]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/dm-table.c
Merge tag 'powerpc-4.13-8' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm-table.c
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24
25 #define DM_MSG_PREFIX "table"
26
27 #define MAX_DEPTH 16
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31
32 struct dm_table {
33 struct mapped_device *md;
34 enum dm_queue_mode type;
35
36 /* btree table */
37 unsigned int depth;
38 unsigned int counts[MAX_DEPTH]; /* in nodes */
39 sector_t *index[MAX_DEPTH];
40
41 unsigned int num_targets;
42 unsigned int num_allocated;
43 sector_t *highs;
44 struct dm_target *targets;
45
46 struct target_type *immutable_target_type;
47
48 bool integrity_supported:1;
49 bool singleton:1;
50 bool all_blk_mq:1;
51 unsigned integrity_added:1;
52
53 /*
54 * Indicates the rw permissions for the new logical
55 * device. This should be a combination of FMODE_READ
56 * and FMODE_WRITE.
57 */
58 fmode_t mode;
59
60 /* a list of devices used by this table */
61 struct list_head devices;
62
63 /* events get handed up using this callback */
64 void (*event_fn)(void *);
65 void *event_context;
66
67 struct dm_md_mempools *mempools;
68
69 struct list_head target_callbacks;
70 };
71
72 /*
73 * Similar to ceiling(log_size(n))
74 */
75 static unsigned int int_log(unsigned int n, unsigned int base)
76 {
77 int result = 0;
78
79 while (n > 1) {
80 n = dm_div_up(n, base);
81 result++;
82 }
83
84 return result;
85 }
86
87 /*
88 * Calculate the index of the child node of the n'th node k'th key.
89 */
90 static inline unsigned int get_child(unsigned int n, unsigned int k)
91 {
92 return (n * CHILDREN_PER_NODE) + k;
93 }
94
95 /*
96 * Return the n'th node of level l from table t.
97 */
98 static inline sector_t *get_node(struct dm_table *t,
99 unsigned int l, unsigned int n)
100 {
101 return t->index[l] + (n * KEYS_PER_NODE);
102 }
103
104 /*
105 * Return the highest key that you could lookup from the n'th
106 * node on level l of the btree.
107 */
108 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
109 {
110 for (; l < t->depth - 1; l++)
111 n = get_child(n, CHILDREN_PER_NODE - 1);
112
113 if (n >= t->counts[l])
114 return (sector_t) - 1;
115
116 return get_node(t, l, n)[KEYS_PER_NODE - 1];
117 }
118
119 /*
120 * Fills in a level of the btree based on the highs of the level
121 * below it.
122 */
123 static int setup_btree_index(unsigned int l, struct dm_table *t)
124 {
125 unsigned int n, k;
126 sector_t *node;
127
128 for (n = 0U; n < t->counts[l]; n++) {
129 node = get_node(t, l, n);
130
131 for (k = 0U; k < KEYS_PER_NODE; k++)
132 node[k] = high(t, l + 1, get_child(n, k));
133 }
134
135 return 0;
136 }
137
138 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
139 {
140 unsigned long size;
141 void *addr;
142
143 /*
144 * Check that we're not going to overflow.
145 */
146 if (nmemb > (ULONG_MAX / elem_size))
147 return NULL;
148
149 size = nmemb * elem_size;
150 addr = vzalloc(size);
151
152 return addr;
153 }
154 EXPORT_SYMBOL(dm_vcalloc);
155
156 /*
157 * highs, and targets are managed as dynamic arrays during a
158 * table load.
159 */
160 static int alloc_targets(struct dm_table *t, unsigned int num)
161 {
162 sector_t *n_highs;
163 struct dm_target *n_targets;
164
165 /*
166 * Allocate both the target array and offset array at once.
167 * Append an empty entry to catch sectors beyond the end of
168 * the device.
169 */
170 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
171 sizeof(sector_t));
172 if (!n_highs)
173 return -ENOMEM;
174
175 n_targets = (struct dm_target *) (n_highs + num);
176
177 memset(n_highs, -1, sizeof(*n_highs) * num);
178 vfree(t->highs);
179
180 t->num_allocated = num;
181 t->highs = n_highs;
182 t->targets = n_targets;
183
184 return 0;
185 }
186
187 int dm_table_create(struct dm_table **result, fmode_t mode,
188 unsigned num_targets, struct mapped_device *md)
189 {
190 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
191
192 if (!t)
193 return -ENOMEM;
194
195 INIT_LIST_HEAD(&t->devices);
196 INIT_LIST_HEAD(&t->target_callbacks);
197
198 if (!num_targets)
199 num_targets = KEYS_PER_NODE;
200
201 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
202
203 if (!num_targets) {
204 kfree(t);
205 return -ENOMEM;
206 }
207
208 if (alloc_targets(t, num_targets)) {
209 kfree(t);
210 return -ENOMEM;
211 }
212
213 t->type = DM_TYPE_NONE;
214 t->mode = mode;
215 t->md = md;
216 *result = t;
217 return 0;
218 }
219
220 static void free_devices(struct list_head *devices, struct mapped_device *md)
221 {
222 struct list_head *tmp, *next;
223
224 list_for_each_safe(tmp, next, devices) {
225 struct dm_dev_internal *dd =
226 list_entry(tmp, struct dm_dev_internal, list);
227 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
228 dm_device_name(md), dd->dm_dev->name);
229 dm_put_table_device(md, dd->dm_dev);
230 kfree(dd);
231 }
232 }
233
234 void dm_table_destroy(struct dm_table *t)
235 {
236 unsigned int i;
237
238 if (!t)
239 return;
240
241 /* free the indexes */
242 if (t->depth >= 2)
243 vfree(t->index[t->depth - 2]);
244
245 /* free the targets */
246 for (i = 0; i < t->num_targets; i++) {
247 struct dm_target *tgt = t->targets + i;
248
249 if (tgt->type->dtr)
250 tgt->type->dtr(tgt);
251
252 dm_put_target_type(tgt->type);
253 }
254
255 vfree(t->highs);
256
257 /* free the device list */
258 free_devices(&t->devices, t->md);
259
260 dm_free_md_mempools(t->mempools);
261
262 kfree(t);
263 }
264
265 /*
266 * See if we've already got a device in the list.
267 */
268 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
269 {
270 struct dm_dev_internal *dd;
271
272 list_for_each_entry (dd, l, list)
273 if (dd->dm_dev->bdev->bd_dev == dev)
274 return dd;
275
276 return NULL;
277 }
278
279 /*
280 * If possible, this checks an area of a destination device is invalid.
281 */
282 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
283 sector_t start, sector_t len, void *data)
284 {
285 struct request_queue *q;
286 struct queue_limits *limits = data;
287 struct block_device *bdev = dev->bdev;
288 sector_t dev_size =
289 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
290 unsigned short logical_block_size_sectors =
291 limits->logical_block_size >> SECTOR_SHIFT;
292 char b[BDEVNAME_SIZE];
293
294 /*
295 * Some devices exist without request functions,
296 * such as loop devices not yet bound to backing files.
