]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/dm-table.c
Merge branch 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild-2.6
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm-table.c
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <asm/atomic.h>
21
22 #define DM_MSG_PREFIX "table"
23
24 #define MAX_DEPTH 16
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28
29 /*
30 * The table has always exactly one reference from either mapped_device->map
31 * or hash_cell->new_map. This reference is not counted in table->holders.
32 * A pair of dm_create_table/dm_destroy_table functions is used for table
33 * creation/destruction.
34 *
35 * Temporary references from the other code increase table->holders. A pair
36 * of dm_table_get/dm_table_put functions is used to manipulate it.
37 *
38 * When the table is about to be destroyed, we wait for table->holders to
39 * drop to zero.
40 */
41
42 struct dm_table {
43 struct mapped_device *md;
44 atomic_t holders;
45 unsigned type;
46
47 /* btree table */
48 unsigned int depth;
49 unsigned int counts[MAX_DEPTH]; /* in nodes */
50 sector_t *index[MAX_DEPTH];
51
52 unsigned int num_targets;
53 unsigned int num_allocated;
54 sector_t *highs;
55 struct dm_target *targets;
56
57 unsigned discards_supported:1;
58 unsigned integrity_supported:1;
59
60 /*
61 * Indicates the rw permissions for the new logical
62 * device. This should be a combination of FMODE_READ
63 * and FMODE_WRITE.
64 */
65 fmode_t mode;
66
67 /* a list of devices used by this table */
68 struct list_head devices;
69
70 /* events get handed up using this callback */
71 void (*event_fn)(void *);
72 void *event_context;
73
74 struct dm_md_mempools *mempools;
75
76 struct list_head target_callbacks;
77 };
78
79 /*
80 * Similar to ceiling(log_size(n))
81 */
82 static unsigned int int_log(unsigned int n, unsigned int base)
83 {
84 int result = 0;
85
86 while (n > 1) {
87 n = dm_div_up(n, base);
88 result++;
89 }
90
91 return result;
92 }
93
94 /*
95 * Calculate the index of the child node of the n'th node k'th key.
96 */
97 static inline unsigned int get_child(unsigned int n, unsigned int k)
98 {
99 return (n * CHILDREN_PER_NODE) + k;
100 }
101
102 /*
103 * Return the n'th node of level l from table t.
104 */
105 static inline sector_t *get_node(struct dm_table *t,
106 unsigned int l, unsigned int n)
107 {
108 return t->index[l] + (n * KEYS_PER_NODE);
109 }
110
111 /*
112 * Return the highest key that you could lookup from the n'th
113 * node on level l of the btree.
114 */
115 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
116 {
117 for (; l < t->depth - 1; l++)
118 n = get_child(n, CHILDREN_PER_NODE - 1);
119
120 if (n >= t->counts[l])
121 return (sector_t) - 1;
122
123 return get_node(t, l, n)[KEYS_PER_NODE - 1];
124 }
125
126 /*
127 * Fills in a level of the btree based on the highs of the level
128 * below it.
129 */
130 static int setup_btree_index(unsigned int l, struct dm_table *t)
131 {
132 unsigned int n, k;
133 sector_t *node;
134
135 for (n = 0U; n < t->counts[l]; n++) {
136 node = get_node(t, l, n);
137
138 for (k = 0U; k < KEYS_PER_NODE; k++)
139 node[k] = high(t, l + 1, get_child(n, k));
140 }
141
142 return 0;
143 }
144
145 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
146 {
147 unsigned long size;
148 void *addr;
149
150 /*
151 * Check that we're not going to overflow.
152 */
153 if (nmemb > (ULONG_MAX / elem_size))
154 return NULL;
155
156 size = nmemb * elem_size;
157 addr = vmalloc(size);
158 if (addr)
159 memset(addr, 0, size);
160
161 return addr;
162 }
163
164 /*
165 * highs, and targets are managed as dynamic arrays during a
166 * table load.
167 */
168 static int alloc_targets(struct dm_table *t, unsigned int num)
169 {
170 sector_t *n_highs;
171 struct dm_target *n_targets;
172 int n = t->num_targets;
173
174 /*
175 * Allocate both the target array and offset array at once.
176 * Append an empty entry to catch sectors beyond the end of
177 * the device.
