2239 /*
2240 * Partial recovery is performed on
2241 * returning failed devices.
2242 */
2243 if (test_bit(role, (void *) failed_devices))
2244 set_bit(Faulty, &r->flags);
2245 }
2246 }
2247
2248 return 0;
2249 }
2250
2251 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2252 {
2253 struct mddev *mddev = &rs->md;
2254 struct dm_raid_superblock *sb;
2255
2256 if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0)
2257 return 0;
2258
2259 sb = page_address(rdev->sb_page);
2260
2261 /*
2262 * If mddev->events is not set, we know we have not yet initialized
2263 * the array.
2264 */
2265 if (!mddev->events && super_init_validation(rs, rdev))
2266 return -EINVAL;
2267
2268 if (le32_to_cpu(sb->compat_features) &&
2269 le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2270 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2271 return -EINVAL;
2272 }
2273
2274 if (sb->incompat_features) {
2275 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2276 return -EINVAL;
2277 }
2278
2279 /* Enable bitmap creation for RAID levels != 0 */
2280 mddev->bitmap_info.offset = rt_is_raid0(rs->raid_type) ? 0 : to_sector(4096);
2281 rdev->mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2282
2283 if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2284 /* Retrieve device size stored in superblock to be prepared for shrink */
2285 rdev->sectors = le64_to_cpu(sb->sectors);
2286 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2287 if (rdev->recovery_offset == MaxSector)
2288 set_bit(In_sync, &rdev->flags);
2289 /*
2290 * If no reshape in progress -> we're recovering single
2291 * disk(s) and have to set the device(s) to out-of-sync
2292 */
2293 else if (!rs_is_reshaping(rs))
2294 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2295 }
2296
2297 /*
2298 * If a device comes back, set it as not In_sync and no longer faulty.
2299 */
2300 if (test_and_clear_bit(Faulty, &rdev->flags)) {
2301 rdev->recovery_offset = 0;
2302 clear_bit(In_sync, &rdev->flags);
2303 rdev->saved_raid_disk = rdev->raid_disk;
2304 }
2305
2306 /* Reshape support -> restore repective data offsets */
2307 rdev->data_offset = le64_to_cpu(sb->data_offset);
2308 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2309
2310 return 0;
2311 }
2312
2313 /*
2314 * Analyse superblocks and select the freshest.
2315 */
2316 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2317 {
2318 int r;
2319 struct md_rdev *rdev, *freshest;
2320 struct mddev *mddev = &rs->md;
2321
2322 freshest = NULL;
2323 rdev_for_each(rdev, mddev) {
2324 /*
2325 * Skipping super_load due to CTR_FLAG_SYNC will cause
2326 * the array to undergo initialization again as
2327 * though it were new. This is the intended effect
2328 * of the "sync" directive.
2329 *
2330 * With reshaping capability added, we must ensure that
2331 * that the "sync" directive is disallowed during the reshape.
2332 */
2333 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2334 continue;
2335
2336 if (!rdev->meta_bdev)
2337 continue;
2338
2339 r = super_load(rdev, freshest);
2340
2341 switch (r) {
2342 case 1:
2343 freshest = rdev;
2344 break;
2345 case 0:
2346 break;
2347 default:
2348 /* This is a failure to read the superblock from the metadata device. */
2349 /*
2350 * We have to keep any raid0 data/metadata device pairs or
2351 * the MD raid0 personality will fail to start the array.
2352 */
2353 if (rs_is_raid0(rs))
2354 continue;
2355
2356 /*
2357 * We keep the dm_devs to be able to emit the device tuple
2358 * properly on the table line in raid_status() (rather than
2359 * mistakenly acting as if '- -' got passed into the constructor).
2360 *
2361 * The rdev has to stay on the same_set list to allow for
2362 * the attempt to restore faulty devices on second resume.
2363 */
2364 set_bit(Faulty, &rdev->flags);
2365 rdev->raid_disk = rdev->saved_raid_disk = -1;
2366 break;
2367 }
2368 }
2369
2370 if (!freshest)
2371 return 0;
2372
2373 if (validate_raid_redundancy(rs)) {
2374 rs->ti->error = "Insufficient redundancy to activate array";
2375 return -EINVAL;
2376 }
2377
2378 /*
2379 * Validation of the freshest device provides the source of
2380 * validation for the remaining devices.
2381 */
2382 rs->ti->error = "Unable to assemble array: Invalid superblocks";
2383 if (super_validate(rs, freshest))
2384 return -EINVAL;
2385
2386 rdev_for_each(rdev, mddev)
2387 if ((rdev != freshest) && super_validate(rs, rdev))
2388 return -EINVAL;
2389 return 0;
2390 }
2391
2392 /*
2393 * Adjust data_offset and new_data_offset on all disk members of @rs
2394 * for out of place reshaping if requested by contructor
2395 *
2396 * We need free space at the beginning of each raid disk for forward
2397 * and at the end for backward reshapes which userspace has to provide
2398 * via remapping/reordering of space.