297 * Forbid the use of such devices.
298 */
299 q = bdev_get_queue(bdev);
300 if (!q || !q->make_request_fn) {
301 DMWARN("%s: %s is not yet initialised: "
302 "start=%llu, len=%llu, dev_size=%llu",
303 dm_device_name(ti->table->md), bdevname(bdev, b),
304 (unsigned long long)start,
305 (unsigned long long)len,
306 (unsigned long long)dev_size);
307 return 1;
308 }
309
310 if (!dev_size)
311 return 0;
312
313 if ((start >= dev_size) || (start + len > dev_size)) {
314 DMWARN("%s: %s too small for target: "
315 "start=%llu, len=%llu, dev_size=%llu",
316 dm_device_name(ti->table->md), bdevname(bdev, b),
317 (unsigned long long)start,
318 (unsigned long long)len,
319 (unsigned long long)dev_size);
320 return 1;
321 }
322
323 /*
324 * If the target is mapped to zoned block device(s), check
325 * that the zones are not partially mapped.
326 */
327 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
328 unsigned int zone_sectors = bdev_zone_sectors(bdev);
329
330 if (start & (zone_sectors - 1)) {
331 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
332 dm_device_name(ti->table->md),
333 (unsigned long long)start,
334 zone_sectors, bdevname(bdev, b));
335 return 1;
336 }
337
338 /*
339 * Note: The last zone of a zoned block device may be smaller
340 * than other zones. So for a target mapping the end of a
341 * zoned block device with such a zone, len would not be zone
342 * aligned. We do not allow such last smaller zone to be part
343 * of the mapping here to ensure that mappings with multiple
344 * devices do not end up with a smaller zone in the middle of
345 * the sector range.
346 */
347 if (len & (zone_sectors - 1)) {
348 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
349 dm_device_name(ti->table->md),
350 (unsigned long long)len,
351 zone_sectors, bdevname(bdev, b));
352 return 1;
353 }
354 }
355
356 if (logical_block_size_sectors <= 1)
357 return 0;
358
359 if (start & (logical_block_size_sectors - 1)) {
360 DMWARN("%s: start=%llu not aligned to h/w "
361 "logical block size %u of %s",
362 dm_device_name(ti->table->md),
363 (unsigned long long)start,
364 limits->logical_block_size, bdevname(bdev, b));
365 return 1;
366 }
367
368 if (len & (logical_block_size_sectors - 1)) {
369 DMWARN("%s: len=%llu not aligned to h/w "
370 "logical block size %u of %s",
371 dm_device_name(ti->table->md),
372 (unsigned long long)len,
373 limits->logical_block_size, bdevname(bdev, b));
374 return 1;
375 }
376
377 return 0;
378 }
379
380 /*
381 * This upgrades the mode on an already open dm_dev, being
382 * careful to leave things as they were if we fail to reopen the
383 * device and not to touch the existing bdev field in case
384 * it is accessed concurrently inside dm_table_any_congested().
385 */
386 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
387 struct mapped_device *md)
388 {
389 int r;
390 struct dm_dev *old_dev, *new_dev;
391
392 old_dev = dd->dm_dev;
393
394 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
395 dd->dm_dev->mode | new_mode, &new_dev);
396 if (r)
397 return r;
398
399 dd->dm_dev = new_dev;
400 dm_put_table_device(md, old_dev);
401
402 return 0;
403 }
404
405 /*
406 * Convert the path to a device
407 */
408 dev_t dm_get_dev_t(const char *path)
409 {
410 dev_t dev;
411 struct block_device *bdev;
412
413 bdev = lookup_bdev(path);
414 if (IS_ERR(bdev))
415 dev = name_to_dev_t(path);
416 else {
417 dev = bdev->bd_dev;
418 bdput(bdev);
419 }
420
421 return dev;
422 }
423 EXPORT_SYMBOL_GPL(dm_get_dev_t);
424
425 /*
426 * Add a device to the list, or just increment the usage count if
427 * it's already present.
428 */
429 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
430 struct dm_dev **result)
431 {
432 int r;
433 dev_t dev;
434 struct dm_dev_internal *dd;
435 struct dm_table *t = ti->table;
436
437 BUG_ON(!t);
438
439 dev = dm_get_dev_t(path);
440 if (!dev)
441 return -ENODEV;
442
443 dd = find_device(&t->devices, dev);
444 if (!dd) {
445 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
446 if (!dd)
447 return -ENOMEM;
448
449 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
450 kfree(dd);
451 return r;
452 }
453
454 atomic_set(&dd->count, 0);
455 list_add(&dd->list, &t->devices);
456
457 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
458 r = upgrade_mode(dd, mode, t->md);
459 if (r)
460 return r;
461 }
462 atomic_inc(&dd->count);
463
464 *result = dd->dm_dev;
465 return 0;
466 }
467 EXPORT_SYMBOL(dm_get_device);
468
469 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
470 sector_t start, sector_t len, void *data)
471 {
472 struct queue_limits *limits = data;
473 struct block_device *bdev = dev->bdev;
474 struct request_queue *q = bdev_get_queue(bdev);
475 char b[BDEVNAME_SIZE];
476
477 if (unlikely(!q)) {
478 DMWARN("%s: Cannot set limits for nonexistent device %s",
479 dm_device_name(ti->table->md), bdevname(bdev, b));
480 return 0;
481 }
482
483 if (bdev_stack_limits(limits, bdev, start) < 0)
484 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
485 "physical_block_size=%u, logical_block_size=%u, "
486 "alignment_offset=%u, start=%llu",
487 dm_device_name(ti->table->md), bdevname(bdev, b),
488 q->limits.physical_block_size,
489 q->limits.logical_block_size,
490 q->limits.alignment_offset,
491 (unsigned long long) start << SECTOR_SHIFT);
492
493 limits->zoned = blk_queue_zoned_model(q);
494
495 return 0;
496 }
497
498 /*
499 * Decrement a device's use count and remove it if necessary.
500 */
501 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
502 {
503 int found = 0;
504 struct list_head *devices = &ti->table->devices;
505 struct dm_dev_internal *dd;
506
507 list_for_each_entry(dd, devices, list) {
508 if (dd->dm_dev == d) {
509 found = 1;
510 break;
511 }
512 }
513 if (!found) {
514 DMWARN("%s: device %s not in table devices list",
515 dm_device_name(ti->table->md), d->name);
516 return;
517 }
518 if (atomic_dec_and_test(&dd->count)) {
519 dm_put_table_device(ti->table->md, d);
520 list_del(&dd->list);
521 kfree(dd);
522 }
523 }
524 EXPORT_SYMBOL(dm_put_device);
525
526 /*
527 * Checks to see if the target joins onto the end of the table.