178 */
179 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
180 sizeof(sector_t));
181 if (!n_highs)
182 return -ENOMEM;
183
184 n_targets = (struct dm_target *) (n_highs + num);
185
186 if (n) {
187 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
188 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
189 }
190
191 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
192 vfree(t->highs);
193
194 t->num_allocated = num;
195 t->highs = n_highs;
196 t->targets = n_targets;
197
198 return 0;
199 }
200
201 int dm_table_create(struct dm_table **result, fmode_t mode,
202 unsigned num_targets, struct mapped_device *md)
203 {
204 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
205
206 if (!t)
207 return -ENOMEM;
208
209 INIT_LIST_HEAD(&t->devices);
210 INIT_LIST_HEAD(&t->target_callbacks);
211 atomic_set(&t->holders, 0);
212 t->discards_supported = 1;
213
214 if (!num_targets)
215 num_targets = KEYS_PER_NODE;
216
217 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
218
219 if (alloc_targets(t, num_targets)) {
220 kfree(t);
221 t = NULL;
222 return -ENOMEM;
223 }
224
225 t->mode = mode;
226 t->md = md;
227 *result = t;
228 return 0;
229 }
230
231 static void free_devices(struct list_head *devices)
232 {
233 struct list_head *tmp, *next;
234
235 list_for_each_safe(tmp, next, devices) {
236 struct dm_dev_internal *dd =
237 list_entry(tmp, struct dm_dev_internal, list);
238 DMWARN("dm_table_destroy: dm_put_device call missing for %s",
239 dd->dm_dev.name);
240 kfree(dd);
241 }
242 }
243
244 void dm_table_destroy(struct dm_table *t)
245 {
246 unsigned int i;
247
248 if (!t)
249 return;
250
251 while (atomic_read(&t->holders))
252 msleep(1);
253 smp_mb();
254
255 /* free the indexes */
256 if (t->depth >= 2)
257 vfree(t->index[t->depth - 2]);
258
259 /* free the targets */
260 for (i = 0; i < t->num_targets; i++) {
261 struct dm_target *tgt = t->targets + i;
262
263 if (tgt->type->dtr)
264 tgt->type->dtr(tgt);
265
266 dm_put_target_type(tgt->type);
267 }
268
269 vfree(t->highs);
270
271 /* free the device list */
272 if (t->devices.next != &t->devices)
273 free_devices(&t->devices);
274
275 dm_free_md_mempools(t->mempools);
276
277 kfree(t);
278 }
279
280 void dm_table_get(struct dm_table *t)
281 {
282 atomic_inc(&t->holders);
283 }
284
285 void dm_table_put(struct dm_table *t)
286 {
287 if (!t)
288 return;
289
290 smp_mb__before_atomic_dec();
291 atomic_dec(&t->holders);
292 }
293
294 /*
295 * Checks to see if we need to extend highs or targets.
296 */
297 static inline int check_space(struct dm_table *t)
298 {
299 if (t->num_targets >= t->num_allocated)
300 return alloc_targets(t, t->num_allocated * 2);
301
302 return 0;
303 }
304
305 /*
306 * See if we've already got a device in the list.
307 */
308 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
309 {
310 struct dm_dev_internal *dd;
311
312 list_for_each_entry (dd, l, list)
313 if (dd->dm_dev.bdev->bd_dev == dev)
314 return dd;
315
316 return NULL;
317 }
318
319 /*
320 * Open a device so we can use it as a map destination.
321 */
322 static int open_dev(struct dm_dev_internal *d, dev_t dev,
323 struct mapped_device *md)
324 {
325 static char *_claim_ptr = "I belong to device-mapper";
326 struct block_device *bdev;
327
328 int r;
329
330 BUG_ON(d->dm_dev.bdev);
331
332 bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
333 if (IS_ERR(bdev))
334 return PTR_ERR(bdev);
335
336 r = bd_link_disk_holder(bdev, dm_disk(md));
337 if (r) {
338 blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
339 return r;
340 }
341
342 d->dm_dev.bdev = bdev;
343 return 0;
344 }
345
346 /*
347 * Close a device that we've been using.
348 */
349 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
350 {
351 if (!d->dm_dev.bdev)
352 return;
353
354 bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
355 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
356 d->dm_dev.bdev = NULL;
357 }
358
359 /*
360 * If possible, this checks an area of a destination device is invalid.
361 */
362 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
363 sector_t start, sector_t len, void *data)
364 {
365 struct queue_limits *limits = data;
366 struct block_device *bdev = dev->bdev;
367 sector_t dev_size =
368 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
369 unsigned short logical_block_size_sectors =
370 limits->logical_block_size >> SECTOR_SHIFT;
371 char b[BDEVNAME_SIZE];
372
373 if (!dev_size)
374 return 0;
375
376 if ((start >= dev_size) || (start + len > dev_size)) {
377 DMWARN("%s: %s too small for target: "
378 "start=%llu, len=%llu, dev_size=%llu",
379 dm_device_name(ti->table->md), bdevname(bdev, b),
380 (unsigned long long)start,
381 (unsigned long long)len,
382 (unsigned long long)dev_size);
383 return 1;
384 }
385
386 if (logical_block_size_sectors <= 1)
387 return 0;
388
389 if (start & (logical_block_size_sectors - 1)) {
390 DMWARN("%s: start=%llu not aligned to h/w "
391 "logical block size %u of %s",
392 dm_device_name(ti->table->md),
393 (unsigned long long)start,
394 limits->logical_block_size, bdevname(bdev, b));
395 return 1;
396 }
397
398 if (len & (logical_block_size_sectors - 1)) {
399 DMWARN("%s: len=%llu not aligned to h/w "
400 "logical block size %u of %s",
401 dm_device_name(ti->table->md),
402 (unsigned long long)len,
403 limits->logical_block_size, bdevname(bdev, b));
404 return 1;
405 }
406
407 return 0;
408 }
409
410 /*
411 * This upgrades the mode on an already open dm_dev, being
412 * careful to leave things as they were if we fail to reopen the
413 * device and not to touch the existing bdev field in case
414 * it is accessed concurrently inside dm_table_any_congested().