2399 */
2400 static int rs_adjust_data_offsets(struct raid_set *rs)
2401 {
2402 sector_t data_offset = 0, new_data_offset = 0;
2403 struct md_rdev *rdev;
2404
2405 /* Constructor did not request data offset change */
2406 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2407 if (!rs_is_reshapable(rs))
2408 goto out;
2409
2410 return 0;
2411 }
2412
2413 /* HM FIXME: get InSync raid_dev? */
2414 rdev = &rs->dev[0].rdev;
2415
2416 if (rs->delta_disks < 0) {
2417 /*
2418 * Removing disks (reshaping backwards):
2419 *
2420 * - before reshape: data is at offset 0 and free space
2421 * is at end of each component LV
2422 *
2423 * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2424 */
2425 data_offset = 0;
2426 new_data_offset = rs->data_offset;
2427
2428 } else if (rs->delta_disks > 0) {
2429 /*
2430 * Adding disks (reshaping forwards):
2431 *
2432 * - before reshape: data is at offset rs->data_offset != 0 and
2433 * free space is at begin of each component LV
2434 *
2435 * - after reshape: data is at offset 0 on each component LV
2436 */
2437 data_offset = rs->data_offset;
2438 new_data_offset = 0;
2439
2440 } else {
2441 /*
2442 * User space passes in 0 for data offset after having removed reshape space
2443 *
2444 * - or - (data offset != 0)
2445 *
2446 * Changing RAID layout or chunk size -> toggle offsets
2447 *
2448 * - before reshape: data is at offset rs->data_offset 0 and
2449 * free space is at end of each component LV
2450 * -or-
2451 * data is at offset rs->data_offset != 0 and
2452 * free space is at begin of each component LV
2453 *
2454 * - after reshape: data is at offset 0 if it was at offset != 0
2455 * or at offset != 0 if it was at offset 0
2456 * on each component LV
2457 *
2458 */
2459 data_offset = rs->data_offset ? rdev->data_offset : 0;
2460 new_data_offset = data_offset ? 0 : rs->data_offset;
2461 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2462 }
2463
2464 /*
2465 * Make sure we got a minimum amount of free sectors per device
2466 */
2467 if (rs->data_offset &&
2468 to_sector(i_size_read(rdev->bdev->bd_inode)) - rdev->sectors < MIN_FREE_RESHAPE_SPACE) {
2469 rs->ti->error = data_offset ? "No space for forward reshape" :
2470 "No space for backward reshape";
2471 return -ENOSPC;
2472 }
2473 out:
2474 /* Adjust data offsets on all rdevs */
2475 rdev_for_each(rdev, &rs->md) {
2476 rdev->data_offset = data_offset;
2477 rdev->new_data_offset = new_data_offset;
2478 }
2479
2480 return 0;
2481 }
2482
2483 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2484 static void __reorder_raid_disk_indexes(struct raid_set *rs)
2485 {
2486 int i = 0;
2487 struct md_rdev *rdev;
2488
2489 rdev_for_each(rdev, &rs->md) {
2490 rdev->raid_disk = i++;
2491 rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2492 }
2493 }
2494
2495 /*
2496 * Setup @rs for takeover by a different raid level
2497 */
2498 static int rs_setup_takeover(struct raid_set *rs)
2499 {
2500 struct mddev *mddev = &rs->md;
2501 struct md_rdev *rdev;
2502 unsigned int d = mddev->raid_disks = rs->raid_disks;
2503 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2504
2505 if (rt_is_raid10(rs->raid_type)) {
2506 if (mddev->level == 0) {
2507 /* Userpace reordered disks -> adjust raid_disk indexes */
2508 __reorder_raid_disk_indexes(rs);
2509
2510 /* raid0 -> raid10_far layout */
2511 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2512 rs->raid10_copies);
2513 } else if (mddev->level == 1)
2514 /* raid1 -> raid10_near layout */
2515 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2516 rs->raid_disks);
2517 else
2518 return -EINVAL;
2519
2520 }
2521
2522 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2523 mddev->recovery_cp = MaxSector;
2524
2525 while (d--) {
2526 rdev = &rs->dev[d].rdev;
2527
2528 if (test_bit(d, (void *) rs->rebuild_disks)) {
2529 clear_bit(In_sync, &rdev->flags);
2530 clear_bit(Faulty, &rdev->flags);
2531 mddev->recovery_cp = rdev->recovery_offset = 0;
2532 /* Bitmap has to be created when we do an "up" takeover */
2533 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2534 }
2535
2536 rdev->new_data_offset = new_data_offset;
2537 }
2538
2539 return 0;
2540 }
2541
2542 /* Prepare @rs for reshape */
2543 static int rs_prepare_reshape(struct raid_set *rs)
2544 {
2545 bool reshape;
2546 struct mddev *mddev = &rs->md;
2547
2548 if (rs_is_raid10(rs)) {
2549 if (rs->raid_disks != mddev->raid_disks &&
2550 __is_raid10_near(mddev->layout) &&
2551 rs->raid10_copies &&
2552 rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2553 /*
2554 * raid disk have to be multiple of data copies to allow this conversion,
2555 *
2556 * This is actually not a reshape it is a
2557 * rebuild of any additional mirrors per group
2558 */
2559 if (rs->raid_disks % rs->raid10_copies) {
2560 rs->ti->error = "Can't reshape raid10 mirror groups";
2561 return -EINVAL;
2562 }
2563
2564 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2565 __reorder_raid_disk_indexes(rs);
2566 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2567 rs->raid10_copies);
2568 mddev->new_layout = mddev->layout;
2569 reshape = false;
2570 } else
2571 reshape = true;
2572
2573 } else if (rs_is_raid456(rs))
2574 reshape = true;
2575
2576 else if (rs_is_raid1(rs)) {
2577 if (rs->delta_disks) {
2578 /* Process raid1 via delta_disks */
2579 mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2580 reshape = true;
2581 } else {
