]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/md/dm-table.c
Merge tag 'vfs-5.7-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[mirror_ubuntu-hirsute-kernel.git] / drivers / md / dm-table.c
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24
25 #define DM_MSG_PREFIX "table"
26
27 #define MAX_DEPTH 16
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31
32 struct dm_table {
33 struct mapped_device *md;
34 enum dm_queue_mode type;
35
36 /* btree table */
37 unsigned int depth;
38 unsigned int counts[MAX_DEPTH]; /* in nodes */
39 sector_t *index[MAX_DEPTH];
40
41 unsigned int num_targets;
42 unsigned int num_allocated;
43 sector_t *highs;
44 struct dm_target *targets;
45
46 struct target_type *immutable_target_type;
47
48 bool integrity_supported:1;
49 bool singleton:1;
50 unsigned integrity_added:1;
51
52 /*
53 * Indicates the rw permissions for the new logical
54 * device. This should be a combination of FMODE_READ
55 * and FMODE_WRITE.
56 */
57 fmode_t mode;
58
59 /* a list of devices used by this table */
60 struct list_head devices;
61
62 /* events get handed up using this callback */
63 void (*event_fn)(void *);
64 void *event_context;
65
66 struct dm_md_mempools *mempools;
67
68 struct list_head target_callbacks;
69 };
70
71 /*
72 * Similar to ceiling(log_size(n))
73 */
74 static unsigned int int_log(unsigned int n, unsigned int base)
75 {
76 int result = 0;
77
78 while (n > 1) {
79 n = dm_div_up(n, base);
80 result++;
81 }
82
83 return result;
84 }
85
86 /*
87 * Calculate the index of the child node of the n'th node k'th key.
88 */
89 static inline unsigned int get_child(unsigned int n, unsigned int k)
90 {
91 return (n * CHILDREN_PER_NODE) + k;
92 }
93
94 /*
95 * Return the n'th node of level l from table t.
96 */
97 static inline sector_t *get_node(struct dm_table *t,
98 unsigned int l, unsigned int n)
99 {
100 return t->index[l] + (n * KEYS_PER_NODE);
101 }
102
103 /*
104 * Return the highest key that you could lookup from the n'th
105 * node on level l of the btree.
106 */
107 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
108 {
109 for (; l < t->depth - 1; l++)
110 n = get_child(n, CHILDREN_PER_NODE - 1);
111
112 if (n >= t->counts[l])
113 return (sector_t) - 1;
114
115 return get_node(t, l, n)[KEYS_PER_NODE - 1];
116 }
117
118 /*
119 * Fills in a level of the btree based on the highs of the level
120 * below it.
121 */
122 static int setup_btree_index(unsigned int l, struct dm_table *t)
123 {
124 unsigned int n, k;
125 sector_t *node;
126
127 for (n = 0U; n < t->counts[l]; n++) {
128 node = get_node(t, l, n);
129
130 for (k = 0U; k < KEYS_PER_NODE; k++)
131 node[k] = high(t, l + 1, get_child(n, k));
132 }
133
134 return 0;
135 }
136
137 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
138 {
139 unsigned long size;
140 void *addr;
141
142 /*
143 * Check that we're not going to overflow.
144 */
145 if (nmemb > (ULONG_MAX / elem_size))
146 return NULL;
147
148 size = nmemb * elem_size;
149 addr = vzalloc(size);
150
151 return addr;
152 }
153 EXPORT_SYMBOL(dm_vcalloc);
154
155 /*
156 * highs, and targets are managed as dynamic arrays during a
157 * table load.
158 */
159 static int alloc_targets(struct dm_table *t, unsigned int num)
160 {
161 sector_t *n_highs;
162 struct dm_target *n_targets;
163
164 /*
165 * Allocate both the target array and offset array at once.
166 */
167 n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
168 sizeof(sector_t));
169 if (!n_highs)
170 return -ENOMEM;
171
172 n_targets = (struct dm_target *) (n_highs + num);
173
174 memset(n_highs, -1, sizeof(*n_highs) * num);
175 vfree(t->highs);
176
177 t->num_allocated = num;
178 t->highs = n_highs;
179 t->targets = n_targets;
180
181 return 0;
182 }
183
184 int dm_table_create(struct dm_table **result, fmode_t mode,
185 unsigned num_targets, struct mapped_device *md)
186 {
187 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
188
189 if (!t)
190 return -ENOMEM;
191
192 INIT_LIST_HEAD(&t->devices);
193 INIT_LIST_HEAD(&t->target_callbacks);
194
195 if (!num_targets)
196 num_targets = KEYS_PER_NODE;
197
198 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
199
200 if (!num_targets) {
201 kfree(t);
202 return -ENOMEM;
203 }
204
205 if (alloc_targets(t, num_targets)) {
206 kfree(t);
207 return -ENOMEM;
208 }
209
210 t->type = DM_TYPE_NONE;
211 t->mode = mode;
212 t->md = md;
213 *result = t;
214 return 0;
215 }
216
217 static void free_devices(struct list_head *devices, struct mapped_device *md)
218 {
219 struct list_head *tmp, *next;
220
221 list_for_each_safe(tmp, next, devices) {
222 struct dm_dev_internal *dd =
223 list_entry(tmp, struct dm_dev_internal, list);
224 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
225 dm_device_name(md), dd->dm_dev->name);
226 dm_put_table_device(md, dd->dm_dev);
227 kfree(dd);
228 }
229 }
230
231 void dm_table_destroy(struct dm_table *t)
232 {
233 unsigned int i;
234
235 if (!t)
236 return;
237
238 /* free the indexes */
239 if (t->depth >= 2)
240 vfree(t->index[t->depth - 2]);
241
242 /* free the targets */
243 for (i = 0; i < t->num_targets; i++) {
244 struct dm_target *tgt = t->targets + i;
245
246 if (tgt->type->dtr)
247 tgt->type->dtr(tgt);
248
249 dm_put_target_type(tgt->type);
250 }
251
252 vfree(t->highs);
253
254 /* free the device list */
255 free_devices(&t->devices, t->md);
256
257 dm_free_md_mempools(t->mempools);
258
259 kfree(t);
260 }
261
262 /*
263 * See if we've already got a device in the list.
264 */
265 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
266 {
267 struct dm_dev_internal *dd;
268
269 list_for_each_entry (dd, l, list)
270 if (dd->dm_dev->bdev->bd_dev == dev)
271 return dd;
272
273 return NULL;
274 }
275
276 /*
277 * If possible, this checks an area of a destination device is invalid.
278 */
279 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
280 sector_t start, sector_t len, void *data)
281 {
282 struct request_queue *q;
283 struct queue_limits *limits = data;
284 struct block_device *bdev = dev->bdev;
285 sector_t dev_size =
286 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
287 unsigned short logical_block_size_sectors =
288 limits->logical_block_size >> SECTOR_SHIFT;
289 char b[BDEVNAME_SIZE];
290
291 /*
292 * Some devices exist without request functions,
293 * such as loop devices not yet bound to backing files.
294 * Forbid the use of such devices.