415 */
416 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
417 struct mapped_device *md)
418 {
419 int r;
420 struct dm_dev_internal dd_new, dd_old;
421
422 dd_new = dd_old = *dd;
423
424 dd_new.dm_dev.mode |= new_mode;
425 dd_new.dm_dev.bdev = NULL;
426
427 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
428 if (r)
429 return r;
430
431 dd->dm_dev.mode |= new_mode;
432 close_dev(&dd_old, md);
433
434 return 0;
435 }
436
437 /*
438 * Add a device to the list, or just increment the usage count if
439 * it's already present.
440 */
441 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
442 const char *path, fmode_t mode, struct dm_dev **result)
443 {
444 int r;
445 dev_t uninitialized_var(dev);
446 struct dm_dev_internal *dd;
447 unsigned int major, minor;
448
449 BUG_ON(!t);
450
451 if (sscanf(path, "%u:%u", &major, &minor) == 2) {
452 /* Extract the major/minor numbers */
453 dev = MKDEV(major, minor);
454 if (MAJOR(dev) != major || MINOR(dev) != minor)
455 return -EOVERFLOW;
456 } else {
457 /* convert the path to a device */
458 struct block_device *bdev = lookup_bdev(path);
459
460 if (IS_ERR(bdev))
461 return PTR_ERR(bdev);
462 dev = bdev->bd_dev;
463 bdput(bdev);
464 }
465
466 dd = find_device(&t->devices, dev);
467 if (!dd) {
468 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
469 if (!dd)
470 return -ENOMEM;
471
472 dd->dm_dev.mode = mode;
473 dd->dm_dev.bdev = NULL;
474
475 if ((r = open_dev(dd, dev, t->md))) {
476 kfree(dd);
477 return r;
478 }
479
480 format_dev_t(dd->dm_dev.name, dev);
481
482 atomic_set(&dd->count, 0);
483 list_add(&dd->list, &t->devices);
484
485 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
486 r = upgrade_mode(dd, mode, t->md);
487 if (r)
488 return r;
489 }
490 atomic_inc(&dd->count);
491
492 *result = &dd->dm_dev;
493 return 0;
494 }
495
496 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
497 sector_t start, sector_t len, void *data)
498 {
499 struct queue_limits *limits = data;
500 struct block_device *bdev = dev->bdev;
501 struct request_queue *q = bdev_get_queue(bdev);
502 char b[BDEVNAME_SIZE];
503
504 if (unlikely(!q)) {
505 DMWARN("%s: Cannot set limits for nonexistent device %s",
506 dm_device_name(ti->table->md), bdevname(bdev, b));
507 return 0;
508 }
509
510 if (bdev_stack_limits(limits, bdev, start) < 0)
511 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
512 "physical_block_size=%u, logical_block_size=%u, "
513 "alignment_offset=%u, start=%llu",
514 dm_device_name(ti->table->md), bdevname(bdev, b),
515 q->limits.physical_block_size,
516 q->limits.logical_block_size,
517 q->limits.alignment_offset,
518 (unsigned long long) start << SECTOR_SHIFT);
519
520 /*
521 * Check if merge fn is supported.
522 * If not we'll force DM to use PAGE_SIZE or
523 * smaller I/O, just to be safe.
524 */
525
526 if (q->merge_bvec_fn && !ti->type->merge)
527 blk_limits_max_hw_sectors(limits,
528 (unsigned int) (PAGE_SIZE >> 9));
529 return 0;
530 }
531 EXPORT_SYMBOL_GPL(dm_set_device_limits);
532
533 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
534 struct dm_dev **result)
535 {
536 return __table_get_device(ti->table, ti, path, mode, result);
537 }
538
539
540 /*
541 * Decrement a devices use count and remove it if necessary.