528 */
529 static int adjoin(struct dm_table *table, struct dm_target *ti)
530 {
531 struct dm_target *prev;
532
533 if (!table->num_targets)
534 return !ti->begin;
535
536 prev = &table->targets[table->num_targets - 1];
537 return (ti->begin == (prev->begin + prev->len));
538 }
539
540 /*
541 * Used to dynamically allocate the arg array.
542 *
543 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
544 * process messages even if some device is suspended. These messages have a
545 * small fixed number of arguments.
546 *
547 * On the other hand, dm-switch needs to process bulk data using messages and
548 * excessive use of GFP_NOIO could cause trouble.
549 */
550 static char **realloc_argv(unsigned *array_size, char **old_argv)
551 {
552 char **argv;
553 unsigned new_size;
554 gfp_t gfp;
555
556 if (*array_size) {
557 new_size = *array_size * 2;
558 gfp = GFP_KERNEL;
559 } else {
560 new_size = 8;
561 gfp = GFP_NOIO;
562 }
563 argv = kmalloc(new_size * sizeof(*argv), gfp);
564 if (argv) {
565 memcpy(argv, old_argv, *array_size * sizeof(*argv));
566 *array_size = new_size;
567 }
568
569 kfree(old_argv);
570 return argv;
571 }
572
573 /*
574 * Destructively splits up the argument list to pass to ctr.
575 */
576 int dm_split_args(int *argc, char ***argvp, char *input)
577 {
578 char *start, *end = input, *out, **argv = NULL;
579 unsigned array_size = 0;
580
581 *argc = 0;
582
583 if (!input) {
584 *argvp = NULL;
585 return 0;
586 }
587
588 argv = realloc_argv(&array_size, argv);
589 if (!argv)
590 return -ENOMEM;
591
592 while (1) {
593 /* Skip whitespace */
594 start = skip_spaces(end);
595
596 if (!*start)
597 break; /* success, we hit the end */
598
599 /* 'out' is used to remove any back-quotes */
600 end = out = start;
601 while (*end) {
602 /* Everything apart from '\0' can be quoted */
603 if (*end == '\\' && *(end + 1)) {
604 *out++ = *(end + 1);
605 end += 2;
606 continue;
607 }
608
609 if (isspace(*end))
610 break; /* end of token */
611
612 *out++ = *end++;
613 }
614
615 /* have we already filled the array ? */
616 if ((*argc + 1) > array_size) {
617 argv = realloc_argv(&array_size, argv);
618 if (!argv)
619 return -ENOMEM;
620 }
621
622 /* we know this is whitespace */
623 if (*end)
624 end++;
625
626 /* terminate the string and put it in the array */
627 *out = '\0';
628 argv[*argc] = start;
629 (*argc)++;
630 }
631
632 *argvp = argv;
633 return 0;
634 }
635
636 /*
637 * Impose necessary and sufficient conditions on a devices's table such
638 * that any incoming bio which respects its logical_block_size can be
639 * processed successfully. If it falls across the boundary between
640 * two or more targets, the size of each piece it gets split into must
641 * be compatible with the logical_block_size of the target processing it.
642 */
643 static int validate_hardware_logical_block_alignment(struct dm_table *table,
644 struct queue_limits *limits)
645 {
646 /*
647 * This function uses arithmetic modulo the logical_block_size
648 * (in units of 512-byte sectors).
649 */
650 unsigned short device_logical_block_size_sects =
651 limits->logical_block_size >> SECTOR_SHIFT;
652
653 /*
654 * Offset of the start of the next table entry, mod logical_block_size.
655 */
656 unsigned short next_target_start = 0;
657
658 /*
659 * Given an aligned bio that extends beyond the end of a
660 * target, how many sectors must the next target handle?
661 */
662 unsigned short remaining = 0;
663
664 struct dm_target *uninitialized_var(ti);
665 struct queue_limits ti_limits;
666 unsigned i;
667
668 /*
669 * Check each entry in the table in turn.
670 */
671 for (i = 0; i < dm_table_get_num_targets(table); i++) {
672 ti = dm_table_get_target(table, i);
673
674 blk_set_stacking_limits(&ti_limits);
675
676 /* combine all target devices' limits */
677 if (ti->type->iterate_devices)
678 ti->type->iterate_devices(ti, dm_set_device_limits,
679 &ti_limits);
680
681 /*
682 * If the remaining sectors fall entirely within this
683 * table entry are they compatible with its logical_block_size?
684 */
685 if (remaining < ti->len &&
686 remaining & ((ti_limits.logical_block_size >>
687 SECTOR_SHIFT) - 1))
688 break; /* Error */
689
690 next_target_start =
691 (unsigned short) ((next_target_start + ti->len) &
692 (device_logical_block_size_sects - 1));
693 remaining = next_target_start ?
694 device_logical_block_size_sects - next_target_start : 0;
695 }
696
697 if (remaining) {
698 DMWARN("%s: table line %u (start sect %llu len %llu) "
699 "not aligned to h/w logical block size %u",
700 dm_device_name(table->md), i,
701 (unsigned long long) ti->begin,
702 (unsigned long long) ti->len,
703 limits->logical_block_size);
704 return -EINVAL;
705 }
706
707 return 0;
708 }
709
710 int dm_table_add_target(struct dm_table *t, const char *type,
711 sector_t start, sector_t len, char *params)
712 {
713 int r = -EINVAL, argc;
714 char **argv;
715 struct dm_target *tgt;
716
717 if (t->singleton) {
718 DMERR("%s: target type %s must appear alone in table",
719 dm_device_name(t->md), t->targets->type->name);
720 return -EINVAL;
721 }
722
723 BUG_ON(t->num_targets >= t->num_allocated);
724
725 tgt = t->targets + t->num_targets;
726 memset(tgt, 0, sizeof(*tgt));
727
728 if (!len) {
729 DMERR("%s: zero-length target", dm_device_name(t->md));
730 return -EINVAL;
731 }
732
733 tgt->type = dm_get_target_type(type);
734 if (!tgt->type) {
735 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
736 return -EINVAL;
737 }
738
739 if (dm_target_needs_singleton(tgt->type)) {
740 if (t->num_targets) {
741 tgt->error = "singleton target type must appear alone in table";
742 goto bad;
743 }
744 t->singleton = true;
745 }
746
747 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
748 tgt->error = "target type may not be included in a read-only table";
749 goto bad;
750 }
751
752 if (t->immutable_target_type) {
753 if (t->immutable_target_type != tgt->type) {
754 tgt->error = "immutable target type cannot be mixed with other target types";
755 goto bad;
756 }
757 } else if (dm_target_is_immutable(tgt->type)) {
758 if (t->num_targets) {
759 tgt->error = "immutable target type cannot be mixed with other target types";
760 goto bad;
761 }
762 t->immutable_target_type = tgt->type;
763 }
764
765 if (dm_target_has_integrity(tgt->type))
766 t->integrity_added = 1;
767
768 tgt->table = t;
769 tgt->begin = start;
770 tgt->len = len;
771 tgt->error = "Unknown error";
772
773 /*
774 * Does this target adjoin the previous one ?