295 */
296 q = bdev_get_queue(bdev);
297 if (!q || !q->make_request_fn) {
298 DMWARN("%s: %s is not yet initialised: "
299 "start=%llu, len=%llu, dev_size=%llu",
300 dm_device_name(ti->table->md), bdevname(bdev, b),
301 (unsigned long long)start,
302 (unsigned long long)len,
303 (unsigned long long)dev_size);
304 return 1;
305 }
306
307 if (!dev_size)
308 return 0;
309
310 if ((start >= dev_size) || (start + len > dev_size)) {
311 DMWARN("%s: %s too small for target: "
312 "start=%llu, len=%llu, dev_size=%llu",
313 dm_device_name(ti->table->md), bdevname(bdev, b),
314 (unsigned long long)start,
315 (unsigned long long)len,
316 (unsigned long long)dev_size);
317 return 1;
318 }
319
320 /*
321 * If the target is mapped to zoned block device(s), check
322 * that the zones are not partially mapped.
323 */
324 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
325 unsigned int zone_sectors = bdev_zone_sectors(bdev);
326
327 if (start & (zone_sectors - 1)) {
328 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
329 dm_device_name(ti->table->md),
330 (unsigned long long)start,
331 zone_sectors, bdevname(bdev, b));
332 return 1;
333 }
334
335 /*
336 * Note: The last zone of a zoned block device may be smaller
337 * than other zones. So for a target mapping the end of a
338 * zoned block device with such a zone, len would not be zone
339 * aligned. We do not allow such last smaller zone to be part
340 * of the mapping here to ensure that mappings with multiple
341 * devices do not end up with a smaller zone in the middle of
342 * the sector range.
343 */
344 if (len & (zone_sectors - 1)) {
345 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
346 dm_device_name(ti->table->md),
347 (unsigned long long)len,
348 zone_sectors, bdevname(bdev, b));
349 return 1;
350 }
351 }
352
353 if (logical_block_size_sectors <= 1)
354 return 0;
355
356 if (start & (logical_block_size_sectors - 1)) {
357 DMWARN("%s: start=%llu not aligned to h/w "
358 "logical block size %u of %s",
359 dm_device_name(ti->table->md),
360 (unsigned long long)start,
361 limits->logical_block_size, bdevname(bdev, b));
362 return 1;
363 }
364
365 if (len & (logical_block_size_sectors - 1)) {
366 DMWARN("%s: len=%llu not aligned to h/w "
367 "logical block size %u of %s",
368 dm_device_name(ti->table->md),
369 (unsigned long long)len,
370 limits->logical_block_size, bdevname(bdev, b));
371 return 1;
372 }
373
374 return 0;
375 }
376
377 /*
378 * This upgrades the mode on an already open dm_dev, being
379 * careful to leave things as they were if we fail to reopen the
380 * device and not to touch the existing bdev field in case
381 * it is accessed concurrently inside dm_table_any_congested().
382 */
383 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
384 struct mapped_device *md)
385 {
386 int r;
387 struct dm_dev *old_dev, *new_dev;
388
389 old_dev = dd->dm_dev;
390
391 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
392 dd->dm_dev->mode | new_mode, &new_dev);
393 if (r)
394 return r;
395
396 dd->dm_dev = new_dev;
397 dm_put_table_device(md, old_dev);
398
399 return 0;
400 }
401
402 /*
403 * Convert the path to a device
404 */
405 dev_t dm_get_dev_t(const char *path)
406 {
407 dev_t dev;
408 struct block_device *bdev;
409
410 bdev = lookup_bdev(path);
411 if (IS_ERR(bdev))
412 dev = name_to_dev_t(path);
413 else {
414 dev = bdev->bd_dev;
415 bdput(bdev);
416 }
417
418 return dev;
419 }
420 EXPORT_SYMBOL_GPL(dm_get_dev_t);
421
422 /*
423 * Add a device to the list, or just increment the usage count if
424 * it's already present.
425 */
426 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
427 struct dm_dev **result)
428 {
429 int r;
430 dev_t dev;
431 struct dm_dev_internal *dd;
432 struct dm_table *t = ti->table;
433
434 BUG_ON(!t);
435
436 dev = dm_get_dev_t(path);
437 if (!dev)
438 return -ENODEV;
439
440 dd = find_device(&t->devices, dev);
441 if (!dd) {
442 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
443 if (!dd)
444 return -ENOMEM;
445
446 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
447 kfree(dd);
448 return r;
449 }
450
451 refcount_set(&dd->count, 1);
452 list_add(&dd->list, &t->devices);
453 goto out;
454
455 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
456 r = upgrade_mode(dd, mode, t->md);
457 if (r)
458 return r;
459 }
460 refcount_inc(&dd->count);
461 out:
462 *result = dd->dm_dev;
463 return 0;
464 }
465 EXPORT_SYMBOL(dm_get_device);
466
467 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
468 sector_t start, sector_t len, void *data)
469 {
470 struct queue_limits *limits = data;
471 struct block_device *bdev = dev->bdev;
472 struct request_queue *q = bdev_get_queue(bdev);
473 char b[BDEVNAME_SIZE];
474
475 if (unlikely(!q)) {
476 DMWARN("%s: Cannot set limits for nonexistent device %s",
477 dm_device_name(ti->table->md), bdevname(bdev, b));
478 return 0;
479 }
480
481 if (bdev_stack_limits(limits, bdev, start) < 0)
482 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
483 "physical_block_size=%u, logical_block_size=%u, "
484 "alignment_offset=%u, start=%llu",
485 dm_device_name(ti->table->md), bdevname(bdev, b),
486 q->limits.physical_block_size,
487 q->limits.logical_block_size,
488 q->limits.alignment_offset,
489 (unsigned long long) start << SECTOR_SHIFT);
490
491 limits->zoned = blk_queue_zoned_model(q);
492
493 return 0;
494 }
495
496 /*
497 * Decrement a device's use count and remove it if necessary.
498 */
499 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
500 {
501 int found = 0;
502 struct list_head *devices = &ti->table->devices;
503 struct dm_dev_internal *dd;
504
505 list_for_each_entry(dd, devices, list) {
506 if (dd->dm_dev == d) {
507 found = 1;
508 break;
509 }
510 }
511 if (!found) {
512 DMWARN("%s: device %s not in table devices list",
513 dm_device_name(ti->table->md), d->name);
514 return;
515 }
516 if (refcount_dec_and_test(&dd->count)) {
517 dm_put_table_device(ti->table->md, d);
518 list_del(&dd->list);
519 kfree(dd);
520 }
521 }
522 EXPORT_SYMBOL(dm_put_device);
523
524 /*
525 * Checks to see if the target joins onto the end of the table.
526 */
527 static int adjoin(struct dm_table *table, struct dm_target *ti)
528 {
529 struct dm_target *prev;
530
531 if (!table->num_targets)
532 return !ti->begin;
533
534 prev = &table->targets[table->num_targets - 1];
535 return (ti->begin == (prev->begin + prev->len));
536 }
537
538 /*
539 * Used to dynamically allocate the arg array.
540 *
541 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
542 * process messages even if some device is suspended. These messages have a
543 * small fixed number of arguments.
544 *
545 * On the other hand, dm-switch needs to process bulk data using messages and
546 * excessive use of GFP_NOIO could cause trouble.
547 */
548 static char **realloc_argv(unsigned *size, char **old_argv)
549 {
550 char **argv;
551 unsigned new_size;
552 gfp_t gfp;
553
554 if (*size) {
555 new_size = *size * 2;
556 gfp = GFP_KERNEL;
557 } else {
558 new_size = 8;
559 gfp = GFP_NOIO;
560 }
561 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
562 if (argv && old_argv) {
563 memcpy(argv, old_argv, *size * sizeof(*argv));
564 *size = new_size;
565 }
566
567 kfree(old_argv);
568 return argv;
569 }
570
571 /*
572 * Destructively splits up the argument list to pass to ctr.