542 */
543 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
544 {
545 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
546 dm_dev);
547
548 if (atomic_dec_and_test(&dd->count)) {
549 close_dev(dd, ti->table->md);
550 list_del(&dd->list);
551 kfree(dd);
552 }
553 }
554
555 /*
556 * Checks to see if the target joins onto the end of the table.
557 */
558 static int adjoin(struct dm_table *table, struct dm_target *ti)
559 {
560 struct dm_target *prev;
561
562 if (!table->num_targets)
563 return !ti->begin;
564
565 prev = &table->targets[table->num_targets - 1];
566 return (ti->begin == (prev->begin + prev->len));
567 }
568
569 /*
570 * Used to dynamically allocate the arg array.
571 */
572 static char **realloc_argv(unsigned *array_size, char **old_argv)
573 {
574 char **argv;
575 unsigned new_size;
576
577 new_size = *array_size ? *array_size * 2 : 64;
578 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
579 if (argv) {
580 memcpy(argv, old_argv, *array_size * sizeof(*argv));
581 *array_size = new_size;
582 }
583
584 kfree(old_argv);
585 return argv;
586 }
587
588 /*
589 * Destructively splits up the argument list to pass to ctr.
590 */
591 int dm_split_args(int *argc, char ***argvp, char *input)
592 {
593 char *start, *end = input, *out, **argv = NULL;
594 unsigned array_size = 0;
595
596 *argc = 0;
597
598 if (!input) {
599 *argvp = NULL;
600 return 0;
601 }
602
603 argv = realloc_argv(&array_size, argv);
604 if (!argv)
605 return -ENOMEM;
606
607 while (1) {
608 /* Skip whitespace */
609 start = skip_spaces(end);
610
611 if (!*start)
612 break; /* success, we hit the end */
613
614 /* 'out' is used to remove any back-quotes */
615 end = out = start;
616 while (*end) {
617 /* Everything apart from '\0' can be quoted */
618 if (*end == '\\' && *(end + 1)) {
619 *out++ = *(end + 1);
620 end += 2;
621 continue;
622 }
623
624 if (isspace(*end))
625 break; /* end of token */
626
627 *out++ = *end++;
628 }
629
630 /* have we already filled the array ? */
631 if ((*argc + 1) > array_size) {
632 argv = realloc_argv(&array_size, argv);
633 if (!argv)
634 return -ENOMEM;
635 }
636
637 /* we know this is whitespace */
638 if (*end)
639 end++;
640
641 /* terminate the string and put it in the array */
642 *out = '\0';
643 argv[*argc] = start;
644 (*argc)++;
645 }
646
647 *argvp = argv;
648 return 0;
649 }
650
651 /*
652 * Impose necessary and sufficient conditions on a devices's table such
653 * that any incoming bio which respects its logical_block_size can be
654 * processed successfully. If it falls across the boundary between
655 * two or more targets, the size of each piece it gets split into must
656 * be compatible with the logical_block_size of the target processing it.
657 */
658 static int validate_hardware_logical_block_alignment(struct dm_table *table,
659 struct queue_limits *limits)
660 {
661 /*
662 * This function uses arithmetic modulo the logical_block_size
663 * (in units of 512-byte sectors).
664 */
665 unsigned short device_logical_block_size_sects =
666 limits->logical_block_size >> SECTOR_SHIFT;
667
668 /*
669 * Offset of the start of the next table entry, mod logical_block_size.
670 */
671 unsigned short next_target_start = 0;
672
673 /*
674 * Given an aligned bio that extends beyond the end of a
675 * target, how many sectors must the next target handle?
676 */
677 unsigned short remaining = 0;
678
679 struct dm_target *uninitialized_var(ti);
680 struct queue_limits ti_limits;
681 unsigned i = 0;
682
683 /*
684 * Check each entry in the table in turn.
685 */
686 while (i < dm_table_get_num_targets(table)) {
687 ti = dm_table_get_target(table, i++);
688
689 blk_set_default_limits(&ti_limits);
690
691 /* combine all target devices' limits */
692 if (ti->type->iterate_devices)
693 ti->type->iterate_devices(ti, dm_set_device_limits,
694 &ti_limits);
695
696 /*
697 * If the remaining sectors fall entirely within this
698 * table entry are they compatible with its logical_block_size?
699 */
700 if (remaining < ti->len &&
701 remaining & ((ti_limits.logical_block_size >>
702 SECTOR_SHIFT) - 1))
703 break; /* Error */
704
705 next_target_start =
706 (unsigned short) ((next_target_start + ti->len) &
707 (device_logical_block_size_sects - 1));
708 remaining = next_target_start ?
