]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/dm-table.c
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm-table.c
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23
24 #define DM_MSG_PREFIX "table"
25
26 #define MAX_DEPTH 16
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30
31 struct dm_table {
32 struct mapped_device *md;
33 unsigned type;
34
35 /* btree table */
36 unsigned int depth;
37 unsigned int counts[MAX_DEPTH]; /* in nodes */
38 sector_t *index[MAX_DEPTH];
39
40 unsigned int num_targets;
41 unsigned int num_allocated;
42 sector_t *highs;
43 struct dm_target *targets;
44
45 struct target_type *immutable_target_type;
46
47 bool integrity_supported:1;
48 bool singleton:1;
49 bool all_blk_mq:1;
50
51 /*
52 * Indicates the rw permissions for the new logical
53 * device. This should be a combination of FMODE_READ
54 * and FMODE_WRITE.
55 */
56 fmode_t mode;
57
58 /* a list of devices used by this table */
59 struct list_head devices;
60
61 /* events get handed up using this callback */
62 void (*event_fn)(void *);
63 void *event_context;
64
65 struct dm_md_mempools *mempools;
66
67 struct list_head target_callbacks;
68 };
69
70 /*
71 * Similar to ceiling(log_size(n))
72 */
73 static unsigned int int_log(unsigned int n, unsigned int base)
74 {
75 int result = 0;
76
77 while (n > 1) {
78 n = dm_div_up(n, base);
79 result++;
80 }
81
82 return result;
83 }
84
85 /*
86 * Calculate the index of the child node of the n'th node k'th key.
87 */
88 static inline unsigned int get_child(unsigned int n, unsigned int k)
89 {
90 return (n * CHILDREN_PER_NODE) + k;
91 }
92
93 /*
94 * Return the n'th node of level l from table t.
95 */
96 static inline sector_t *get_node(struct dm_table *t,
97 unsigned int l, unsigned int n)
98 {
99 return t->index[l] + (n * KEYS_PER_NODE);
100 }
101
102 /*
103 * Return the highest key that you could lookup from the n'th
104 * node on level l of the btree.
105 */
106 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
107 {
108 for (; l < t->depth - 1; l++)
109 n = get_child(n, CHILDREN_PER_NODE - 1);
110
111 if (n >= t->counts[l])
112 return (sector_t) - 1;
113
114 return get_node(t, l, n)[KEYS_PER_NODE - 1];
115 }
116
117 /*
118 * Fills in a level of the btree based on the highs of the level
119 * below it.
120 */
121 static int setup_btree_index(unsigned int l, struct dm_table *t)
122 {
123 unsigned int n, k;
124 sector_t *node;
125
126 for (n = 0U; n < t->counts[l]; n++) {
127 node = get_node(t, l, n);
128
129 for (k = 0U; k < KEYS_PER_NODE; k++)
130 node[k] = high(t, l + 1, get_child(n, k));
131 }
132
133 return 0;
134 }
135
136 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
137 {
138 unsigned long size;
139 void *addr;
140
141 /*
142 * Check that we're not going to overflow.
143 */
144 if (nmemb > (ULONG_MAX / elem_size))
145 return NULL;
146
147 size = nmemb * elem_size;
148 addr = vzalloc(size);
149
150 return addr;
151 }
152 EXPORT_SYMBOL(dm_vcalloc);
153
154 /*
155 * highs, and targets are managed as dynamic arrays during a
156 * table load.
157 */
158 static int alloc_targets(struct dm_table *t, unsigned int num)
159 {
160 sector_t *n_highs;
161 struct dm_target *n_targets;
162
163 /*
164 * Allocate both the target array and offset array at once.
165 * Append an empty entry to catch sectors beyond the end of
166 * the device.
167 */
168 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
169 sizeof(sector_t));
170 if (!n_highs)
171 return -ENOMEM;
172
173 n_targets = (struct dm_target *) (n_highs + num);
174
175 memset(n_highs, -1, sizeof(*n_highs) * num);
176 vfree(t->highs);
177
178 t->num_allocated = num;
179 t->highs = n_highs;
180 t->targets = n_targets;
181
182 return 0;
183 }
184
185 int dm_table_create(struct dm_table **result, fmode_t mode,
186 unsigned num_targets, struct mapped_device *md)
187 {
188 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
189
190 if (!t)
191 return -ENOMEM;
192
193 INIT_LIST_HEAD(&t->devices);
194 INIT_LIST_HEAD(&t->target_callbacks);
195
196 if (!num_targets)
197 num_targets = KEYS_PER_NODE;
198
199 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
200
201 if (!num_targets) {
202 kfree(t);
203 return -ENOMEM;
204 }
205
206 if (alloc_targets(t, num_targets)) {
207 kfree(t);
208 return -ENOMEM;
209 }
210
211 t->type = DM_TYPE_NONE;
212 t->mode = mode;
213 t->md = md;
214 *result = t;
215 return 0;
216 }
217
218 static void free_devices(struct list_head *devices, struct mapped_device *md)
219 {
220 struct list_head *tmp, *next;
221
222 list_for_each_safe(tmp, next, devices) {
223 struct dm_dev_internal *dd =
224 list_entry(tmp, struct dm_dev_internal, list);
225 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
226 dm_device_name(md), dd->dm_dev->name);
227 dm_put_table_device(md, dd->dm_dev);
228 kfree(dd);
229 }
230 }
231
232 void dm_table_destroy(struct dm_table *t)
233 {
234 unsigned int i;
235
236 if (!t)
237 return;
238
239 /* free the indexes */
240 if (t->depth >= 2)
241 vfree(t->index[t->depth - 2]);
242
243 /* free the targets */
244 for (i = 0; i < t->num_targets; i++) {
245 struct dm_target *tgt = t->targets + i;
246
247 if (tgt->type->dtr)
248 tgt->type->dtr(tgt);
249
250 dm_put_target_type(tgt->type);
251 }
252
253 vfree(t->highs);
254
255 /* free the device list */
256 free_devices(&t->devices, t->md);
257
258 dm_free_md_mempools(t->mempools);
259
260 kfree(t);
261 }
262
263 /*
264 * See if we've already got a device in the list.
