]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/md/dm-table.c
Merge tag 'for-5.11/block-2020-12-14' of git://git.kernel.dk/linux-block
[mirror_ubuntu-kernels.git] / drivers / md / dm-table.c
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24
25 #define DM_MSG_PREFIX "table"
26
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30
31 /*
32 * Similar to ceiling(log_size(n))
33 */
34 static unsigned int int_log(unsigned int n, unsigned int base)
35 {
36 int result = 0;
37
38 while (n > 1) {
39 n = dm_div_up(n, base);
40 result++;
41 }
42
43 return result;
44 }
45
46 /*
47 * Calculate the index of the child node of the n'th node k'th key.
48 */
49 static inline unsigned int get_child(unsigned int n, unsigned int k)
50 {
51 return (n * CHILDREN_PER_NODE) + k;
52 }
53
54 /*
55 * Return the n'th node of level l from table t.
56 */
57 static inline sector_t *get_node(struct dm_table *t,
58 unsigned int l, unsigned int n)
59 {
60 return t->index[l] + (n * KEYS_PER_NODE);
61 }
62
63 /*
64 * Return the highest key that you could lookup from the n'th
65 * node on level l of the btree.
66 */
67 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
68 {
69 for (; l < t->depth - 1; l++)
70 n = get_child(n, CHILDREN_PER_NODE - 1);
71
72 if (n >= t->counts[l])
73 return (sector_t) - 1;
74
75 return get_node(t, l, n)[KEYS_PER_NODE - 1];
76 }
77
78 /*
79 * Fills in a level of the btree based on the highs of the level
80 * below it.
81 */
82 static int setup_btree_index(unsigned int l, struct dm_table *t)
83 {
84 unsigned int n, k;
85 sector_t *node;
86
87 for (n = 0U; n < t->counts[l]; n++) {
88 node = get_node(t, l, n);
89
90 for (k = 0U; k < KEYS_PER_NODE; k++)
91 node[k] = high(t, l + 1, get_child(n, k));
92 }
93
94 return 0;
95 }
96
97 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
98 {
99 unsigned long size;
100 void *addr;
101
102 /*
103 * Check that we're not going to overflow.
104 */
105 if (nmemb > (ULONG_MAX / elem_size))
106 return NULL;
107
108 size = nmemb * elem_size;
109 addr = vzalloc(size);
110
111 return addr;
112 }
113 EXPORT_SYMBOL(dm_vcalloc);
114
115 /*
116 * highs, and targets are managed as dynamic arrays during a
117 * table load.
118 */
119 static int alloc_targets(struct dm_table *t, unsigned int num)
120 {
121 sector_t *n_highs;
122 struct dm_target *n_targets;
123
124 /*
125 * Allocate both the target array and offset array at once.
126 */
127 n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
128 sizeof(sector_t));
129 if (!n_highs)
130 return -ENOMEM;
131
132 n_targets = (struct dm_target *) (n_highs + num);
133
134 memset(n_highs, -1, sizeof(*n_highs) * num);
135 vfree(t->highs);
136
137 t->num_allocated = num;
138 t->highs = n_highs;
139 t->targets = n_targets;
140
141 return 0;
142 }
143
144 int dm_table_create(struct dm_table **result, fmode_t mode,
145 unsigned num_targets, struct mapped_device *md)
146 {
147 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
148
149 if (!t)
150 return -ENOMEM;
151
152 INIT_LIST_HEAD(&t->devices);
153
154 if (!num_targets)
155 num_targets = KEYS_PER_NODE;
156
157 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
158
159 if (!num_targets) {
160 kfree(t);
161 return -ENOMEM;
162 }
163
164 if (alloc_targets(t, num_targets)) {
165 kfree(t);
166 return -ENOMEM;
167 }
168
169 t->type = DM_TYPE_NONE;
170 t->mode = mode;
171 t->md = md;
172 *result = t;
173 return 0;
174 }
175
176 static void free_devices(struct list_head *devices, struct mapped_device *md)
177 {
178 struct list_head *tmp, *next;
179
180 list_for_each_safe(tmp, next, devices) {
181 struct dm_dev_internal *dd =
182 list_entry(tmp, struct dm_dev_internal, list);
183 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
184 dm_device_name(md), dd->dm_dev->name);
185 dm_put_table_device(md, dd->dm_dev);
186 kfree(dd);
187 }
188 }
189
190 void dm_table_destroy(struct dm_table *t)
191 {
192 unsigned int i;
193
194 if (!t)
195 return;
196
197 /* free the indexes */
198 if (t->depth >= 2)
199 vfree(t->index[t->depth - 2]);
200
201 /* free the targets */
202 for (i = 0; i < t->num_targets; i++) {
203 struct dm_target *tgt = t->targets + i;
204
205 if (tgt->type->dtr)
206 tgt->type->dtr(tgt);
207
208 dm_put_target_type(tgt->type);
209 }
210
211 vfree(t->highs);
212
213 /* free the device list */
214 free_devices(&t->devices, t->md);
215
216 dm_free_md_mempools(t->mempools);
217
218 kfree(t);
219 }
220
221 /*
222 * See if we've already got a device in the list.
223 */
224 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
225 {
226 struct dm_dev_internal *dd;
227
228 list_for_each_entry (dd, l, list)
229 if (dd->dm_dev->bdev->bd_dev == dev)
230 return dd;
231
232 return NULL;
233 }
234
235 /*
236 * If possible, this checks an area of a destination device is invalid.
237 */
238 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
239 sector_t start, sector_t len, void *data)
240 {
241 struct queue_limits *limits = data;
242 struct block_device *bdev = dev->bdev;
243 sector_t dev_size =
244 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
245 unsigned short logical_block_size_sectors =
246 limits->logical_block_size >> SECTOR_SHIFT;
247 char b[BDEVNAME_SIZE];
248
249 if (!dev_size)
250 return 0;
251
252 if ((start >= dev_size) || (start + len > dev_size)) {
253 DMWARN("%s: %s too small for target: "
254 "start=%llu, len=%llu, dev_size=%llu",
255 dm_device_name(ti->table->md), bdevname(bdev, b),
256 (unsigned long long)start,
257 (unsigned long long)len,
258 (unsigned long long)dev_size);
259 return 1;
260 }
261
262 /*
263 * If the target is mapped to zoned block device(s), check
264 * that the zones are not partially mapped.
265 */
266 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
267 unsigned int zone_sectors = bdev_zone_sectors(bdev);
268
269 if (start & (zone_sectors - 1)) {
270 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
271 dm_device_name(ti->table->md),
272 (unsigned long long)start,
273 zone_sectors, bdevname(bdev, b));
274 return 1;
275 }
276
277 /*
278 * Note: The last zone of a zoned block device may be smaller
279 * than other zones. So for a target mapping the end of a
280 * zoned block device with such a zone, len would not be zone
281 * aligned. We do not allow such last smaller zone to be part
282 * of the mapping here to ensure that mappings with multiple
283 * devices do not end up with a smaller zone in the middle of
284 * the sector range.