775 */
776 if (!adjoin(t, tgt)) {
777 tgt->error = "Gap in table";
778 goto bad;
779 }
780
781 r = dm_split_args(&argc, &argv, params);
782 if (r) {
783 tgt->error = "couldn't split parameters (insufficient memory)";
784 goto bad;
785 }
786
787 r = tgt->type->ctr(tgt, argc, argv);
788 kfree(argv);
789 if (r)
790 goto bad;
791
792 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
793
794 if (!tgt->num_discard_bios && tgt->discards_supported)
795 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
796 dm_device_name(t->md), type);
797
798 return 0;
799
800 bad:
801 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
802 dm_put_target_type(tgt->type);
803 return r;
804 }
805
806 /*
807 * Target argument parsing helpers.
808 */
809 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
810 unsigned *value, char **error, unsigned grouped)
811 {
812 const char *arg_str = dm_shift_arg(arg_set);
813 char dummy;
814
815 if (!arg_str ||
816 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
817 (*value < arg->min) ||
818 (*value > arg->max) ||
819 (grouped && arg_set->argc < *value)) {
820 *error = arg->error;
821 return -EINVAL;
822 }
823
824 return 0;
825 }
826
827 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
828 unsigned *value, char **error)
829 {
830 return validate_next_arg(arg, arg_set, value, error, 0);
831 }
832 EXPORT_SYMBOL(dm_read_arg);
833
834 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
835 unsigned *value, char **error)
836 {
837 return validate_next_arg(arg, arg_set, value, error, 1);
838 }
839 EXPORT_SYMBOL(dm_read_arg_group);
840
841 const char *dm_shift_arg(struct dm_arg_set *as)
842 {
843 char *r;
844
845 if (as->argc) {
846 as->argc--;
847 r = *as->argv;
848 as->argv++;
849 return r;
850 }
851
852 return NULL;
853 }
854 EXPORT_SYMBOL(dm_shift_arg);
855
856 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
857 {
858 BUG_ON(as->argc < num_args);
859 as->argc -= num_args;
860 as->argv += num_args;
861 }
862 EXPORT_SYMBOL(dm_consume_args);
863
864 static bool __table_type_bio_based(enum dm_queue_mode table_type)
865 {
866 return (table_type == DM_TYPE_BIO_BASED ||
867 table_type == DM_TYPE_DAX_BIO_BASED);
868 }
869
870 static bool __table_type_request_based(enum dm_queue_mode table_type)
871 {
872 return (table_type == DM_TYPE_REQUEST_BASED ||
873 table_type == DM_TYPE_MQ_REQUEST_BASED);
874 }
875
876 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
877 {
878 t->type = type;
879 }
880 EXPORT_SYMBOL_GPL(dm_table_set_type);
881
882 static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
883 sector_t start, sector_t len, void *data)
884 {
885 struct request_queue *q = bdev_get_queue(dev->bdev);
886
887 return q && blk_queue_dax(q);
888 }
889
890 static bool dm_table_supports_dax(struct dm_table *t)
891 {
892 struct dm_target *ti;
893 unsigned i;
894
895 /* Ensure that all targets support DAX. */
896 for (i = 0; i < dm_table_get_num_targets(t); i++) {
897 ti = dm_table_get_target(t, i);
898
899 if (!ti->type->direct_access)
900 return false;
901
902 if (!ti->type->iterate_devices ||
903 !ti->type->iterate_devices(ti, device_supports_dax, NULL))
904 return false;
905 }
906
907 return true;
908 }
909
910 static int dm_table_determine_type(struct dm_table *t)
911 {
912 unsigned i;
913 unsigned bio_based = 0, request_based = 0, hybrid = 0;
914 unsigned sq_count = 0, mq_count = 0;
915 struct dm_target *tgt;
916 struct dm_dev_internal *dd;
917 struct list_head *devices = dm_table_get_devices(t);
918 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
919
920 if (t->type != DM_TYPE_NONE) {
921 /* target already set the table's type */
922 if (t->type == DM_TYPE_BIO_BASED)
923 return 0;
924 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
925 goto verify_rq_based;
926 }
927
928 for (i = 0; i < t->num_targets; i++) {
929 tgt = t->targets + i;
930 if (dm_target_hybrid(tgt))
931 hybrid = 1;
932 else if (dm_target_request_based(tgt))
933 request_based = 1;
934 else
935 bio_based = 1;
936
937 if (bio_based && request_based) {
938 DMWARN("Inconsistent table: different target types"
939 " can't be mixed up");
940 return -EINVAL;
941 }
942 }
943
944 if (hybrid && !bio_based && !request_based) {
945 /*
946 * The targets can work either way.
947 * Determine the type from the live device.
948 * Default to bio-based if device is new.
949 */
950 if (__table_type_request_based(live_md_type))
951 request_based = 1;
952 else
953 bio_based = 1;
954 }
955
956 if (bio_based) {
957 /* We must use this table as bio-based */
958 t->type = DM_TYPE_BIO_BASED;
959 if (dm_table_supports_dax(t) ||
960 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED))
961 t->type = DM_TYPE_DAX_BIO_BASED;
962 return 0;
963 }
964
965 BUG_ON(!request_based); /* No targets in this table */
966
967 /*
968 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
969 * having a compatible target use dm_table_set_type.
970 */
971 t->type = DM_TYPE_REQUEST_BASED;
972
973 verify_rq_based:
974 /*
975 * Request-based dm supports only tables that have a single target now.
976 * To support multiple targets, request splitting support is needed,
977 * and that needs lots of changes in the block-layer.
978 * (e.g. request completion process for partial completion.)