2582 /* Process raid1 without delta_disks */
2583 mddev->raid_disks = rs->raid_disks;
2584 reshape = false;
2585 }
2586 } else {
2587 rs->ti->error = "Called with bogus raid type";
2588 return -EINVAL;
2589 }
2590
2591 if (reshape) {
2592 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2593 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2594 } else if (mddev->raid_disks < rs->raid_disks)
2595 /* Create new superblocks and bitmaps, if any new disks */
2596 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2597
2598 return 0;
2599 }
2600
2601 /*
2602 *
2603 * - change raid layout
2604 * - change chunk size
2605 * - add disks
2606 * - remove disks
2607 */
2608 static int rs_setup_reshape(struct raid_set *rs)
2609 {
2610 int r = 0;
2611 unsigned int cur_raid_devs, d;
2612 struct mddev *mddev = &rs->md;
2613 struct md_rdev *rdev;
2614
2615 mddev->delta_disks = rs->delta_disks;
2616 cur_raid_devs = mddev->raid_disks;
2617
2618 /* Ignore impossible layout change whilst adding/removing disks */
2619 if (mddev->delta_disks &&
2620 mddev->layout != mddev->new_layout) {
2621 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2622 mddev->new_layout = mddev->layout;
2623 }
2624
2625 /*
2626 * Adjust array size:
2627 *
2628 * - in case of adding disks, array size has
2629 * to grow after the disk adding reshape,
2630 * which'll hapen in the event handler;
2631 * reshape will happen forward, so space has to
2632 * be available at the beginning of each disk
2633 *
2634 * - in case of removing disks, array size
2635 * has to shrink before starting the reshape,
2636 * which'll happen here;
2637 * reshape will happen backward, so space has to
2638 * be available at the end of each disk
2639 *
2640 * - data_offset and new_data_offset are
2641 * adjusted for aforementioned out of place
2642 * reshaping based on userspace passing in
2643 * the "data_offset <sectors>" key/value
2644 * pair via the constructor
2645 */
2646
2647 /* Add disk(s) */
2648 if (rs->delta_disks > 0) {
2649 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2650 for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2651 rdev = &rs->dev[d].rdev;
2652 clear_bit(In_sync, &rdev->flags);
2653
2654 /*
2655 * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2656 * by md, which'll store that erroneously in the superblock on reshape
2657 */
2658 rdev->saved_raid_disk = -1;
2659 rdev->raid_disk = d;
2660
2661 rdev->sectors = mddev->dev_sectors;
2662 rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2663 }
2664
2665 mddev->reshape_backwards = 0; /* adding disks -> forward reshape */
2666
2667 /* Remove disk(s) */
2668 } else if (rs->delta_disks < 0) {
2669 r = rs_set_dev_and_array_sectors(rs, true);
2670 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2671
2672 /* Change layout and/or chunk size */
2673 } else {
2674 /*
2675 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2676 *
2677 * keeping number of disks and do layout change ->
2678 *
2679 * toggle reshape_backward depending on data_offset:
2680 *
2681 * - free space upfront -> reshape forward
2682 *
2683 * - free space at the end -> reshape backward
2684 *
2685 *
2686 * This utilizes free reshape space avoiding the need
2687 * for userspace to move (parts of) LV segments in
2688 * case of layout/chunksize change (for disk
2689 * adding/removing reshape space has to be at
2690 * the proper address (see above with delta_disks):
2691 *
2692 * add disk(s) -> begin
2693 * remove disk(s)-> end
2694 */
2695 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2696 }
2697
2698 return r;
2699 }
2700
2701 /*
2702 * Enable/disable discard support on RAID set depending on
2703 * RAID level and discard properties of underlying RAID members.
2704 */
2705 static void configure_discard_support(struct raid_set *rs)
2706 {
2707 int i;
2708 bool raid456;
2709 struct dm_target *ti = rs->ti;
2710
2711 /* Assume discards not supported until after checks below. */
2712 ti->discards_supported = false;
2713
2714 /* RAID level 4,5,6 require discard_zeroes_data for data integrity! */
2715 raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6);
2716
2717 for (i = 0; i < rs->raid_disks; i++) {
2718 struct request_queue *q;
2719
2720 if (!rs->dev[i].rdev.bdev)
2721 continue;
2722
2723 q = bdev_get_queue(rs->dev[i].rdev.bdev);
2724 if (!q || !blk_queue_discard(q))
2725 return;
2726
2727 if (raid456) {
2728 if (!q->limits.discard_zeroes_data)
2729 return;
2730 if (!devices_handle_discard_safely) {
2731 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2732 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2733 return;
2734 }
2735 }
2736 }
2737
2738 /* All RAID members properly support discards */
2739 ti->discards_supported = true;
2740
2741 /*
2742 * RAID1 and RAID10 personalities require bio splitting,
2743 * RAID0/4/5/6 don't and process large discard bios properly.
2744 */
2745 ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10);
2746 ti->num_discard_bios = 1;
2747 }
2748
2749 /*
2750 * Construct a RAID0/1/10/4/5/6 mapping:
2751 * Args:
2752 * <raid_type> <#raid_params> <raid_params>{0,} \
2753 * <#raid_devs> [<meta_dev1> <dev1>]{1,}
2754 *
2755 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for
2756 * details on possible <raid_params>.
2757 *
2758 * Userspace is free to initialize the metadata devices, hence the superblocks to
2759 * enforce recreation based on the passed in table parameters.