265 */
266 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
267 {
268 struct dm_dev_internal *dd;
269
270 list_for_each_entry (dd, l, list)
271 if (dd->dm_dev->bdev->bd_dev == dev)
272 return dd;
273
274 return NULL;
275 }
276
277 /*
278 * If possible, this checks an area of a destination device is invalid.
279 */
280 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
281 sector_t start, sector_t len, void *data)
282 {
283 struct request_queue *q;
284 struct queue_limits *limits = data;
285 struct block_device *bdev = dev->bdev;
286 sector_t dev_size =
287 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
288 unsigned short logical_block_size_sectors =
289 limits->logical_block_size >> SECTOR_SHIFT;
290 char b[BDEVNAME_SIZE];
291
292 /*
293 * Some devices exist without request functions,
294 * such as loop devices not yet bound to backing files.
295 * Forbid the use of such devices.
296 */
297 q = bdev_get_queue(bdev);
298 if (!q || !q->make_request_fn) {
299 DMWARN("%s: %s is not yet initialised: "
300 "start=%llu, len=%llu, dev_size=%llu",
301 dm_device_name(ti->table->md), bdevname(bdev, b),
302 (unsigned long long)start,
303 (unsigned long long)len,
304 (unsigned long long)dev_size);
305 return 1;
306 }
307
308 if (!dev_size)
309 return 0;
310
311 if ((start >= dev_size) || (start + len > dev_size)) {
312 DMWARN("%s: %s too small for target: "
313 "start=%llu, len=%llu, dev_size=%llu",
314 dm_device_name(ti->table->md), bdevname(bdev, b),
315 (unsigned long long)start,
316 (unsigned long long)len,
317 (unsigned long long)dev_size);
318 return 1;
319 }
320
321 if (logical_block_size_sectors <= 1)
322 return 0;
323
324 if (start & (logical_block_size_sectors - 1)) {
325 DMWARN("%s: start=%llu not aligned to h/w "
326 "logical block size %u of %s",
327 dm_device_name(ti->table->md),
328 (unsigned long long)start,
329 limits->logical_block_size, bdevname(bdev, b));
330 return 1;
331 }
332
333 if (len & (logical_block_size_sectors - 1)) {
334 DMWARN("%s: len=%llu not aligned to h/w "
335 "logical block size %u of %s",
336 dm_device_name(ti->table->md),
337 (unsigned long long)len,
338 limits->logical_block_size, bdevname(bdev, b));
339 return 1;
340 }
341
342 return 0;
343 }
344
345 /*
346 * This upgrades the mode on an already open dm_dev, being
347 * careful to leave things as they were if we fail to reopen the
348 * device and not to touch the existing bdev field in case
349 * it is accessed concurrently inside dm_table_any_congested().
350 */
351 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
352 struct mapped_device *md)
353 {
354 int r;
355 struct dm_dev *old_dev, *new_dev;
356
357 old_dev = dd->dm_dev;
358
359 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
360 dd->dm_dev->mode | new_mode, &new_dev);
361 if (r)
362 return r;
363
364 dd->dm_dev = new_dev;
365 dm_put_table_device(md, old_dev);
366
367 return 0;
368 }
369
370 /*
371 * Convert the path to a device
372 */
373 dev_t dm_get_dev_t(const char *path)
374 {
375 dev_t uninitialized_var(dev);
376 struct block_device *bdev;
377
378 bdev = lookup_bdev(path);
379 if (IS_ERR(bdev))
380 dev = name_to_dev_t(path);
381 else {
382 dev = bdev->bd_dev;
383 bdput(bdev);
384 }
385
386 return dev;
387 }
388 EXPORT_SYMBOL_GPL(dm_get_dev_t);
389
390 /*
391 * Add a device to the list, or just increment the usage count if
392 * it's already present.
393 */
394 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
395 struct dm_dev **result)
396 {
397 int r;
398 dev_t dev;
399 struct dm_dev_internal *dd;
400 struct dm_table *t = ti->table;
401
402 BUG_ON(!t);
403
404 dev = dm_get_dev_t(path);
405 if (!dev)
406 return -ENODEV;
407
408 dd = find_device(&t->devices, dev);
409 if (!dd) {
410 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
411 if (!dd)
412 return -ENOMEM;
413
414 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
415 kfree(dd);
416 return r;
417 }
418
419 atomic_set(&dd->count, 0);
420 list_add(&dd->list, &t->devices);
421
422 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
423 r = upgrade_mode(dd, mode, t->md);
424 if (r)
425 return r;
426 }
427 atomic_inc(&dd->count);
428
429 *result = dd->dm_dev;
430 return 0;
431 }
432 EXPORT_SYMBOL(dm_get_device);
433
434 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
435 sector_t start, sector_t len, void *data)
436 {
437 struct queue_limits *limits = data;
438 struct block_device *bdev = dev->bdev;
439 struct request_queue *q = bdev_get_queue(bdev);
440 char b[BDEVNAME_SIZE];
441
442 if (unlikely(!q)) {
443 DMWARN("%s: Cannot set limits for nonexistent device %s",
444 dm_device_name(ti->table->md), bdevname(bdev, b));
445 return 0;
446 }
447
448 if (bdev_stack_limits(limits, bdev, start) < 0)
449 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
450 "physical_block_size=%u, logical_block_size=%u, "
451 "alignment_offset=%u, start=%llu",
452 dm_device_name(ti->table->md), bdevname(bdev, b),
453 q->limits.physical_block_size,
454 q->limits.logical_block_size,
455 q->limits.alignment_offset,
456 (unsigned long long) start << SECTOR_SHIFT);
457
458 return 0;
459 }
460
461 /*
462 * Decrement a device's use count and remove it if necessary.
463 */
464 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
465 {
466 int found = 0;
467 struct list_head *devices = &ti->table->devices;
468 struct dm_dev_internal *dd;
469
470 list_for_each_entry(dd, devices, list) {
471 if (dd->dm_dev == d) {
472 found = 1;
473 break;
474 }
475 }
476 if (!found) {
477 DMWARN("%s: device %s not in table devices list",
478 dm_device_name(ti->table->md), d->name);
479 return;
480 }
481 if (atomic_dec_and_test(&dd->count)) {
482 dm_put_table_device(ti->table->md, d);
483 list_del(&dd->list);
484 kfree(dd);
485 }
486 }
487 EXPORT_SYMBOL(dm_put_device);
488
489 /*
490 * Checks to see if the target joins onto the end of the table.