709 device_logical_block_size_sects - next_target_start : 0;
710 }
711
712 if (remaining) {
713 DMWARN("%s: table line %u (start sect %llu len %llu) "
714 "not aligned to h/w logical block size %u",
715 dm_device_name(table->md), i,
716 (unsigned long long) ti->begin,
717 (unsigned long long) ti->len,
718 limits->logical_block_size);
719 return -EINVAL;
720 }
721
722 return 0;
723 }
724
725 int dm_table_add_target(struct dm_table *t, const char *type,
726 sector_t start, sector_t len, char *params)
727 {
728 int r = -EINVAL, argc;
729 char **argv;
730 struct dm_target *tgt;
731
732 if ((r = check_space(t)))
733 return r;
734
735 tgt = t->targets + t->num_targets;
736 memset(tgt, 0, sizeof(*tgt));
737
738 if (!len) {
739 DMERR("%s: zero-length target", dm_device_name(t->md));
740 return -EINVAL;
741 }
742
743 tgt->type = dm_get_target_type(type);
744 if (!tgt->type) {
745 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
746 type);
747 return -EINVAL;
748 }
749
750 tgt->table = t;
751 tgt->begin = start;
752 tgt->len = len;
753 tgt->error = "Unknown error";
754
755 /*
756 * Does this target adjoin the previous one ?
757 */
758 if (!adjoin(t, tgt)) {
759 tgt->error = "Gap in table";
760 r = -EINVAL;
761 goto bad;
762 }
763
764 r = dm_split_args(&argc, &argv, params);
765 if (r) {
766 tgt->error = "couldn't split parameters (insufficient memory)";
767 goto bad;
768 }
769
770 r = tgt->type->ctr(tgt, argc, argv);
771 kfree(argv);
772 if (r)
773 goto bad;
774
775 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
776
777 if (!tgt->num_discard_requests)
778 t->discards_supported = 0;
779
780 return 0;
781
782 bad:
783 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
784 dm_put_target_type(tgt->type);
785 return r;
786 }
787
788 static int dm_table_set_type(struct dm_table *t)
789 {
790 unsigned i;
791 unsigned bio_based = 0, request_based = 0;
792 struct dm_target *tgt;
793 struct dm_dev_internal *dd;
794 struct list_head *devices;
795
796 for (i = 0; i < t->num_targets; i++) {
797 tgt = t->targets + i;
798 if (dm_target_request_based(tgt))
799 request_based = 1;
800 else
801 bio_based = 1;
802
803 if (bio_based && request_based) {
804 DMWARN("Inconsistent table: different target types"
805 " can't be mixed up");
806 return -EINVAL;
807 }
808 }
809
810 if (bio_based) {
811 /* We must use this table as bio-based */
812 t->type = DM_TYPE_BIO_BASED;
813 return 0;
814 }
815
816 BUG_ON(!request_based); /* No targets in this table */
817
818 /* Non-request-stackable devices can't be used for request-based dm */
819 devices = dm_table_get_devices(t);
820 list_for_each_entry(dd, devices, list) {
821 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
822 DMWARN("table load rejected: including"
823 " non-request-stackable devices");
824 return -EINVAL;
825 }
826 }
827
828 /*
829 * Request-based dm supports only tables that have a single target now.
830 * To support multiple targets, request splitting support is needed,
831 * and that needs lots of changes in the block-layer.
832 * (e.g. request completion process for partial completion.)
833 */
834 if (t->num_targets > 1) {
835 DMWARN("Request-based dm doesn't support multiple targets yet");
836 return -EINVAL;
837 }
838
839 t->type = DM_TYPE_REQUEST_BASED;
840
841 return 0;
842 }
843
844 unsigned dm_table_get_type(struct dm_table *t)
845 {
846 return t->type;
847 }
848
849 bool dm_table_request_based(struct dm_table *t)
850 {
851 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
852 }
853
854 int dm_table_alloc_md_mempools(struct dm_table *t)
855 {
856 unsigned type = dm_table_get_type(t);
857
858 if (unlikely(type == DM_TYPE_NONE)) {
859 DMWARN("no table type is set, can't allocate mempools");
860 return -EINVAL;
861 }
862
863 t->mempools = dm_alloc_md_mempools(type, t->integrity_supported);
864 if (!t->mempools)
865 return -ENOMEM;
866
867 return 0;
868 }
869
870 void dm_table_free_md_mempools(struct dm_table *t)
871 {
872 dm_free_md_mempools(t->mempools);
873 t->mempools = NULL;
874 }
875
876 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
877 {
878 return t->mempools;
879 }
880
881 static int setup_indexes(struct dm_table *t)
882 {
883 int i;
884 unsigned int total = 0;
885 sector_t *indexes;
886
887 /* allocate the space for *all* the indexes */
888 for (i = t->depth - 2; i >= 0; i--) {
889 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
890 total += t->counts[i];
891 }
892
893 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
894 if (!indexes)
895 return -ENOMEM;
896
897 /* set up internal nodes, bottom-up */
898 for (i = t->depth - 2; i >= 0; i--) {
899 t->index[i] = indexes;
900 indexes += (KEYS_PER_NODE * t->counts[i]);
901 setup_btree_index(i, t);
902 }
903
904 return 0;
905 }
906
907 /*
908 * Builds the btree to index the map.