573 */
574 int dm_split_args(int *argc, char ***argvp, char *input)
575 {
576 char *start, *end = input, *out, **argv = NULL;
577 unsigned array_size = 0;
578
579 *argc = 0;
580
581 if (!input) {
582 *argvp = NULL;
583 return 0;
584 }
585
586 argv = realloc_argv(&array_size, argv);
587 if (!argv)
588 return -ENOMEM;
589
590 while (1) {
591 /* Skip whitespace */
592 start = skip_spaces(end);
593
594 if (!*start)
595 break; /* success, we hit the end */
596
597 /* 'out' is used to remove any back-quotes */
598 end = out = start;
599 while (*end) {
600 /* Everything apart from '\0' can be quoted */
601 if (*end == '\\' && *(end + 1)) {
602 *out++ = *(end + 1);
603 end += 2;
604 continue;
605 }
606
607 if (isspace(*end))
608 break; /* end of token */
609
610 *out++ = *end++;
611 }
612
613 /* have we already filled the array ? */
614 if ((*argc + 1) > array_size) {
615 argv = realloc_argv(&array_size, argv);
616 if (!argv)
617 return -ENOMEM;
618 }
619
620 /* we know this is whitespace */
621 if (*end)
622 end++;
623
624 /* terminate the string and put it in the array */
625 *out = '\0';
626 argv[*argc] = start;
627 (*argc)++;
628 }
629
630 *argvp = argv;
631 return 0;
632 }
633
634 /*
635 * Impose necessary and sufficient conditions on a devices's table such
636 * that any incoming bio which respects its logical_block_size can be
637 * processed successfully. If it falls across the boundary between
638 * two or more targets, the size of each piece it gets split into must
639 * be compatible with the logical_block_size of the target processing it.
640 */
641 static int validate_hardware_logical_block_alignment(struct dm_table *table,
642 struct queue_limits *limits)
643 {
644 /*
645 * This function uses arithmetic modulo the logical_block_size
646 * (in units of 512-byte sectors).
647 */
648 unsigned short device_logical_block_size_sects =
649 limits->logical_block_size >> SECTOR_SHIFT;
650
651 /*
652 * Offset of the start of the next table entry, mod logical_block_size.
653 */
654 unsigned short next_target_start = 0;
655
656 /*
657 * Given an aligned bio that extends beyond the end of a
658 * target, how many sectors must the next target handle?
659 */
660 unsigned short remaining = 0;
661
662 struct dm_target *uninitialized_var(ti);
663 struct queue_limits ti_limits;
664 unsigned i;
665
666 /*
667 * Check each entry in the table in turn.
668 */
669 for (i = 0; i < dm_table_get_num_targets(table); i++) {
670 ti = dm_table_get_target(table, i);
671
672 blk_set_stacking_limits(&ti_limits);
673
674 /* combine all target devices' limits */
675 if (ti->type->iterate_devices)
676 ti->type->iterate_devices(ti, dm_set_device_limits,
677 &ti_limits);
678
679 /*
680 * If the remaining sectors fall entirely within this
681 * table entry are they compatible with its logical_block_size?
682 */
683 if (remaining < ti->len &&
684 remaining & ((ti_limits.logical_block_size >>
685 SECTOR_SHIFT) - 1))
686 break; /* Error */
687
688 next_target_start =
689 (unsigned short) ((next_target_start + ti->len) &
690 (device_logical_block_size_sects - 1));
691 remaining = next_target_start ?
692 device_logical_block_size_sects - next_target_start : 0;
693 }
694
695 if (remaining) {
696 DMWARN("%s: table line %u (start sect %llu len %llu) "
697 "not aligned to h/w logical block size %u",
698 dm_device_name(table->md), i,
699 (unsigned long long) ti->begin,
700 (unsigned long long) ti->len,
701 limits->logical_block_size);
702 return -EINVAL;
703 }
704
705 return 0;
706 }
707
708 int dm_table_add_target(struct dm_table *t, const char *type,
709 sector_t start, sector_t len, char *params)
710 {
711 int r = -EINVAL, argc;
712 char **argv;
713 struct dm_target *tgt;
714
715 if (t->singleton) {
716 DMERR("%s: target type %s must appear alone in table",
717 dm_device_name(t->md), t->targets->type->name);
718 return -EINVAL;
719 }
720
721 BUG_ON(t->num_targets >= t->num_allocated);
722
723 tgt = t->targets + t->num_targets;
724 memset(tgt, 0, sizeof(*tgt));
725
726 if (!len) {
727 DMERR("%s: zero-length target", dm_device_name(t->md));
728 return -EINVAL;
729 }
730
731 tgt->type = dm_get_target_type(type);
732 if (!tgt->type) {
733 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
734 return -EINVAL;
735 }
736
737 if (dm_target_needs_singleton(tgt->type)) {
738 if (t->num_targets) {
739 tgt->error = "singleton target type must appear alone in table";
740 goto bad;
741 }
742 t->singleton = true;
743 }
744
745 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
746 tgt->error = "target type may not be included in a read-only table";
747 goto bad;
748 }
749
750 if (t->immutable_target_type) {
751 if (t->immutable_target_type != tgt->type) {
752 tgt->error = "immutable target type cannot be mixed with other target types";
753 goto bad;
754 }
755 } else if (dm_target_is_immutable(tgt->type)) {
756 if (t->num_targets) {
757 tgt->error = "immutable target type cannot be mixed with other target types";
758 goto bad;
759 }
760 t->immutable_target_type = tgt->type;
761 }
762
763 if (dm_target_has_integrity(tgt->type))
764 t->integrity_added = 1;
765
766 tgt->table = t;
767 tgt->begin = start;
768 tgt->len = len;
769 tgt->error = "Unknown error";
770
771 /*
772 * Does this target adjoin the previous one ?
773 */
774 if (!adjoin(t, tgt)) {
775 tgt->error = "Gap in table";
776 goto bad;
777 }
778
779 r = dm_split_args(&argc, &argv, params);
780 if (r) {
781 tgt->error = "couldn't split parameters (insufficient memory)";
782 goto bad;
783 }
784
785 r = tgt->type->ctr(tgt, argc, argv);
786 kfree(argv);
787 if (r)
788 goto bad;
789
790 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
791
792 if (!tgt->num_discard_bios && tgt->discards_supported)
793 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
794 dm_device_name(t->md), type);
795
796 return 0;
797
798 bad:
799 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
800 dm_put_target_type(tgt->type);
801 return r;
802 }
803
804 /*
805 * Target argument parsing helpers.
