]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/dm-table.c
selftests: timers: freq-step: fix compile error
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm-table.c
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23
24 #define DM_MSG_PREFIX "table"
25
26 #define MAX_DEPTH 16
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30
31 struct dm_table {
32 struct mapped_device *md;
33 enum dm_queue_mode type;
34
35 /* btree table */
36 unsigned int depth;
37 unsigned int counts[MAX_DEPTH]; /* in nodes */
38 sector_t *index[MAX_DEPTH];
39
40 unsigned int num_targets;
41 unsigned int num_allocated;
42 sector_t *highs;
43 struct dm_target *targets;
44
45 struct target_type *immutable_target_type;
46
47 bool integrity_supported:1;
48 bool singleton:1;
49 bool all_blk_mq:1;
50 unsigned integrity_added:1;
51
52 /*
53 * Indicates the rw permissions for the new logical
54 * device. This should be a combination of FMODE_READ
55 * and FMODE_WRITE.
56 */
57 fmode_t mode;
58
59 /* a list of devices used by this table */
60 struct list_head devices;
61
62 /* events get handed up using this callback */
63 void (*event_fn)(void *);
64 void *event_context;
65
66 struct dm_md_mempools *mempools;
67
68 struct list_head target_callbacks;
69 };
70
71 /*
72 * Similar to ceiling(log_size(n))
73 */
74 static unsigned int int_log(unsigned int n, unsigned int base)
75 {
76 int result = 0;
77
78 while (n > 1) {
79 n = dm_div_up(n, base);
80 result++;
81 }
82
83 return result;
84 }
85
86 /*
87 * Calculate the index of the child node of the n'th node k'th key.
88 */
89 static inline unsigned int get_child(unsigned int n, unsigned int k)
90 {
91 return (n * CHILDREN_PER_NODE) + k;
92 }
93
94 /*
95 * Return the n'th node of level l from table t.
96 */
97 static inline sector_t *get_node(struct dm_table *t,
98 unsigned int l, unsigned int n)
99 {
100 return t->index[l] + (n * KEYS_PER_NODE);
101 }
102
103 /*
104 * Return the highest key that you could lookup from the n'th
105 * node on level l of the btree.
106 */
107 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
108 {
109 for (; l < t->depth - 1; l++)
110 n = get_child(n, CHILDREN_PER_NODE - 1);
111
112 if (n >= t->counts[l])
113 return (sector_t) - 1;
114
115 return get_node(t, l, n)[KEYS_PER_NODE - 1];
116 }
117
118 /*
119 * Fills in a level of the btree based on the highs of the level
120 * below it.
121 */
122 static int setup_btree_index(unsigned int l, struct dm_table *t)
123 {
124 unsigned int n, k;
125 sector_t *node;
126
127 for (n = 0U; n < t->counts[l]; n++) {
128 node = get_node(t, l, n);
129
130 for (k = 0U; k < KEYS_PER_NODE; k++)
131 node[k] = high(t, l + 1, get_child(n, k));
132 }
133
134 return 0;
135 }
136
137 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
138 {
139 unsigned long size;
140 void *addr;
141
142 /*
143 * Check that we're not going to overflow.
144 */
145 if (nmemb > (ULONG_MAX / elem_size))
146 return NULL;
147
148 size = nmemb * elem_size;
149 addr = vzalloc(size);
150
151 return addr;
152 }
153 EXPORT_SYMBOL(dm_vcalloc);
154
155 /*
156 * highs, and targets are managed as dynamic arrays during a
157 * table load.
158 */
159 static int alloc_targets(struct dm_table *t, unsigned int num)
160 {
161 sector_t *n_highs;
162 struct dm_target *n_targets;
163
164 /*
165 * Allocate both the target array and offset array at once.
166 * Append an empty entry to catch sectors beyond the end of
167 * the device.
168 */
169 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
170 sizeof(sector_t));
171 if (!n_highs)
172 return -ENOMEM;
173
174 n_targets = (struct dm_target *) (n_highs + num);
175
176 memset(n_highs, -1, sizeof(*n_highs) * num);
177 vfree(t->highs);
178
179 t->num_allocated = num;
180 t->highs = n_highs;
181 t->targets = n_targets;
182
183 return 0;
184 }
185
186 int dm_table_create(struct dm_table **result, fmode_t mode,
187 unsigned num_targets, struct mapped_device *md)
188 {
189 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
190
191 if (!t)
192 return -ENOMEM;
193
194 INIT_LIST_HEAD(&t->devices);
195 INIT_LIST_HEAD(&t->target_callbacks);
196
197 if (!num_targets)
198 num_targets = KEYS_PER_NODE;
199
200 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
201
202 if (!num_targets) {
203 kfree(t);
204 return -ENOMEM;
205 }
206
207 if (alloc_targets(t, num_targets)) {
208 kfree(t);
209 return -ENOMEM;
210 }
211
212 t->type = DM_TYPE_NONE;
213 t->mode = mode;
214 t->md = md;
215 *result = t;
216 return 0;
217 }
218
219 static void free_devices(struct list_head *devices, struct mapped_device *md)
220 {
221 struct list_head *tmp, *next;
222
223 list_for_each_safe(tmp, next, devices) {
224 struct dm_dev_internal *dd =
225 list_entry(tmp, struct dm_dev_internal, list);
226 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
227 dm_device_name(md), dd->dm_dev->name);
228 dm_put_table_device(md, dd->dm_dev);
229 kfree(dd);
230 }
231 }
232
233 void dm_table_destroy(struct dm_table *t)
234 {
235 unsigned int i;
236
237 if (!t)
238 return;
239
240 /* free the indexes */
241 if (t->depth >= 2)
242 vfree(t->index[t->depth - 2]);
243
244 /* free the targets */
245 for (i = 0; i < t->num_targets; i++) {
246 struct dm_target *tgt = t->targets + i;
247
248 if (tgt->type->dtr)
249 tgt->type->dtr(tgt);
250
251 dm_put_target_type(tgt->type);
252 }
253
254 vfree(t->highs);
255
256 /* free the device list */
257 free_devices(&t->devices, t->md);
258
259 dm_free_md_mempools(t->mempools);
260
261 kfree(t);
262 }
263
264 /*
265 * See if we've already got a device in the list.
266 */
267 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
268 {
269 struct dm_dev_internal *dd;
270
271 list_for_each_entry (dd, l, list)
272 if (dd->dm_dev->bdev->bd_dev == dev)
273 return dd;
274
275 return NULL;
276 }
277
278 /*
279 * If possible, this checks an area of a destination device is invalid.
280 */
281 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
282 sector_t start, sector_t len, void *data)
283 {
284 struct request_queue *q;
285 struct queue_limits *limits = data;
286 struct block_device *bdev = dev->bdev;
287 sector_t dev_size =
288 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
289 unsigned short logical_block_size_sectors =
290 limits->logical_block_size >> SECTOR_SHIFT;
291 char b[BDEVNAME_SIZE];
292
293 /*
294 * Some devices exist without request functions,
295 * such as loop devices not yet bound to backing files.