909 */
910 static int dm_table_build_index(struct dm_table *t)
911 {
912 int r = 0;
913 unsigned int leaf_nodes;
914
915 /* how many indexes will the btree have ? */
916 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
917 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
918
919 /* leaf layer has already been set up */
920 t->counts[t->depth - 1] = leaf_nodes;
921 t->index[t->depth - 1] = t->highs;
922
923 if (t->depth >= 2)
924 r = setup_indexes(t);
925
926 return r;
927 }
928
929 /*
930 * Get a disk whose integrity profile reflects the table's profile.
931 * If %match_all is true, all devices' profiles must match.
932 * If %match_all is false, all devices must at least have an
933 * allocated integrity profile; but uninitialized is ok.
934 * Returns NULL if integrity support was inconsistent or unavailable.
935 */
936 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
937 bool match_all)
938 {
939 struct list_head *devices = dm_table_get_devices(t);
940 struct dm_dev_internal *dd = NULL;
941 struct gendisk *prev_disk = NULL, *template_disk = NULL;
942
943 list_for_each_entry(dd, devices, list) {
944 template_disk = dd->dm_dev.bdev->bd_disk;
945 if (!blk_get_integrity(template_disk))
946 goto no_integrity;
947 if (!match_all && !blk_integrity_is_initialized(template_disk))
948 continue; /* skip uninitialized profiles */
949 else if (prev_disk &&
950 blk_integrity_compare(prev_disk, template_disk) < 0)
951 goto no_integrity;
952 prev_disk = template_disk;
953 }
954
955 return template_disk;
956
957 no_integrity:
958 if (prev_disk)
959 DMWARN("%s: integrity not set: %s and %s profile mismatch",
960 dm_device_name(t->md),
961 prev_disk->disk_name,
962 template_disk->disk_name);
963 return NULL;
964 }
965
966 /*
967 * Register the mapped device for blk_integrity support if
968 * the underlying devices have an integrity profile. But all devices
969 * may not have matching profiles (checking all devices isn't reliable
970 * during table load because this table may use other DM device(s) which
971 * must be resumed before they will have an initialized integity profile).
972 * Stacked DM devices force a 2 stage integrity profile validation:
973 * 1 - during load, validate all initialized integrity profiles match
974 * 2 - during resume, validate all integrity profiles match
975 */
976 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
977 {
978 struct gendisk *template_disk = NULL;
979
980 template_disk = dm_table_get_integrity_disk(t, false);
981 if (!template_disk)
982 return 0;
983
984 if (!blk_integrity_is_initialized(dm_disk(md))) {
985 t->integrity_supported = 1;
986 return blk_integrity_register(dm_disk(md), NULL);
987 }
988
989 /*
990 * If DM device already has an initalized integrity
991 * profile the new profile should not conflict.
992 */
993 if (blk_integrity_is_initialized(template_disk) &&
994 blk_integrity_compare(dm_disk(md), template_disk) < 0) {
995 DMWARN("%s: conflict with existing integrity profile: "
996 "%s profile mismatch",
997 dm_device_name(t->md),
998 template_disk->disk_name);
999 return 1;
1000 }
1001
1002 /* Preserve existing initialized integrity profile */
1003 t->integrity_supported = 1;
1004 return 0;
1005 }
1006
1007 /*
1008 * Prepares the table for use by building the indices,
1009 * setting the type, and allocating mempools.
1010 */
1011 int dm_table_complete(struct dm_table *t)
1012 {
1013 int r;
1014
1015 r = dm_table_set_type(t);
1016 if (r) {
1017 DMERR("unable to set table type");
1018 return r;
1019 }
1020
1021 r = dm_table_build_index(t);
1022 if (r) {
1023 DMERR("unable to build btrees");
1024 return r;
1025 }
1026
1027 r = dm_table_prealloc_integrity(t, t->md);
1028 if (r) {
1029 DMERR("could not register integrity profile.");
1030 return r;
1031 }
1032
1033 r = dm_table_alloc_md_mempools(t);
1034 if (r)
1035 DMERR("unable to allocate mempools");
1036
1037 return r;
1038 }
1039
1040 static DEFINE_MUTEX(_event_lock);
1041 void dm_table_event_callback(struct dm_table *t,
1042 void (*fn)(void *), void *context)
1043 {
1044 mutex_lock(&_event_lock);
1045 t->event_fn = fn;
1046 t->event_context = context;
1047 mutex_unlock(&_event_lock);
1048 }
1049
1050 void dm_table_event(struct dm_table *t)
1051 {
1052 /*
1053 * You can no longer call dm_table_event() from interrupt
1054 * context, use a bottom half instead.