285 */
286 if (len & (zone_sectors - 1)) {
287 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
288 dm_device_name(ti->table->md),
289 (unsigned long long)len,
290 zone_sectors, bdevname(bdev, b));
291 return 1;
292 }
293 }
294
295 if (logical_block_size_sectors <= 1)
296 return 0;
297
298 if (start & (logical_block_size_sectors - 1)) {
299 DMWARN("%s: start=%llu not aligned to h/w "
300 "logical block size %u of %s",
301 dm_device_name(ti->table->md),
302 (unsigned long long)start,
303 limits->logical_block_size, bdevname(bdev, b));
304 return 1;
305 }
306
307 if (len & (logical_block_size_sectors - 1)) {
308 DMWARN("%s: len=%llu not aligned to h/w "
309 "logical block size %u of %s",
310 dm_device_name(ti->table->md),
311 (unsigned long long)len,
312 limits->logical_block_size, bdevname(bdev, b));
313 return 1;
314 }
315
316 return 0;
317 }
318
319 /*
320 * This upgrades the mode on an already open dm_dev, being
321 * careful to leave things as they were if we fail to reopen the
322 * device and not to touch the existing bdev field in case
323 * it is accessed concurrently.
324 */
325 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
326 struct mapped_device *md)
327 {
328 int r;
329 struct dm_dev *old_dev, *new_dev;
330
331 old_dev = dd->dm_dev;
332
333 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
334 dd->dm_dev->mode | new_mode, &new_dev);
335 if (r)
336 return r;
337
338 dd->dm_dev = new_dev;
339 dm_put_table_device(md, old_dev);
340
341 return 0;
342 }
343
344 /*
345 * Convert the path to a device
346 */
347 dev_t dm_get_dev_t(const char *path)
348 {
349 dev_t dev;
350
351 if (lookup_bdev(path, &dev))
352 dev = name_to_dev_t(path);
353 return dev;
354 }
355 EXPORT_SYMBOL_GPL(dm_get_dev_t);
356
357 /*
358 * Add a device to the list, or just increment the usage count if
359 * it's already present.
360 */
361 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
362 struct dm_dev **result)
363 {
364 int r;
365 dev_t dev;
366 struct dm_dev_internal *dd;
367 struct dm_table *t = ti->table;
368
369 BUG_ON(!t);
370
371 dev = dm_get_dev_t(path);
372 if (!dev)
373 return -ENODEV;
374
375 dd = find_device(&t->devices, dev);
376 if (!dd) {
377 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
378 if (!dd)
379 return -ENOMEM;
380
381 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
382 kfree(dd);
383 return r;
384 }
385
386 refcount_set(&dd->count, 1);
387 list_add(&dd->list, &t->devices);
388 goto out;
389
390 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
391 r = upgrade_mode(dd, mode, t->md);
392 if (r)
393 return r;
394 }
395 refcount_inc(&dd->count);
396 out:
397 *result = dd->dm_dev;
398 return 0;
399 }
400 EXPORT_SYMBOL(dm_get_device);
401
402 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
403 sector_t start, sector_t len, void *data)
404 {
405 struct queue_limits *limits = data;
406 struct block_device *bdev = dev->bdev;
407 struct request_queue *q = bdev_get_queue(bdev);
408 char b[BDEVNAME_SIZE];
409
410 if (unlikely(!q)) {
411 DMWARN("%s: Cannot set limits for nonexistent device %s",
412 dm_device_name(ti->table->md), bdevname(bdev, b));
413 return 0;
414 }
415
416 if (blk_stack_limits(limits, &q->limits,
417 get_start_sect(bdev) + start) < 0)
418 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
419 "physical_block_size=%u, logical_block_size=%u, "
420 "alignment_offset=%u, start=%llu",
421 dm_device_name(ti->table->md), bdevname(bdev, b),
422 q->limits.physical_block_size,
423 q->limits.logical_block_size,
424 q->limits.alignment_offset,
425 (unsigned long long) start << SECTOR_SHIFT);
426 return 0;
427 }
428
429 /*
430 * Decrement a device's use count and remove it if necessary.
431 */
432 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
433 {
434 int found = 0;
435 struct list_head *devices = &ti->table->devices;
436 struct dm_dev_internal *dd;
437
438 list_for_each_entry(dd, devices, list) {
439 if (dd->dm_dev == d) {
440 found = 1;
441 break;
442 }
443 }
444 if (!found) {
445 DMWARN("%s: device %s not in table devices list",
446 dm_device_name(ti->table->md), d->name);
447 return;
448 }
449 if (refcount_dec_and_test(&dd->count)) {
450 dm_put_table_device(ti->table->md, d);
451 list_del(&dd->list);
452 kfree(dd);
453 }
454 }
455 EXPORT_SYMBOL(dm_put_device);
456
457 /*
458 * Checks to see if the target joins onto the end of the table.
459 */
460 static int adjoin(struct dm_table *table, struct dm_target *ti)
461 {
462 struct dm_target *prev;
463
464 if (!table->num_targets)
465 return !ti->begin;
466
467 prev = &table->targets[table->num_targets - 1];
468 return (ti->begin == (prev->begin + prev->len));
469 }
470
471 /*
472 * Used to dynamically allocate the arg array.
473 *
474 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
475 * process messages even if some device is suspended. These messages have a
476 * small fixed number of arguments.
477 *
478 * On the other hand, dm-switch needs to process bulk data using messages and
479 * excessive use of GFP_NOIO could cause trouble.
480 */
481 static char **realloc_argv(unsigned *size, char **old_argv)
482 {
483 char **argv;
484 unsigned new_size;
485 gfp_t gfp;
486
487 if (*size) {
488 new_size = *size * 2;
489 gfp = GFP_KERNEL;
490 } else {
491 new_size = 8;
492 gfp = GFP_NOIO;
493 }
494 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
495 if (argv && old_argv) {
496 memcpy(argv, old_argv, *size * sizeof(*argv));
497 *size = new_size;
498 }
499
500 kfree(old_argv);
501 return argv;
502 }
503
504 /*
505 * Destructively splits up the argument list to pass to ctr.