979 */
980 if (t->num_targets > 1) {
981 DMWARN("Request-based dm doesn't support multiple targets yet");
982 return -EINVAL;
983 }
984
985 if (list_empty(devices)) {
986 int srcu_idx;
987 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
988
989 /* inherit live table's type and all_blk_mq */
990 if (live_table) {
991 t->type = live_table->type;
992 t->all_blk_mq = live_table->all_blk_mq;
993 }
994 dm_put_live_table(t->md, srcu_idx);
995 return 0;
996 }
997
998 /* Non-request-stackable devices can't be used for request-based dm */
999 list_for_each_entry(dd, devices, list) {
1000 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1001
1002 if (!blk_queue_stackable(q)) {
1003 DMERR("table load rejected: including"
1004 " non-request-stackable devices");
1005 return -EINVAL;
1006 }
1007
1008 if (q->mq_ops)
1009 mq_count++;
1010 else
1011 sq_count++;
1012 }
1013 if (sq_count && mq_count) {
1014 DMERR("table load rejected: not all devices are blk-mq request-stackable");
1015 return -EINVAL;
1016 }
1017 t->all_blk_mq = mq_count > 0;
1018
1019 if (t->type == DM_TYPE_MQ_REQUEST_BASED && !t->all_blk_mq) {
1020 DMERR("table load rejected: all devices are not blk-mq request-stackable");
1021 return -EINVAL;
1022 }
1023
1024 return 0;
1025 }
1026
1027 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1028 {
1029 return t->type;
1030 }
1031
1032 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1033 {
1034 return t->immutable_target_type;
1035 }
1036
1037 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1038 {
1039 /* Immutable target is implicitly a singleton */
1040 if (t->num_targets > 1 ||
1041 !dm_target_is_immutable(t->targets[0].type))
1042 return NULL;
1043
1044 return t->targets;
1045 }
1046
1047 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1048 {
1049 struct dm_target *ti;
1050 unsigned i;
1051
1052 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1053 ti = dm_table_get_target(t, i);
1054 if (dm_target_is_wildcard(ti->type))
1055 return ti;
1056 }
1057
1058 return NULL;
1059 }
1060
1061 bool dm_table_bio_based(struct dm_table *t)
1062 {
1063 return __table_type_bio_based(dm_table_get_type(t));
1064 }
1065
1066 bool dm_table_request_based(struct dm_table *t)
1067 {
1068 return __table_type_request_based(dm_table_get_type(t));
1069 }
1070
1071 bool dm_table_all_blk_mq_devices(struct dm_table *t)
1072 {
1073 return t->all_blk_mq;
1074 }
1075
1076 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1077 {
1078 enum dm_queue_mode type = dm_table_get_type(t);
1079 unsigned per_io_data_size = 0;
1080 struct dm_target *tgt;
1081 unsigned i;
1082
1083 if (unlikely(type == DM_TYPE_NONE)) {
1084 DMWARN("no table type is set, can't allocate mempools");
1085 return -EINVAL;
1086 }
1087
1088 if (__table_type_bio_based(type))
1089 for (i = 0; i < t->num_targets; i++) {
1090 tgt = t->targets + i;
1091 per_io_data_size = max(per_io_data_size, tgt->per_io_data_size);
1092 }
1093
1094 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size);
1095 if (!t->mempools)
1096 return -ENOMEM;
1097
1098 return 0;
1099 }
1100
1101 void dm_table_free_md_mempools(struct dm_table *t)
1102 {
1103 dm_free_md_mempools(t->mempools);
1104 t->mempools = NULL;
1105 }
1106
1107 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1108 {
1109 return t->mempools;
1110 }
1111
1112 static int setup_indexes(struct dm_table *t)
1113 {
1114 int i;
1115 unsigned int total = 0;
1116 sector_t *indexes;
1117
1118 /* allocate the space for *all* the indexes */
1119 for (i = t->depth - 2; i >= 0; i--) {
1120 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1121 total += t->counts[i];
1122 }
1123
1124 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1125 if (!indexes)
1126 return -ENOMEM;
1127
1128 /* set up internal nodes, bottom-up */
1129 for (i = t->depth - 2; i >= 0; i--) {
1130 t->index[i] = indexes;
1131 indexes += (KEYS_PER_NODE * t->counts[i]);
1132 setup_btree_index(i, t);
1133 }
1134
1135 return 0;
1136 }
1137
1138 /*
1139 * Builds the btree to index the map.
1140 */
1141 static int dm_table_build_index(struct dm_table *t)
1142 {
1143 int r = 0;
1144 unsigned int leaf_nodes;
1145
1146 /* how many indexes will the btree have ? */
1147 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1148 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1149
1150 /* leaf layer has already been set up */
1151 t->counts[t->depth - 1] = leaf_nodes;
1152 t->index[t->depth - 1] = t->highs;
1153
1154 if (t->depth >= 2)
1155 r = setup_indexes(t);
1156
1157 return r;
1158 }
1159
1160 static bool integrity_profile_exists(struct gendisk *disk)
1161 {
1162 return !!blk_get_integrity(disk);
1163 }
1164
1165 /*
1166 * Get a disk whose integrity profile reflects the table's profile.
1167 * Returns NULL if integrity support was inconsistent or unavailable.
1168 */
1169 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1170 {
1171 struct list_head *devices = dm_table_get_devices(t);
1172 struct dm_dev_internal *dd = NULL;
1173 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1174 unsigned i;
1175
1176 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1177 struct dm_target *ti = dm_table_get_target(t, i);
1178 if (!dm_target_passes_integrity(ti->type))
1179 goto no_integrity;
1180 }
1181
1182 list_for_each_entry(dd, devices, list) {
1183 template_disk = dd->dm_dev->bdev->bd_disk;
1184 if (!integrity_profile_exists(template_disk))
1185 goto no_integrity;
1186 else if (prev_disk &&
1187 blk_integrity_compare(prev_disk, template_disk) < 0)
1188 goto no_integrity;
1189 prev_disk = template_disk;
1190 }
1191
1192 return template_disk;
1193
1194 no_integrity:
1195 if (prev_disk)
1196 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1197 dm_device_name(t->md),
1198 prev_disk->disk_name,
1199 template_disk->disk_name);
1200 return NULL;
1201 }
1202
1203 /*
1204 * Register the mapped device for blk_integrity support if the
1205 * underlying devices have an integrity profile. But all devices may
1206 * not have matching profiles (checking all devices isn't reliable
1207 * during table load because this table may use other DM device(s) which
1208 * must be resumed before they will have an initialized integity
1209 * profile). Consequently, stacked DM devices force a 2 stage integrity
1210 * profile validation: First pass during table load, final pass during
1211 * resume.
1212 */
1213 static int dm_table_register_integrity(struct dm_table *t)
1214 {
1215 struct mapped_device *md = t->md;
1216 struct gendisk *template_disk = NULL;
1217
1218 /* If target handles integrity itself do not register it here. */
1219 if (t->integrity_added)
1220 return 0;
1221
1222 template_disk = dm_table_get_integrity_disk(t);
1223 if (!template_disk)
1224 return 0;
1225
1226 if (!integrity_profile_exists(dm_disk(md))) {
1227 t->integrity_supported = true;
1228 /*
1229 * Register integrity profile during table load; we can do
1230 * this because the final profile must match during resume.
1231 */
1232 blk_integrity_register(dm_disk(md),
1233 blk_get_integrity(template_disk));
1234 return 0;
1235 }
1236
1237 /*
1238 * If DM device already has an initialized integrity
1239 * profile the new profile should not conflict.
1240 */
1241 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1242 DMWARN("%s: conflict with existing integrity profile: "
1243 "%s profile mismatch",
1244 dm_device_name(t->md),
1245 template_disk->disk_name);
1246 return 1;
1247 }
1248
1249 /* Preserve existing integrity profile */
1250 t->integrity_supported = true;
1251 return 0;
1252 }
1253
1254 /*
1255 * Prepares the table for use by building the indices,
1256 * setting the type, and allocating mempools.