1055 */
1056 BUG_ON(in_interrupt());
1057
1058 mutex_lock(&_event_lock);
1059 if (t->event_fn)
1060 t->event_fn(t->event_context);
1061 mutex_unlock(&_event_lock);
1062 }
1063
1064 sector_t dm_table_get_size(struct dm_table *t)
1065 {
1066 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1067 }
1068
1069 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1070 {
1071 if (index >= t->num_targets)
1072 return NULL;
1073
1074 return t->targets + index;
1075 }
1076
1077 /*
1078 * Search the btree for the correct target.
1079 *
1080 * Caller should check returned pointer with dm_target_is_valid()
1081 * to trap I/O beyond end of device.
1082 */
1083 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1084 {
1085 unsigned int l, n = 0, k = 0;
1086 sector_t *node;
1087
1088 for (l = 0; l < t->depth; l++) {
1089 n = get_child(n, k);
1090 node = get_node(t, l, n);
1091
1092 for (k = 0; k < KEYS_PER_NODE; k++)
1093 if (node[k] >= sector)
1094 break;
1095 }
1096
1097 return &t->targets[(KEYS_PER_NODE * n) + k];
1098 }
1099
1100 /*
1101 * Establish the new table's queue_limits and validate them.
1102 */
1103 int dm_calculate_queue_limits(struct dm_table *table,
1104 struct queue_limits *limits)
1105 {
1106 struct dm_target *uninitialized_var(ti);
1107 struct queue_limits ti_limits;
1108 unsigned i = 0;
1109
1110 blk_set_default_limits(limits);
1111
1112 while (i < dm_table_get_num_targets(table)) {
1113 blk_set_default_limits(&ti_limits);
1114
1115 ti = dm_table_get_target(table, i++);
1116
1117 if (!ti->type->iterate_devices)
1118 goto combine_limits;
1119
1120 /*
1121 * Combine queue limits of all the devices this target uses.
1122 */
1123 ti->type->iterate_devices(ti, dm_set_device_limits,
1124 &ti_limits);
1125
1126 /* Set I/O hints portion of queue limits */
1127 if (ti->type->io_hints)
1128 ti->type->io_hints(ti, &ti_limits);
1129
1130 /*
1131 * Check each device area is consistent with the target's
1132 * overall queue limits.
1133 */
1134 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1135 &ti_limits))
1136 return -EINVAL;
1137
1138 combine_limits:
1139 /*
1140 * Merge this target's queue limits into the overall limits
1141 * for the table.
1142 */
1143 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1144 DMWARN("%s: adding target device "
1145 "(start sect %llu len %llu) "
1146 "caused an alignment inconsistency",
1147 dm_device_name(table->md),
1148 (unsigned long long) ti->begin,
1149 (unsigned long long) ti->len);
1150 }
1151
1152 return validate_hardware_logical_block_alignment(table, limits);
1153 }
1154
1155 /*
1156 * Set the integrity profile for this device if all devices used have
1157 * matching profiles. We're quite deep in the resume path but still
1158 * don't know if all devices (particularly DM devices this device
1159 * may be stacked on) have matching profiles. Even if the profiles
1160 * don't match we have no way to fail (to resume) at this point.
1161 */
1162 static void dm_table_set_integrity(struct dm_table *t)
1163 {
1164 struct gendisk *template_disk = NULL;
1165
1166 if (!blk_get_integrity(dm_disk(t->md)))
1167 return;
1168
1169 template_disk = dm_table_get_integrity_disk(t, true);
1170 if (!template_disk &&
1171 blk_integrity_is_initialized(dm_disk(t->md))) {
1172 DMWARN("%s: device no longer has a valid integrity profile",
1173 dm_device_name(t->md));
1174 return;
1175 }
1176 blk_integrity_register(dm_disk(t->md),
1177 blk_get_integrity(template_disk));
1178 }
1179
1180 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1181 struct queue_limits *limits)
1182 {
1183 /*
1184 * Copy table's limits to the DM device's request_queue
1185 */
1186 q->limits = *limits;
1187
1188 if (!dm_table_supports_discards(t))
1189 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1190 else
1191 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1192
1193 dm_table_set_integrity(t);
1194
1195 /*
1196 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1197 * visible to other CPUs because, once the flag is set, incoming bios
1198 * are processed by request-based dm, which refers to the queue
1199 * settings.
1200 * Until the flag set, bios are passed to bio-based dm and queued to
1201 * md->deferred where queue settings are not needed yet.
1202 * Those bios are passed to request-based dm at the resume time.