806 */
807 static int validate_next_arg(const struct dm_arg *arg,
808 struct dm_arg_set *arg_set,
809 unsigned *value, char **error, unsigned grouped)
810 {
811 const char *arg_str = dm_shift_arg(arg_set);
812 char dummy;
813
814 if (!arg_str ||
815 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
816 (*value < arg->min) ||
817 (*value > arg->max) ||
818 (grouped && arg_set->argc < *value)) {
819 *error = arg->error;
820 return -EINVAL;
821 }
822
823 return 0;
824 }
825
826 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
827 unsigned *value, char **error)
828 {
829 return validate_next_arg(arg, arg_set, value, error, 0);
830 }
831 EXPORT_SYMBOL(dm_read_arg);
832
833 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
834 unsigned *value, char **error)
835 {
836 return validate_next_arg(arg, arg_set, value, error, 1);
837 }
838 EXPORT_SYMBOL(dm_read_arg_group);
839
840 const char *dm_shift_arg(struct dm_arg_set *as)
841 {
842 char *r;
843
844 if (as->argc) {
845 as->argc--;
846 r = *as->argv;
847 as->argv++;
848 return r;
849 }
850
851 return NULL;
852 }
853 EXPORT_SYMBOL(dm_shift_arg);
854
855 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
856 {
857 BUG_ON(as->argc < num_args);
858 as->argc -= num_args;
859 as->argv += num_args;
860 }
861 EXPORT_SYMBOL(dm_consume_args);
862
863 static bool __table_type_bio_based(enum dm_queue_mode table_type)
864 {
865 return (table_type == DM_TYPE_BIO_BASED ||
866 table_type == DM_TYPE_DAX_BIO_BASED ||
867 table_type == DM_TYPE_NVME_BIO_BASED);
868 }
869
870 static bool __table_type_request_based(enum dm_queue_mode table_type)
871 {
872 return table_type == DM_TYPE_REQUEST_BASED;
873 }
874
875 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
876 {
877 t->type = type;
878 }
879 EXPORT_SYMBOL_GPL(dm_table_set_type);
880
881 /* validate the dax capability of the target device span */
882 int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
883 sector_t start, sector_t len, void *data)
884 {
885 int blocksize = *(int *) data;
886
887 return generic_fsdax_supported(dev->dax_dev, dev->bdev, blocksize,
888 start, len);
889 }
890
891 /* Check devices support synchronous DAX */
892 static int device_dax_synchronous(struct dm_target *ti, struct dm_dev *dev,
893 sector_t start, sector_t len, void *data)
894 {
895 return dev->dax_dev && dax_synchronous(dev->dax_dev);
896 }
897
898 bool dm_table_supports_dax(struct dm_table *t,
899 iterate_devices_callout_fn iterate_fn, int *blocksize)
900 {
901 struct dm_target *ti;
902 unsigned i;
903
904 /* Ensure that all targets support DAX. */
905 for (i = 0; i < dm_table_get_num_targets(t); i++) {
906 ti = dm_table_get_target(t, i);
907
908 if (!ti->type->direct_access)
909 return false;
910
911 if (!ti->type->iterate_devices ||
912 !ti->type->iterate_devices(ti, iterate_fn, blocksize))
913 return false;
914 }
915
916 return true;
917 }
918
919 static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
920
921 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
922 sector_t start, sector_t len, void *data)
923 {
924 struct block_device *bdev = dev->bdev;
925 struct request_queue *q = bdev_get_queue(bdev);
926
927 /* request-based cannot stack on partitions! */
928 if (bdev != bdev->bd_contains)
929 return false;
930
931 return queue_is_mq(q);
932 }
933
934 static int dm_table_determine_type(struct dm_table *t)
935 {
936 unsigned i;
937 unsigned bio_based = 0, request_based = 0, hybrid = 0;
938 struct dm_target *tgt;
939 struct list_head *devices = dm_table_get_devices(t);
940 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
941 int page_size = PAGE_SIZE;
942
943 if (t->type != DM_TYPE_NONE) {
944 /* target already set the table's type */
945 if (t->type == DM_TYPE_BIO_BASED) {
946 /* possibly upgrade to a variant of bio-based */
947 goto verify_bio_based;
948 }
949 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
950 BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
951 goto verify_rq_based;
952 }
953
954 for (i = 0; i < t->num_targets; i++) {
955 tgt = t->targets + i;
956 if (dm_target_hybrid(tgt))
957 hybrid = 1;
958 else if (dm_target_request_based(tgt))
959 request_based = 1;
960 else
961 bio_based = 1;
962
963 if (bio_based && request_based) {
964 DMERR("Inconsistent table: different target types"
965 " can't be mixed up");
966 return -EINVAL;
967 }
968 }
969
970 if (hybrid && !bio_based && !request_based) {
971 /*
972 * The targets can work either way.
973 * Determine the type from the live device.
974 * Default to bio-based if device is new.
975 */
976 if (__table_type_request_based(live_md_type))
977 request_based = 1;
978 else
979 bio_based = 1;
980 }
981
982 if (bio_based) {
983 verify_bio_based:
984 /* We must use this table as bio-based */
985 t->type = DM_TYPE_BIO_BASED;
986 if (dm_table_supports_dax(t, device_supports_dax, &page_size) ||
987 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
988 t->type = DM_TYPE_DAX_BIO_BASED;
989 } else {
990 /* Check if upgrading to NVMe bio-based is valid or required */
991 tgt = dm_table_get_immutable_target(t);
992 if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
993 t->type = DM_TYPE_NVME_BIO_BASED;
994 goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
995 } else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
996 t->type = DM_TYPE_NVME_BIO_BASED;
997 }
998 }
999 return 0;
1000 }
1001
1002 BUG_ON(!request_based); /* No targets in this table */
1003
1004 t->type = DM_TYPE_REQUEST_BASED;
1005
1006 verify_rq_based:
1007 /*
1008 * Request-based dm supports only tables that have a single target now.
1009 * To support multiple targets, request splitting support is needed,
1010 * and that needs lots of changes in the block-layer.
1011 * (e.g. request completion process for partial completion.)
1012 */
1013 if (t->num_targets > 1) {
1014 DMERR("%s DM doesn't support multiple targets",
1015 t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
1016 return -EINVAL;
1017 }
1018
1019 if (list_empty(devices)) {
1020 int srcu_idx;
1021 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1022
1023 /* inherit live table's type */
1024 if (live_table)
1025 t->type = live_table->type;
1026 dm_put_live_table(t->md, srcu_idx);
1027 return 0;
1028 }
1029
1030 tgt = dm_table_get_immutable_target(t);
1031 if (!tgt) {
1032 DMERR("table load rejected: immutable target is required");
1033 return -EINVAL;
1034 } else if (tgt->max_io_len) {
1035 DMERR("table load rejected: immutable target that splits IO is not supported");
1036 return -EINVAL;
1037 }
1038
1039 /* Non-request-stackable devices can't be used for request-based dm */
1040 if (!tgt->type->iterate_devices ||
1041 !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
1042 DMERR("table load rejected: including non-request-stackable devices");
1043 return -EINVAL;
1044 }
1045
1046 return 0;
1047 }
1048
1049 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1050 {
1051 return t->type;
1052 }
1053
1054 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1055 {
1056 return t->immutable_target_type;
1057 }
1058
1059 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1060 {
1061 /* Immutable target is implicitly a singleton */
1062 if (t->num_targets > 1 ||
1063 !dm_target_is_immutable(t->targets[0].type))
1064 return NULL;
1065
1066 return t->targets;
1067 }
1068
1069 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1070 {
1071 struct dm_target *ti;
1072 unsigned i;
1073
1074 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1075 ti = dm_table_get_target(t, i);
1076 if (dm_target_is_wildcard(ti->type))
1077 return ti;
1078 }
1079
1080 return NULL;
1081 }
1082
1083 bool dm_table_bio_based(struct dm_table *t)
1084 {
1085 return __table_type_bio_based(dm_table_get_type(t));
1086 }
1087
1088 bool dm_table_request_based(struct dm_table *t)
1089 {
1090 return __table_type_request_based(dm_table_get_type(t));
1091 }
1092
1093 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1094 {
1095 enum dm_queue_mode type = dm_table_get_type(t);
1096 unsigned per_io_data_size = 0;
1097 unsigned min_pool_size = 0;
1098 struct dm_target *ti;
1099 unsigned i;
1100
1101 if (unlikely(type == DM_TYPE_NONE)) {
1102 DMWARN("no table type is set, can't allocate mempools");
1103 return -EINVAL;
1104 }
1105
1106 if (__table_type_bio_based(type))
1107 for (i = 0; i < t->num_targets; i++) {
1108 ti = t->targets + i;
1109 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1110 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1111 }
1112
1113 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1114 per_io_data_size, min_pool_size);
1115 if (!t->mempools)
1116 return -ENOMEM;
1117
1118 return 0;
1119 }
1120
1121 void dm_table_free_md_mempools(struct dm_table *t)
1122 {
1123 dm_free_md_mempools(t->mempools);
1124 t->mempools = NULL;
1125 }
1126
1127 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1128 {
1129 return t->mempools;
1130 }
1131
1132 static int setup_indexes(struct dm_table *t)
1133 {
1134 int i;
1135 unsigned int total = 0;
1136 sector_t *indexes;
1137
1138 /* allocate the space for *all* the indexes */
1139 for (i = t->depth - 2; i >= 0; i--) {
1140 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1141 total += t->counts[i];
1142 }
1143
1144 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1145 if (!indexes)
1146 return -ENOMEM;
1147
1148 /* set up internal nodes, bottom-up */
1149 for (i = t->depth - 2; i >= 0; i--) {
1150 t->index[i] = indexes;
1151 indexes += (KEYS_PER_NODE * t->counts[i]);
1152 setup_btree_index(i, t);
1153 }
1154
1155 return 0;
1156 }
1157
1158 /*
1159 * Builds the btree to index the map.