296 * Forbid the use of such devices.
297 */
298 q = bdev_get_queue(bdev);
299 if (!q || !q->make_request_fn) {
300 DMWARN("%s: %s is not yet initialised: "
301 "start=%llu, len=%llu, dev_size=%llu",
302 dm_device_name(ti->table->md), bdevname(bdev, b),
303 (unsigned long long)start,
304 (unsigned long long)len,
305 (unsigned long long)dev_size);
306 return 1;
307 }
308
309 if (!dev_size)
310 return 0;
311
312 if ((start >= dev_size) || (start + len > dev_size)) {
313 DMWARN("%s: %s too small for target: "
314 "start=%llu, len=%llu, dev_size=%llu",
315 dm_device_name(ti->table->md), bdevname(bdev, b),
316 (unsigned long long)start,
317 (unsigned long long)len,
318 (unsigned long long)dev_size);
319 return 1;
320 }
321
322 /*
323 * If the target is mapped to zoned block device(s), check
324 * that the zones are not partially mapped.
325 */
326 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
327 unsigned int zone_sectors = bdev_zone_sectors(bdev);
328
329 if (start & (zone_sectors - 1)) {
330 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
331 dm_device_name(ti->table->md),
332 (unsigned long long)start,
333 zone_sectors, bdevname(bdev, b));
334 return 1;
335 }
336
337 /*
338 * Note: The last zone of a zoned block device may be smaller
339 * than other zones. So for a target mapping the end of a
340 * zoned block device with such a zone, len would not be zone
341 * aligned. We do not allow such last smaller zone to be part
342 * of the mapping here to ensure that mappings with multiple
343 * devices do not end up with a smaller zone in the middle of
344 * the sector range.
345 */
346 if (len & (zone_sectors - 1)) {
347 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
348 dm_device_name(ti->table->md),
349 (unsigned long long)len,
350 zone_sectors, bdevname(bdev, b));
351 return 1;
352 }
353 }
354
355 if (logical_block_size_sectors <= 1)
356 return 0;
357
358 if (start & (logical_block_size_sectors - 1)) {
359 DMWARN("%s: start=%llu not aligned to h/w "
360 "logical block size %u of %s",
361 dm_device_name(ti->table->md),
362 (unsigned long long)start,
363 limits->logical_block_size, bdevname(bdev, b));
364 return 1;
365 }
366
367 if (len & (logical_block_size_sectors - 1)) {
368 DMWARN("%s: len=%llu not aligned to h/w "
369 "logical block size %u of %s",
370 dm_device_name(ti->table->md),
371 (unsigned long long)len,
372 limits->logical_block_size, bdevname(bdev, b));
373 return 1;
374 }
375
376 return 0;
377 }
378
379 /*
380 * This upgrades the mode on an already open dm_dev, being
381 * careful to leave things as they were if we fail to reopen the
382 * device and not to touch the existing bdev field in case
383 * it is accessed concurrently inside dm_table_any_congested().
384 */
385 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
386 struct mapped_device *md)
387 {
388 int r;
389 struct dm_dev *old_dev, *new_dev;
390
391 old_dev = dd->dm_dev;
392
393 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
394 dd->dm_dev->mode | new_mode, &new_dev);
395 if (r)
396 return r;
397
398 dd->dm_dev = new_dev;
399 dm_put_table_device(md, old_dev);
400
401 return 0;
402 }
403
404 /*
405 * Convert the path to a device
406 */
407 dev_t dm_get_dev_t(const char *path)
408 {
409 dev_t dev;
410 struct block_device *bdev;
411
412 bdev = lookup_bdev(path);
413 if (IS_ERR(bdev))
414 dev = name_to_dev_t(path);
415 else {
416 dev = bdev->bd_dev;
417 bdput(bdev);
418 }
419
420 return dev;
421 }
422 EXPORT_SYMBOL_GPL(dm_get_dev_t);
423
424 /*
425 * Add a device to the list, or just increment the usage count if
426 * it's already present.
427 */
428 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
429 struct dm_dev **result)
430 {
431 int r;
432 dev_t dev;
433 struct dm_dev_internal *dd;
434 struct dm_table *t = ti->table;
435
436 BUG_ON(!t);
437
438 dev = dm_get_dev_t(path);
439 if (!dev)
440 return -ENODEV;
441
442 dd = find_device(&t->devices, dev);
443 if (!dd) {
444 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
445 if (!dd)
446 return -ENOMEM;
447
448 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
449 kfree(dd);
450 return r;
451 }
452
453 atomic_set(&dd->count, 0);
454 list_add(&dd->list, &t->devices);
455
456 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
457 r = upgrade_mode(dd, mode, t->md);
458 if (r)
459 return r;
460 }
461 atomic_inc(&dd->count);
462
463 *result = dd->dm_dev;
464 return 0;
465 }
466 EXPORT_SYMBOL(dm_get_device);
467
468 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
469 sector_t start, sector_t len, void *data)
470 {
471 struct queue_limits *limits = data;
472 struct block_device *bdev = dev->bdev;
473 struct request_queue *q = bdev_get_queue(bdev);
474 char b[BDEVNAME_SIZE];
475
476 if (unlikely(!q)) {
477 DMWARN("%s: Cannot set limits for nonexistent device %s",
478 dm_device_name(ti->table->md), bdevname(bdev, b));
479 return 0;
480 }
481
482 if (bdev_stack_limits(limits, bdev, start) < 0)
483 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
484 "physical_block_size=%u, logical_block_size=%u, "
485 "alignment_offset=%u, start=%llu",
486 dm_device_name(ti->table->md), bdevname(bdev, b),
487 q->limits.physical_block_size,
488 q->limits.logical_block_size,
489 q->limits.alignment_offset,
490 (unsigned long long) start << SECTOR_SHIFT);
491
492 limits->zoned = blk_queue_zoned_model(q);
493
494 return 0;
495 }
496
497 /*
498 * Decrement a device's use count and remove it if necessary.
499 */
500 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
501 {
502 int found = 0;
503 struct list_head *devices = &ti->table->devices;
504 struct dm_dev_internal *dd;
505
506 list_for_each_entry(dd, devices, list) {
507 if (dd->dm_dev == d) {
508 found = 1;
509 break;
510 }
511 }
512 if (!found) {
513 DMWARN("%s: device %s not in table devices list",
514 dm_device_name(ti->table->md), d->name);
515 return;
516 }
517 if (atomic_dec_and_test(&dd->count)) {
518 dm_put_table_device(ti->table->md, d);
519 list_del(&dd->list);
520 kfree(dd);
521 }
522 }
523 EXPORT_SYMBOL(dm_put_device);
524
525 /*
526 * Checks to see if the target joins onto the end of the table.
