2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
24 #define DM_MSG_PREFIX "table"
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
32 struct mapped_device
*md
;
37 unsigned int counts
[MAX_DEPTH
]; /* in nodes */
38 sector_t
*index
[MAX_DEPTH
];
40 unsigned int num_targets
;
41 unsigned int num_allocated
;
43 struct dm_target
*targets
;
45 struct target_type
*immutable_target_type
;
46 unsigned integrity_supported
:1;
50 * Indicates the rw permissions for the new logical
51 * device. This should be a combination of FMODE_READ
56 /* a list of devices used by this table */
57 struct list_head devices
;
59 /* events get handed up using this callback */
60 void (*event_fn
)(void *);
63 struct dm_md_mempools
*mempools
;
65 struct list_head target_callbacks
;
69 * Similar to ceiling(log_size(n))
71 static unsigned int int_log(unsigned int n
, unsigned int base
)
76 n
= dm_div_up(n
, base
);
84 * Calculate the index of the child node of the n'th node k'th key.
86 static inline unsigned int get_child(unsigned int n
, unsigned int k
)
88 return (n
* CHILDREN_PER_NODE
) + k
;
92 * Return the n'th node of level l from table t.
94 static inline sector_t
*get_node(struct dm_table
*t
,
95 unsigned int l
, unsigned int n
)
97 return t
->index
[l
] + (n
* KEYS_PER_NODE
);
101 * Return the highest key that you could lookup from the n'th
102 * node on level l of the btree.
104 static sector_t
high(struct dm_table
*t
, unsigned int l
, unsigned int n
)
106 for (; l
< t
->depth
- 1; l
++)
107 n
= get_child(n
, CHILDREN_PER_NODE
- 1);
109 if (n
>= t
->counts
[l
])
110 return (sector_t
) - 1;
112 return get_node(t
, l
, n
)[KEYS_PER_NODE
- 1];
116 * Fills in a level of the btree based on the highs of the level
119 static int setup_btree_index(unsigned int l
, struct dm_table
*t
)
124 for (n
= 0U; n
< t
->counts
[l
]; n
++) {
125 node
= get_node(t
, l
, n
);
127 for (k
= 0U; k
< KEYS_PER_NODE
; k
++)
128 node
[k
] = high(t
, l
+ 1, get_child(n
, k
));
134 void *dm_vcalloc(unsigned long nmemb
, unsigned long elem_size
)
140 * Check that we're not going to overflow.
142 if (nmemb
> (ULONG_MAX
/ elem_size
))
145 size
= nmemb
* elem_size
;
146 addr
= vzalloc(size
);
150 EXPORT_SYMBOL(dm_vcalloc
);
153 * highs, and targets are managed as dynamic arrays during a
156 static int alloc_targets(struct dm_table
*t
, unsigned int num
)
159 struct dm_target
*n_targets
;
162 * Allocate both the target array and offset array at once.
163 * Append an empty entry to catch sectors beyond the end of
166 n_highs
= (sector_t
*) dm_vcalloc(num
+ 1, sizeof(struct dm_target
) +
171 n_targets
= (struct dm_target
*) (n_highs
+ num
);
173 memset(n_highs
, -1, sizeof(*n_highs
) * num
);
176 t
->num_allocated
= num
;
178 t
->targets
= n_targets
;
183 int dm_table_create(struct dm_table
**result
, fmode_t mode
,
184 unsigned num_targets
, struct mapped_device
*md
)
186 struct dm_table
*t
= kzalloc(sizeof(*t
), GFP_KERNEL
);
191 INIT_LIST_HEAD(&t
->devices
);
192 INIT_LIST_HEAD(&t
->target_callbacks
);
195 num_targets
= KEYS_PER_NODE
;
197 num_targets
= dm_round_up(num_targets
, KEYS_PER_NODE
);
204 if (alloc_targets(t
, num_targets
)) {
215 static void free_devices(struct list_head
*devices
, struct mapped_device
*md
)
217 struct list_head
*tmp
, *next
;
219 list_for_each_safe(tmp
, next
, devices
) {
220 struct dm_dev_internal
*dd
=
221 list_entry(tmp
, struct dm_dev_internal
, list
);
222 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
223 dm_device_name(md
), dd
->dm_dev
->name
);
224 dm_put_table_device(md
, dd
->dm_dev
);
229 void dm_table_destroy(struct dm_table
*t
)
236 /* free the indexes */
238 vfree(t
->index
[t
->depth
- 2]);
240 /* free the targets */
241 for (i
= 0; i
< t
->num_targets
; i
++) {
242 struct dm_target
*tgt
= t
->targets
+ i
;
247 dm_put_target_type(tgt
->type
);
252 /* free the device list */
253 free_devices(&t
->devices
, t
->md
);
255 dm_free_md_mempools(t
->mempools
);
261 * See if we've already got a device in the list.