506 */
507 int dm_split_args(int *argc, char ***argvp, char *input)
508 {
509 char *start, *end = input, *out, **argv = NULL;
510 unsigned array_size = 0;
511
512 *argc = 0;
513
514 if (!input) {
515 *argvp = NULL;
516 return 0;
517 }
518
519 argv = realloc_argv(&array_size, argv);
520 if (!argv)
521 return -ENOMEM;
522
523 while (1) {
524 /* Skip whitespace */
525 start = skip_spaces(end);
526
527 if (!*start)
528 break; /* success, we hit the end */
529
530 /* 'out' is used to remove any back-quotes */
531 end = out = start;
532 while (*end) {
533 /* Everything apart from '\0' can be quoted */
534 if (*end == '\\' && *(end + 1)) {
535 *out++ = *(end + 1);
536 end += 2;
537 continue;
538 }
539
540 if (isspace(*end))
541 break; /* end of token */
542
543 *out++ = *end++;
544 }
545
546 /* have we already filled the array ? */
547 if ((*argc + 1) > array_size) {
548 argv = realloc_argv(&array_size, argv);
549 if (!argv)
550 return -ENOMEM;
551 }
552
553 /* we know this is whitespace */
554 if (*end)
555 end++;
556
557 /* terminate the string and put it in the array */
558 *out = '\0';
559 argv[*argc] = start;
560 (*argc)++;
561 }
562
563 *argvp = argv;
564 return 0;
565 }
566
567 /*
568 * Impose necessary and sufficient conditions on a devices's table such
569 * that any incoming bio which respects its logical_block_size can be
570 * processed successfully. If it falls across the boundary between
571 * two or more targets, the size of each piece it gets split into must
572 * be compatible with the logical_block_size of the target processing it.
573 */
574 static int validate_hardware_logical_block_alignment(struct dm_table *table,
575 struct queue_limits *limits)
576 {
577 /*
578 * This function uses arithmetic modulo the logical_block_size
579 * (in units of 512-byte sectors).
580 */
581 unsigned short device_logical_block_size_sects =
582 limits->logical_block_size >> SECTOR_SHIFT;
583
584 /*
585 * Offset of the start of the next table entry, mod logical_block_size.
586 */
587 unsigned short next_target_start = 0;
588
589 /*
590 * Given an aligned bio that extends beyond the end of a
591 * target, how many sectors must the next target handle?
592 */
593 unsigned short remaining = 0;
594
595 struct dm_target *ti;
596 struct queue_limits ti_limits;
597 unsigned i;
598
599 /*
600 * Check each entry in the table in turn.
601 */
602 for (i = 0; i < dm_table_get_num_targets(table); i++) {
603 ti = dm_table_get_target(table, i);
604
605 blk_set_stacking_limits(&ti_limits);
606
607 /* combine all target devices' limits */
608 if (ti->type->iterate_devices)
609 ti->type->iterate_devices(ti, dm_set_device_limits,
610 &ti_limits);
611
612 /*
613 * If the remaining sectors fall entirely within this
614 * table entry are they compatible with its logical_block_size?
615 */
616 if (remaining < ti->len &&
617 remaining & ((ti_limits.logical_block_size >>
618 SECTOR_SHIFT) - 1))
619 break; /* Error */
620
621 next_target_start =
622 (unsigned short) ((next_target_start + ti->len) &
623 (device_logical_block_size_sects - 1));
624 remaining = next_target_start ?
625 device_logical_block_size_sects - next_target_start : 0;
626 }
627
628 if (remaining) {
629 DMWARN("%s: table line %u (start sect %llu len %llu) "
630 "not aligned to h/w logical block size %u",
631 dm_device_name(table->md), i,
632 (unsigned long long) ti->begin,
633 (unsigned long long) ti->len,
634 limits->logical_block_size);
635 return -EINVAL;
636 }
637
638 return 0;
639 }
640
641 int dm_table_add_target(struct dm_table *t, const char *type,
642 sector_t start, sector_t len, char *params)
643 {
644 int r = -EINVAL, argc;
645 char **argv;
646 struct dm_target *tgt;
647
648 if (t->singleton) {
649 DMERR("%s: target type %s must appear alone in table",
650 dm_device_name(t->md), t->targets->type->name);
651 return -EINVAL;
652 }
653
654 BUG_ON(t->num_targets >= t->num_allocated);
655
656 tgt = t->targets + t->num_targets;
657 memset(tgt, 0, sizeof(*tgt));
658
659 if (!len) {
660 DMERR("%s: zero-length target", dm_device_name(t->md));
661 return -EINVAL;
662 }
663
664 tgt->type = dm_get_target_type(type);
665 if (!tgt->type) {
666 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
667 return -EINVAL;
668 }
669
670 if (dm_target_needs_singleton(tgt->type)) {
671 if (t->num_targets) {
672 tgt->error = "singleton target type must appear alone in table";
673 goto bad;
674 }
675 t->singleton = true;
676 }
677
678 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
679 tgt->error = "target type may not be included in a read-only table";
680 goto bad;
681 }
682
683 if (t->immutable_target_type) {
684 if (t->immutable_target_type != tgt->type) {
685 tgt->error = "immutable target type cannot be mixed with other target types";
686 goto bad;
687 }
688 } else if (dm_target_is_immutable(tgt->type)) {
689 if (t->num_targets) {
690 tgt->error = "immutable target type cannot be mixed with other target types";
691 goto bad;
692 }
693 t->immutable_target_type = tgt->type;
694 }
695
696 if (dm_target_has_integrity(tgt->type))
697 t->integrity_added = 1;
698
699 tgt->table = t;
700 tgt->begin = start;
701 tgt->len = len;
702 tgt->error = "Unknown error";
703
704 /*
705 * Does this target adjoin the previous one ?
706 */
707 if (!adjoin(t, tgt)) {
708 tgt->error = "Gap in table";
709 goto bad;
710 }
711
712 r = dm_split_args(&argc, &argv, params);
713 if (r) {
714 tgt->error = "couldn't split parameters (insufficient memory)";
715 goto bad;
716 }
717
718 r = tgt->type->ctr(tgt, argc, argv);
719 kfree(argv);
720 if (r)
721 goto bad;
722
723 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
724
725 if (!tgt->num_discard_bios && tgt->discards_supported)
726 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
727 dm_device_name(t->md), type);
728
729 return 0;
730
731 bad:
732 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
733 dm_put_target_type(tgt->type);
734 return r;
735 }
736
737 /*
738 * Target argument parsing helpers.