527 */
528 static int adjoin(struct dm_table *table, struct dm_target *ti)
529 {
530 struct dm_target *prev;
531
532 if (!table->num_targets)
533 return !ti->begin;
534
535 prev = &table->targets[table->num_targets - 1];
536 return (ti->begin == (prev->begin + prev->len));
537 }
538
539 /*
540 * Used to dynamically allocate the arg array.
541 *
542 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
543 * process messages even if some device is suspended. These messages have a
544 * small fixed number of arguments.
545 *
546 * On the other hand, dm-switch needs to process bulk data using messages and
547 * excessive use of GFP_NOIO could cause trouble.
548 */
549 static char **realloc_argv(unsigned *array_size, char **old_argv)
550 {
551 char **argv;
552 unsigned new_size;
553 gfp_t gfp;
554
555 if (*array_size) {
556 new_size = *array_size * 2;
557 gfp = GFP_KERNEL;
558 } else {
559 new_size = 8;
560 gfp = GFP_NOIO;
561 }
562 argv = kmalloc(new_size * sizeof(*argv), gfp);
563 if (argv) {
564 memcpy(argv, old_argv, *array_size * sizeof(*argv));
565 *array_size = new_size;
566 }
567
568 kfree(old_argv);
569 return argv;
570 }
571
572 /*
573 * Destructively splits up the argument list to pass to ctr.
574 */
575 int dm_split_args(int *argc, char ***argvp, char *input)
576 {
577 char *start, *end = input, *out, **argv = NULL;
578 unsigned array_size = 0;
579
580 *argc = 0;
581
582 if (!input) {
583 *argvp = NULL;
584 return 0;
585 }
586
587 argv = realloc_argv(&array_size, argv);
588 if (!argv)
589 return -ENOMEM;
590
591 while (1) {
592 /* Skip whitespace */
593 start = skip_spaces(end);
594
595 if (!*start)
596 break; /* success, we hit the end */
597
598 /* 'out' is used to remove any back-quotes */
599 end = out = start;
600 while (*end) {
601 /* Everything apart from '\0' can be quoted */
602 if (*end == '\\' && *(end + 1)) {
603 *out++ = *(end + 1);
604 end += 2;
605 continue;
606 }
607
608 if (isspace(*end))
609 break; /* end of token */
610
611 *out++ = *end++;
612 }
613
614 /* have we already filled the array ? */
615 if ((*argc + 1) > array_size) {
616 argv = realloc_argv(&array_size, argv);
617 if (!argv)
618 return -ENOMEM;
619 }
620
621 /* we know this is whitespace */
622 if (*end)
623 end++;
624
625 /* terminate the string and put it in the array */
626 *out = '\0';
627 argv[*argc] = start;
628 (*argc)++;
629 }
630
631 *argvp = argv;
632 return 0;
633 }
634
635 /*
636 * Impose necessary and sufficient conditions on a devices's table such
637 * that any incoming bio which respects its logical_block_size can be
638 * processed successfully. If it falls across the boundary between
639 * two or more targets, the size of each piece it gets split into must
640 * be compatible with the logical_block_size of the target processing it.
641 */
642 static int validate_hardware_logical_block_alignment(struct dm_table *table,
643 struct queue_limits *limits)
644 {
645 /*
646 * This function uses arithmetic modulo the logical_block_size
647 * (in units of 512-byte sectors).
648 */
649 unsigned short device_logical_block_size_sects =
650 limits->logical_block_size >> SECTOR_SHIFT;
651
652 /*
653 * Offset of the start of the next table entry, mod logical_block_size.
654 */
655 unsigned short next_target_start = 0;
656
657 /*
658 * Given an aligned bio that extends beyond the end of a
659 * target, how many sectors must the next target handle?
660 */
661 unsigned short remaining = 0;
662
663 struct dm_target *uninitialized_var(ti);
664 struct queue_limits ti_limits;
665 unsigned i;
666
667 /*
668 * Check each entry in the table in turn.
669 */
670 for (i = 0; i < dm_table_get_num_targets(table); i++) {
671 ti = dm_table_get_target(table, i);
672
673 blk_set_stacking_limits(&ti_limits);
674
675 /* combine all target devices' limits */
676 if (ti->type->iterate_devices)
677 ti->type->iterate_devices(ti, dm_set_device_limits,
678 &ti_limits);
679
680 /*
681 * If the remaining sectors fall entirely within this
682 * table entry are they compatible with its logical_block_size?
683 */
684 if (remaining < ti->len &&
685 remaining & ((ti_limits.logical_block_size >>
686 SECTOR_SHIFT) - 1))
687 break; /* Error */
688
689 next_target_start =
690 (unsigned short) ((next_target_start + ti->len) &
691 (device_logical_block_size_sects - 1));
692 remaining = next_target_start ?
693 device_logical_block_size_sects - next_target_start : 0;
694 }
695
696 if (remaining) {
697 DMWARN("%s: table line %u (start sect %llu len %llu) "
698 "not aligned to h/w logical block size %u",
699 dm_device_name(table->md), i,
700 (unsigned long long) ti->begin,
701 (unsigned long long) ti->len,
702 limits->logical_block_size);
703 return -EINVAL;
704 }
705
706 return 0;
707 }
708
709 int dm_table_add_target(struct dm_table *t, const char *type,
710 sector_t start, sector_t len, char *params)
711 {
712 int r = -EINVAL, argc;
713 char **argv;
714 struct dm_target *tgt;
715
716 if (t->singleton) {
717 DMERR("%s: target type %s must appear alone in table",
718 dm_device_name(t->md), t->targets->type->name);
719 return -EINVAL;
720 }
721
722 BUG_ON(t->num_targets >= t->num_allocated);
723
724 tgt = t->targets + t->num_targets;
725 memset(tgt, 0, sizeof(*tgt));
726
727 if (!len) {
728 DMERR("%s: zero-length target", dm_device_name(t->md));
729 return -EINVAL;
730 }
731
732 tgt->type = dm_get_target_type(type);
733 if (!tgt->type) {
734 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
735 return -EINVAL;
736 }
737
738 if (dm_target_needs_singleton(tgt->type)) {
739 if (t->num_targets) {
740 tgt->error = "singleton target type must appear alone in table";
741 goto bad;
742 }
743 t->singleton = true;
744 }
745
746 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
747 tgt->error = "target type may not be included in a read-only table";
748 goto bad;
749 }
750
751 if (t->immutable_target_type) {
752 if (t->immutable_target_type != tgt->type) {
753 tgt->error = "immutable target type cannot be mixed with other target types";
754 goto bad;
755 }
756 } else if (dm_target_is_immutable(tgt->type)) {
757 if (t->num_targets) {
758 tgt->error = "immutable target type cannot be mixed with other target types";
759 goto bad;
760 }
761 t->immutable_target_type = tgt->type;
762 }
763
764 if (dm_target_has_integrity(tgt->type))
765 t->integrity_added = 1;
766
767 tgt->table = t;
768 tgt->begin = start;
769 tgt->len = len;
770 tgt->error = "Unknown error";
771
772 /*
773 * Does this target adjoin the previous one ?