1160 */
1161 static int dm_table_build_index(struct dm_table *t)
1162 {
1163 int r = 0;
1164 unsigned int leaf_nodes;
1165
1166 /* how many indexes will the btree have ? */
1167 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1168 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1169
1170 /* leaf layer has already been set up */
1171 t->counts[t->depth - 1] = leaf_nodes;
1172 t->index[t->depth - 1] = t->highs;
1173
1174 if (t->depth >= 2)
1175 r = setup_indexes(t);
1176
1177 return r;
1178 }
1179
1180 static bool integrity_profile_exists(struct gendisk *disk)
1181 {
1182 return !!blk_get_integrity(disk);
1183 }
1184
1185 /*
1186 * Get a disk whose integrity profile reflects the table's profile.
1187 * Returns NULL if integrity support was inconsistent or unavailable.
1188 */
1189 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1190 {
1191 struct list_head *devices = dm_table_get_devices(t);
1192 struct dm_dev_internal *dd = NULL;
1193 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1194 unsigned i;
1195
1196 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1197 struct dm_target *ti = dm_table_get_target(t, i);
1198 if (!dm_target_passes_integrity(ti->type))
1199 goto no_integrity;
1200 }
1201
1202 list_for_each_entry(dd, devices, list) {
1203 template_disk = dd->dm_dev->bdev->bd_disk;
1204 if (!integrity_profile_exists(template_disk))
1205 goto no_integrity;
1206 else if (prev_disk &&
1207 blk_integrity_compare(prev_disk, template_disk) < 0)
1208 goto no_integrity;
1209 prev_disk = template_disk;
1210 }
1211
1212 return template_disk;
1213
1214 no_integrity:
1215 if (prev_disk)
1216 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1217 dm_device_name(t->md),
1218 prev_disk->disk_name,
1219 template_disk->disk_name);
1220 return NULL;
1221 }
1222
1223 /*
1224 * Register the mapped device for blk_integrity support if the
1225 * underlying devices have an integrity profile. But all devices may
1226 * not have matching profiles (checking all devices isn't reliable
1227 * during table load because this table may use other DM device(s) which
1228 * must be resumed before they will have an initialized integity
1229 * profile). Consequently, stacked DM devices force a 2 stage integrity
1230 * profile validation: First pass during table load, final pass during
1231 * resume.
1232 */
1233 static int dm_table_register_integrity(struct dm_table *t)
1234 {
1235 struct mapped_device *md = t->md;
1236 struct gendisk *template_disk = NULL;
1237
1238 /* If target handles integrity itself do not register it here. */
1239 if (t->integrity_added)
1240 return 0;
1241
1242 template_disk = dm_table_get_integrity_disk(t);
1243 if (!template_disk)
1244 return 0;
1245
1246 if (!integrity_profile_exists(dm_disk(md))) {
1247 t->integrity_supported = true;
1248 /*
1249 * Register integrity profile during table load; we can do
1250 * this because the final profile must match during resume.
1251 */
1252 blk_integrity_register(dm_disk(md),
1253 blk_get_integrity(template_disk));
1254 return 0;
1255 }
1256
1257 /*
1258 * If DM device already has an initialized integrity
1259 * profile the new profile should not conflict.
1260 */
1261 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1262 DMWARN("%s: conflict with existing integrity profile: "
1263 "%s profile mismatch",
1264 dm_device_name(t->md),
1265 template_disk->disk_name);
1266 return 1;
1267 }
1268
1269 /* Preserve existing integrity profile */
1270 t->integrity_supported = true;
1271 return 0;
1272 }
1273
1274 /*
1275 * Prepares the table for use by building the indices,
1276 * setting the type, and allocating mempools.
1277 */
1278 int dm_table_complete(struct dm_table *t)
1279 {
1280 int r;
1281
1282 r = dm_table_determine_type(t);
1283 if (r) {
1284 DMERR("unable to determine table type");
1285 return r;
1286 }
1287
1288 r = dm_table_build_index(t);
1289 if (r) {
1290 DMERR("unable to build btrees");
1291 return r;
1292 }
1293
1294 r = dm_table_register_integrity(t);
1295 if (r) {
1296 DMERR("could not register integrity profile.");
1297 return r;
1298 }
1299
1300 r = dm_table_alloc_md_mempools(t, t->md);
1301 if (r)
1302 DMERR("unable to allocate mempools");
1303
1304 return r;
1305 }
1306
1307 static DEFINE_MUTEX(_event_lock);
1308 void dm_table_event_callback(struct dm_table *t,
1309 void (*fn)(void *), void *context)
1310 {
1311 mutex_lock(&_event_lock);
1312 t->event_fn = fn;
1313 t->event_context = context;
1314 mutex_unlock(&_event_lock);
1315 }
1316
1317 void dm_table_event(struct dm_table *t)
1318 {
1319 /*
1320 * You can no longer call dm_table_event() from interrupt
1321 * context, use a bottom half instead.
1322 */
1323 BUG_ON(in_interrupt());
1324
1325 mutex_lock(&_event_lock);
1326 if (t->event_fn)
1327 t->event_fn(t->event_context);
1328 mutex_unlock(&_event_lock);
1329 }
1330 EXPORT_SYMBOL(dm_table_event);
1331
1332 inline sector_t dm_table_get_size(struct dm_table *t)
1333 {
1334 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1335 }
1336 EXPORT_SYMBOL(dm_table_get_size);
1337
1338 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1339 {
1340 if (index >= t->num_targets)
1341 return NULL;
1342
1343 return t->targets + index;
1344 }
1345
1346 /*
1347 * Search the btree for the correct target.