491 */
492 static int adjoin(struct dm_table *table, struct dm_target *ti)
493 {
494 struct dm_target *prev;
495
496 if (!table->num_targets)
497 return !ti->begin;
498
499 prev = &table->targets[table->num_targets - 1];
500 return (ti->begin == (prev->begin + prev->len));
501 }
502
503 /*
504 * Used to dynamically allocate the arg array.
505 *
506 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
507 * process messages even if some device is suspended. These messages have a
508 * small fixed number of arguments.
509 *
510 * On the other hand, dm-switch needs to process bulk data using messages and
511 * excessive use of GFP_NOIO could cause trouble.
512 */
513 static char **realloc_argv(unsigned *array_size, char **old_argv)
514 {
515 char **argv;
516 unsigned new_size;
517 gfp_t gfp;
518
519 if (*array_size) {
520 new_size = *array_size * 2;
521 gfp = GFP_KERNEL;
522 } else {
523 new_size = 8;
524 gfp = GFP_NOIO;
525 }
526 argv = kmalloc(new_size * sizeof(*argv), gfp);
527 if (argv) {
528 memcpy(argv, old_argv, *array_size * sizeof(*argv));
529 *array_size = new_size;
530 }
531
532 kfree(old_argv);
533 return argv;
534 }
535
536 /*
537 * Destructively splits up the argument list to pass to ctr.
538 */
539 int dm_split_args(int *argc, char ***argvp, char *input)
540 {
541 char *start, *end = input, *out, **argv = NULL;
542 unsigned array_size = 0;
543
544 *argc = 0;
545
546 if (!input) {
547 *argvp = NULL;
548 return 0;
549 }
550
551 argv = realloc_argv(&array_size, argv);
552 if (!argv)
553 return -ENOMEM;
554
555 while (1) {
556 /* Skip whitespace */
557 start = skip_spaces(end);
558
559 if (!*start)
560 break; /* success, we hit the end */
561
562 /* 'out' is used to remove any back-quotes */
563 end = out = start;
564 while (*end) {
565 /* Everything apart from '\0' can be quoted */
566 if (*end == '\\' && *(end + 1)) {
567 *out++ = *(end + 1);
568 end += 2;
569 continue;
570 }
571
572 if (isspace(*end))
573 break; /* end of token */
574
575 *out++ = *end++;
576 }
577
578 /* have we already filled the array ? */
579 if ((*argc + 1) > array_size) {
580 argv = realloc_argv(&array_size, argv);
581 if (!argv)
582 return -ENOMEM;
583 }
584
585 /* we know this is whitespace */
586 if (*end)
587 end++;
588
589 /* terminate the string and put it in the array */
590 *out = '\0';
591 argv[*argc] = start;
592 (*argc)++;
593 }
594
595 *argvp = argv;
596 return 0;
597 }
598
599 /*
600 * Impose necessary and sufficient conditions on a devices's table such
601 * that any incoming bio which respects its logical_block_size can be
602 * processed successfully. If it falls across the boundary between
603 * two or more targets, the size of each piece it gets split into must
604 * be compatible with the logical_block_size of the target processing it.
605 */
606 static int validate_hardware_logical_block_alignment(struct dm_table *table,
607 struct queue_limits *limits)
608 {
609 /*
610 * This function uses arithmetic modulo the logical_block_size
611 * (in units of 512-byte sectors).
612 */
613 unsigned short device_logical_block_size_sects =
614 limits->logical_block_size >> SECTOR_SHIFT;
615
616 /*
617 * Offset of the start of the next table entry, mod logical_block_size.
618 */
619 unsigned short next_target_start = 0;
620
621 /*
622 * Given an aligned bio that extends beyond the end of a
623 * target, how many sectors must the next target handle?
624 */
625 unsigned short remaining = 0;
626
627 struct dm_target *uninitialized_var(ti);
628 struct queue_limits ti_limits;
629 unsigned i = 0;
630
631 /*
632 * Check each entry in the table in turn.
633 */
634 while (i < dm_table_get_num_targets(table)) {
635 ti = dm_table_get_target(table, i++);
636
637 blk_set_stacking_limits(&ti_limits);
638
639 /* combine all target devices' limits */
640 if (ti->type->iterate_devices)
641 ti->type->iterate_devices(ti, dm_set_device_limits,
642 &ti_limits);
643
644 /*
645 * If the remaining sectors fall entirely within this
646 * table entry are they compatible with its logical_block_size?
647 */
648 if (remaining < ti->len &&
649 remaining & ((ti_limits.logical_block_size >>
650 SECTOR_SHIFT) - 1))
651 break; /* Error */
652
653 next_target_start =
654 (unsigned short) ((next_target_start + ti->len) &
655 (device_logical_block_size_sects - 1));
656 remaining = next_target_start ?