774 */
775 if (!adjoin(t, tgt)) {
776 tgt->error = "Gap in table";
777 goto bad;
778 }
779
780 r = dm_split_args(&argc, &argv, params);
781 if (r) {
782 tgt->error = "couldn't split parameters (insufficient memory)";
783 goto bad;
784 }
785
786 r = tgt->type->ctr(tgt, argc, argv);
787 kfree(argv);
788 if (r)
789 goto bad;
790
791 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
792
793 if (!tgt->num_discard_bios && tgt->discards_supported)
794 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
795 dm_device_name(t->md), type);
796
797 return 0;
798
799 bad:
800 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
801 dm_put_target_type(tgt->type);
802 return r;
803 }
804
805 /*
806 * Target argument parsing helpers.
807 */
808 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
809 unsigned *value, char **error, unsigned grouped)
810 {
811 const char *arg_str = dm_shift_arg(arg_set);
812 char dummy;
813
814 if (!arg_str ||
815 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
816 (*value < arg->min) ||
817 (*value > arg->max) ||
818 (grouped && arg_set->argc < *value)) {
819 *error = arg->error;
820 return -EINVAL;
821 }
822
823 return 0;
824 }
825
826 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
827 unsigned *value, char **error)
828 {
829 return validate_next_arg(arg, arg_set, value, error, 0);
830 }
831 EXPORT_SYMBOL(dm_read_arg);
832
833 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
834 unsigned *value, char **error)
835 {
836 return validate_next_arg(arg, arg_set, value, error, 1);
837 }
838 EXPORT_SYMBOL(dm_read_arg_group);
839
840 const char *dm_shift_arg(struct dm_arg_set *as)
841 {
842 char *r;
843
844 if (as->argc) {
845 as->argc--;
846 r = *as->argv;
847 as->argv++;
848 return r;
849 }
850
851 return NULL;
852 }
853 EXPORT_SYMBOL(dm_shift_arg);
854
855 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
856 {
857 BUG_ON(as->argc < num_args);
858 as->argc -= num_args;
859 as->argv += num_args;
860 }
861 EXPORT_SYMBOL(dm_consume_args);
862
863 static bool __table_type_bio_based(enum dm_queue_mode table_type)
864 {
865 return (table_type == DM_TYPE_BIO_BASED ||
866 table_type == DM_TYPE_DAX_BIO_BASED);
867 }
868
869 static bool __table_type_request_based(enum dm_queue_mode table_type)
870 {
871 return (table_type == DM_TYPE_REQUEST_BASED ||
872 table_type == DM_TYPE_MQ_REQUEST_BASED);
873 }
874
875 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
876 {
877 t->type = type;
878 }
879 EXPORT_SYMBOL_GPL(dm_table_set_type);
880
881 static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
882 sector_t start, sector_t len, void *data)
883 {
884 struct request_queue *q = bdev_get_queue(dev->bdev);
885
886 return q && blk_queue_dax(q);
887 }
888
889 static bool dm_table_supports_dax(struct dm_table *t)
890 {
891 struct dm_target *ti;
892 unsigned i;
893
894 /* Ensure that all targets support DAX. */
895 for (i = 0; i < dm_table_get_num_targets(t); i++) {
896 ti = dm_table_get_target(t, i);
897
898 if (!ti->type->direct_access)
899 return false;
900
901 if (!ti->type->iterate_devices ||
902 !ti->type->iterate_devices(ti, device_supports_dax, NULL))
903 return false;
904 }
905
906 return true;
907 }
908
909 static int dm_table_determine_type(struct dm_table *t)
910 {
911 unsigned i;
912 unsigned bio_based = 0, request_based = 0, hybrid = 0;
913 unsigned sq_count = 0, mq_count = 0;
914 struct dm_target *tgt;
915 struct dm_dev_internal *dd;
916 struct list_head *devices = dm_table_get_devices(t);
917 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
918
919 if (t->type != DM_TYPE_NONE) {
920 /* target already set the table's type */
921 if (t->type == DM_TYPE_BIO_BASED)
922 return 0;
923 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
924 goto verify_rq_based;
925 }
926
927 for (i = 0; i < t->num_targets; i++) {
928 tgt = t->targets + i;
929 if (dm_target_hybrid(tgt))
930 hybrid = 1;
931 else if (dm_target_request_based(tgt))
932 request_based = 1;
933 else
934 bio_based = 1;
935
936 if (bio_based && request_based) {
937 DMWARN("Inconsistent table: different target types"
938 " can't be mixed up");
939 return -EINVAL;
940 }
941 }
942
943 if (hybrid && !bio_based && !request_based) {
944 /*
945 * The targets can work either way.
946 * Determine the type from the live device.
947 * Default to bio-based if device is new.
948 */
949 if (__table_type_request_based(live_md_type))
950 request_based = 1;
951 else
952 bio_based = 1;
953 }
954
955 if (bio_based) {
956 /* We must use this table as bio-based */
957 t->type = DM_TYPE_BIO_BASED;
958 if (dm_table_supports_dax(t) ||
959 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED))
960 t->type = DM_TYPE_DAX_BIO_BASED;
961 return 0;
962 }
963
964 BUG_ON(!request_based); /* No targets in this table */
965
966 /*
967 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
968 * having a compatible target use dm_table_set_type.
969 */
970 t->type = DM_TYPE_REQUEST_BASED;
971
972 verify_rq_based:
973 /*
974 * Request-based dm supports only tables that have a single target now.
975 * To support multiple targets, request splitting support is needed,
976 * and that needs lots of changes in the block-layer.
977 * (e.g. request completion process for partial completion.)