1348 *
1349 * Caller should check returned pointer for NULL
1350 * to trap I/O beyond end of device.
1351 */
1352 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1353 {
1354 unsigned int l, n = 0, k = 0;
1355 sector_t *node;
1356
1357 if (unlikely(sector >= dm_table_get_size(t)))
1358 return NULL;
1359
1360 for (l = 0; l < t->depth; l++) {
1361 n = get_child(n, k);
1362 node = get_node(t, l, n);
1363
1364 for (k = 0; k < KEYS_PER_NODE; k++)
1365 if (node[k] >= sector)
1366 break;
1367 }
1368
1369 return &t->targets[(KEYS_PER_NODE * n) + k];
1370 }
1371
1372 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1373 sector_t start, sector_t len, void *data)
1374 {
1375 unsigned *num_devices = data;
1376
1377 (*num_devices)++;
1378
1379 return 0;
1380 }
1381
1382 /*
1383 * Check whether a table has no data devices attached using each
1384 * target's iterate_devices method.
1385 * Returns false if the result is unknown because a target doesn't
1386 * support iterate_devices.
1387 */
1388 bool dm_table_has_no_data_devices(struct dm_table *table)
1389 {
1390 struct dm_target *ti;
1391 unsigned i, num_devices;
1392
1393 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1394 ti = dm_table_get_target(table, i);
1395
1396 if (!ti->type->iterate_devices)
1397 return false;
1398
1399 num_devices = 0;
1400 ti->type->iterate_devices(ti, count_device, &num_devices);
1401 if (num_devices)
1402 return false;
1403 }
1404
1405 return true;
1406 }
1407
1408 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1409 sector_t start, sector_t len, void *data)
1410 {
1411 struct request_queue *q = bdev_get_queue(dev->bdev);
1412 enum blk_zoned_model *zoned_model = data;
1413
1414 return q && blk_queue_zoned_model(q) == *zoned_model;
1415 }
1416
1417 static bool dm_table_supports_zoned_model(struct dm_table *t,
1418 enum blk_zoned_model zoned_model)
1419 {
1420 struct dm_target *ti;
1421 unsigned i;
1422
1423 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1424 ti = dm_table_get_target(t, i);
1425
1426 if (zoned_model == BLK_ZONED_HM &&
1427 !dm_target_supports_zoned_hm(ti->type))
1428 return false;
1429
1430 if (!ti->type->iterate_devices ||
1431 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1432 return false;
1433 }
1434
1435 return true;
1436 }
1437
1438 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1439 sector_t start, sector_t len, void *data)
1440 {
1441 struct request_queue *q = bdev_get_queue(dev->bdev);
1442 unsigned int *zone_sectors = data;
1443
1444 return q && blk_queue_zone_sectors(q) == *zone_sectors;
1445 }
1446
1447 static bool dm_table_matches_zone_sectors(struct dm_table *t,
1448 unsigned int zone_sectors)
1449 {
1450 struct dm_target *ti;
1451 unsigned i;
1452
1453 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1454 ti = dm_table_get_target(t, i);
1455
1456 if (!ti->type->iterate_devices ||
1457 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1458 return false;
1459 }
1460
1461 return true;
1462 }
1463
1464 static int validate_hardware_zoned_model(struct dm_table *table,
1465 enum blk_zoned_model zoned_model,
1466 unsigned int zone_sectors)
1467 {
1468 if (zoned_model == BLK_ZONED_NONE)
1469 return 0;
1470
1471 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1472 DMERR("%s: zoned model is not consistent across all devices",
1473 dm_device_name(table->md));
1474 return -EINVAL;
1475 }
1476
1477 /* Check zone size validity and compatibility */
1478 if (!zone_sectors || !is_power_of_2(zone_sectors))
1479 return -EINVAL;
1480
1481 if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1482 DMERR("%s: zone sectors is not consistent across all devices",
1483 dm_device_name(table->md));
1484 return -EINVAL;
1485 }
1486
1487 return 0;
1488 }
1489
1490 /*
1491 * Establish the new table's queue_limits and validate them.
1492 */
1493 int dm_calculate_queue_limits(struct dm_table *table,
1494 struct queue_limits *limits)
1495 {
1496 struct dm_target *ti;
1497 struct queue_limits ti_limits;
1498 unsigned i;
1499 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1500 unsigned int zone_sectors = 0;
1501
1502 blk_set_stacking_limits(limits);
1503
1504 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1505 blk_set_stacking_limits(&ti_limits);
1506
1507 ti = dm_table_get_target(table, i);
1508
1509 if (!ti->type->iterate_devices)
1510 goto combine_limits;
1511
1512 /*
1513 * Combine queue limits of all the devices this target uses.
1514 */
1515 ti->type->iterate_devices(ti, dm_set_device_limits,
1516 &ti_limits);
1517
1518 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1519 /*
1520 * After stacking all limits, validate all devices
1521 * in table support this zoned model and zone sectors.
1522 */
1523 zoned_model = ti_limits.zoned;
1524 zone_sectors = ti_limits.chunk_sectors;
1525 }
1526
1527 /* Set I/O hints portion of queue limits */
1528 if (ti->type->io_hints)
1529 ti->type->io_hints(ti, &ti_limits);
1530
1531 /*
1532 * Check each device area is consistent with the target's
1533 * overall queue limits.
1534 */
1535 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1536 &ti_limits))
1537 return -EINVAL;
1538
1539 combine_limits:
1540 /*
1541 * Merge this target's queue limits into the overall limits
1542 * for the table.
1543 */
1544 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1545 DMWARN("%s: adding target device "
1546 "(start sect %llu len %llu) "
1547 "caused an alignment inconsistency",
1548 dm_device_name(table->md),
1549 (unsigned long long) ti->begin,
1550 (unsigned long long) ti->len);
1551
1552 /*
1553 * FIXME: this should likely be moved to blk_stack_limits(), would
1554 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1555 */
1556 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1557 /*
1558 * By default, the stacked limits zoned model is set to
1559 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1560 * this model using the first target model reported
1561 * that is not BLK_ZONED_NONE. This will be either the
1562 * first target device zoned model or the model reported
1563 * by the target .io_hints.
1564 */
1565 limits->zoned = ti_limits.zoned;
1566 }
1567 }
1568
1569 /*
1570 * Verify that the zoned model and zone sectors, as determined before
1571 * any .io_hints override, are the same across all devices in the table.
1572 * - this is especially relevant if .io_hints is emulating a disk-managed
1573 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1574 * BUT...
1575 */
1576 if (limits->zoned != BLK_ZONED_NONE) {
1577 /*
1578 * ...IF the above limits stacking determined a zoned model
1579 * validate that all of the table's devices conform to it.
1580 */
1581 zoned_model = limits->zoned;
1582 zone_sectors = limits->chunk_sectors;
1583 }
1584 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1585 return -EINVAL;
1586
1587 return validate_hardware_logical_block_alignment(table, limits);
1588 }
1589
1590 /*
1591 * Verify that all devices have an integrity profile that matches the
1592 * DM device's registered integrity profile. If the profiles don't
1593 * match then unregister the DM device's integrity profile.