263 static struct dm_dev_internal
*find_device(struct list_head
*l
, dev_t dev
)
265 struct dm_dev_internal
*dd
;
267 list_for_each_entry (dd
, l
, list
)
268 if (dd
->dm_dev
->bdev
->bd_dev
== dev
)
275 * If possible, this checks an area of a destination device is invalid.
277 static int device_area_is_invalid(struct dm_target
*ti
, struct dm_dev
*dev
,
278 sector_t start
, sector_t len
, void *data
)
280 struct request_queue
*q
;
281 struct queue_limits
*limits
= data
;
282 struct block_device
*bdev
= dev
->bdev
;
284 i_size_read(bdev
->bd_inode
) >> SECTOR_SHIFT
;
285 unsigned short logical_block_size_sectors
=
286 limits
->logical_block_size
>> SECTOR_SHIFT
;
287 char b
[BDEVNAME_SIZE
];
290 * Some devices exist without request functions,
291 * such as loop devices not yet bound to backing files.
292 * Forbid the use of such devices.
294 q
= bdev_get_queue(bdev
);
295 if (!q
|| !q
->make_request_fn
) {
296 DMWARN("%s: %s is not yet initialised: "
297 "start=%llu, len=%llu, dev_size=%llu",
298 dm_device_name(ti
->table
->md
), bdevname(bdev
, b
),
299 (unsigned long long)start
,
300 (unsigned long long)len
,
301 (unsigned long long)dev_size
);
308 if ((start
>= dev_size
) || (start
+ len
> dev_size
)) {
309 DMWARN("%s: %s too small for target: "
310 "start=%llu, len=%llu, dev_size=%llu",
311 dm_device_name(ti
->table
->md
), bdevname(bdev
, b
),
312 (unsigned long long)start
,
313 (unsigned long long)len
,
314 (unsigned long long)dev_size
);
318 if (logical_block_size_sectors
<= 1)
321 if (start
& (logical_block_size_sectors
- 1)) {
322 DMWARN("%s: start=%llu not aligned to h/w "
323 "logical block size %u of %s",
324 dm_device_name(ti
->table
->md
),
325 (unsigned long long)start
,
326 limits
->logical_block_size
, bdevname(bdev
, b
));
330 if (len
& (logical_block_size_sectors
- 1)) {
331 DMWARN("%s: len=%llu not aligned to h/w "
332 "logical block size %u of %s",
333 dm_device_name(ti
->table
->md
),
334 (unsigned long long)len
,
335 limits
->logical_block_size
, bdevname(bdev
, b
));
343 * This upgrades the mode on an already open dm_dev, being
344 * careful to leave things as they were if we fail to reopen the
345 * device and not to touch the existing bdev field in case
346 * it is accessed concurrently inside dm_table_any_congested().
348 static int upgrade_mode(struct dm_dev_internal
*dd
, fmode_t new_mode
,
349 struct mapped_device
*md
)
352 struct dm_dev
*old_dev
, *new_dev
;
354 old_dev
= dd
->dm_dev
;
356 r
= dm_get_table_device(md
, dd
->dm_dev
->bdev
->bd_dev
,
357 dd
->dm_dev
->mode
| new_mode
, &new_dev
);
361 dd
->dm_dev
= new_dev
;
362 dm_put_table_device(md
, old_dev
);
368 * Add a device to the list, or just increment the usage count if
369 * it's already present.