2760 *
2761 */
2762 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2763 {
2764 int r;
2765 bool resize;
2766 struct raid_type *rt;
2767 unsigned int num_raid_params, num_raid_devs;
2768 sector_t calculated_dev_sectors;
2769 struct raid_set *rs = NULL;
2770 const char *arg;
2771 struct rs_layout rs_layout;
2772 struct dm_arg_set as = { argc, argv }, as_nrd;
2773 struct dm_arg _args[] = {
2774 { 0, as.argc, "Cannot understand number of raid parameters" },
2775 { 1, 254, "Cannot understand number of raid devices parameters" }
2776 };
2777
2778 /* Must have <raid_type> */
2779 arg = dm_shift_arg(&as);
2780 if (!arg) {
2781 ti->error = "No arguments";
2782 return -EINVAL;
2783 }
2784
2785 rt = get_raid_type(arg);
2786 if (!rt) {
2787 ti->error = "Unrecognised raid_type";
2788 return -EINVAL;
2789 }
2790
2791 /* Must have <#raid_params> */
2792 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
2793 return -EINVAL;
2794
2795 /* number of raid device tupples <meta_dev data_dev> */
2796 as_nrd = as;
2797 dm_consume_args(&as_nrd, num_raid_params);
2798 _args[1].max = (as_nrd.argc - 1) / 2;
2799 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
2800 return -EINVAL;
2801
2802 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
2803 ti->error = "Invalid number of supplied raid devices";
2804 return -EINVAL;
2805 }
2806
2807 rs = raid_set_alloc(ti, rt, num_raid_devs);
2808 if (IS_ERR(rs))
2809 return PTR_ERR(rs);
2810
2811 r = parse_raid_params(rs, &as, num_raid_params);
2812 if (r)
2813 goto bad;
2814
2815 r = parse_dev_params(rs, &as);
2816 if (r)
2817 goto bad;
2818
2819 rs->md.sync_super = super_sync;
2820
2821 /*
2822 * Calculate ctr requested array and device sizes to allow
2823 * for superblock analysis needing device sizes defined.
2824 *
2825 * Any existing superblock will overwrite the array and device sizes
2826 */
2827 r = rs_set_dev_and_array_sectors(rs, false);
2828 if (r)
2829 goto bad;
2830
2831 calculated_dev_sectors = rs->dev[0].rdev.sectors;
2832
2833 /*
2834 * Backup any new raid set level, layout, ...
2835 * requested to be able to compare to superblock
2836 * members for conversion decisions.
2837 */
2838 rs_config_backup(rs, &rs_layout);
2839
2840 r = analyse_superblocks(ti, rs);
2841 if (r)
2842 goto bad;
2843
2844 resize = calculated_dev_sectors != rs->dev[0].rdev.sectors;
2845
2846 INIT_WORK(&rs->md.event_work, do_table_event);
2847 ti->private = rs;
2848 ti->num_flush_bios = 1;
2849
2850 /* Restore any requested new layout for conversion decision */
2851 rs_config_restore(rs, &rs_layout);
2852
2853 /*
2854 * Now that we have any superblock metadata available,
2855 * check for new, recovering, reshaping, to be taken over,
2856 * to be reshaped or an existing, unchanged raid set to
2857 * run in sequence.
2858 */
2859 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
2860 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
2861 if (rs_is_raid6(rs) &&
2862 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
2863 ti->error = "'nosync' not allowed for new raid6 set";
2864 r = -EINVAL;
2865 goto bad;
2866 }
2867 rs_setup_recovery(rs, 0);
2868 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2869 rs_set_new(rs);
2870 } else if (rs_is_recovering(rs)) {
2871 /* A recovering raid set may be resized */
2872 ; /* skip setup rs */
2873 } else if (rs_is_reshaping(rs)) {
2874 /* Have to reject size change request during reshape */
2875 if (resize) {
2876 ti->error = "Can't resize a reshaping raid set";
2877 r = -EPERM;
2878 goto bad;
2879 }
2880 /* skip setup rs */
2881 } else if (rs_takeover_requested(rs)) {
2882 if (rs_is_reshaping(rs)) {
2883 ti->error = "Can't takeover a reshaping raid set";
2884 r = -EPERM;
2885 goto bad;
2886 }
2887
2888 /*
2889 * If a takeover is needed, userspace sets any additional
2890 * devices to rebuild and we can check for a valid request here.
2891 *
2892 * If acceptible, set the level to the new requested
2893 * one, prohibit requesting recovery, allow the raid
2894 * set to run and store superblocks during resume.
2895 */
2896 r = rs_check_takeover(rs);
2897 if (r)
2898 goto bad;
2899
2900 r = rs_setup_takeover(rs);
2901 if (r)
2902 goto bad;
2903
2904 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2905 /* Takeover ain't recovery, so disable recovery */
2906 rs_setup_recovery(rs, MaxSector);
2907 rs_set_new(rs);
2908 } else if (rs_reshape_requested(rs)) {
2909 /*
2910 * We can only prepare for a reshape here, because the
2911 * raid set needs to run to provide the repective reshape
2912 * check functions via its MD personality instance.
2913 *
2914 * So do the reshape check after md_run() succeeded.
2915 */
2916 r = rs_prepare_reshape(rs);
2917 if (r)
2918 return r;
2919
2920 /* Reshaping ain't recovery, so disable recovery */
2921 rs_setup_recovery(rs, MaxSector);
2922 rs_set_cur(rs);
2923 } else {
2924 /* May not set recovery when a device rebuild is requested */
2925 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
2926 rs_setup_recovery(rs, MaxSector);
2927 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2928 } else
2929 rs_setup_recovery(rs, test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ?