978 */
979 if (t->num_targets > 1) {
980 DMWARN("Request-based dm doesn't support multiple targets yet");
981 return -EINVAL;
982 }
983
984 if (list_empty(devices)) {
985 int srcu_idx;
986 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
987
988 /* inherit live table's type and all_blk_mq */
989 if (live_table) {
990 t->type = live_table->type;
991 t->all_blk_mq = live_table->all_blk_mq;
992 }
993 dm_put_live_table(t->md, srcu_idx);
994 return 0;
995 }
996
997 /* Non-request-stackable devices can't be used for request-based dm */
998 list_for_each_entry(dd, devices, list) {
999 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1000
1001 if (!blk_queue_stackable(q)) {
1002 DMERR("table load rejected: including"
1003 " non-request-stackable devices");
1004 return -EINVAL;
1005 }
1006
1007 if (q->mq_ops)
1008 mq_count++;
1009 else
1010 sq_count++;
1011 }
1012 if (sq_count && mq_count) {
1013 DMERR("table load rejected: not all devices are blk-mq request-stackable");
1014 return -EINVAL;
1015 }
1016 t->all_blk_mq = mq_count > 0;
1017
1018 if (t->type == DM_TYPE_MQ_REQUEST_BASED && !t->all_blk_mq) {
1019 DMERR("table load rejected: all devices are not blk-mq request-stackable");
1020 return -EINVAL;
1021 }
1022
1023 return 0;
1024 }
1025
1026 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1027 {
1028 return t->type;
1029 }
1030
1031 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1032 {
1033 return t->immutable_target_type;
1034 }
1035
1036 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1037 {
1038 /* Immutable target is implicitly a singleton */
1039 if (t->num_targets > 1 ||
1040 !dm_target_is_immutable(t->targets[0].type))
1041 return NULL;
1042
1043 return t->targets;
1044 }
1045
1046 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1047 {
1048 struct dm_target *ti;
1049 unsigned i;
1050
1051 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1052 ti = dm_table_get_target(t, i);
1053 if (dm_target_is_wildcard(ti->type))
1054 return ti;
1055 }
1056
1057 return NULL;
1058 }
1059
1060 bool dm_table_bio_based(struct dm_table *t)
1061 {
1062 return __table_type_bio_based(dm_table_get_type(t));
1063 }
1064
1065 bool dm_table_request_based(struct dm_table *t)
1066 {
1067 return __table_type_request_based(dm_table_get_type(t));
1068 }
1069
1070 bool dm_table_all_blk_mq_devices(struct dm_table *t)
1071 {
1072 return t->all_blk_mq;
1073 }
1074
1075 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1076 {
1077 enum dm_queue_mode type = dm_table_get_type(t);
1078 unsigned per_io_data_size = 0;
1079 struct dm_target *tgt;
1080 unsigned i;
1081
1082 if (unlikely(type == DM_TYPE_NONE)) {
1083 DMWARN("no table type is set, can't allocate mempools");
1084 return -EINVAL;
1085 }
1086
1087 if (__table_type_bio_based(type))
1088 for (i = 0; i < t->num_targets; i++) {
1089 tgt = t->targets + i;
1090 per_io_data_size = max(per_io_data_size, tgt->per_io_data_size);
1091 }
1092
1093 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size);
1094 if (!t->mempools)
1095 return -ENOMEM;
1096
1097 return 0;
1098 }
1099
1100 void dm_table_free_md_mempools(struct dm_table *t)
1101 {
1102 dm_free_md_mempools(t->mempools);
1103 t->mempools = NULL;
1104 }
1105
1106 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1107 {
1108 return t->mempools;
1109 }
1110
1111 static int setup_indexes(struct dm_table *t)
1112 {
1113 int i;
1114 unsigned int total = 0;
1115 sector_t *indexes;
1116
1117 /* allocate the space for *all* the indexes */
1118 for (i = t->depth - 2; i >= 0; i--) {
1119 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1120 total += t->counts[i];
1121 }
1122
1123 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1124 if (!indexes)
1125 return -ENOMEM;
1126
1127 /* set up internal nodes, bottom-up */
1128 for (i = t->depth - 2; i >= 0; i--) {
1129 t->index[i] = indexes;
1130 indexes += (KEYS_PER_NODE * t->counts[i]);
1131 setup_btree_index(i, t);
1132 }
1133
1134 return 0;
1135 }
1136
1137 /*
1138 * Builds the btree to index the map.
1139 */
1140 static int dm_table_build_index(struct dm_table *t)
1141 {
1142 int r = 0;
1143 unsigned int leaf_nodes;
1144
1145 /* how many indexes will the btree have ? */
1146 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1147 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1148
1149 /* leaf layer has already been set up */
1150 t->counts[t->depth - 1] = leaf_nodes;
1151 t->index[t->depth - 1] = t->highs;
1152
1153 if (t->depth >= 2)
1154 r = setup_indexes(t);
1155
1156 return r;
1157 }
1158
1159 static bool integrity_profile_exists(struct gendisk *disk)
1160 {
1161 return !!blk_get_integrity(disk);
1162 }
1163
1164 /*
1165 * Get a disk whose integrity profile reflects the table's profile.
1166 * Returns NULL if integrity support was inconsistent or unavailable.
1167 */
1168 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1169 {
1170 struct list_head *devices = dm_table_get_devices(t);
1171 struct dm_dev_internal *dd = NULL;
1172 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1173 unsigned i;
1174
1175 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1176 struct dm_target *ti = dm_table_get_target(t, i);
1177 if (!dm_target_passes_integrity(ti->type))
1178 goto no_integrity;
1179 }
1180
1181 list_for_each_entry(dd, devices, list) {
1182 template_disk = dd->dm_dev->bdev->bd_disk;
1183 if (!integrity_profile_exists(template_disk))
1184 goto no_integrity;
1185 else if (prev_disk &&
1186 blk_integrity_compare(prev_disk, template_disk) < 0)
1187 goto no_integrity;
1188 prev_disk = template_disk;
1189 }
1190
1191 return template_disk;
1192
1193 no_integrity:
1194 if (prev_disk)
1195 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1196 dm_device_name(t->md),
1197 prev_disk->disk_name,
1198 template_disk->disk_name);
1199 return NULL;
1200 }
1201
1202 /*
1203 * Register the mapped device for blk_integrity support if the
1204 * underlying devices have an integrity profile. But all devices may
1205 * not have matching profiles (checking all devices isn't reliable
1206 * during table load because this table may use other DM device(s) which
1207 * must be resumed before they will have an initialized integity
1208 * profile). Consequently, stacked DM devices force a 2 stage integrity
1209 * profile validation: First pass during table load, final pass during
1210 * resume.
1211 */
1212 static int dm_table_register_integrity(struct dm_table *t)
1213 {
1214 struct mapped_device *md = t->md;
1215 struct gendisk *template_disk = NULL;
1216
1217 /* If target handles integrity itself do not register it here. */
1218 if (t->integrity_added)
1219 return 0;
1220
1221 template_disk = dm_table_get_integrity_disk(t);
1222 if (!template_disk)
1223 return 0;
1224
1225 if (!integrity_profile_exists(dm_disk(md))) {
1226 t->integrity_supported = true;
1227 /*
1228 * Register integrity profile during table load; we can do
1229 * this because the final profile must match during resume.
1230 */
1231 blk_integrity_register(dm_disk(md),
1232 blk_get_integrity(template_disk));
1233 return 0;
1234 }
1235
1236 /*
1237 * If DM device already has an initialized integrity
1238 * profile the new profile should not conflict.
1239 */
1240 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1241 DMWARN("%s: conflict with existing integrity profile: "
1242 "%s profile mismatch",
1243 dm_device_name(t->md),
1244 template_disk->disk_name);
1245 return 1;
1246 }
1247
1248 /* Preserve existing integrity profile */
1249 t->integrity_supported = true;
1250 return 0;
1251 }
1252
1253 /*
1254 * Prepares the table for use by building the indices,
1255 * setting the type, and allocating mempools.