1257 */
1258 int dm_table_complete(struct dm_table *t)
1259 {
1260 int r;
1261
1262 r = dm_table_determine_type(t);
1263 if (r) {
1264 DMERR("unable to determine table type");
1265 return r;
1266 }
1267
1268 r = dm_table_build_index(t);
1269 if (r) {
1270 DMERR("unable to build btrees");
1271 return r;
1272 }
1273
1274 r = dm_table_register_integrity(t);
1275 if (r) {
1276 DMERR("could not register integrity profile.");
1277 return r;
1278 }
1279
1280 r = dm_table_alloc_md_mempools(t, t->md);
1281 if (r)
1282 DMERR("unable to allocate mempools");
1283
1284 return r;
1285 }
1286
1287 static DEFINE_MUTEX(_event_lock);
1288 void dm_table_event_callback(struct dm_table *t,
1289 void (*fn)(void *), void *context)
1290 {
1291 mutex_lock(&_event_lock);
1292 t->event_fn = fn;
1293 t->event_context = context;
1294 mutex_unlock(&_event_lock);
1295 }
1296
1297 void dm_table_event(struct dm_table *t)
1298 {
1299 /*
1300 * You can no longer call dm_table_event() from interrupt
1301 * context, use a bottom half instead.
1302 */
1303 BUG_ON(in_interrupt());
1304
1305 mutex_lock(&_event_lock);
1306 if (t->event_fn)
1307 t->event_fn(t->event_context);
1308 mutex_unlock(&_event_lock);
1309 }
1310 EXPORT_SYMBOL(dm_table_event);
1311
1312 sector_t dm_table_get_size(struct dm_table *t)
1313 {
1314 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1315 }
1316 EXPORT_SYMBOL(dm_table_get_size);
1317
1318 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1319 {
1320 if (index >= t->num_targets)
1321 return NULL;
1322
1323 return t->targets + index;
1324 }
1325
1326 /*
1327 * Search the btree for the correct target.
1328 *
1329 * Caller should check returned pointer with dm_target_is_valid()
1330 * to trap I/O beyond end of device.
1331 */
1332 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1333 {
1334 unsigned int l, n = 0, k = 0;
1335 sector_t *node;
1336
1337 for (l = 0; l < t->depth; l++) {
1338 n = get_child(n, k);
1339 node = get_node(t, l, n);
1340
1341 for (k = 0; k < KEYS_PER_NODE; k++)
1342 if (node[k] >= sector)
1343 break;
1344 }
1345
1346 return &t->targets[(KEYS_PER_NODE * n) + k];
1347 }
1348
1349 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1350 sector_t start, sector_t len, void *data)
1351 {
1352 unsigned *num_devices = data;
1353
1354 (*num_devices)++;
1355
1356 return 0;
1357 }
1358
1359 /*
1360 * Check whether a table has no data devices attached using each
1361 * target's iterate_devices method.
1362 * Returns false if the result is unknown because a target doesn't
1363 * support iterate_devices.
1364 */
1365 bool dm_table_has_no_data_devices(struct dm_table *table)
1366 {
1367 struct dm_target *ti;
1368 unsigned i, num_devices;
1369
1370 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1371 ti = dm_table_get_target(table, i);
1372
1373 if (!ti->type->iterate_devices)
1374 return false;
1375
1376 num_devices = 0;
1377 ti->type->iterate_devices(ti, count_device, &num_devices);
1378 if (num_devices)
1379 return false;
1380 }
1381
1382 return true;
1383 }
1384
1385 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1386 sector_t start, sector_t len, void *data)
1387 {
1388 struct request_queue *q = bdev_get_queue(dev->bdev);
1389 enum blk_zoned_model *zoned_model = data;
1390
1391 return q && blk_queue_zoned_model(q) == *zoned_model;
1392 }
1393
1394 static bool dm_table_supports_zoned_model(struct dm_table *t,
1395 enum blk_zoned_model zoned_model)
1396 {
1397 struct dm_target *ti;
1398 unsigned i;
1399
1400 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1401 ti = dm_table_get_target(t, i);
1402
1403 if (zoned_model == BLK_ZONED_HM &&
1404 !dm_target_supports_zoned_hm(ti->type))
1405 return false;
1406
1407 if (!ti->type->iterate_devices ||
1408 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1409 return false;
1410 }
1411
1412 return true;
1413 }
1414
1415 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1416 sector_t start, sector_t len, void *data)
1417 {
1418 struct request_queue *q = bdev_get_queue(dev->bdev);
1419 unsigned int *zone_sectors = data;
1420
1421 return q && blk_queue_zone_sectors(q) == *zone_sectors;
1422 }
1423
1424 static bool dm_table_matches_zone_sectors(struct dm_table *t,
1425 unsigned int zone_sectors)
1426 {
1427 struct dm_target *ti;
1428 unsigned i;
1429
1430 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1431 ti = dm_table_get_target(t, i);
1432
1433 if (!ti->type->iterate_devices ||
1434 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1435 return false;
1436 }
1437
1438 return true;
1439 }
1440
1441 static int validate_hardware_zoned_model(struct dm_table *table,
1442 enum blk_zoned_model zoned_model,
1443 unsigned int zone_sectors)
1444 {
1445 if (zoned_model == BLK_ZONED_NONE)
1446 return 0;
1447
1448 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1449 DMERR("%s: zoned model is not consistent across all devices",
1450 dm_device_name(table->md));
1451 return -EINVAL;
1452 }
1453
1454 /* Check zone size validity and compatibility */
1455 if (!zone_sectors || !is_power_of_2(zone_sectors))
1456 return -EINVAL;
1457
1458 if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1459 DMERR("%s: zone sectors is not consistent across all devices",
1460 dm_device_name(table->md));
1461 return -EINVAL;
1462 }
1463
1464 return 0;
1465 }
1466
1467 /*
1468 * Establish the new table's queue_limits and validate them.
1469 */
1470 int dm_calculate_queue_limits(struct dm_table *table,
1471 struct queue_limits *limits)
1472 {
1473 struct dm_target *ti;
1474 struct queue_limits ti_limits;
1475 unsigned i;
1476 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1477 unsigned int zone_sectors = 0;
1478
1479 blk_set_stacking_limits(limits);
1480
1481 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1482 blk_set_stacking_limits(&ti_limits);
1483
1484 ti = dm_table_get_target(table, i);
1485
1486 if (!ti->type->iterate_devices)
1487 goto combine_limits;
1488
1489 /*
1490 * Combine queue limits of all the devices this target uses.
1491 */
1492 ti->type->iterate_devices(ti, dm_set_device_limits,
1493 &ti_limits);
1494
1495 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1496 /*
1497 * After stacking all limits, validate all devices
1498 * in table support this zoned model and zone sectors.
1499 */
1500 zoned_model = ti_limits.zoned;
1501 zone_sectors = ti_limits.chunk_sectors;
1502 }
1503
1504 /* Set I/O hints portion of queue limits */
1505 if (ti->type->io_hints)
1506 ti->type->io_hints(ti, &ti_limits);
1507
1508 /*
1509 * Check each device area is consistent with the target's
1510 * overall queue limits.
1511 */
1512 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1513 &ti_limits))
1514 return -EINVAL;
1515
1516 combine_limits:
1517 /*
1518 * Merge this target's queue limits into the overall limits
1519 * for the table.