2930 0 : (resize ? calculated_dev_sectors : MaxSector));
2931 rs_set_cur(rs);
2932 }
2933
2934 /* If constructor requested it, change data and new_data offsets */
2935 r = rs_adjust_data_offsets(rs);
2936 if (r)
2937 goto bad;
2938
2939 /* Start raid set read-only and assumed clean to change in raid_resume() */
2940 rs->md.ro = 1;
2941 rs->md.in_sync = 1;
2942 set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
2943
2944 /* Has to be held on running the array */
2945 mddev_lock_nointr(&rs->md);
2946 r = md_run(&rs->md);
2947 rs->md.in_sync = 0; /* Assume already marked dirty */
2948
2949 if (r) {
2950 ti->error = "Failed to run raid array";
2951 mddev_unlock(&rs->md);
2952 goto bad;
2953 }
2954
2955 rs->callbacks.congested_fn = raid_is_congested;
2956 dm_table_add_target_callbacks(ti->table, &rs->callbacks);
2957
2958 mddev_suspend(&rs->md);
2959
2960 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
2961 if (rs_is_raid456(rs)) {
2962 r = rs_set_raid456_stripe_cache(rs);
2963 if (r)
2964 goto bad_stripe_cache;
2965 }
2966
2967 /* Now do an early reshape check */
2968 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
2969 r = rs_check_reshape(rs);
2970 if (r)
2971 goto bad_check_reshape;
2972
2973 /* Restore new, ctr requested layout to perform check */
2974 rs_config_restore(rs, &rs_layout);
2975
2976 if (rs->md.pers->start_reshape) {
2977 r = rs->md.pers->check_reshape(&rs->md);
2978 if (r) {
2979 ti->error = "Reshape check failed";
2980 goto bad_check_reshape;
2981 }
2982 }
2983 }
2984
2985 /* Disable/enable discard support on raid set. */
2986 configure_discard_support(rs);
2987
2988 mddev_unlock(&rs->md);
2989 return 0;
2990
2991 bad_stripe_cache:
2992 bad_check_reshape:
2993 md_stop(&rs->md);
2994 bad:
2995 raid_set_free(rs);
2996
2997 return r;
2998 }
2999
3000 static void raid_dtr(struct dm_target *ti)
3001 {
3002 struct raid_set *rs = ti->private;
3003
3004 list_del_init(&rs->callbacks.list);
3005 md_stop(&rs->md);
3006 raid_set_free(rs);
3007 }
3008
3009 static int raid_map(struct dm_target *ti, struct bio *bio)
3010 {
3011 struct raid_set *rs = ti->private;
3012 struct mddev *mddev = &rs->md;
3013
3014 /*
3015 * If we're reshaping to add disk(s)), ti->len and
3016 * mddev->array_sectors will differ during the process
3017 * (ti->len > mddev->array_sectors), so we have to requeue
3018 * bios with addresses > mddev->array_sectors here or
3019 * there will occur accesses past EOD of the component
3020 * data images thus erroring the raid set.
3021 */
3022 if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
3023 return DM_MAPIO_REQUEUE;
3024
3025 mddev->pers->make_request(mddev, bio);
3026
3027 return DM_MAPIO_SUBMITTED;
3028 }
3029
3030 /* Return string describing the current sync action of @mddev */
3031 static const char *decipher_sync_action(struct mddev *mddev)
3032 {
3033 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3034 return "frozen";
3035
3036 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3037 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3038 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3039 return "reshape";
3040
3041 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3042 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3043 return "resync";
3044 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3045 return "check";
3046 return "repair";
3047 }
3048
3049 if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3050 return "recover";
3051 }
3052
3053 return "idle";
3054 }
3055
3056 /*
3057 * Return status string @rdev
3058 *
3059 * Status characters:
3060 *
3061 * 'D' = Dead/Failed device
3062 * 'a' = Alive but not in-sync
3063 * 'A' = Alive and in-sync
3064 * '-' = Non-existing device (i.e. uspace passed '- -' into the ctr)
3065 */
3066 static const char *__raid_dev_status(struct md_rdev *rdev, bool array_in_sync)
3067 {
3068 if (!rdev->bdev)
3069 return "-";
3070 else if (test_bit(Faulty, &rdev->flags))
3071 return "D";
3072 else if (!array_in_sync || !test_bit(In_sync, &rdev->flags))
3073 return "a";
3074 else
3075 return "A";
3076 }
3077
3078 /* Helper to return resync/reshape progress for @rs and @array_in_sync */
3079 static sector_t rs_get_progress(struct raid_set *rs,
3080 sector_t resync_max_sectors, bool *array_in_sync)
3081 {
3082 sector_t r, recovery_cp, curr_resync_completed;
3083 struct mddev *mddev = &rs->md;
3084
3085 curr_resync_completed = mddev->curr_resync_completed ?: mddev->recovery_cp;
3086 recovery_cp = mddev->recovery_cp;
3087 *array_in_sync = false;
3088
3089 if (rs_is_raid0(rs)) {
3090 r = resync_max_sectors;
3091 *array_in_sync = true;
3092
3093 } else {
3094 r = mddev->reshape_position;
3095
3096 /* Reshape is relative to the array size */
3097 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
3098 r != MaxSector) {
3099 if (r == MaxSector) {
3100 *array_in_sync = true;
3101 r = resync_max_sectors;
3102 } else {
3103 /* Got to reverse on backward reshape */
3104 if (mddev->reshape_backwards)
3105 r = mddev->array_sectors - r;
3106
3107 /* Devide by # of data stripes */
3108 sector_div(r, mddev_data_stripes(rs));
3109 }
3110
3111 /* Sync is relative to the component device size */
3112 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3113 r = curr_resync_completed;
3114 else
3115 r = recovery_cp;
3116
3117 if (r == MaxSector) {
3118 /*
3119 * Sync complete.
3120 */
3121 *array_in_sync = true;
3122 r = resync_max_sectors;
3123 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3124 /*
3125 * If "check" or "repair" is occurring, the raid set has
3126 * undergone an initial sync and the health characters
3127 * should not be 'a' anymore.
3128 */
3129 *array_in_sync = true;
3130 } else {
3131 struct md_rdev *rdev;
3132
3133 /*
3134 * The raid set may be doing an initial sync, or it may
3135 * be rebuilding individual components. If all the
3136 * devices are In_sync, then it is the raid set that is
3137 * being initialized.