1256 */
1257 int dm_table_complete(struct dm_table *t)
1258 {
1259 int r;
1260
1261 r = dm_table_determine_type(t);
1262 if (r) {
1263 DMERR("unable to determine table type");
1264 return r;
1265 }
1266
1267 r = dm_table_build_index(t);
1268 if (r) {
1269 DMERR("unable to build btrees");
1270 return r;
1271 }
1272
1273 r = dm_table_register_integrity(t);
1274 if (r) {
1275 DMERR("could not register integrity profile.");
1276 return r;
1277 }
1278
1279 r = dm_table_alloc_md_mempools(t, t->md);
1280 if (r)
1281 DMERR("unable to allocate mempools");
1282
1283 return r;
1284 }
1285
1286 static DEFINE_MUTEX(_event_lock);
1287 void dm_table_event_callback(struct dm_table *t,
1288 void (*fn)(void *), void *context)
1289 {
1290 mutex_lock(&_event_lock);
1291 t->event_fn = fn;
1292 t->event_context = context;
1293 mutex_unlock(&_event_lock);
1294 }
1295
1296 void dm_table_event(struct dm_table *t)
1297 {
1298 /*
1299 * You can no longer call dm_table_event() from interrupt
1300 * context, use a bottom half instead.
1301 */
1302 BUG_ON(in_interrupt());
1303
1304 mutex_lock(&_event_lock);
1305 if (t->event_fn)
1306 t->event_fn(t->event_context);
1307 mutex_unlock(&_event_lock);
1308 }
1309 EXPORT_SYMBOL(dm_table_event);
1310
1311 sector_t dm_table_get_size(struct dm_table *t)
1312 {
1313 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1314 }
1315 EXPORT_SYMBOL(dm_table_get_size);
1316
1317 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1318 {
1319 if (index >= t->num_targets)
1320 return NULL;
1321
1322 return t->targets + index;
1323 }
1324
1325 /*
1326 * Search the btree for the correct target.
1327 *
1328 * Caller should check returned pointer with dm_target_is_valid()
1329 * to trap I/O beyond end of device.
1330 */
1331 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1332 {
1333 unsigned int l, n = 0, k = 0;
1334 sector_t *node;
1335
1336 for (l = 0; l < t->depth; l++) {
1337 n = get_child(n, k);
1338 node = get_node(t, l, n);
1339
1340 for (k = 0; k < KEYS_PER_NODE; k++)
1341 if (node[k] >= sector)
1342 break;
1343 }
1344
1345 return &t->targets[(KEYS_PER_NODE * n) + k];
1346 }
1347
1348 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1349 sector_t start, sector_t len, void *data)
1350 {
1351 unsigned *num_devices = data;
1352
1353 (*num_devices)++;
1354
1355 return 0;
1356 }
1357
1358 /*
1359 * Check whether a table has no data devices attached using each
1360 * target's iterate_devices method.
1361 * Returns false if the result is unknown because a target doesn't
1362 * support iterate_devices.
1363 */
1364 bool dm_table_has_no_data_devices(struct dm_table *table)
1365 {
1366 struct dm_target *ti;
1367 unsigned i, num_devices;
1368
1369 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1370 ti = dm_table_get_target(table, i);
1371
1372 if (!ti->type->iterate_devices)
1373 return false;
1374
1375 num_devices = 0;
1376 ti->type->iterate_devices(ti, count_device, &num_devices);
1377 if (num_devices)
1378 return false;
1379 }
1380
1381 return true;
1382 }
1383
1384 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1385 sector_t start, sector_t len, void *data)
1386 {
1387 struct request_queue *q = bdev_get_queue(dev->bdev);
1388 enum blk_zoned_model *zoned_model = data;
1389
1390 return q && blk_queue_zoned_model(q) == *zoned_model;
1391 }
1392
1393 static bool dm_table_supports_zoned_model(struct dm_table *t,
1394 enum blk_zoned_model zoned_model)
1395 {
1396 struct dm_target *ti;
1397 unsigned i;
1398
1399 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1400 ti = dm_table_get_target(t, i);
1401
1402 if (zoned_model == BLK_ZONED_HM &&
1403 !dm_target_supports_zoned_hm(ti->type))
1404 return false;
1405
1406 if (!ti->type->iterate_devices ||
1407 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1408 return false;
1409 }
1410
1411 return true;
1412 }
1413
1414 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1415 sector_t start, sector_t len, void *data)
1416 {
1417 struct request_queue *q = bdev_get_queue(dev->bdev);
1418 unsigned int *zone_sectors = data;
1419
1420 return q && blk_queue_zone_sectors(q) == *zone_sectors;
1421 }
1422
1423 static bool dm_table_matches_zone_sectors(struct dm_table *t,
1424 unsigned int zone_sectors)
1425 {
1426 struct dm_target *ti;
1427 unsigned i;
1428
1429 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1430 ti = dm_table_get_target(t, i);
1431
1432 if (!ti->type->iterate_devices ||
1433 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1434 return false;
1435 }
1436
1437 return true;
1438 }
1439
1440 static int validate_hardware_zoned_model(struct dm_table *table,
1441 enum blk_zoned_model zoned_model,
1442 unsigned int zone_sectors)
1443 {
1444 if (zoned_model == BLK_ZONED_NONE)
1445 return 0;
1446
1447 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1448 DMERR("%s: zoned model is not consistent across all devices",
1449 dm_device_name(table->md));
1450 return -EINVAL;
1451 }
1452
1453 /* Check zone size validity and compatibility */
1454 if (!zone_sectors || !is_power_of_2(zone_sectors))
1455 return -EINVAL;
1456
1457 if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1458 DMERR("%s: zone sectors is not consistent across all devices",
1459 dm_device_name(table->md));
1460 return -EINVAL;
1461 }
1462
1463 return 0;
1464 }
1465
1466 /*
1467 * Establish the new table's queue_limits and validate them.
1468 */
1469 int dm_calculate_queue_limits(struct dm_table *table,
1470 struct queue_limits *limits)
1471 {
1472 struct dm_target *ti;
1473 struct queue_limits ti_limits;
1474 unsigned i;
1475 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1476 unsigned int zone_sectors = 0;
1477
1478 blk_set_stacking_limits(limits);
1479
1480 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1481 blk_set_stacking_limits(&ti_limits);
1482
1483 ti = dm_table_get_target(table, i);
1484
1485 if (!ti->type->iterate_devices)
1486 goto combine_limits;
1487
1488 /*
1489 * Combine queue limits of all the devices this target uses.