739 */
740 static int validate_next_arg(const struct dm_arg *arg,
741 struct dm_arg_set *arg_set,
742 unsigned *value, char **error, unsigned grouped)
743 {
744 const char *arg_str = dm_shift_arg(arg_set);
745 char dummy;
746
747 if (!arg_str ||
748 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
749 (*value < arg->min) ||
750 (*value > arg->max) ||
751 (grouped && arg_set->argc < *value)) {
752 *error = arg->error;
753 return -EINVAL;
754 }
755
756 return 0;
757 }
758
759 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
760 unsigned *value, char **error)
761 {
762 return validate_next_arg(arg, arg_set, value, error, 0);
763 }
764 EXPORT_SYMBOL(dm_read_arg);
765
766 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
767 unsigned *value, char **error)
768 {
769 return validate_next_arg(arg, arg_set, value, error, 1);
770 }
771 EXPORT_SYMBOL(dm_read_arg_group);
772
773 const char *dm_shift_arg(struct dm_arg_set *as)
774 {
775 char *r;
776
777 if (as->argc) {
778 as->argc--;
779 r = *as->argv;
780 as->argv++;
781 return r;
782 }
783
784 return NULL;
785 }
786 EXPORT_SYMBOL(dm_shift_arg);
787
788 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
789 {
790 BUG_ON(as->argc < num_args);
791 as->argc -= num_args;
792 as->argv += num_args;
793 }
794 EXPORT_SYMBOL(dm_consume_args);
795
796 static bool __table_type_bio_based(enum dm_queue_mode table_type)
797 {
798 return (table_type == DM_TYPE_BIO_BASED ||
799 table_type == DM_TYPE_DAX_BIO_BASED);
800 }
801
802 static bool __table_type_request_based(enum dm_queue_mode table_type)
803 {
804 return table_type == DM_TYPE_REQUEST_BASED;
805 }
806
807 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
808 {
809 t->type = type;
810 }
811 EXPORT_SYMBOL_GPL(dm_table_set_type);
812
813 /* validate the dax capability of the target device span */
814 int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
815 sector_t start, sector_t len, void *data)
816 {
817 int blocksize = *(int *) data, id;
818 bool rc;
819
820 id = dax_read_lock();
821 rc = dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
822 dax_read_unlock(id);
823
824 return rc;
825 }
826
827 /* Check devices support synchronous DAX */
828 static int device_dax_synchronous(struct dm_target *ti, struct dm_dev *dev,
829 sector_t start, sector_t len, void *data)
830 {
831 return dev->dax_dev && dax_synchronous(dev->dax_dev);
832 }
833
834 bool dm_table_supports_dax(struct dm_table *t,
835 iterate_devices_callout_fn iterate_fn, int *blocksize)
836 {
837 struct dm_target *ti;
838 unsigned i;
839
840 /* Ensure that all targets support DAX. */
841 for (i = 0; i < dm_table_get_num_targets(t); i++) {
842 ti = dm_table_get_target(t, i);
843
844 if (!ti->type->direct_access)
845 return false;
846
847 if (!ti->type->iterate_devices ||
848 !ti->type->iterate_devices(ti, iterate_fn, blocksize))
849 return false;
850 }
851
852 return true;
853 }
854
855 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
856 sector_t start, sector_t len, void *data)
857 {
858 struct block_device *bdev = dev->bdev;
859 struct request_queue *q = bdev_get_queue(bdev);
860
861 /* request-based cannot stack on partitions! */
862 if (bdev_is_partition(bdev))
863 return false;
864
865 return queue_is_mq(q);
866 }
867
868 static int dm_table_determine_type(struct dm_table *t)
869 {
870 unsigned i;
871 unsigned bio_based = 0, request_based = 0, hybrid = 0;
872 struct dm_target *tgt;
873 struct list_head *devices = dm_table_get_devices(t);
874 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
875 int page_size = PAGE_SIZE;
876
877 if (t->type != DM_TYPE_NONE) {
878 /* target already set the table's type */
879 if (t->type == DM_TYPE_BIO_BASED) {
880 /* possibly upgrade to a variant of bio-based */
881 goto verify_bio_based;
882 }
883 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
884 goto verify_rq_based;
885 }
886
887 for (i = 0; i < t->num_targets; i++) {
888 tgt = t->targets + i;
889 if (dm_target_hybrid(tgt))
890 hybrid = 1;
891 else if (dm_target_request_based(tgt))
892 request_based = 1;
893 else
894 bio_based = 1;
895
896 if (bio_based && request_based) {
897 DMERR("Inconsistent table: different target types"
898 " can't be mixed up");
899 return -EINVAL;
900 }
901 }
902
903 if (hybrid && !bio_based && !request_based) {
904 /*
905 * The targets can work either way.
906 * Determine the type from the live device.
907 * Default to bio-based if device is new.
908 */
909 if (__table_type_request_based(live_md_type))
910 request_based = 1;
911 else
912 bio_based = 1;
913 }
914
915 if (bio_based) {
916 verify_bio_based:
917 /* We must use this table as bio-based */
918 t->type = DM_TYPE_BIO_BASED;
919 if (dm_table_supports_dax(t, device_supports_dax, &page_size) ||
920 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
921 t->type = DM_TYPE_DAX_BIO_BASED;
922 }
923 return 0;
924 }
925
926 BUG_ON(!request_based); /* No targets in this table */
927
928 t->type = DM_TYPE_REQUEST_BASED;
929
930 verify_rq_based:
931 /*
932 * Request-based dm supports only tables that have a single target now.
933 * To support multiple targets, request splitting support is needed,
934 * and that needs lots of changes in the block-layer.
935 * (e.g. request completion process for partial completion.)
936 */
937 if (t->num_targets > 1) {
938 DMERR("request-based DM doesn't support multiple targets");
939 return -EINVAL;
940 }
941
942 if (list_empty(devices)) {
943 int srcu_idx;
944 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
945
946 /* inherit live table's type */
947 if (live_table)
948 t->type = live_table->type;
949 dm_put_live_table(t->md, srcu_idx);
950 return 0;
951 }
952
953 tgt = dm_table_get_immutable_target(t);
954 if (!tgt) {
955 DMERR("table load rejected: immutable target is required");
956 return -EINVAL;
957 } else if (tgt->max_io_len) {
958 DMERR("table load rejected: immutable target that splits IO is not supported");
959 return -EINVAL;
960 }
961
962 /* Non-request-stackable devices can't be used for request-based dm */
963 if (!tgt->type->iterate_devices ||
964 !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
965 DMERR("table load rejected: including non-request-stackable devices");
966 return -EINVAL;
967 }
968
969 return 0;
970 }
971
972 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
973 {
974 return t->type;
975 }
976
977 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
978 {
979 return t->immutable_target_type;
980 }
981
982 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
983 {
984 /* Immutable target is implicitly a singleton */
985 if (t->num_targets > 1 ||
986 !dm_target_is_immutable(t->targets[0].type))
987 return NULL;
988
989 return t->targets;
990 }
991
992 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
993 {
994 struct dm_target *ti;
995 unsigned i;
996
997 for (i = 0; i < dm_table_get_num_targets(t); i++) {
998 ti = dm_table_get_target(t, i);
999 if (dm_target_is_wildcard(ti->type))
1000 return ti;
1001 }
1002
1003 return NULL;
1004 }
1005
1006 bool dm_table_bio_based(struct dm_table *t)
1007 {
1008 return __table_type_bio_based(dm_table_get_type(t));
1009 }
1010
1011 bool dm_table_request_based(struct dm_table *t)
1012 {
1013 return __table_type_request_based(dm_table_get_type(t));
1014 }
1015
1016 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1017 {
1018 enum dm_queue_mode type = dm_table_get_type(t);
1019 unsigned per_io_data_size = 0;
1020 unsigned min_pool_size = 0;
1021 struct dm_target *ti;
1022 unsigned i;
1023
1024 if (unlikely(type == DM_TYPE_NONE)) {
1025 DMWARN("no table type is set, can't allocate mempools");
1026 return -EINVAL;
1027 }
1028
1029 if (__table_type_bio_based(type))
1030 for (i = 0; i < t->num_targets; i++) {
1031 ti = t->targets + i;
1032 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1033 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1034 }
1035
1036 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1037 per_io_data_size, min_pool_size);
1038 if (!t->mempools)
1039 return -ENOMEM;
1040
1041 return 0;
1042 }
1043
1044 void dm_table_free_md_mempools(struct dm_table *t)
1045 {
1046 dm_free_md_mempools(t->mempools);
1047 t->mempools = NULL;
1048 }
1049
1050 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1051 {
1052 return t->mempools;
1053 }
1054
1055 static int setup_indexes(struct dm_table *t)
1056 {
1057 int i;
1058 unsigned int total = 0;
1059 sector_t *indexes;
1060
1061 /* allocate the space for *all* the indexes */
1062 for (i = t->depth - 2; i >= 0; i--) {
1063 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1064 total += t->counts[i];
1065 }
1066
1067 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1068 if (!indexes)
1069 return -ENOMEM;
1070
1071 /* set up internal nodes, bottom-up */
1072 for (i = t->depth - 2; i >= 0; i--) {
1073 t->index[i] = indexes;
1074 indexes += (KEYS_PER_NODE * t->counts[i]);
1075 setup_btree_index(i, t);
1076 }
1077
1078 return 0;
1079 }
1080
1081 /*
1082 * Builds the btree to index the map.