3138 */
3139 rdev_for_each(rdev, mddev)
3140 if (!test_bit(In_sync, &rdev->flags))
3141 *array_in_sync = true;
3142 #if 0
3143 r = 0; /* HM FIXME: TESTME: https://bugzilla.redhat.com/show_bug.cgi?id=1210637 ? */
3144 #endif
3145 }
3146 }
3147
3148 return r;
3149 }
3150
3151 /* Helper to return @dev name or "-" if !@dev */
3152 static const char *__get_dev_name(struct dm_dev *dev)
3153 {
3154 return dev ? dev->name : "-";
3155 }
3156
3157 static void raid_status(struct dm_target *ti, status_type_t type,
3158 unsigned int status_flags, char *result, unsigned int maxlen)
3159 {
3160 struct raid_set *rs = ti->private;
3161 struct mddev *mddev = &rs->md;
3162 struct r5conf *conf = mddev->private;
3163 int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3164 bool array_in_sync;
3165 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3166 unsigned int sz = 0;
3167 unsigned int rebuild_disks;
3168 unsigned int write_mostly_params = 0;
3169 sector_t progress, resync_max_sectors, resync_mismatches;
3170 const char *sync_action;
3171 struct raid_type *rt;
3172
3173 switch (type) {
3174 case STATUSTYPE_INFO:
3175 /* *Should* always succeed */
3176 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3177 if (!rt)
3178 return;
3179
3180 DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3181
3182 /* Access most recent mddev properties for status output */
3183 smp_rmb();
3184 /* Get sensible max sectors even if raid set not yet started */
3185 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3186 mddev->resync_max_sectors : mddev->dev_sectors;
3187 progress = rs_get_progress(rs, resync_max_sectors, &array_in_sync);
3188 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3189 atomic64_read(&mddev->resync_mismatches) : 0;
3190 sync_action = decipher_sync_action(&rs->md);
3191
3192 /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */
3193 for (i = 0; i < rs->raid_disks; i++)
3194 DMEMIT(__raid_dev_status(&rs->dev[i].rdev, array_in_sync));
3195
3196 /*
3197 * In-sync/Reshape ratio:
3198 * The in-sync ratio shows the progress of:
3199 * - Initializing the raid set
3200 * - Rebuilding a subset of devices of the raid set
3201 * The user can distinguish between the two by referring
3202 * to the status characters.
3203 *
3204 * The reshape ratio shows the progress of
3205 * changing the raid layout or the number of
3206 * disks of a raid set
3207 */
3208 DMEMIT(" %llu/%llu", (unsigned long long) progress,
3209 (unsigned long long) resync_max_sectors);
3210
3211 /*
3212 * v1.5.0+:
3213 *
3214 * Sync action:
3215 * See Documentation/device-mapper/dm-raid.txt for
3216 * information on each of these states.
3217 */
3218 DMEMIT(" %s", sync_action);
3219
3220 /*
3221 * v1.5.0+:
3222 *
3223 * resync_mismatches/mismatch_cnt
3224 * This field shows the number of discrepancies found when
3225 * performing a "check" of the raid set.
3226 */
3227 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3228
3229 /*
3230 * v1.9.0+:
3231 *
3232 * data_offset (needed for out of space reshaping)
3233 * This field shows the data offset into the data
3234 * image LV where the first stripes data starts.
3235 *
3236 * We keep data_offset equal on all raid disks of the set,
3237 * so retrieving it from the first raid disk is sufficient.
3238 */
3239 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3240 break;
3241
3242 case STATUSTYPE_TABLE:
3243 /* Report the table line string you would use to construct this raid set */
3244
3245 /* Calculate raid parameter count */
3246 for (i = 0; i < rs->raid_disks; i++)
3247 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3248 write_mostly_params += 2;
3249 rebuild_disks = memweight(rs->rebuild_disks, DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks));
3250 raid_param_cnt += rebuild_disks * 2 +
3251 write_mostly_params +
3252 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3253 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
3254 /* Emit table line */
3255 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3256 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3257 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3258 raid10_md_layout_to_format(mddev->layout));
3259 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3260 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3261 raid10_md_layout_to_copies(mddev->layout));
3262 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3263 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3264 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3265 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3266 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3267 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3268 (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3269 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3270 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3271 (unsigned long long) rs->data_offset);
3272 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3273 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3274 mddev->bitmap_info.daemon_sleep);
3275 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3276 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3277 max(rs->delta_disks, mddev->delta_disks));
3278 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3279 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3280 max_nr_stripes);
3281 if (rebuild_disks)
3282 for (i = 0; i < rs->raid_disks; i++)
3283 if (test_bit(rs->dev[i].rdev.raid_disk, (void *) rs->rebuild_disks))
3284 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD),
3285 rs->dev[i].rdev.raid_disk);
3286 if (write_mostly_params)
3287 for (i = 0; i < rs->raid_disks; i++)
3288 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3289 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3290 rs->dev[i].rdev.raid_disk);
3291 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3292 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3293 mddev->bitmap_info.max_write_behind);
3294 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3295 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3296 mddev->sync_speed_max);
3297 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3298 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3299 mddev->sync_speed_min);
3300 DMEMIT(" %d", rs->raid_disks);