1520 */
1521 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1522 DMWARN("%s: adding target device "
1523 "(start sect %llu len %llu) "
1524 "caused an alignment inconsistency",
1525 dm_device_name(table->md),
1526 (unsigned long long) ti->begin,
1527 (unsigned long long) ti->len);
1528
1529 /*
1530 * FIXME: this should likely be moved to blk_stack_limits(), would
1531 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1532 */
1533 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1534 /*
1535 * By default, the stacked limits zoned model is set to
1536 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1537 * this model using the first target model reported
1538 * that is not BLK_ZONED_NONE. This will be either the
1539 * first target device zoned model or the model reported
1540 * by the target .io_hints.
1541 */
1542 limits->zoned = ti_limits.zoned;
1543 }
1544 }
1545
1546 /*
1547 * Verify that the zoned model and zone sectors, as determined before
1548 * any .io_hints override, are the same across all devices in the table.
1549 * - this is especially relevant if .io_hints is emulating a disk-managed
1550 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1551 * BUT...
1552 */
1553 if (limits->zoned != BLK_ZONED_NONE) {
1554 /*
1555 * ...IF the above limits stacking determined a zoned model
1556 * validate that all of the table's devices conform to it.
1557 */
1558 zoned_model = limits->zoned;
1559 zone_sectors = limits->chunk_sectors;
1560 }
1561 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1562 return -EINVAL;
1563
1564 return validate_hardware_logical_block_alignment(table, limits);
1565 }
1566
1567 /*
1568 * Verify that all devices have an integrity profile that matches the
1569 * DM device's registered integrity profile. If the profiles don't
1570 * match then unregister the DM device's integrity profile.
1571 */
1572 static void dm_table_verify_integrity(struct dm_table *t)
1573 {
1574 struct gendisk *template_disk = NULL;
1575
1576 if (t->integrity_added)
1577 return;
1578
1579 if (t->integrity_supported) {
1580 /*
1581 * Verify that the original integrity profile
1582 * matches all the devices in this table.
1583 */
1584 template_disk = dm_table_get_integrity_disk(t);
1585 if (template_disk &&
1586 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1587 return;
1588 }
1589
1590 if (integrity_profile_exists(dm_disk(t->md))) {
1591 DMWARN("%s: unable to establish an integrity profile",
1592 dm_device_name(t->md));
1593 blk_integrity_unregister(dm_disk(t->md));
1594 }
1595 }
1596
1597 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1598 sector_t start, sector_t len, void *data)
1599 {
1600 unsigned long flush = (unsigned long) data;
1601 struct request_queue *q = bdev_get_queue(dev->bdev);
1602
1603 return q && (q->queue_flags & flush);
1604 }
1605
1606 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1607 {
1608 struct dm_target *ti;
1609 unsigned i;
1610
1611 /*
1612 * Require at least one underlying device to support flushes.
1613 * t->devices includes internal dm devices such as mirror logs
1614 * so we need to use iterate_devices here, which targets
1615 * supporting flushes must provide.
1616 */
1617 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1618 ti = dm_table_get_target(t, i);
1619
1620 if (!ti->num_flush_bios)
1621 continue;
1622
1623 if (ti->flush_supported)
1624 return true;
1625
1626 if (ti->type->iterate_devices &&
1627 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1628 return true;
1629 }
1630
1631 return false;
1632 }
1633
1634 static int device_dax_write_cache_enabled(struct dm_target *ti,
1635 struct dm_dev *dev, sector_t start,
1636 sector_t len, void *data)
1637 {
1638 struct dax_device *dax_dev = dev->dax_dev;
1639
1640 if (!dax_dev)
1641 return false;
1642
1643 if (dax_write_cache_enabled(dax_dev))
1644 return true;
1645 return false;
1646 }
1647
1648 static int dm_table_supports_dax_write_cache(struct dm_table *t)
1649 {
1650 struct dm_target *ti;
1651 unsigned i;
1652
1653 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1654 ti = dm_table_get_target(t, i);
1655
1656 if (ti->type->iterate_devices &&
1657 ti->type->iterate_devices(ti,
1658 device_dax_write_cache_enabled, NULL))
1659 return true;
1660 }
1661
1662 return false;
1663 }
1664
1665 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1666 sector_t start, sector_t len, void *data)
1667 {
1668 struct request_queue *q = bdev_get_queue(dev->bdev);
1669
1670 return q && blk_queue_nonrot(q);
1671 }
1672
1673 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1674 sector_t start, sector_t len, void *data)
1675 {
1676 struct request_queue *q = bdev_get_queue(dev->bdev);
1677
1678 return q && !blk_queue_add_random(q);
1679 }
1680
1681 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1682 sector_t start, sector_t len, void *data)
1683 {
1684 struct request_queue *q = bdev_get_queue(dev->bdev);
1685
1686 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1687 }
1688
1689 static bool dm_table_all_devices_attribute(struct dm_table *t,
1690 iterate_devices_callout_fn func)
1691 {
1692 struct dm_target *ti;
1693 unsigned i;
1694
1695 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1696 ti = dm_table_get_target(t, i);
1697
1698 if (!ti->type->iterate_devices ||
1699 !ti->type->iterate_devices(ti, func, NULL))
1700 return false;
1701 }
1702
1703 return true;
1704 }
1705
1706 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1707 sector_t start, sector_t len, void *data)
1708 {
1709 struct request_queue *q = bdev_get_queue(dev->bdev);
1710
1711 return q && !q->limits.max_write_same_sectors;
1712 }
1713
1714 static bool dm_table_supports_write_same(struct dm_table *t)
1715 {
1716 struct dm_target *ti;
1717 unsigned i;
1718
1719 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1720 ti = dm_table_get_target(t, i);
1721
1722 if (!ti->num_write_same_bios)
1723 return false;
1724
1725 if (!ti->type->iterate_devices ||
1726 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1727 return false;
1728 }
1729
1730 return true;
1731 }
1732
1733 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1734 sector_t start, sector_t len, void *data)
1735 {
1736 struct request_queue *q = bdev_get_queue(dev->bdev);
1737
1738 return q && !q->limits.max_write_zeroes_sectors;
1739 }
1740
1741 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1742 {
1743 struct dm_target *ti;
1744 unsigned i = 0;
1745
1746 while (i < dm_table_get_num_targets(t)) {
1747 ti = dm_table_get_target(t, i++);
1748
1749 if (!ti->num_write_zeroes_bios)
1750 return false;
1751
1752 if (!ti->type->iterate_devices ||
1753 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1754 return false;
1755 }
1756
1757 return true;
1758 }
1759
1760
1761 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1762 sector_t start, sector_t len, void *data)
1763 {
1764 struct request_queue *q = bdev_get_queue(dev->bdev);
1765
1766 return q && blk_queue_discard(q);
1767 }
1768
1769 static bool dm_table_supports_discards(struct dm_table *t)
1770 {
1771 struct dm_target *ti;
1772 unsigned i;
1773
1774 /*
1775 * Unless any target used by the table set discards_supported,
1776 * require at least one underlying device to support discards.