1083 */
1084 static int dm_table_build_index(struct dm_table *t)
1085 {
1086 int r = 0;
1087 unsigned int leaf_nodes;
1088
1089 /* how many indexes will the btree have ? */
1090 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1091 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1092
1093 /* leaf layer has already been set up */
1094 t->counts[t->depth - 1] = leaf_nodes;
1095 t->index[t->depth - 1] = t->highs;
1096
1097 if (t->depth >= 2)
1098 r = setup_indexes(t);
1099
1100 return r;
1101 }
1102
1103 static bool integrity_profile_exists(struct gendisk *disk)
1104 {
1105 return !!blk_get_integrity(disk);
1106 }
1107
1108 /*
1109 * Get a disk whose integrity profile reflects the table's profile.
1110 * Returns NULL if integrity support was inconsistent or unavailable.
1111 */
1112 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1113 {
1114 struct list_head *devices = dm_table_get_devices(t);
1115 struct dm_dev_internal *dd = NULL;
1116 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1117 unsigned i;
1118
1119 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1120 struct dm_target *ti = dm_table_get_target(t, i);
1121 if (!dm_target_passes_integrity(ti->type))
1122 goto no_integrity;
1123 }
1124
1125 list_for_each_entry(dd, devices, list) {
1126 template_disk = dd->dm_dev->bdev->bd_disk;
1127 if (!integrity_profile_exists(template_disk))
1128 goto no_integrity;
1129 else if (prev_disk &&
1130 blk_integrity_compare(prev_disk, template_disk) < 0)
1131 goto no_integrity;
1132 prev_disk = template_disk;
1133 }
1134
1135 return template_disk;
1136
1137 no_integrity:
1138 if (prev_disk)
1139 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1140 dm_device_name(t->md),
1141 prev_disk->disk_name,
1142 template_disk->disk_name);
1143 return NULL;
1144 }
1145
1146 /*
1147 * Register the mapped device for blk_integrity support if the
1148 * underlying devices have an integrity profile. But all devices may
1149 * not have matching profiles (checking all devices isn't reliable
1150 * during table load because this table may use other DM device(s) which
1151 * must be resumed before they will have an initialized integity
1152 * profile). Consequently, stacked DM devices force a 2 stage integrity
1153 * profile validation: First pass during table load, final pass during
1154 * resume.
1155 */
1156 static int dm_table_register_integrity(struct dm_table *t)
1157 {
1158 struct mapped_device *md = t->md;
1159 struct gendisk *template_disk = NULL;
1160
1161 /* If target handles integrity itself do not register it here. */
1162 if (t->integrity_added)
1163 return 0;
1164
1165 template_disk = dm_table_get_integrity_disk(t);
1166 if (!template_disk)
1167 return 0;
1168
1169 if (!integrity_profile_exists(dm_disk(md))) {
1170 t->integrity_supported = true;
1171 /*
1172 * Register integrity profile during table load; we can do
1173 * this because the final profile must match during resume.
1174 */
1175 blk_integrity_register(dm_disk(md),
1176 blk_get_integrity(template_disk));
1177 return 0;
1178 }
1179
1180 /*
1181 * If DM device already has an initialized integrity
1182 * profile the new profile should not conflict.
1183 */
1184 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1185 DMWARN("%s: conflict with existing integrity profile: "
1186 "%s profile mismatch",
1187 dm_device_name(t->md),
1188 template_disk->disk_name);
1189 return 1;
1190 }
1191
1192 /* Preserve existing integrity profile */
1193 t->integrity_supported = true;
1194 return 0;
1195 }
1196
1197 /*
1198 * Prepares the table for use by building the indices,
1199 * setting the type, and allocating mempools.
1200 */
1201 int dm_table_complete(struct dm_table *t)
1202 {
1203 int r;
1204
1205 r = dm_table_determine_type(t);
1206 if (r) {
1207 DMERR("unable to determine table type");
1208 return r;
1209 }
1210
1211 r = dm_table_build_index(t);
1212 if (r) {
1213 DMERR("unable to build btrees");
1214 return r;
1215 }
1216
1217 r = dm_table_register_integrity(t);
1218 if (r) {
1219 DMERR("could not register integrity profile.");
1220 return r;
1221 }
1222
1223 r = dm_table_alloc_md_mempools(t, t->md);
1224 if (r)
1225 DMERR("unable to allocate mempools");
1226
1227 return r;
1228 }
1229
1230 static DEFINE_MUTEX(_event_lock);
1231 void dm_table_event_callback(struct dm_table *t,
1232 void (*fn)(void *), void *context)
1233 {
1234 mutex_lock(&_event_lock);
1235 t->event_fn = fn;
1236 t->event_context = context;
1237 mutex_unlock(&_event_lock);
1238 }
1239
1240 void dm_table_event(struct dm_table *t)
1241 {
1242 mutex_lock(&_event_lock);
1243 if (t->event_fn)
1244 t->event_fn(t->event_context);
1245 mutex_unlock(&_event_lock);
1246 }
1247 EXPORT_SYMBOL(dm_table_event);
1248
1249 inline sector_t dm_table_get_size(struct dm_table *t)
1250 {
1251 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1252 }
1253 EXPORT_SYMBOL(dm_table_get_size);
1254
1255 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1256 {
1257 if (index >= t->num_targets)
1258 return NULL;
1259
1260 return t->targets + index;
1261 }
1262
1263 /*
1264 * Search the btree for the correct target.
1265 *
1266 * Caller should check returned pointer for NULL
1267 * to trap I/O beyond end of device.