3301 for (i = 0; i < rs->raid_disks; i++)
3302 DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3303 __get_dev_name(rs->dev[i].data_dev));
3304 }
3305 }
3306
3307 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv)
3308 {
3309 struct raid_set *rs = ti->private;
3310 struct mddev *mddev = &rs->md;
3311
3312 if (!mddev->pers || !mddev->pers->sync_request)
3313 return -EINVAL;
3314
3315 if (!strcasecmp(argv[0], "frozen"))
3316 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3317 else
3318 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3319
3320 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3321 if (mddev->sync_thread) {
3322 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3323 md_reap_sync_thread(mddev);
3324 }
3325 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3326 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3327 return -EBUSY;
3328 else if (!strcasecmp(argv[0], "resync"))
3329 ; /* MD_RECOVERY_NEEDED set below */
3330 else if (!strcasecmp(argv[0], "recover"))
3331 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3332 else {
3333 if (!strcasecmp(argv[0], "check"))
3334 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3335 else if (!!strcasecmp(argv[0], "repair"))
3336 return -EINVAL;
3337 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3338 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3339 }
3340 if (mddev->ro == 2) {
3341 /* A write to sync_action is enough to justify
3342 * canceling read-auto mode
3343 */
3344 mddev->ro = 0;
3345 if (!mddev->suspended && mddev->sync_thread)
3346 md_wakeup_thread(mddev->sync_thread);
3347 }
3348 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3349 if (!mddev->suspended && mddev->thread)
3350 md_wakeup_thread(mddev->thread);
3351
3352 return 0;
3353 }
3354
3355 static int raid_iterate_devices(struct dm_target *ti,
3356 iterate_devices_callout_fn fn, void *data)
3357 {
3358 struct raid_set *rs = ti->private;
3359 unsigned int i;
3360 int r = 0;
3361
3362 for (i = 0; !r && i < rs->md.raid_disks; i++)
3363 if (rs->dev[i].data_dev)
3364 r = fn(ti,
3365 rs->dev[i].data_dev,
3366 0, /* No offset on data devs */
3367 rs->md.dev_sectors,
3368 data);
3369
3370 return r;
3371 }
3372
3373 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3374 {
3375 struct raid_set *rs = ti->private;
3376 unsigned int chunk_size = to_bytes(rs->md.chunk_sectors);
3377
3378 blk_limits_io_min(limits, chunk_size);
3379 blk_limits_io_opt(limits, chunk_size * mddev_data_stripes(rs));
3380 }
3381
3382 static void raid_presuspend(struct dm_target *ti)
3383 {
3384 struct raid_set *rs = ti->private;
3385
3386 md_stop_writes(&rs->md);
3387 }
3388
3389 static void raid_postsuspend(struct dm_target *ti)
3390 {
3391 struct raid_set *rs = ti->private;
3392
3393 if (!rs->md.suspended)
3394 mddev_suspend(&rs->md);
3395
3396 rs->md.ro = 1;
3397 }
3398
3399 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3400 {
3401 int i;
3402 uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS];
3403 unsigned long flags;
3404 bool cleared = false;
3405 struct dm_raid_superblock *sb;
3406 struct mddev *mddev = &rs->md;
3407 struct md_rdev *r;
3408
3409 /* RAID personalities have to provide hot add/remove methods or we need to bail out. */
3410 if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk)
3411 return;
3412
3413 memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices));
3414
3415 for (i = 0; i < mddev->raid_disks; i++) {
3416 r = &rs->dev[i].rdev;
3417 if (test_bit(Faulty, &r->flags) && r->sb_page &&
3418 sync_page_io(r, 0, r->sb_size, r->sb_page,
3419 REQ_OP_READ, 0, true)) {
3420 DMINFO("Faulty %s device #%d has readable super block."
3421 " Attempting to revive it.",
3422 rs->raid_type->name, i);
3423
3424 /*
3425 * Faulty bit may be set, but sometimes the array can
3426 * be suspended before the personalities can respond
3427 * by removing the device from the array (i.e. calling
3428 * 'hot_remove_disk'). If they haven't yet removed
3429 * the failed device, its 'raid_disk' number will be
3430 * '>= 0' - meaning we must call this function
3431 * ourselves.
3432 */
3433 flags = r->flags;
3434 clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */
3435 if (r->raid_disk >= 0) {
3436 if (mddev->pers->hot_remove_disk(mddev, r)) {
3437 /* Failed to revive this device, try next */
3438 r->flags = flags;
3439 continue;
3440 }
3441 } else
3442 r->raid_disk = r->saved_raid_disk = i;
3443
3444 clear_bit(Faulty, &r->flags);
3445 clear_bit(WriteErrorSeen, &r->flags);
3446
3447 if (mddev->pers->hot_add_disk(mddev, r)) {
3448 /* Failed to revive this device, try next */
3449 r->raid_disk = r->saved_raid_disk = -1;
3450 r->flags = flags;
3451 } else {
3452 clear_bit(In_sync, &r->flags);
3453 r->recovery_offset = 0;
3454 set_bit(i, (void *) cleared_failed_devices);
3455 cleared = true;
3456 }
3457 }
3458 }
3459
3460 /* If any failed devices could be cleared, update all sbs failed_devices bits */
3461 if (cleared) {
3462 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
3463
3464 rdev_for_each(r, &rs->md) {
3465 sb = page_address(r->sb_page);
3466 sb_retrieve_failed_devices(sb, failed_devices);
3467
3468 for (i = 0; i < DISKS_ARRAY_ELEMS; i++)
3469 failed_devices[i] &= ~cleared_failed_devices[i];
3470
3471 sb_update_failed_devices(sb, failed_devices);
3472 }
3473 }
3474 }
3475
3476 static int __load_dirty_region_bitmap(struct raid_set *rs)
3477 {
3478 int r = 0;
3479
3480 /* Try loading the bitmap unless "raid0", which does not have one */
3481 if (!rs_is_raid0(rs) &&
3482 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3483 r = bitmap_load(&rs->md);
3484 if (r)
3485 DMERR("Failed to load bitmap");
3486 }
3487
3488 return r;
3489 }
3490
3491 /* Enforce updating all superblocks */
3492 static void rs_update_sbs(struct raid_set *rs)
3493 {
3494 struct mddev *mddev = &rs->md;
3495 int ro = mddev->ro;
3496
3497 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3498 mddev->ro = 0;
3499 md_update_sb(mddev, 1);
3500 mddev->ro = ro;
3501 }
3502
3503 /*
3504 * Reshape changes raid algorithm of @rs to new one within personality
3505 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3506 * disks from a raid set thus growing/shrinking it or resizes the set
3507 *
3508 * Call mddev_lock_nointr() before!