1594 */
1595 static void dm_table_verify_integrity(struct dm_table *t)
1596 {
1597 struct gendisk *template_disk = NULL;
1598
1599 if (t->integrity_added)
1600 return;
1601
1602 if (t->integrity_supported) {
1603 /*
1604 * Verify that the original integrity profile
1605 * matches all the devices in this table.
1606 */
1607 template_disk = dm_table_get_integrity_disk(t);
1608 if (template_disk &&
1609 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1610 return;
1611 }
1612
1613 if (integrity_profile_exists(dm_disk(t->md))) {
1614 DMWARN("%s: unable to establish an integrity profile",
1615 dm_device_name(t->md));
1616 blk_integrity_unregister(dm_disk(t->md));
1617 }
1618 }
1619
1620 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1621 sector_t start, sector_t len, void *data)
1622 {
1623 unsigned long flush = (unsigned long) data;
1624 struct request_queue *q = bdev_get_queue(dev->bdev);
1625
1626 return q && (q->queue_flags & flush);
1627 }
1628
1629 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1630 {
1631 struct dm_target *ti;
1632 unsigned i;
1633
1634 /*
1635 * Require at least one underlying device to support flushes.
1636 * t->devices includes internal dm devices such as mirror logs
1637 * so we need to use iterate_devices here, which targets
1638 * supporting flushes must provide.
1639 */
1640 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1641 ti = dm_table_get_target(t, i);
1642
1643 if (!ti->num_flush_bios)
1644 continue;
1645
1646 if (ti->flush_supported)
1647 return true;
1648
1649 if (ti->type->iterate_devices &&
1650 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1651 return true;
1652 }
1653
1654 return false;
1655 }
1656
1657 static int device_dax_write_cache_enabled(struct dm_target *ti,
1658 struct dm_dev *dev, sector_t start,
1659 sector_t len, void *data)
1660 {
1661 struct dax_device *dax_dev = dev->dax_dev;
1662
1663 if (!dax_dev)
1664 return false;
1665
1666 if (dax_write_cache_enabled(dax_dev))
1667 return true;
1668 return false;
1669 }
1670
1671 static int dm_table_supports_dax_write_cache(struct dm_table *t)
1672 {
1673 struct dm_target *ti;
1674 unsigned i;
1675
1676 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1677 ti = dm_table_get_target(t, i);
1678
1679 if (ti->type->iterate_devices &&
1680 ti->type->iterate_devices(ti,
1681 device_dax_write_cache_enabled, NULL))
1682 return true;
1683 }
1684
1685 return false;
1686 }
1687
1688 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1689 sector_t start, sector_t len, void *data)
1690 {
1691 struct request_queue *q = bdev_get_queue(dev->bdev);
1692
1693 return q && blk_queue_nonrot(q);
1694 }
1695
1696 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1697 sector_t start, sector_t len, void *data)
1698 {
1699 struct request_queue *q = bdev_get_queue(dev->bdev);
1700
1701 return q && !blk_queue_add_random(q);
1702 }
1703
1704 static bool dm_table_all_devices_attribute(struct dm_table *t,
1705 iterate_devices_callout_fn func)
1706 {
1707 struct dm_target *ti;
1708 unsigned i;
1709
1710 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1711 ti = dm_table_get_target(t, i);
1712
1713 if (!ti->type->iterate_devices ||
1714 !ti->type->iterate_devices(ti, func, NULL))
1715 return false;
1716 }
1717
1718 return true;
1719 }
1720
1721 static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1722 sector_t start, sector_t len, void *data)
1723 {
1724 char b[BDEVNAME_SIZE];
1725
1726 /* For now, NVMe devices are the only devices of this class */
1727 return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
1728 }
1729
1730 static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1731 {
1732 return dm_table_all_devices_attribute(t, device_no_partial_completion);
1733 }
1734
1735 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1736 sector_t start, sector_t len, void *data)
1737 {
1738 struct request_queue *q = bdev_get_queue(dev->bdev);
1739
1740 return q && !q->limits.max_write_same_sectors;
1741 }
1742
1743 static bool dm_table_supports_write_same(struct dm_table *t)
1744 {
1745 struct dm_target *ti;
1746 unsigned i;
1747
1748 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1749 ti = dm_table_get_target(t, i);
1750
1751 if (!ti->num_write_same_bios)
1752 return false;
1753
1754 if (!ti->type->iterate_devices ||
1755 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1756 return false;
1757 }
1758
1759 return true;
1760 }
1761
1762 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1763 sector_t start, sector_t len, void *data)
1764 {
1765 struct request_queue *q = bdev_get_queue(dev->bdev);
1766
1767 return q && !q->limits.max_write_zeroes_sectors;
1768 }
1769
1770 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1771 {
1772 struct dm_target *ti;
1773 unsigned i = 0;
1774
1775 while (i < dm_table_get_num_targets(t)) {
1776 ti = dm_table_get_target(t, i++);
1777
1778 if (!ti->num_write_zeroes_bios)
1779 return false;
1780
1781 if (!ti->type->iterate_devices ||
1782 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1783 return false;
1784 }
1785
1786 return true;
1787 }
1788
1789 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1790 sector_t start, sector_t len, void *data)
1791 {
1792 struct request_queue *q = bdev_get_queue(dev->bdev);
1793
1794 return q && !blk_queue_discard(q);
1795 }
1796
1797 static bool dm_table_supports_discards(struct dm_table *t)
1798 {
1799 struct dm_target *ti;
1800 unsigned i;
1801
1802 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1803 ti = dm_table_get_target(t, i);
1804
1805 if (!ti->num_discard_bios)
1806 return false;
1807
1808 /*
1809 * Either the target provides discard support (as implied by setting
1810 * 'discards_supported') or it relies on _all_ data devices having
1811 * discard support.
1812 */
1813 if (!ti->discards_supported &&
1814 (!ti->type->iterate_devices ||
1815 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1816 return false;
1817 }
1818
1819 return true;
1820 }
1821
1822 static int device_not_secure_erase_capable(struct dm_target *ti,
1823 struct dm_dev *dev, sector_t start,
1824 sector_t len, void *data)
1825 {
1826 struct request_queue *q = bdev_get_queue(dev->bdev);
1827
1828 return q && !blk_queue_secure_erase(q);
1829 }
1830
1831 static bool dm_table_supports_secure_erase(struct dm_table *t)
1832 {
1833 struct dm_target *ti;
1834 unsigned int i;
1835
1836 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1837 ti = dm_table_get_target(t, i);
1838
1839 if (!ti->num_secure_erase_bios)
1840 return false;
1841
1842 if (!ti->type->iterate_devices ||
1843 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1844 return false;
1845 }
1846
1847 return true;
1848 }
1849
1850 static int device_requires_stable_pages(struct dm_target *ti,
1851 struct dm_dev *dev, sector_t start,
1852 sector_t len, void *data)
1853 {
1854 struct request_queue *q = bdev_get_queue(dev->bdev);
1855
1856 return q && bdi_cap_stable_pages_required(q->backing_dev_info);
1857 }
1858
1859 /*
1860 * If any underlying device requires stable pages, a table must require
1861 * them as well. Only targets that support iterate_devices are considered:
1862 * don't want error, zero, etc to require stable pages.