1268 */
1269 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1270 {
1271 unsigned int l, n = 0, k = 0;
1272 sector_t *node;
1273
1274 if (unlikely(sector >= dm_table_get_size(t)))
1275 return NULL;
1276
1277 for (l = 0; l < t->depth; l++) {
1278 n = get_child(n, k);
1279 node = get_node(t, l, n);
1280
1281 for (k = 0; k < KEYS_PER_NODE; k++)
1282 if (node[k] >= sector)
1283 break;
1284 }
1285
1286 return &t->targets[(KEYS_PER_NODE * n) + k];
1287 }
1288
1289 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1290 sector_t start, sector_t len, void *data)
1291 {
1292 unsigned *num_devices = data;
1293
1294 (*num_devices)++;
1295
1296 return 0;
1297 }
1298
1299 /*
1300 * Check whether a table has no data devices attached using each
1301 * target's iterate_devices method.
1302 * Returns false if the result is unknown because a target doesn't
1303 * support iterate_devices.
1304 */
1305 bool dm_table_has_no_data_devices(struct dm_table *table)
1306 {
1307 struct dm_target *ti;
1308 unsigned i, num_devices;
1309
1310 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1311 ti = dm_table_get_target(table, i);
1312
1313 if (!ti->type->iterate_devices)
1314 return false;
1315
1316 num_devices = 0;
1317 ti->type->iterate_devices(ti, count_device, &num_devices);
1318 if (num_devices)
1319 return false;
1320 }
1321
1322 return true;
1323 }
1324
1325 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1326 sector_t start, sector_t len, void *data)
1327 {
1328 struct request_queue *q = bdev_get_queue(dev->bdev);
1329 enum blk_zoned_model *zoned_model = data;
1330
1331 return q && blk_queue_zoned_model(q) == *zoned_model;
1332 }
1333
1334 static bool dm_table_supports_zoned_model(struct dm_table *t,
1335 enum blk_zoned_model zoned_model)
1336 {
1337 struct dm_target *ti;
1338 unsigned i;
1339
1340 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1341 ti = dm_table_get_target(t, i);
1342
1343 if (zoned_model == BLK_ZONED_HM &&
1344 !dm_target_supports_zoned_hm(ti->type))
1345 return false;
1346
1347 if (!ti->type->iterate_devices ||
1348 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1349 return false;
1350 }
1351
1352 return true;
1353 }
1354
1355 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1356 sector_t start, sector_t len, void *data)
1357 {
1358 struct request_queue *q = bdev_get_queue(dev->bdev);
1359 unsigned int *zone_sectors = data;
1360
1361 return q && blk_queue_zone_sectors(q) == *zone_sectors;
1362 }
1363
1364 static bool dm_table_matches_zone_sectors(struct dm_table *t,
1365 unsigned int zone_sectors)
1366 {
1367 struct dm_target *ti;
1368 unsigned i;
1369
1370 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1371 ti = dm_table_get_target(t, i);
1372
1373 if (!ti->type->iterate_devices ||
1374 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1375 return false;
1376 }
1377
1378 return true;
1379 }
1380
1381 static int validate_hardware_zoned_model(struct dm_table *table,
1382 enum blk_zoned_model zoned_model,
1383 unsigned int zone_sectors)
1384 {
1385 if (zoned_model == BLK_ZONED_NONE)
1386 return 0;
1387
1388 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1389 DMERR("%s: zoned model is not consistent across all devices",
1390 dm_device_name(table->md));
1391 return -EINVAL;
1392 }
1393
1394 /* Check zone size validity and compatibility */
1395 if (!zone_sectors || !is_power_of_2(zone_sectors))
1396 return -EINVAL;
1397
1398 if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1399 DMERR("%s: zone sectors is not consistent across all devices",
1400 dm_device_name(table->md));
1401 return -EINVAL;
1402 }
1403
1404 return 0;
1405 }
1406
1407 /*
1408 * Establish the new table's queue_limits and validate them.
1409 */
1410 int dm_calculate_queue_limits(struct dm_table *table,
1411 struct queue_limits *limits)
1412 {
1413 struct dm_target *ti;
1414 struct queue_limits ti_limits;
1415 unsigned i;
1416 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1417 unsigned int zone_sectors = 0;
1418
1419 blk_set_stacking_limits(limits);
1420
1421 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1422 blk_set_stacking_limits(&ti_limits);
1423
1424 ti = dm_table_get_target(table, i);
1425
1426 if (!ti->type->iterate_devices)
1427 goto combine_limits;
1428
1429 /*
1430 * Combine queue limits of all the devices this target uses.
1431 */
1432 ti->type->iterate_devices(ti, dm_set_device_limits,
1433 &ti_limits);
1434
1435 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1436 /*
1437 * After stacking all limits, validate all devices
1438 * in table support this zoned model and zone sectors.
1439 */
1440 zoned_model = ti_limits.zoned;
1441 zone_sectors = ti_limits.chunk_sectors;
1442 }
1443
1444 /* Set I/O hints portion of queue limits */
1445 if (ti->type->io_hints)
1446 ti->type->io_hints(ti, &ti_limits);
1447
1448 /*
1449 * Check each device area is consistent with the target's
1450 * overall queue limits.
1451 */
1452 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1453 &ti_limits))
1454 return -EINVAL;
1455
1456 combine_limits:
1457 /*
1458 * Merge this target's queue limits into the overall limits
1459 * for the table.
1460 */
1461 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1462 DMWARN("%s: adding target device "
1463 "(start sect %llu len %llu) "
1464 "caused an alignment inconsistency",
1465 dm_device_name(table->md),
1466 (unsigned long long) ti->begin,
1467 (unsigned long long) ti->len);
1468 }
1469
1470 /*
1471 * Verify that the zoned model and zone sectors, as determined before
1472 * any .io_hints override, are the same across all devices in the table.
1473 * - this is especially relevant if .io_hints is emulating a disk-managed
1474 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1475 * BUT...
1476 */
1477 if (limits->zoned != BLK_ZONED_NONE) {
1478 /*
1479 * ...IF the above limits stacking determined a zoned model
1480 * validate that all of the table's devices conform to it.
1481 */
1482 zoned_model = limits->zoned;
1483 zone_sectors = limits->chunk_sectors;
1484 }
1485 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1486 return -EINVAL;
1487
1488 return validate_hardware_logical_block_alignment(table, limits);
1489 }
1490
1491 /*
1492 * Verify that all devices have an integrity profile that matches the
1493 * DM device's registered integrity profile. If the profiles don't
1494 * match then unregister the DM device's integrity profile.
1495 */
1496 static void dm_table_verify_integrity(struct dm_table *t)
1497 {
1498 struct gendisk *template_disk = NULL;
1499
1500 if (t->integrity_added)
1501 return;
1502
1503 if (t->integrity_supported) {
1504 /*
1505 * Verify that the original integrity profile
1506 * matches all the devices in this table.