657 device_logical_block_size_sects - next_target_start : 0;
658 }
659
660 if (remaining) {
661 DMWARN("%s: table line %u (start sect %llu len %llu) "
662 "not aligned to h/w logical block size %u",
663 dm_device_name(table->md), i,
664 (unsigned long long) ti->begin,
665 (unsigned long long) ti->len,
666 limits->logical_block_size);
667 return -EINVAL;
668 }
669
670 return 0;
671 }
672
673 int dm_table_add_target(struct dm_table *t, const char *type,
674 sector_t start, sector_t len, char *params)
675 {
676 int r = -EINVAL, argc;
677 char **argv;
678 struct dm_target *tgt;
679
680 if (t->singleton) {
681 DMERR("%s: target type %s must appear alone in table",
682 dm_device_name(t->md), t->targets->type->name);
683 return -EINVAL;
684 }
685
686 BUG_ON(t->num_targets >= t->num_allocated);
687
688 tgt = t->targets + t->num_targets;
689 memset(tgt, 0, sizeof(*tgt));
690
691 if (!len) {
692 DMERR("%s: zero-length target", dm_device_name(t->md));
693 return -EINVAL;
694 }
695
696 tgt->type = dm_get_target_type(type);
697 if (!tgt->type) {
698 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
699 type);
700 return -EINVAL;
701 }
702
703 if (dm_target_needs_singleton(tgt->type)) {
704 if (t->num_targets) {
705 DMERR("%s: target type %s must appear alone in table",
706 dm_device_name(t->md), type);
707 return -EINVAL;
708 }
709 t->singleton = true;
710 }
711
712 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
713 DMERR("%s: target type %s may not be included in read-only tables",
714 dm_device_name(t->md), type);
715 return -EINVAL;
716 }
717
718 if (t->immutable_target_type) {
719 if (t->immutable_target_type != tgt->type) {
720 DMERR("%s: immutable target type %s cannot be mixed with other target types",
721 dm_device_name(t->md), t->immutable_target_type->name);
722 return -EINVAL;
723 }
724 } else if (dm_target_is_immutable(tgt->type)) {
725 if (t->num_targets) {
726 DMERR("%s: immutable target type %s cannot be mixed with other target types",
727 dm_device_name(t->md), tgt->type->name);
728 return -EINVAL;
729 }
730 t->immutable_target_type = tgt->type;
731 }
732
733 tgt->table = t;
734 tgt->begin = start;
735 tgt->len = len;
736 tgt->error = "Unknown error";
737
738 /*
739 * Does this target adjoin the previous one ?
740 */
741 if (!adjoin(t, tgt)) {
742 tgt->error = "Gap in table";
743 r = -EINVAL;
744 goto bad;
745 }
746
747 r = dm_split_args(&argc, &argv, params);
748 if (r) {
749 tgt->error = "couldn't split parameters (insufficient memory)";
750 goto bad;
751 }
752
753 r = tgt->type->ctr(tgt, argc, argv);
754 kfree(argv);
755 if (r)
756 goto bad;
757
758 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
759
760 if (!tgt->num_discard_bios && tgt->discards_supported)
761 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
762 dm_device_name(t->md), type);
763
764 return 0;
765
766 bad:
767 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
768 dm_put_target_type(tgt->type);
769 return r;
770 }
771
772 /*
773 * Target argument parsing helpers.
774 */
775 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
776 unsigned *value, char **error, unsigned grouped)
777 {
778 const char *arg_str = dm_shift_arg(arg_set);
779 char dummy;
780
781 if (!arg_str ||
782 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
783 (*value < arg->min) ||
784 (*value > arg->max) ||
785 (grouped && arg_set->argc < *value)) {
786 *error = arg->error;
787 return -EINVAL;
788 }
789
790 return 0;
791 }
792
793 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
794 unsigned *value, char **error)
795 {
796 return validate_next_arg(arg, arg_set, value, error, 0);
797 }
798 EXPORT_SYMBOL(dm_read_arg);
799
800 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
801 unsigned *value, char **error)
802 {
803 return validate_next_arg(arg, arg_set, value, error, 1);
804 }
805 EXPORT_SYMBOL(dm_read_arg_group);
806
807 const char *dm_shift_arg(struct dm_arg_set *as)
808 {
809 char *r;
810
811 if (as->argc) {
812 as->argc--;
813 r = *as->argv;
814 as->argv++;
815 return r;
816 }
817
818 return NULL;
819 }
820 EXPORT_SYMBOL(dm_shift_arg);
821
822 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
823 {
824 BUG_ON(as->argc < num_args);
825 as->argc -= num_args;
826 as->argv += num_args;
827 }
828 EXPORT_SYMBOL(dm_consume_args);
829
830 static bool __table_type_bio_based(unsigned table_type)
831 {
832 return (table_type == DM_TYPE_BIO_BASED ||
833 table_type == DM_TYPE_DAX_BIO_BASED);
834 }
835
836 static bool __table_type_request_based(unsigned table_type)
837 {
838 return (table_type == DM_TYPE_REQUEST_BASED ||
839 table_type == DM_TYPE_MQ_REQUEST_BASED);
840 }
841
842 void dm_table_set_type(struct dm_table *t, unsigned type)
843 {
844 t->type = type;
845 }
846 EXPORT_SYMBOL_GPL(dm_table_set_type);
847
848 static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
849 sector_t start, sector_t len, void *data)
850 {
851 struct request_queue *q = bdev_get_queue(dev->bdev);
852
853 return q && blk_queue_dax(q);
854 }
855
856 static bool dm_table_supports_dax(struct dm_table *t)
857 {
858 struct dm_target *ti;
859 unsigned i = 0;
860
861 /* Ensure that all targets support DAX. */
862 while (i < dm_table_get_num_targets(t)) {
863 ti = dm_table_get_target(t, i++);
864
865 if (!ti->type->direct_access)
866 return false;
867
868 if (!ti->type->iterate_devices ||
869 !ti->type->iterate_devices(ti, device_supports_dax, NULL))
870 return false;
871 }
872
873 return true;
874 }
875
876 static int dm_table_determine_type(struct dm_table *t)
877 {
878 unsigned i;
879 unsigned bio_based = 0, request_based = 0, hybrid = 0;
880 bool verify_blk_mq = false;
881 struct dm_target *tgt;
882 struct dm_dev_internal *dd;
883 struct list_head *devices = dm_table_get_devices(t);
884 unsigned live_md_type = dm_get_md_type(t->md);
885
886 if (t->type != DM_TYPE_NONE) {
887 /* target already set the table's type */
888 if (t->type == DM_TYPE_BIO_BASED)
889 return 0;
890 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
891 goto verify_rq_based;
892 }
893
894 for (i = 0; i < t->num_targets; i++) {
895 tgt = t->targets + i;
896 if (dm_target_hybrid(tgt))
897 hybrid = 1;
898 else if (dm_target_request_based(tgt))
899 request_based = 1;
900 else
901 bio_based = 1;
902
903 if (bio_based && request_based) {
904 DMWARN("Inconsistent table: different target types"
905 " can't be mixed up");
906 return -EINVAL;
907 }
908 }
909
910 if (hybrid && !bio_based && !request_based) {
911 /*
912 * The targets can work either way.
913 * Determine the type from the live device.
914 * Default to bio-based if device is new.