1863 */
1864 static bool dm_table_requires_stable_pages(struct dm_table *t)
1865 {
1866 struct dm_target *ti;
1867 unsigned i;
1868
1869 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1870 ti = dm_table_get_target(t, i);
1871
1872 if (ti->type->iterate_devices &&
1873 ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
1874 return true;
1875 }
1876
1877 return false;
1878 }
1879
1880 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1881 struct queue_limits *limits)
1882 {
1883 bool wc = false, fua = false;
1884 int page_size = PAGE_SIZE;
1885
1886 /*
1887 * Copy table's limits to the DM device's request_queue
1888 */
1889 q->limits = *limits;
1890
1891 if (!dm_table_supports_discards(t)) {
1892 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1893 /* Must also clear discard limits... */
1894 q->limits.max_discard_sectors = 0;
1895 q->limits.max_hw_discard_sectors = 0;
1896 q->limits.discard_granularity = 0;
1897 q->limits.discard_alignment = 0;
1898 q->limits.discard_misaligned = 0;
1899 } else
1900 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1901
1902 if (dm_table_supports_secure_erase(t))
1903 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1904
1905 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1906 wc = true;
1907 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1908 fua = true;
1909 }
1910 blk_queue_write_cache(q, wc, fua);
1911
1912 if (dm_table_supports_dax(t, device_supports_dax, &page_size)) {
1913 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1914 if (dm_table_supports_dax(t, device_dax_synchronous, NULL))
1915 set_dax_synchronous(t->md->dax_dev);
1916 }
1917 else
1918 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1919
1920 if (dm_table_supports_dax_write_cache(t))
1921 dax_write_cache(t->md->dax_dev, true);
1922
1923 /* Ensure that all underlying devices are non-rotational. */
1924 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1925 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1926 else
1927 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1928
1929 if (!dm_table_supports_write_same(t))
1930 q->limits.max_write_same_sectors = 0;
1931 if (!dm_table_supports_write_zeroes(t))
1932 q->limits.max_write_zeroes_sectors = 0;
1933
1934 dm_table_verify_integrity(t);
1935
1936 /*
1937 * Some devices don't use blk_integrity but still want stable pages
1938 * because they do their own checksumming.
1939 */
1940 if (dm_table_requires_stable_pages(t))
1941 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
1942 else
1943 q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES;
1944
1945 /*
1946 * Determine whether or not this queue's I/O timings contribute
1947 * to the entropy pool, Only request-based targets use this.
1948 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1949 * have it set.
1950 */
1951 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1952 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1953
1954 /*
1955 * For a zoned target, the number of zones should be updated for the
1956 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1957 * target, this is all that is needed.
1958 */
1959 #ifdef CONFIG_BLK_DEV_ZONED
1960 if (blk_queue_is_zoned(q)) {
1961 WARN_ON_ONCE(queue_is_mq(q));
1962 q->nr_zones = blkdev_nr_zones(t->md->disk);
1963 }
1964 #endif
1965
1966 /* Allow reads to exceed readahead limits */
1967 q->backing_dev_info->io_pages = limits->max_sectors >> (PAGE_SHIFT - 9);
1968 }
1969
1970 unsigned int dm_table_get_num_targets(struct dm_table *t)
1971 {
1972 return t->num_targets;
1973 }
1974
1975 struct list_head *dm_table_get_devices(struct dm_table *t)
1976 {
1977 return &t->devices;
1978 }
1979
1980 fmode_t dm_table_get_mode(struct dm_table *t)
1981 {
1982 return t->mode;
1983 }
1984 EXPORT_SYMBOL(dm_table_get_mode);
1985
1986 enum suspend_mode {
1987 PRESUSPEND,
1988 PRESUSPEND_UNDO,
1989 POSTSUSPEND,
1990 };
1991
1992 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1993 {
1994 int i = t->num_targets;
1995 struct dm_target *ti = t->targets;
1996
1997 lockdep_assert_held(&t->md->suspend_lock);
1998
1999 while (i--) {
2000 switch (mode) {
2001 case PRESUSPEND:
2002 if (ti->type->presuspend)
2003 ti->type->presuspend(ti);
2004 break;
2005 case PRESUSPEND_UNDO:
2006 if (ti->type->presuspend_undo)
2007 ti->type->presuspend_undo(ti);
2008 break;
2009 case POSTSUSPEND:
2010 if (ti->type->postsuspend)
2011 ti->type->postsuspend(ti);
2012 break;
2013 }
2014 ti++;
2015 }
2016 }
2017
2018 void dm_table_presuspend_targets(struct dm_table *t)
2019 {
2020 if (!t)
2021 return;
2022
2023 suspend_targets(t, PRESUSPEND);
2024 }
2025
2026 void dm_table_presuspend_undo_targets(struct dm_table *t)
2027 {
2028 if (!t)
2029 return;
2030
2031 suspend_targets(t, PRESUSPEND_UNDO);
2032 }
2033
2034 void dm_table_postsuspend_targets(struct dm_table *t)
2035 {
2036 if (!t)
2037 return;
2038
2039 suspend_targets(t, POSTSUSPEND);
2040 }
2041
2042 int dm_table_resume_targets(struct dm_table *t)
2043 {
2044 int i, r = 0;
2045
2046 lockdep_assert_held(&t->md->suspend_lock);
2047
2048 for (i = 0; i < t->num_targets; i++) {
2049 struct dm_target *ti = t->targets + i;
2050
2051 if (!ti->type->preresume)
2052 continue;
2053
2054 r = ti->type->preresume(ti);
2055 if (r) {
2056 DMERR("%s: %s: preresume failed, error = %d",
2057 dm_device_name(t->md), ti->type->name, r);
2058 return r;
2059 }
2060 }
2061
2062 for (i = 0; i < t->num_targets; i++) {
2063 struct dm_target *ti = t->targets + i;
2064
2065 if (ti->type->resume)
2066 ti->type->resume(ti);
2067 }
2068
2069 return 0;
2070 }
2071
2072 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
2073 {
2074 list_add(&cb->list, &t->target_callbacks);
2075 }
2076 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
2077
2078 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
2079 {
2080 struct dm_dev_internal *dd;
2081 struct list_head *devices = dm_table_get_devices(t);
2082 struct dm_target_callbacks *cb;
2083 int r = 0;
2084
2085 list_for_each_entry(dd, devices, list) {
2086 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
2087 char b[BDEVNAME_SIZE];
2088
2089 if (likely(q))
2090 r |= bdi_congested(q->backing_dev_info, bdi_bits);
2091 else
2092 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
2093 dm_device_name(t->md),
2094 bdevname(dd->dm_dev->bdev, b));
2095 }
2096
2097 list_for_each_entry(cb, &t->target_callbacks, list)
2098 if (cb->congested_fn)
2099 r |= cb->congested_fn(cb, bdi_bits);
2100
2101 return r;
2102 }
2103
2104 struct mapped_device *dm_table_get_md(struct dm_table *t)
2105 {
2106 return t->md;
2107 }
2108 EXPORT_SYMBOL(dm_table_get_md);
2109
2110 const char *dm_table_device_name(struct dm_table *t)
2111 {
2112 return dm_device_name(t->md);
2113 }
2114 EXPORT_SYMBOL_GPL(dm_table_device_name);
2115
2116 void dm_table_run_md_queue_async(struct dm_table *t)
2117 {
2118 struct mapped_device *md;
2119 struct request_queue *queue;
2120
2121 if (!dm_table_request_based(t))
2122 return;
2123
2124 md = dm_table_get_md(t);
2125 queue = dm_get_md_queue(md);
2126 if (queue)
2127 blk_mq_run_hw_queues(queue, true);
2128 }
2129 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2130