1490 */
1491 ti->type->iterate_devices(ti, dm_set_device_limits,
1492 &ti_limits);
1493
1494 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1495 /*
1496 * After stacking all limits, validate all devices
1497 * in table support this zoned model and zone sectors.
1498 */
1499 zoned_model = ti_limits.zoned;
1500 zone_sectors = ti_limits.chunk_sectors;
1501 }
1502
1503 /* Set I/O hints portion of queue limits */
1504 if (ti->type->io_hints)
1505 ti->type->io_hints(ti, &ti_limits);
1506
1507 /*
1508 * Check each device area is consistent with the target's
1509 * overall queue limits.
1510 */
1511 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1512 &ti_limits))
1513 return -EINVAL;
1514
1515 combine_limits:
1516 /*
1517 * Merge this target's queue limits into the overall limits
1518 * for the table.
1519 */
1520 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1521 DMWARN("%s: adding target device "
1522 "(start sect %llu len %llu) "
1523 "caused an alignment inconsistency",
1524 dm_device_name(table->md),
1525 (unsigned long long) ti->begin,
1526 (unsigned long long) ti->len);
1527
1528 /*
1529 * FIXME: this should likely be moved to blk_stack_limits(), would
1530 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1531 */
1532 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1533 /*
1534 * By default, the stacked limits zoned model is set to
1535 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1536 * this model using the first target model reported
1537 * that is not BLK_ZONED_NONE. This will be either the
1538 * first target device zoned model or the model reported
1539 * by the target .io_hints.
1540 */
1541 limits->zoned = ti_limits.zoned;
1542 }
1543 }
1544
1545 /*
1546 * Verify that the zoned model and zone sectors, as determined before
1547 * any .io_hints override, are the same across all devices in the table.
1548 * - this is especially relevant if .io_hints is emulating a disk-managed
1549 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1550 * BUT...
1551 */
1552 if (limits->zoned != BLK_ZONED_NONE) {
1553 /*
1554 * ...IF the above limits stacking determined a zoned model
1555 * validate that all of the table's devices conform to it.
1556 */
1557 zoned_model = limits->zoned;
1558 zone_sectors = limits->chunk_sectors;
1559 }
1560 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1561 return -EINVAL;
1562
1563 return validate_hardware_logical_block_alignment(table, limits);
1564 }
1565
1566 /*
1567 * Verify that all devices have an integrity profile that matches the
1568 * DM device's registered integrity profile. If the profiles don't
1569 * match then unregister the DM device's integrity profile.
1570 */
1571 static void dm_table_verify_integrity(struct dm_table *t)
1572 {
1573 struct gendisk *template_disk = NULL;
1574
1575 if (t->integrity_added)
1576 return;
1577
1578 if (t->integrity_supported) {
1579 /*
1580 * Verify that the original integrity profile
1581 * matches all the devices in this table.
1582 */
1583 template_disk = dm_table_get_integrity_disk(t);
1584 if (template_disk &&
1585 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1586 return;
1587 }
1588
1589 if (integrity_profile_exists(dm_disk(t->md))) {
1590 DMWARN("%s: unable to establish an integrity profile",
1591 dm_device_name(t->md));
1592 blk_integrity_unregister(dm_disk(t->md));
1593 }
1594 }
1595
1596 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1597 sector_t start, sector_t len, void *data)
1598 {
1599 unsigned long flush = (unsigned long) data;
1600 struct request_queue *q = bdev_get_queue(dev->bdev);
1601
1602 return q && (q->queue_flags & flush);
1603 }
1604
1605 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1606 {
1607 struct dm_target *ti;
1608 unsigned i;
1609
1610 /*
1611 * Require at least one underlying device to support flushes.
1612 * t->devices includes internal dm devices such as mirror logs
1613 * so we need to use iterate_devices here, which targets
1614 * supporting flushes must provide.
1615 */
1616 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1617 ti = dm_table_get_target(t, i);
1618
1619 if (!ti->num_flush_bios)
1620 continue;
1621
1622 if (ti->flush_supported)
1623 return true;
1624
1625 if (ti->type->iterate_devices &&
1626 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1627 return true;
1628 }
1629
1630 return false;
1631 }
1632
1633 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1634 sector_t start, sector_t len, void *data)
1635 {
1636 struct request_queue *q = bdev_get_queue(dev->bdev);
1637
1638 return q && blk_queue_nonrot(q);
1639 }
1640
1641 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1642 sector_t start, sector_t len, void *data)
1643 {
1644 struct request_queue *q = bdev_get_queue(dev->bdev);
1645
1646 return q && !blk_queue_add_random(q);
1647 }
1648
1649 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1650 sector_t start, sector_t len, void *data)
1651 {
1652 struct request_queue *q = bdev_get_queue(dev->bdev);
1653
1654 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1655 }
1656
1657 static bool dm_table_all_devices_attribute(struct dm_table *t,
1658 iterate_devices_callout_fn func)
1659 {
1660 struct dm_target *ti;
1661 unsigned i;
1662
1663 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1664 ti = dm_table_get_target(t, i);
1665
1666 if (!ti->type->iterate_devices ||
1667 !ti->type->iterate_devices(ti, func, NULL))
1668 return false;
1669 }
1670
1671 return true;
1672 }
1673
1674 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1675 sector_t start, sector_t len, void *data)
1676 {
1677 struct request_queue *q = bdev_get_queue(dev->bdev);
1678
1679 return q && !q->limits.max_write_same_sectors;
1680 }
1681
1682 static bool dm_table_supports_write_same(struct dm_table *t)
1683 {
1684 struct dm_target *ti;
1685 unsigned i;
1686
1687 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1688 ti = dm_table_get_target(t, i);
1689
1690 if (!ti->num_write_same_bios)
1691 return false;
1692
1693 if (!ti->type->iterate_devices ||
1694 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1695 return false;
1696 }
1697
1698 return true;
1699 }
1700
1701 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1702 sector_t start, sector_t len, void *data)
1703 {
1704 struct request_queue *q = bdev_get_queue(dev->bdev);
1705
1706 return q && !q->limits.max_write_zeroes_sectors;
1707 }
1708
1709 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1710 {
1711 struct dm_target *ti;
1712 unsigned i = 0;
1713
1714 while (i < dm_table_get_num_targets(t)) {
1715 ti = dm_table_get_target(t, i++);
1716
1717 if (!ti->num_write_zeroes_bios)
1718 return false;
1719
1720 if (!ti->type->iterate_devices ||
1721 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1722 return false;
1723 }
1724
1725 return true;
1726 }
1727
1728
1729 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1730 sector_t start, sector_t len, void *data)
1731 {
1732 struct request_queue *q = bdev_get_queue(dev->bdev);
1733
1734 return q && blk_queue_discard(q);
1735 }
1736
1737 static bool dm_table_supports_discards(struct dm_table *t)
1738 {
1739 struct dm_target *ti;
1740 unsigned i;
1741
1742 /*
1743 * Unless any target used by the table set discards_supported,
1744 * require at least one underlying device to support discards.