1507 */
1508 template_disk = dm_table_get_integrity_disk(t);
1509 if (template_disk &&
1510 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1511 return;
1512 }
1513
1514 if (integrity_profile_exists(dm_disk(t->md))) {
1515 DMWARN("%s: unable to establish an integrity profile",
1516 dm_device_name(t->md));
1517 blk_integrity_unregister(dm_disk(t->md));
1518 }
1519 }
1520
1521 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1522 sector_t start, sector_t len, void *data)
1523 {
1524 unsigned long flush = (unsigned long) data;
1525 struct request_queue *q = bdev_get_queue(dev->bdev);
1526
1527 return q && (q->queue_flags & flush);
1528 }
1529
1530 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1531 {
1532 struct dm_target *ti;
1533 unsigned i;
1534
1535 /*
1536 * Require at least one underlying device to support flushes.
1537 * t->devices includes internal dm devices such as mirror logs
1538 * so we need to use iterate_devices here, which targets
1539 * supporting flushes must provide.
1540 */
1541 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1542 ti = dm_table_get_target(t, i);
1543
1544 if (!ti->num_flush_bios)
1545 continue;
1546
1547 if (ti->flush_supported)
1548 return true;
1549
1550 if (ti->type->iterate_devices &&
1551 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1552 return true;
1553 }
1554
1555 return false;
1556 }
1557
1558 static int device_dax_write_cache_enabled(struct dm_target *ti,
1559 struct dm_dev *dev, sector_t start,
1560 sector_t len, void *data)
1561 {
1562 struct dax_device *dax_dev = dev->dax_dev;
1563
1564 if (!dax_dev)
1565 return false;
1566
1567 if (dax_write_cache_enabled(dax_dev))
1568 return true;
1569 return false;
1570 }
1571
1572 static int dm_table_supports_dax_write_cache(struct dm_table *t)
1573 {
1574 struct dm_target *ti;
1575 unsigned i;
1576
1577 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1578 ti = dm_table_get_target(t, i);
1579
1580 if (ti->type->iterate_devices &&
1581 ti->type->iterate_devices(ti,
1582 device_dax_write_cache_enabled, NULL))
1583 return true;
1584 }
1585
1586 return false;
1587 }
1588
1589 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1590 sector_t start, sector_t len, void *data)
1591 {
1592 struct request_queue *q = bdev_get_queue(dev->bdev);
1593
1594 return q && blk_queue_nonrot(q);
1595 }
1596
1597 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1598 sector_t start, sector_t len, void *data)
1599 {
1600 struct request_queue *q = bdev_get_queue(dev->bdev);
1601
1602 return q && !blk_queue_add_random(q);
1603 }
1604
1605 static bool dm_table_all_devices_attribute(struct dm_table *t,
1606 iterate_devices_callout_fn func)
1607 {
1608 struct dm_target *ti;
1609 unsigned i;
1610
1611 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1612 ti = dm_table_get_target(t, i);
1613
1614 if (!ti->type->iterate_devices ||
1615 !ti->type->iterate_devices(ti, func, NULL))
1616 return false;
1617 }
1618
1619 return true;
1620 }
1621
1622 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1623 sector_t start, sector_t len, void *data)
1624 {
1625 struct request_queue *q = bdev_get_queue(dev->bdev);
1626
1627 return q && !q->limits.max_write_same_sectors;
1628 }
1629
1630 static bool dm_table_supports_write_same(struct dm_table *t)
1631 {
1632 struct dm_target *ti;
1633 unsigned i;
1634
1635 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1636 ti = dm_table_get_target(t, i);
1637
1638 if (!ti->num_write_same_bios)
1639 return false;
1640
1641 if (!ti->type->iterate_devices ||
1642 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1643 return false;
1644 }
1645
1646 return true;
1647 }
1648
1649 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1650 sector_t start, sector_t len, void *data)
1651 {
1652 struct request_queue *q = bdev_get_queue(dev->bdev);
1653
1654 return q && !q->limits.max_write_zeroes_sectors;
1655 }
1656
1657 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1658 {
1659 struct dm_target *ti;
1660 unsigned i = 0;
1661
1662 while (i < dm_table_get_num_targets(t)) {
1663 ti = dm_table_get_target(t, i++);
1664
1665 if (!ti->num_write_zeroes_bios)
1666 return false;
1667
1668 if (!ti->type->iterate_devices ||
1669 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1670 return false;
1671 }
1672
1673 return true;
1674 }
1675
1676 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1677 sector_t start, sector_t len, void *data)
1678 {
1679 struct request_queue *q = bdev_get_queue(dev->bdev);
1680
1681 return q && !blk_queue_nowait(q);
1682 }
1683
1684 static bool dm_table_supports_nowait(struct dm_table *t)
1685 {
1686 struct dm_target *ti;
1687 unsigned i = 0;
1688
1689 while (i < dm_table_get_num_targets(t)) {
1690 ti = dm_table_get_target(t, i++);
1691
1692 if (!dm_target_supports_nowait(ti->type))
1693 return false;
1694
1695 if (!ti->type->iterate_devices ||
1696 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1697 return false;
1698 }
1699
1700 return true;
1701 }
1702
1703 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1704 sector_t start, sector_t len, void *data)
1705 {
1706 struct request_queue *q = bdev_get_queue(dev->bdev);
1707
1708 return q && !blk_queue_discard(q);
1709 }
1710
1711 static bool dm_table_supports_discards(struct dm_table *t)
1712 {
1713 struct dm_target *ti;
1714 unsigned i;
1715
1716 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1717 ti = dm_table_get_target(t, i);
1718
1719 if (!ti->num_discard_bios)
1720 return false;
1721
1722 /*
1723 * Either the target provides discard support (as implied by setting
1724 * 'discards_supported') or it relies on _all_ data devices having
1725 * discard support.
1726 */
1727 if (!ti->discards_supported &&
1728 (!ti->type->iterate_devices ||
1729 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1730 return false;
1731 }
1732
1733 return true;
1734 }
1735
1736 static int device_not_secure_erase_capable(struct dm_target *ti,
1737 struct dm_dev *dev, sector_t start,
1738 sector_t len, void *data)
1739 {
1740 struct request_queue *q = bdev_get_queue(dev->bdev);
1741
1742 return q && !blk_queue_secure_erase(q);
1743 }
1744
1745 static bool dm_table_supports_secure_erase(struct dm_table *t)
1746 {
1747 struct dm_target *ti;
1748 unsigned int i;
1749
1750 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1751 ti = dm_table_get_target(t, i);
1752
1753 if (!ti->num_secure_erase_bios)
1754 return false;
1755
1756 if (!ti->type->iterate_devices ||
1757 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1758 return false;
1759 }
1760
1761 return true;
1762 }
1763
1764 static int device_requires_stable_pages(struct dm_target *ti,
1765 struct dm_dev *dev, sector_t start,
1766 sector_t len, void *data)
1767 {
1768 struct request_queue *q = bdev_get_queue(dev->bdev);
1769
1770 return q && blk_queue_stable_writes(q);
1771 }
1772
1773 /*
1774 * If any underlying device requires stable pages, a table must require
1775 * them as well. Only targets that support iterate_devices are considered:
1776 * don't want error, zero, etc to require stable pages.