915 */
916 if (__table_type_request_based(live_md_type))
917 request_based = 1;
918 else
919 bio_based = 1;
920 }
921
922 if (bio_based) {
923 /* We must use this table as bio-based */
924 t->type = DM_TYPE_BIO_BASED;
925 if (dm_table_supports_dax(t) ||
926 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED))
927 t->type = DM_TYPE_DAX_BIO_BASED;
928 return 0;
929 }
930
931 BUG_ON(!request_based); /* No targets in this table */
932
933 if (list_empty(devices) && __table_type_request_based(live_md_type)) {
934 /* inherit live MD type */
935 t->type = live_md_type;
936 return 0;
937 }
938
939 /*
940 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
941 * having a compatible target use dm_table_set_type.
942 */
943 t->type = DM_TYPE_REQUEST_BASED;
944
945 verify_rq_based:
946 /*
947 * Request-based dm supports only tables that have a single target now.
948 * To support multiple targets, request splitting support is needed,
949 * and that needs lots of changes in the block-layer.
950 * (e.g. request completion process for partial completion.)
951 */
952 if (t->num_targets > 1) {
953 DMWARN("Request-based dm doesn't support multiple targets yet");
954 return -EINVAL;
955 }
956
957 /* Non-request-stackable devices can't be used for request-based dm */
958 list_for_each_entry(dd, devices, list) {
959 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
960
961 if (!blk_queue_stackable(q)) {
962 DMERR("table load rejected: including"
963 " non-request-stackable devices");
964 return -EINVAL;
965 }
966
967 if (q->mq_ops)
968 verify_blk_mq = true;
969 }
970
971 if (verify_blk_mq) {
972 /* verify _all_ devices in the table are blk-mq devices */
973 list_for_each_entry(dd, devices, list)
974 if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) {
975 DMERR("table load rejected: not all devices"
976 " are blk-mq request-stackable");
977 return -EINVAL;
978 }
979
980 t->all_blk_mq = true;
981 }
982
983 return 0;
984 }
985
986 unsigned dm_table_get_type(struct dm_table *t)
987 {
988 return t->type;
989 }
990
991 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
992 {
993 return t->immutable_target_type;
994 }
995
996 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
997 {
998 /* Immutable target is implicitly a singleton */
999 if (t->num_targets > 1 ||
1000 !dm_target_is_immutable(t->targets[0].type))
1001 return NULL;
1002
1003 return t->targets;
1004 }
1005
1006 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1007 {
1008 struct dm_target *uninitialized_var(ti);
1009 unsigned i = 0;
1010
1011 while (i < dm_table_get_num_targets(t)) {
1012 ti = dm_table_get_target(t, i++);
1013 if (dm_target_is_wildcard(ti->type))
1014 return ti;
1015 }
1016
1017 return NULL;
1018 }
1019
1020 bool dm_table_bio_based(struct dm_table *t)
1021 {
1022 return __table_type_bio_based(dm_table_get_type(t));
1023 }
1024
1025 bool dm_table_request_based(struct dm_table *t)
1026 {
1027 return __table_type_request_based(dm_table_get_type(t));
1028 }
1029
1030 bool dm_table_all_blk_mq_devices(struct dm_table *t)
1031 {
1032 return t->all_blk_mq;
1033 }
1034
1035 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1036 {
1037 unsigned type = dm_table_get_type(t);
1038 unsigned per_io_data_size = 0;
1039 struct dm_target *tgt;
1040 unsigned i;
1041
1042 if (unlikely(type == DM_TYPE_NONE)) {
1043 DMWARN("no table type is set, can't allocate mempools");
1044 return -EINVAL;
1045 }
1046
1047 if (__table_type_bio_based(type))
1048 for (i = 0; i < t->num_targets; i++) {
1049 tgt = t->targets + i;
1050 per_io_data_size = max(per_io_data_size, tgt->per_io_data_size);
1051 }
1052
1053 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size);
1054 if (!t->mempools)
1055 return -ENOMEM;
1056
1057 return 0;
1058 }
1059
1060 void dm_table_free_md_mempools(struct dm_table *t)
1061 {
1062 dm_free_md_mempools(t->mempools);
1063 t->mempools = NULL;
1064 }
1065
1066 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1067 {
1068 return t->mempools;
1069 }
1070
1071 static int setup_indexes(struct dm_table *t)
1072 {
1073 int i;
1074 unsigned int total = 0;
1075 sector_t *indexes;
1076
1077 /* allocate the space for *all* the indexes */
1078 for (i = t->depth - 2; i >= 0; i--) {
1079 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1080 total += t->counts[i];
1081 }
1082
1083 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1084 if (!indexes)
1085 return -ENOMEM;
1086
1087 /* set up internal nodes, bottom-up */
1088 for (i = t->depth - 2; i >= 0; i--) {
1089 t->index[i] = indexes;
1090 indexes += (KEYS_PER_NODE * t->counts[i]);
1091 setup_btree_index(i, t);
1092 }
1093
1094 return 0;
1095 }
1096
1097 /*
1098 * Builds the btree to index the map.
1099 */
1100 static int dm_table_build_index(struct dm_table *t)
1101 {
1102 int r = 0;
1103 unsigned int leaf_nodes;
1104
1105 /* how many indexes will the btree have ? */
1106 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1107 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1108
1109 /* leaf layer has already been set up */
1110 t->counts[t->depth - 1] = leaf_nodes;
1111 t->index[t->depth - 1] = t->highs;
1112
1113 if (t->depth >= 2)
1114 r = setup_indexes(t);
1115
1116 return r;
1117 }
1118
1119 static bool integrity_profile_exists(struct gendisk *disk)
1120 {
1121 return !!blk_get_integrity(disk);
1122 }
1123
1124 /*
1125 * Get a disk whose integrity profile reflects the table's profile.
1126 * Returns NULL if integrity support was inconsistent or unavailable.