1777 * t->devices includes internal dm devices such as mirror logs
1778 * so we need to use iterate_devices here, which targets
1779 * supporting discard selectively must provide.
1780 */
1781 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1782 ti = dm_table_get_target(t, i);
1783
1784 if (!ti->num_discard_bios)
1785 continue;
1786
1787 if (ti->discards_supported)
1788 return true;
1789
1790 if (ti->type->iterate_devices &&
1791 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1792 return true;
1793 }
1794
1795 return false;
1796 }
1797
1798 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1799 struct queue_limits *limits)
1800 {
1801 bool wc = false, fua = false;
1802
1803 /*
1804 * Copy table's limits to the DM device's request_queue
1805 */
1806 q->limits = *limits;
1807
1808 if (!dm_table_supports_discards(t))
1809 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1810 else
1811 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1812
1813 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1814 wc = true;
1815 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1816 fua = true;
1817 }
1818 blk_queue_write_cache(q, wc, fua);
1819
1820 if (dm_table_supports_dax_write_cache(t))
1821 dax_write_cache(t->md->dax_dev, true);
1822
1823 /* Ensure that all underlying devices are non-rotational. */
1824 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1825 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1826 else
1827 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1828
1829 if (!dm_table_supports_write_same(t))
1830 q->limits.max_write_same_sectors = 0;
1831 if (!dm_table_supports_write_zeroes(t))
1832 q->limits.max_write_zeroes_sectors = 0;
1833
1834 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1835 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1836 else
1837 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1838
1839 dm_table_verify_integrity(t);
1840
1841 /*
1842 * Determine whether or not this queue's I/O timings contribute
1843 * to the entropy pool, Only request-based targets use this.
1844 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1845 * have it set.
1846 */
1847 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1848 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1849
1850 /*
1851 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1852 * visible to other CPUs because, once the flag is set, incoming bios
1853 * are processed by request-based dm, which refers to the queue
1854 * settings.
1855 * Until the flag set, bios are passed to bio-based dm and queued to
1856 * md->deferred where queue settings are not needed yet.
1857 * Those bios are passed to request-based dm at the resume time.
1858 */
1859 smp_mb();
1860 if (dm_table_request_based(t))
1861 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1862 }
1863
1864 unsigned int dm_table_get_num_targets(struct dm_table *t)
1865 {
1866 return t->num_targets;
1867 }
1868
1869 struct list_head *dm_table_get_devices(struct dm_table *t)
1870 {
1871 return &t->devices;
1872 }
1873
1874 fmode_t dm_table_get_mode(struct dm_table *t)
1875 {
1876 return t->mode;
1877 }
1878 EXPORT_SYMBOL(dm_table_get_mode);
1879
1880 enum suspend_mode {
1881 PRESUSPEND,
1882 PRESUSPEND_UNDO,
1883 POSTSUSPEND,
1884 };
1885
1886 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1887 {
1888 int i = t->num_targets;
1889 struct dm_target *ti = t->targets;
1890
1891 lockdep_assert_held(&t->md->suspend_lock);
1892
1893 while (i--) {
1894 switch (mode) {
1895 case PRESUSPEND:
1896 if (ti->type->presuspend)
1897 ti->type->presuspend(ti);
1898 break;
1899 case PRESUSPEND_UNDO:
1900 if (ti->type->presuspend_undo)
1901 ti->type->presuspend_undo(ti);
1902 break;
1903 case POSTSUSPEND:
1904 if (ti->type->postsuspend)
1905 ti->type->postsuspend(ti);
1906 break;
1907 }
1908 ti++;
1909 }
1910 }
1911
1912 void dm_table_presuspend_targets(struct dm_table *t)
1913 {
1914 if (!t)
1915 return;
1916
1917 suspend_targets(t, PRESUSPEND);
1918 }
1919
1920 void dm_table_presuspend_undo_targets(struct dm_table *t)
1921 {
1922 if (!t)
1923 return;
1924
1925 suspend_targets(t, PRESUSPEND_UNDO);
1926 }
1927
1928 void dm_table_postsuspend_targets(struct dm_table *t)
1929 {
1930 if (!t)
1931 return;
1932
1933 suspend_targets(t, POSTSUSPEND);
1934 }
1935
1936 int dm_table_resume_targets(struct dm_table *t)
1937 {
1938 int i, r = 0;
1939
1940 lockdep_assert_held(&t->md->suspend_lock);
1941
1942 for (i = 0; i < t->num_targets; i++) {
1943 struct dm_target *ti = t->targets + i;
1944
1945 if (!ti->type->preresume)
1946 continue;
1947
1948 r = ti->type->preresume(ti);
1949 if (r) {
1950 DMERR("%s: %s: preresume failed, error = %d",
1951 dm_device_name(t->md), ti->type->name, r);
1952 return r;
1953 }
1954 }
1955
1956 for (i = 0; i < t->num_targets; i++) {
1957 struct dm_target *ti = t->targets + i;
1958
1959 if (ti->type->resume)
1960 ti->type->resume(ti);
1961 }
1962
1963 return 0;
1964 }
1965
1966 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1967 {
1968 list_add(&cb->list, &t->target_callbacks);
1969 }
1970 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1971
1972 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1973 {
1974 struct dm_dev_internal *dd;
1975 struct list_head *devices = dm_table_get_devices(t);
1976 struct dm_target_callbacks *cb;
1977 int r = 0;
1978
1979 list_for_each_entry(dd, devices, list) {
1980 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1981 char b[BDEVNAME_SIZE];
1982
1983 if (likely(q))
1984 r |= bdi_congested(q->backing_dev_info, bdi_bits);
1985 else
1986 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1987 dm_device_name(t->md),
1988 bdevname(dd->dm_dev->bdev, b));
1989 }
1990
1991 list_for_each_entry(cb, &t->target_callbacks, list)
1992 if (cb->congested_fn)
1993 r |= cb->congested_fn(cb, bdi_bits);
1994
1995 return r;
1996 }
1997
1998 struct mapped_device *dm_table_get_md(struct dm_table *t)
1999 {
2000 return t->md;
2001 }
2002 EXPORT_SYMBOL(dm_table_get_md);
2003
2004 void dm_table_run_md_queue_async(struct dm_table *t)
2005 {
2006 struct mapped_device *md;
2007 struct request_queue *queue;
2008 unsigned long flags;
2009
2010 if (!dm_table_request_based(t))
2011 return;
2012
2013 md = dm_table_get_md(t);
2014 queue = dm_get_md_queue(md);
2015 if (queue) {
2016 if (queue->mq_ops)
2017 blk_mq_run_hw_queues(queue, true);
2018 else {
2019 spin_lock_irqsave(queue->queue_lock, flags);
2020 blk_run_queue_async(queue);
2021 spin_unlock_irqrestore(queue->queue_lock, flags);
2022 }
2023 }
2024 }
2025 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2026