1745 * t->devices includes internal dm devices such as mirror logs
1746 * so we need to use iterate_devices here, which targets
1747 * supporting discard selectively must provide.
1748 */
1749 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1750 ti = dm_table_get_target(t, i);
1751
1752 if (!ti->num_discard_bios)
1753 continue;
1754
1755 if (ti->discards_supported)
1756 return true;
1757
1758 if (ti->type->iterate_devices &&
1759 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1760 return true;
1761 }
1762
1763 return false;
1764 }
1765
1766 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1767 struct queue_limits *limits)
1768 {
1769 bool wc = false, fua = false;
1770
1771 /*
1772 * Copy table's limits to the DM device's request_queue
1773 */
1774 q->limits = *limits;
1775
1776 if (!dm_table_supports_discards(t))
1777 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1778 else
1779 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1780
1781 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1782 wc = true;
1783 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1784 fua = true;
1785 }
1786 blk_queue_write_cache(q, wc, fua);
1787
1788 /* Ensure that all underlying devices are non-rotational. */
1789 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1790 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1791 else
1792 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1793
1794 if (!dm_table_supports_write_same(t))
1795 q->limits.max_write_same_sectors = 0;
1796 if (!dm_table_supports_write_zeroes(t))
1797 q->limits.max_write_zeroes_sectors = 0;
1798
1799 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1800 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1801 else
1802 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1803
1804 dm_table_verify_integrity(t);
1805
1806 /*
1807 * Determine whether or not this queue's I/O timings contribute
1808 * to the entropy pool, Only request-based targets use this.
1809 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1810 * have it set.
1811 */
1812 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1813 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1814
1815 /*
1816 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1817 * visible to other CPUs because, once the flag is set, incoming bios
1818 * are processed by request-based dm, which refers to the queue
1819 * settings.
1820 * Until the flag set, bios are passed to bio-based dm and queued to
1821 * md->deferred where queue settings are not needed yet.
1822 * Those bios are passed to request-based dm at the resume time.
1823 */
1824 smp_mb();
1825 if (dm_table_request_based(t))
1826 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1827 }
1828
1829 unsigned int dm_table_get_num_targets(struct dm_table *t)
1830 {
1831 return t->num_targets;
1832 }
1833
1834 struct list_head *dm_table_get_devices(struct dm_table *t)
1835 {
1836 return &t->devices;
1837 }
1838
1839 fmode_t dm_table_get_mode(struct dm_table *t)
1840 {
1841 return t->mode;
1842 }
1843 EXPORT_SYMBOL(dm_table_get_mode);
1844
1845 enum suspend_mode {
1846 PRESUSPEND,
1847 PRESUSPEND_UNDO,
1848 POSTSUSPEND,
1849 };
1850
1851 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1852 {
1853 int i = t->num_targets;
1854 struct dm_target *ti = t->targets;
1855
1856 lockdep_assert_held(&t->md->suspend_lock);
1857
1858 while (i--) {
1859 switch (mode) {
1860 case PRESUSPEND:
1861 if (ti->type->presuspend)
1862 ti->type->presuspend(ti);
1863 break;
1864 case PRESUSPEND_UNDO:
1865 if (ti->type->presuspend_undo)
1866 ti->type->presuspend_undo(ti);
1867 break;
1868 case POSTSUSPEND:
1869 if (ti->type->postsuspend)
1870 ti->type->postsuspend(ti);
1871 break;
1872 }
1873 ti++;
1874 }
1875 }
1876
1877 void dm_table_presuspend_targets(struct dm_table *t)
1878 {
1879 if (!t)
1880 return;
1881
1882 suspend_targets(t, PRESUSPEND);
1883 }
1884
1885 void dm_table_presuspend_undo_targets(struct dm_table *t)
1886 {
1887 if (!t)
1888 return;
1889
1890 suspend_targets(t, PRESUSPEND_UNDO);
1891 }
1892
1893 void dm_table_postsuspend_targets(struct dm_table *t)
1894 {
1895 if (!t)
1896 return;
1897
1898 suspend_targets(t, POSTSUSPEND);
1899 }
1900
1901 int dm_table_resume_targets(struct dm_table *t)
1902 {
1903 int i, r = 0;
1904
1905 lockdep_assert_held(&t->md->suspend_lock);
1906
1907 for (i = 0; i < t->num_targets; i++) {
1908 struct dm_target *ti = t->targets + i;
1909
1910 if (!ti->type->preresume)
1911 continue;
1912
1913 r = ti->type->preresume(ti);
1914 if (r) {
1915 DMERR("%s: %s: preresume failed, error = %d",
1916 dm_device_name(t->md), ti->type->name, r);
1917 return r;
1918 }
1919 }
1920
1921 for (i = 0; i < t->num_targets; i++) {
1922 struct dm_target *ti = t->targets + i;
1923
1924 if (ti->type->resume)
1925 ti->type->resume(ti);
1926 }
1927
1928 return 0;
1929 }
1930
1931 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1932 {
1933 list_add(&cb->list, &t->target_callbacks);
1934 }
1935 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1936
1937 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1938 {
1939 struct dm_dev_internal *dd;
1940 struct list_head *devices = dm_table_get_devices(t);
1941 struct dm_target_callbacks *cb;
1942 int r = 0;
1943
1944 list_for_each_entry(dd, devices, list) {
1945 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1946 char b[BDEVNAME_SIZE];
1947
1948 if (likely(q))
1949 r |= bdi_congested(q->backing_dev_info, bdi_bits);
1950 else
1951 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1952 dm_device_name(t->md),
1953 bdevname(dd->dm_dev->bdev, b));
1954 }
1955
1956 list_for_each_entry(cb, &t->target_callbacks, list)
1957 if (cb->congested_fn)
1958 r |= cb->congested_fn(cb, bdi_bits);
1959
1960 return r;
1961 }
1962
1963 struct mapped_device *dm_table_get_md(struct dm_table *t)
1964 {
1965 return t->md;
1966 }
1967 EXPORT_SYMBOL(dm_table_get_md);
1968
1969 void dm_table_run_md_queue_async(struct dm_table *t)
1970 {
1971 struct mapped_device *md;
1972 struct request_queue *queue;
1973 unsigned long flags;
1974
1975 if (!dm_table_request_based(t))
1976 return;
1977
1978 md = dm_table_get_md(t);
1979 queue = dm_get_md_queue(md);
1980 if (queue) {
1981 if (queue->mq_ops)
1982 blk_mq_run_hw_queues(queue, true);
1983 else {
1984 spin_lock_irqsave(queue->queue_lock, flags);
1985 blk_run_queue_async(queue);
1986 spin_unlock_irqrestore(queue->queue_lock, flags);
1987 }
1988 }
1989 }
1990 EXPORT_SYMBOL(dm_table_run_md_queue_async);
1991