1127 */
1128 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1129 {
1130 struct list_head *devices = dm_table_get_devices(t);
1131 struct dm_dev_internal *dd = NULL;
1132 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1133
1134 list_for_each_entry(dd, devices, list) {
1135 template_disk = dd->dm_dev->bdev->bd_disk;
1136 if (!integrity_profile_exists(template_disk))
1137 goto no_integrity;
1138 else if (prev_disk &&
1139 blk_integrity_compare(prev_disk, template_disk) < 0)
1140 goto no_integrity;
1141 prev_disk = template_disk;
1142 }
1143
1144 return template_disk;
1145
1146 no_integrity:
1147 if (prev_disk)
1148 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1149 dm_device_name(t->md),
1150 prev_disk->disk_name,
1151 template_disk->disk_name);
1152 return NULL;
1153 }
1154
1155 /*
1156 * Register the mapped device for blk_integrity support if the
1157 * underlying devices have an integrity profile. But all devices may
1158 * not have matching profiles (checking all devices isn't reliable
1159 * during table load because this table may use other DM device(s) which
1160 * must be resumed before they will have an initialized integity
1161 * profile). Consequently, stacked DM devices force a 2 stage integrity
1162 * profile validation: First pass during table load, final pass during
1163 * resume.
1164 */
1165 static int dm_table_register_integrity(struct dm_table *t)
1166 {
1167 struct mapped_device *md = t->md;
1168 struct gendisk *template_disk = NULL;
1169
1170 template_disk = dm_table_get_integrity_disk(t);
1171 if (!template_disk)
1172 return 0;
1173
1174 if (!integrity_profile_exists(dm_disk(md))) {
1175 t->integrity_supported = true;
1176 /*
1177 * Register integrity profile during table load; we can do
1178 * this because the final profile must match during resume.
1179 */
1180 blk_integrity_register(dm_disk(md),
1181 blk_get_integrity(template_disk));
1182 return 0;
1183 }
1184
1185 /*
1186 * If DM device already has an initialized integrity
1187 * profile the new profile should not conflict.
1188 */
1189 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1190 DMWARN("%s: conflict with existing integrity profile: "
1191 "%s profile mismatch",
1192 dm_device_name(t->md),
1193 template_disk->disk_name);
1194 return 1;
1195 }
1196
1197 /* Preserve existing integrity profile */
1198 t->integrity_supported = true;
1199 return 0;
1200 }
1201
1202 /*
1203 * Prepares the table for use by building the indices,
1204 * setting the type, and allocating mempools.
1205 */
1206 int dm_table_complete(struct dm_table *t)
1207 {
1208 int r;
1209
1210 r = dm_table_determine_type(t);
1211 if (r) {
1212 DMERR("unable to determine table type");
1213 return r;
1214 }
1215
1216 r = dm_table_build_index(t);
1217 if (r) {
1218 DMERR("unable to build btrees");
1219 return r;
1220 }
1221
1222 r = dm_table_register_integrity(t);
1223 if (r) {
1224 DMERR("could not register integrity profile.");
1225 return r;
1226 }
1227
1228 r = dm_table_alloc_md_mempools(t, t->md);
1229 if (r)
1230 DMERR("unable to allocate mempools");
1231
1232 return r;
1233 }
1234
1235 static DEFINE_MUTEX(_event_lock);
1236 void dm_table_event_callback(struct dm_table *t,
1237 void (*fn)(void *), void *context)
1238 {
1239 mutex_lock(&_event_lock);
1240 t->event_fn = fn;
1241 t->event_context = context;
1242 mutex_unlock(&_event_lock);
1243 }
1244
1245 void dm_table_event(struct dm_table *t)
1246 {
1247 /*
1248 * You can no longer call dm_table_event() from interrupt
1249 * context, use a bottom half instead.
1250 */
1251 BUG_ON(in_interrupt());
1252
1253 mutex_lock(&_event_lock);
1254 if (t->event_fn)
1255 t->event_fn(t->event_context);
1256 mutex_unlock(&_event_lock);
1257 }
1258 EXPORT_SYMBOL(dm_table_event);
1259
1260 sector_t dm_table_get_size(struct dm_table *t)
1261 {
1262 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1263 }
1264 EXPORT_SYMBOL(dm_table_get_size);
1265
1266 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1267 {
1268 if (index >= t->num_targets)
1269 return NULL;
1270
1271 return t->targets + index;
1272 }
1273
1274 /*
1275 * Search the btree for the correct target.
1276 *
1277 * Caller should check returned pointer with dm_target_is_valid()
1278 * to trap I/O beyond end of device.
1279 */
1280 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1281 {
1282 unsigned int l, n = 0, k = 0;
1283 sector_t *node;
1284
1285 for (l = 0; l < t->depth; l++) {
1286 n = get_child(n, k);
1287 node = get_node(t, l, n);
1288
1289 for (k = 0; k < KEYS_PER_NODE; k++)
1290 if (node[k] >= sector)
1291 break;
1292 }
1293
1294 return &t->targets[(KEYS_PER_NODE * n) + k];
1295 }
1296
1297 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1298 sector_t start, sector_t len, void *data)
1299 {
1300 unsigned *num_devices = data;
1301
1302 (*num_devices)++;
1303
1304 return 0;
1305 }
1306
1307 /*
1308 * Check whether a table has no data devices attached using each
1309 * target's iterate_devices method.
1310 * Returns false if the result is unknown because a target doesn't
1311 * support iterate_devices.
1312 */
1313 bool dm_table_has_no_data_devices(struct dm_table *table)
1314 {
1315 struct dm_target *uninitialized_var(ti);
1316 unsigned i = 0, num_devices = 0;
1317
1318 while (i < dm_table_get_num_targets(table)) {
1319 ti = dm_table_get_target(table, i++);
1320
1321 if (!ti->type->iterate_devices)
1322 return false;
1323
1324 ti->type->iterate_devices(ti, count_device, &num_devices);
1325 if (num_devices)
1326 return false;
1327 }
1328
1329 return true;
1330 }
1331
1332 /*
1333 * Establish the new table's queue_limits and validate them.
1334 */
1335 int dm_calculate_queue_limits(struct dm_table *table,
1336 struct queue_limits *limits)
1337 {
1338 struct dm_target *uninitialized_var(ti);
1339 struct queue_limits ti_limits;
1340 unsigned i = 0;
1341
1342 blk_set_stacking_limits(limits);
1343
1344 while (i < dm_table_get_num_targets(table)) {
1345 blk_set_stacking_limits(&ti_limits);
1346
1347 ti = dm_table_get_target(table, i++);
1348
1349 if (!ti->type->iterate_devices)
1350 goto combine_limits;
1351
1352 /*
1353 * Combine queue limits of all the devices this target uses.