1777 */
1778 static bool dm_table_requires_stable_pages(struct dm_table *t)
1779 {
1780 struct dm_target *ti;
1781 unsigned i;
1782
1783 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1784 ti = dm_table_get_target(t, i);
1785
1786 if (ti->type->iterate_devices &&
1787 ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
1788 return true;
1789 }
1790
1791 return false;
1792 }
1793
1794 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1795 struct queue_limits *limits)
1796 {
1797 bool wc = false, fua = false;
1798 int page_size = PAGE_SIZE;
1799
1800 /*
1801 * Copy table's limits to the DM device's request_queue
1802 */
1803 q->limits = *limits;
1804
1805 if (dm_table_supports_nowait(t))
1806 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1807 else
1808 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1809
1810 if (!dm_table_supports_discards(t)) {
1811 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1812 /* Must also clear discard limits... */
1813 q->limits.max_discard_sectors = 0;
1814 q->limits.max_hw_discard_sectors = 0;
1815 q->limits.discard_granularity = 0;
1816 q->limits.discard_alignment = 0;
1817 q->limits.discard_misaligned = 0;
1818 } else
1819 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1820
1821 if (dm_table_supports_secure_erase(t))
1822 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1823
1824 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1825 wc = true;
1826 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1827 fua = true;
1828 }
1829 blk_queue_write_cache(q, wc, fua);
1830
1831 if (dm_table_supports_dax(t, device_supports_dax, &page_size)) {
1832 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1833 if (dm_table_supports_dax(t, device_dax_synchronous, NULL))
1834 set_dax_synchronous(t->md->dax_dev);
1835 }
1836 else
1837 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1838
1839 if (dm_table_supports_dax_write_cache(t))
1840 dax_write_cache(t->md->dax_dev, true);
1841
1842 /* Ensure that all underlying devices are non-rotational. */
1843 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1844 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1845 else
1846 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1847
1848 if (!dm_table_supports_write_same(t))
1849 q->limits.max_write_same_sectors = 0;
1850 if (!dm_table_supports_write_zeroes(t))
1851 q->limits.max_write_zeroes_sectors = 0;
1852
1853 dm_table_verify_integrity(t);
1854
1855 /*
1856 * Some devices don't use blk_integrity but still want stable pages
1857 * because they do their own checksumming.
1858 */
1859 if (dm_table_requires_stable_pages(t))
1860 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
1861 else
1862 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
1863
1864 /*
1865 * Determine whether or not this queue's I/O timings contribute
1866 * to the entropy pool, Only request-based targets use this.
1867 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1868 * have it set.
1869 */
1870 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1871 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1872
1873 /*
1874 * For a zoned target, the number of zones should be updated for the
1875 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1876 * target, this is all that is needed.
1877 */
1878 #ifdef CONFIG_BLK_DEV_ZONED
1879 if (blk_queue_is_zoned(q)) {
1880 WARN_ON_ONCE(queue_is_mq(q));
1881 q->nr_zones = blkdev_nr_zones(t->md->disk);
1882 }
1883 #endif
1884
1885 blk_queue_update_readahead(q);
1886 }
1887
1888 unsigned int dm_table_get_num_targets(struct dm_table *t)
1889 {
1890 return t->num_targets;
1891 }
1892
1893 struct list_head *dm_table_get_devices(struct dm_table *t)
1894 {
1895 return &t->devices;
1896 }
1897
1898 fmode_t dm_table_get_mode(struct dm_table *t)
1899 {
1900 return t->mode;
1901 }
1902 EXPORT_SYMBOL(dm_table_get_mode);
1903
1904 enum suspend_mode {
1905 PRESUSPEND,
1906 PRESUSPEND_UNDO,
1907 POSTSUSPEND,
1908 };
1909
1910 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1911 {
1912 int i = t->num_targets;
1913 struct dm_target *ti = t->targets;
1914
1915 lockdep_assert_held(&t->md->suspend_lock);
1916
1917 while (i--) {
1918 switch (mode) {
1919 case PRESUSPEND:
1920 if (ti->type->presuspend)
1921 ti->type->presuspend(ti);
1922 break;
1923 case PRESUSPEND_UNDO:
1924 if (ti->type->presuspend_undo)
1925 ti->type->presuspend_undo(ti);
1926 break;
1927 case POSTSUSPEND:
1928 if (ti->type->postsuspend)
1929 ti->type->postsuspend(ti);
1930 break;
1931 }
1932 ti++;
1933 }
1934 }
1935
1936 void dm_table_presuspend_targets(struct dm_table *t)
1937 {
1938 if (!t)
1939 return;
1940
1941 suspend_targets(t, PRESUSPEND);
1942 }
1943
1944 void dm_table_presuspend_undo_targets(struct dm_table *t)
1945 {
1946 if (!t)
1947 return;
1948
1949 suspend_targets(t, PRESUSPEND_UNDO);
1950 }
1951
1952 void dm_table_postsuspend_targets(struct dm_table *t)
1953 {
1954 if (!t)
1955 return;
1956
1957 suspend_targets(t, POSTSUSPEND);
1958 }
1959
1960 int dm_table_resume_targets(struct dm_table *t)
1961 {
1962 int i, r = 0;
1963
1964 lockdep_assert_held(&t->md->suspend_lock);
1965
1966 for (i = 0; i < t->num_targets; i++) {
1967 struct dm_target *ti = t->targets + i;
1968
1969 if (!ti->type->preresume)
1970 continue;
1971
1972 r = ti->type->preresume(ti);
1973 if (r) {
1974 DMERR("%s: %s: preresume failed, error = %d",
1975 dm_device_name(t->md), ti->type->name, r);
1976 return r;
1977 }
1978 }
1979
1980 for (i = 0; i < t->num_targets; i++) {
1981 struct dm_target *ti = t->targets + i;
1982
1983 if (ti->type->resume)
1984 ti->type->resume(ti);
1985 }
1986
1987 return 0;
1988 }
1989
1990 struct mapped_device *dm_table_get_md(struct dm_table *t)
1991 {
1992 return t->md;
1993 }
1994 EXPORT_SYMBOL(dm_table_get_md);
1995
1996 const char *dm_table_device_name(struct dm_table *t)
1997 {
1998 return dm_device_name(t->md);
1999 }
2000 EXPORT_SYMBOL_GPL(dm_table_device_name);
2001
2002 void dm_table_run_md_queue_async(struct dm_table *t)
2003 {
2004 if (!dm_table_request_based(t))
2005 return;
2006
2007 if (t->md->queue)
2008 blk_mq_run_hw_queues(t->md->queue, true);
2009 }
2010 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2011