1203 */
1204 smp_mb();
1205 if (dm_table_request_based(t))
1206 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1207 }
1208
1209 unsigned int dm_table_get_num_targets(struct dm_table *t)
1210 {
1211 return t->num_targets;
1212 }
1213
1214 struct list_head *dm_table_get_devices(struct dm_table *t)
1215 {
1216 return &t->devices;
1217 }
1218
1219 fmode_t dm_table_get_mode(struct dm_table *t)
1220 {
1221 return t->mode;
1222 }
1223
1224 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1225 {
1226 int i = t->num_targets;
1227 struct dm_target *ti = t->targets;
1228
1229 while (i--) {
1230 if (postsuspend) {
1231 if (ti->type->postsuspend)
1232 ti->type->postsuspend(ti);
1233 } else if (ti->type->presuspend)
1234 ti->type->presuspend(ti);
1235
1236 ti++;
1237 }
1238 }
1239
1240 void dm_table_presuspend_targets(struct dm_table *t)
1241 {
1242 if (!t)
1243 return;
1244
1245 suspend_targets(t, 0);
1246 }
1247
1248 void dm_table_postsuspend_targets(struct dm_table *t)
1249 {
1250 if (!t)
1251 return;
1252
1253 suspend_targets(t, 1);
1254 }
1255
1256 int dm_table_resume_targets(struct dm_table *t)
1257 {
1258 int i, r = 0;
1259
1260 for (i = 0; i < t->num_targets; i++) {
1261 struct dm_target *ti = t->targets + i;
1262
1263 if (!ti->type->preresume)
1264 continue;
1265
1266 r = ti->type->preresume(ti);
1267 if (r)
1268 return r;
1269 }
1270
1271 for (i = 0; i < t->num_targets; i++) {
1272 struct dm_target *ti = t->targets + i;
1273
1274 if (ti->type->resume)
1275 ti->type->resume(ti);
1276 }
1277
1278 return 0;
1279 }
1280
1281 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1282 {
1283 list_add(&cb->list, &t->target_callbacks);
1284 }
1285 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1286
1287 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1288 {
1289 struct dm_dev_internal *dd;
1290 struct list_head *devices = dm_table_get_devices(t);
1291 struct dm_target_callbacks *cb;
1292 int r = 0;
1293
1294 list_for_each_entry(dd, devices, list) {
1295 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1296 char b[BDEVNAME_SIZE];
1297
1298 if (likely(q))
1299 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1300 else
1301 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1302 dm_device_name(t->md),
1303 bdevname(dd->dm_dev.bdev, b));
1304 }
1305
1306 list_for_each_entry(cb, &t->target_callbacks, list)
1307 if (cb->congested_fn)
1308 r |= cb->congested_fn(cb, bdi_bits);
1309
1310 return r;
1311 }
1312
1313 int dm_table_any_busy_target(struct dm_table *t)
1314 {
1315 unsigned i;
1316 struct dm_target *ti;
1317
1318 for (i = 0; i < t->num_targets; i++) {
1319 ti = t->targets + i;
1320 if (ti->type->busy && ti->type->busy(ti))
1321 return 1;
1322 }
1323
1324 return 0;
1325 }
1326
1327 struct mapped_device *dm_table_get_md(struct dm_table *t)
1328 {
1329 return t->md;
1330 }
1331
1332 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1333 sector_t start, sector_t len, void *data)
1334 {
1335 struct request_queue *q = bdev_get_queue(dev->bdev);
1336
1337 return q && blk_queue_discard(q);
1338 }
1339
1340 bool dm_table_supports_discards(struct dm_table *t)
1341 {
1342 struct dm_target *ti;
1343 unsigned i = 0;
1344
1345 if (!t->discards_supported)
1346 return 0;
1347
1348 /*
1349 * Ensure that at least one underlying device supports discards.
1350 * t->devices includes internal dm devices such as mirror logs
1351 * so we need to use iterate_devices here, which targets
1352 * supporting discard must provide.
1353 */
1354 while (i < dm_table_get_num_targets(t)) {
1355 ti = dm_table_get_target(t, i++);
1356
1357 if (ti->type->iterate_devices &&
1358 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1359 return 1;
1360 }
1361
1362 return 0;
1363 }
1364
1365 EXPORT_SYMBOL(dm_vcalloc);
1366 EXPORT_SYMBOL(dm_get_device);
1367 EXPORT_SYMBOL(dm_put_device);
1368 EXPORT_SYMBOL(dm_table_event);
1369 EXPORT_SYMBOL(dm_table_get_size);
1370 EXPORT_SYMBOL(dm_table_get_mode);
1371 EXPORT_SYMBOL(dm_table_get_md);
1372 EXPORT_SYMBOL(dm_table_put);
1373 EXPORT_SYMBOL(dm_table_get);