1354 */
1355 ti->type->iterate_devices(ti, dm_set_device_limits,
1356 &ti_limits);
1357
1358 /* Set I/O hints portion of queue limits */
1359 if (ti->type->io_hints)
1360 ti->type->io_hints(ti, &ti_limits);
1361
1362 /*
1363 * Check each device area is consistent with the target's
1364 * overall queue limits.
1365 */
1366 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1367 &ti_limits))
1368 return -EINVAL;
1369
1370 combine_limits:
1371 /*
1372 * Merge this target's queue limits into the overall limits
1373 * for the table.
1374 */
1375 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1376 DMWARN("%s: adding target device "
1377 "(start sect %llu len %llu) "
1378 "caused an alignment inconsistency",
1379 dm_device_name(table->md),
1380 (unsigned long long) ti->begin,
1381 (unsigned long long) ti->len);
1382 }
1383
1384 return validate_hardware_logical_block_alignment(table, limits);
1385 }
1386
1387 /*
1388 * Verify that all devices have an integrity profile that matches the
1389 * DM device's registered integrity profile. If the profiles don't
1390 * match then unregister the DM device's integrity profile.
1391 */
1392 static void dm_table_verify_integrity(struct dm_table *t)
1393 {
1394 struct gendisk *template_disk = NULL;
1395
1396 if (t->integrity_supported) {
1397 /*
1398 * Verify that the original integrity profile
1399 * matches all the devices in this table.
1400 */
1401 template_disk = dm_table_get_integrity_disk(t);
1402 if (template_disk &&
1403 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1404 return;
1405 }
1406
1407 if (integrity_profile_exists(dm_disk(t->md))) {
1408 DMWARN("%s: unable to establish an integrity profile",
1409 dm_device_name(t->md));
1410 blk_integrity_unregister(dm_disk(t->md));
1411 }
1412 }
1413
1414 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1415 sector_t start, sector_t len, void *data)
1416 {
1417 unsigned long flush = (unsigned long) data;
1418 struct request_queue *q = bdev_get_queue(dev->bdev);
1419
1420 return q && (q->queue_flags & flush);
1421 }
1422
1423 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1424 {
1425 struct dm_target *ti;
1426 unsigned i = 0;
1427
1428 /*
1429 * Require at least one underlying device to support flushes.
1430 * t->devices includes internal dm devices such as mirror logs
1431 * so we need to use iterate_devices here, which targets
1432 * supporting flushes must provide.
1433 */
1434 while (i < dm_table_get_num_targets(t)) {
1435 ti = dm_table_get_target(t, i++);
1436
1437 if (!ti->num_flush_bios)
1438 continue;
1439
1440 if (ti->flush_supported)
1441 return true;
1442
1443 if (ti->type->iterate_devices &&
1444 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1445 return true;
1446 }
1447
1448 return false;
1449 }
1450
1451 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1452 {
1453 struct dm_target *ti;
1454 unsigned i = 0;
1455
1456 /* Ensure that all targets supports discard_zeroes_data. */
1457 while (i < dm_table_get_num_targets(t)) {
1458 ti = dm_table_get_target(t, i++);
1459
1460 if (ti->discard_zeroes_data_unsupported)
1461 return false;
1462 }
1463
1464 return true;
1465 }
1466
1467 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1468 sector_t start, sector_t len, void *data)
1469 {
1470 struct request_queue *q = bdev_get_queue(dev->bdev);
1471
1472 return q && blk_queue_nonrot(q);
1473 }
1474
1475 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1476 sector_t start, sector_t len, void *data)
1477 {
1478 struct request_queue *q = bdev_get_queue(dev->bdev);
1479
1480 return q && !blk_queue_add_random(q);
1481 }
1482
1483 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1484 sector_t start, sector_t len, void *data)
1485 {
1486 struct request_queue *q = bdev_get_queue(dev->bdev);
1487
1488 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1489 }
1490
1491 static bool dm_table_all_devices_attribute(struct dm_table *t,
1492 iterate_devices_callout_fn func)
1493 {
1494 struct dm_target *ti;
1495 unsigned i = 0;
1496
1497 while (i < dm_table_get_num_targets(t)) {
1498 ti = dm_table_get_target(t, i++);
1499
1500 if (!ti->type->iterate_devices ||
1501 !ti->type->iterate_devices(ti, func, NULL))
1502 return false;
1503 }
1504
1505 return true;
1506 }
1507
1508 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1509 sector_t start, sector_t len, void *data)
1510 {
1511 struct request_queue *q = bdev_get_queue(dev->bdev);
1512
1513 return q && !q->limits.max_write_same_sectors;
1514 }
1515
1516 static bool dm_table_supports_write_same(struct dm_table *t)
1517 {
1518 struct dm_target *ti;
1519 unsigned i = 0;
1520
1521 while (i < dm_table_get_num_targets(t)) {
1522 ti = dm_table_get_target(t, i++);
1523
1524 if (!ti->num_write_same_bios)
1525 return false;
1526
1527 if (!ti->type->iterate_devices ||
1528 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1529 return false;
1530 }
1531
1532 return true;
1533 }
1534
1535 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1536 sector_t start, sector_t len, void *data)
1537 {
1538 struct request_queue *q = bdev_get_queue(dev->bdev);
1539
1540 return q && blk_queue_discard(q);
1541 }
1542
1543 static bool dm_table_supports_discards(struct dm_table *t)
1544 {
1545 struct dm_target *ti;
1546 unsigned i = 0;
1547
1548 /*
1549 * Unless any target used by the table set discards_supported,
1550 * require at least one underlying device to support discards.
1551 * t->devices includes internal dm devices such as mirror logs
1552 * so we need to use iterate_devices here, which targets
1553 * supporting discard selectively must provide.