3509 */
3510 static int rs_start_reshape(struct raid_set *rs)
3511 {
3512 int r;
3513 struct mddev *mddev = &rs->md;
3514 struct md_personality *pers = mddev->pers;
3515
3516 r = rs_setup_reshape(rs);
3517 if (r)
3518 return r;
3519
3520 /* Need to be resumed to be able to start reshape, recovery is frozen until raid_resume() though */
3521 if (mddev->suspended)
3522 mddev_resume(mddev);
3523
3524 /*
3525 * Check any reshape constraints enforced by the personalility
3526 *
3527 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3528 */
3529 r = pers->check_reshape(mddev);
3530 if (r) {
3531 rs->ti->error = "pers->check_reshape() failed";
3532 return r;
3533 }
3534
3535 /*
3536 * Personality may not provide start reshape method in which
3537 * case check_reshape above has already covered everything
3538 */
3539 if (pers->start_reshape) {
3540 r = pers->start_reshape(mddev);
3541 if (r) {
3542 rs->ti->error = "pers->start_reshape() failed";
3543 return r;
3544 }
3545 }
3546
3547 /* Suspend because a resume will happen in raid_resume() */
3548 if (!mddev->suspended)
3549 mddev_suspend(mddev);
3550
3551 /*
3552 * Now reshape got set up, update superblocks to
3553 * reflect the fact so that a table reload will
3554 * access proper superblock content in the ctr.
3555 */
3556 rs_update_sbs(rs);
3557
3558 return 0;
3559 }
3560
3561 static int raid_preresume(struct dm_target *ti)
3562 {
3563 int r;
3564 struct raid_set *rs = ti->private;
3565 struct mddev *mddev = &rs->md;
3566
3567 /* This is a resume after a suspend of the set -> it's already started */
3568 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3569 return 0;
3570
3571 /*
3572 * The superblocks need to be updated on disk if the
3573 * array is new or new devices got added (thus zeroed
3574 * out by userspace) or __load_dirty_region_bitmap
3575 * will overwrite them in core with old data or fail.
3576 */
3577 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3578 rs_update_sbs(rs);
3579
3580 /* Load the bitmap from disk unless raid0 */
3581 r = __load_dirty_region_bitmap(rs);
3582 if (r)
3583 return r;
3584
3585 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) */
3586 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) &&
3587 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)) {
3588 r = bitmap_resize(mddev->bitmap, mddev->dev_sectors,
3589 to_bytes(rs->requested_bitmap_chunk_sectors), 0);
3590 if (r)
3591 DMERR("Failed to resize bitmap");
3592 }
3593
3594 /* Check for any resize/reshape on @rs and adjust/initiate */
3595 /* Be prepared for mddev_resume() in raid_resume() */
3596 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3597 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
3598 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3599 mddev->resync_min = mddev->recovery_cp;
3600 }
3601
3602 rs_set_capacity(rs);
3603
3604 /* Check for any reshape request unless new raid set */
3605 if (test_and_clear_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3606 /* Initiate a reshape. */
3607 mddev_lock_nointr(mddev);
3608 r = rs_start_reshape(rs);
3609 mddev_unlock(mddev);
3610 if (r)
3611 DMWARN("Failed to check/start reshape, continuing without change");
3612 r = 0;
3613 }
3614
3615 return r;
3616 }
3617
3618 static void raid_resume(struct dm_target *ti)
3619 {
3620 struct raid_set *rs = ti->private;
3621 struct mddev *mddev = &rs->md;
3622
3623 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
3624 /*
3625 * A secondary resume while the device is active.
3626 * Take this opportunity to check whether any failed
3627 * devices are reachable again.
3628 */
3629 attempt_restore_of_faulty_devices(rs);
3630 }
3631
3632 mddev->ro = 0;
3633 mddev->in_sync = 0;
3634
3635 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3636
3637 if (mddev->suspended)
3638 mddev_resume(mddev);
3639 }
3640
3641 static struct target_type raid_target = {
3642 .name = "raid",
3643 .version = {1, 9, 2},
3644 .module = THIS_MODULE,
3645 .ctr = raid_ctr,
3646 .dtr = raid_dtr,
3647 .map = raid_map,
3648 .status = raid_status,
3649 .message = raid_message,
3650 .iterate_devices = raid_iterate_devices,
3651 .io_hints = raid_io_hints,
3652 .presuspend = raid_presuspend,
3653 .postsuspend = raid_postsuspend,
3654 .preresume = raid_preresume,
3655 .resume = raid_resume,
3656 };
3657
3658 static int __init dm_raid_init(void)
3659 {
3660 DMINFO("Loading target version %u.%u.%u",
3661 raid_target.version[0],
3662 raid_target.version[1],
3663 raid_target.version[2]);
3664 return dm_register_target(&raid_target);
3665 }
3666
3667 static void __exit dm_raid_exit(void)
3668 {
3669 dm_unregister_target(&raid_target);
3670 }
3671
3672 module_init(dm_raid_init);
3673 module_exit(dm_raid_exit);
3674
3675 module_param(devices_handle_discard_safely, bool, 0644);
3676 MODULE_PARM_DESC(devices_handle_discard_safely,
3677 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
3678
3679 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
3680 MODULE_ALIAS("dm-raid0");
3681 MODULE_ALIAS("dm-raid1");
3682 MODULE_ALIAS("dm-raid10");
3683 MODULE_ALIAS("dm-raid4");
3684 MODULE_ALIAS("dm-raid5");
3685 MODULE_ALIAS("dm-raid6");
3686 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
3687 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
3688 MODULE_LICENSE("GPL");