1554 */
1555 while (i < dm_table_get_num_targets(t)) {
1556 ti = dm_table_get_target(t, i++);
1557
1558 if (!ti->num_discard_bios)
1559 continue;
1560
1561 if (ti->discards_supported)
1562 return true;
1563
1564 if (ti->type->iterate_devices &&
1565 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1566 return true;
1567 }
1568
1569 return false;
1570 }
1571
1572 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1573 struct queue_limits *limits)
1574 {
1575 bool wc = false, fua = false;
1576
1577 /*
1578 * Copy table's limits to the DM device's request_queue
1579 */
1580 q->limits = *limits;
1581
1582 if (!dm_table_supports_discards(t))
1583 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1584 else
1585 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1586
1587 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1588 wc = true;
1589 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1590 fua = true;
1591 }
1592 blk_queue_write_cache(q, wc, fua);
1593
1594 if (!dm_table_discard_zeroes_data(t))
1595 q->limits.discard_zeroes_data = 0;
1596
1597 /* Ensure that all underlying devices are non-rotational. */
1598 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1599 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1600 else
1601 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1602
1603 if (!dm_table_supports_write_same(t))
1604 q->limits.max_write_same_sectors = 0;
1605
1606 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1607 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1608 else
1609 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1610
1611 dm_table_verify_integrity(t);
1612
1613 /*
1614 * Determine whether or not this queue's I/O timings contribute
1615 * to the entropy pool, Only request-based targets use this.
1616 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1617 * have it set.
1618 */
1619 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1620 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1621
1622 /*
1623 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1624 * visible to other CPUs because, once the flag is set, incoming bios
1625 * are processed by request-based dm, which refers to the queue
1626 * settings.
1627 * Until the flag set, bios are passed to bio-based dm and queued to
1628 * md->deferred where queue settings are not needed yet.
1629 * Those bios are passed to request-based dm at the resume time.
1630 */
1631 smp_mb();
1632 if (dm_table_request_based(t))
1633 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1634 }
1635
1636 unsigned int dm_table_get_num_targets(struct dm_table *t)
1637 {
1638 return t->num_targets;
1639 }
1640
1641 struct list_head *dm_table_get_devices(struct dm_table *t)
1642 {
1643 return &t->devices;
1644 }
1645
1646 fmode_t dm_table_get_mode(struct dm_table *t)
1647 {
1648 return t->mode;
1649 }
1650 EXPORT_SYMBOL(dm_table_get_mode);
1651
1652 enum suspend_mode {
1653 PRESUSPEND,
1654 PRESUSPEND_UNDO,
1655 POSTSUSPEND,
1656 };
1657
1658 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1659 {
1660 int i = t->num_targets;
1661 struct dm_target *ti = t->targets;
1662
1663 while (i--) {
1664 switch (mode) {
1665 case PRESUSPEND:
1666 if (ti->type->presuspend)
1667 ti->type->presuspend(ti);
1668 break;
1669 case PRESUSPEND_UNDO:
1670 if (ti->type->presuspend_undo)
1671 ti->type->presuspend_undo(ti);
1672 break;
1673 case POSTSUSPEND:
1674 if (ti->type->postsuspend)
1675 ti->type->postsuspend(ti);
1676 break;
1677 }
1678 ti++;
1679 }
1680 }
1681
1682 void dm_table_presuspend_targets(struct dm_table *t)
1683 {
1684 if (!t)
1685 return;
1686
1687 suspend_targets(t, PRESUSPEND);
1688 }
1689
1690 void dm_table_presuspend_undo_targets(struct dm_table *t)
1691 {
1692 if (!t)
1693 return;
1694
1695 suspend_targets(t, PRESUSPEND_UNDO);
1696 }
1697
1698 void dm_table_postsuspend_targets(struct dm_table *t)
1699 {
1700 if (!t)
1701 return;
1702
1703 suspend_targets(t, POSTSUSPEND);
1704 }
1705
1706 int dm_table_resume_targets(struct dm_table *t)
1707 {
1708 int i, r = 0;
1709
1710 for (i = 0; i < t->num_targets; i++) {
1711 struct dm_target *ti = t->targets + i;
1712
1713 if (!ti->type->preresume)
1714 continue;
1715
1716 r = ti->type->preresume(ti);
1717 if (r) {
1718 DMERR("%s: %s: preresume failed, error = %d",
1719 dm_device_name(t->md), ti->type->name, r);
1720 return r;
1721 }
1722 }
1723
1724 for (i = 0; i < t->num_targets; i++) {
1725 struct dm_target *ti = t->targets + i;
1726
1727 if (ti->type->resume)
1728 ti->type->resume(ti);
1729 }
1730
1731 return 0;
1732 }
1733
1734 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1735 {
1736 list_add(&cb->list, &t->target_callbacks);
1737 }
1738 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1739
1740 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1741 {
1742 struct dm_dev_internal *dd;
1743 struct list_head *devices = dm_table_get_devices(t);
1744 struct dm_target_callbacks *cb;
1745 int r = 0;
1746
1747 list_for_each_entry(dd, devices, list) {
1748 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1749 char b[BDEVNAME_SIZE];
1750
1751 if (likely(q))
1752 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1753 else
1754 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1755 dm_device_name(t->md),
1756 bdevname(dd->dm_dev->bdev, b));
1757 }
1758
1759 list_for_each_entry(cb, &t->target_callbacks, list)
1760 if (cb->congested_fn)
1761 r |= cb->congested_fn(cb, bdi_bits);
1762
1763 return r;
1764 }
1765
1766 struct mapped_device *dm_table_get_md(struct dm_table *t)
1767 {
1768 return t->md;
1769 }
1770 EXPORT_SYMBOL(dm_table_get_md);
1771
1772 void dm_table_run_md_queue_async(struct dm_table *t)
1773 {
1774 struct mapped_device *md;
1775 struct request_queue *queue;
1776 unsigned long flags;
1777
1778 if (!dm_table_request_based(t))
1779 return;
1780
1781 md = dm_table_get_md(t);
1782 queue = dm_get_md_queue(md);
1783 if (queue) {
1784 if (queue->mq_ops)
1785 blk_mq_run_hw_queues(queue, true);
1786 else {
1787 spin_lock_irqsave(queue->queue_lock, flags);
1788 blk_run_queue_async(queue);
1789 spin_unlock_irqrestore(queue->queue_lock, flags);
1790 }
1791 }
1792 }
1793 EXPORT_SYMBOL(dm_table_run_md_queue_async);
1794