371 int dm_get_device(struct dm_target
*ti
, const char *path
, fmode_t mode
,
372 struct dm_dev
**result
)
375 dev_t
uninitialized_var(dev
);
376 struct dm_dev_internal
*dd
;
377 struct dm_table
*t
= ti
->table
;
378 struct block_device
*bdev
;
382 /* convert the path to a device */
383 bdev
= lookup_bdev(path
);
385 dev
= name_to_dev_t(path
);
393 dd
= find_device(&t
->devices
, dev
);
395 dd
= kmalloc(sizeof(*dd
), GFP_KERNEL
);
399 if ((r
= dm_get_table_device(t
->md
, dev
, mode
, &dd
->dm_dev
))) {
404 atomic_set(&dd
->count
, 0);
405 list_add(&dd
->list
, &t
->devices
);
407 } else if (dd
->dm_dev
->mode
!= (mode
| dd
->dm_dev
->mode
)) {
408 r
= upgrade_mode(dd
, mode
, t
->md
);
412 atomic_inc(&dd
->count
);
414 *result
= dd
->dm_dev
;
417 EXPORT_SYMBOL(dm_get_device
);
419 static int dm_set_device_limits(struct dm_target
*ti
, struct dm_dev
*dev
,
420 sector_t start
, sector_t len
, void *data
)
422 struct queue_limits
*limits
= data
;
423 struct block_device
*bdev
= dev
->bdev
;
424 struct request_queue
*q
= bdev_get_queue(bdev
);
425 char b
[BDEVNAME_SIZE
];
428 DMWARN("%s: Cannot set limits for nonexistent device %s",
429 dm_device_name(ti
->table
->md
), bdevname(bdev
, b
));
433 if (bdev_stack_limits(limits
, bdev
, start
) < 0)
434 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
435 "physical_block_size=%u, logical_block_size=%u, "
436 "alignment_offset=%u, start=%llu",
437 dm_device_name(ti
->table
->md
), bdevname(bdev
, b
),
438 q
->limits
.physical_block_size
,
439 q
->limits
.logical_block_size
,
440 q
->limits
.alignment_offset
,
441 (unsigned long long) start
<< SECTOR_SHIFT
);
447 * Decrement a device's use count and remove it if necessary.
449 void dm_put_device(struct dm_target
*ti
, struct dm_dev
*d
)
452 struct list_head
*devices
= &ti
->table
->devices
;
453 struct dm_dev_internal
*dd
;
455 list_for_each_entry(dd
, devices
, list
) {
456 if (dd
->dm_dev
== d
) {
462 DMWARN("%s: device %s not in table devices list",
463 dm_device_name(ti
->table
->md
), d
->name
);
466 if (atomic_dec_and_test(&dd
->count
)) {
467 dm_put_table_device(ti
->table
->md
, d
);
472 EXPORT_SYMBOL(dm_put_device
);
475 * Checks to see if the target joins onto the end of the table.
477 static int adjoin(struct dm_table
*table
, struct dm_target
*ti
)
479 struct dm_target
*prev
;
481 if (!table
->num_targets
)
484 prev
= &table
->targets
[table
->num_targets
- 1];
485 return (ti
->begin
== (prev
->begin
+ prev
->len
));
489 * Used to dynamically allocate the arg array.
491 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
492 * process messages even if some device is suspended. These messages have a
493 * small fixed number of arguments.
495 * On the other hand, dm-switch needs to process bulk data using messages and
496 * excessive use of GFP_NOIO could cause trouble.
498 static char **realloc_argv(unsigned *array_size
, char **old_argv
)
505 new_size
= *array_size
* 2;
511 argv
= kmalloc(new_size
* sizeof(*argv
), gfp
);
513 memcpy(argv
, old_argv
, *array_size
* sizeof(*argv
));
514 *array_size
= new_size
;
522 * Destructively splits up the argument list to pass to ctr.
524 int dm_split_args(int *argc
, char ***argvp
, char *input
)
526 char *start
, *end
= input
, *out
, **argv
= NULL
;
527 unsigned array_size
= 0;
536 argv
= realloc_argv(&array_size
, argv
);
541 /* Skip whitespace */
542 start
= skip_spaces(end
);
545 break; /* success, we hit the end */
547 /* 'out' is used to remove any back-quotes */
550 /* Everything apart from '\0' can be quoted */
551 if (*end
== '\\' && *(end
+ 1)) {
558 break; /* end of token */
563 /* have we already filled the array ? */
564 if ((*argc
+ 1) > array_size
) {
565 argv
= realloc_argv(&array_size
, argv
);
570 /* we know this is whitespace */
574 /* terminate the string and put it in the array */
585 * Impose necessary and sufficient conditions on a devices's table such
586 * that any incoming bio which respects its logical_block_size can be
587 * processed successfully. If it falls across the boundary between
588 * two or more targets, the size of each piece it gets split into must
589 * be compatible with the logical_block_size of the target processing it.
591 static int validate_hardware_logical_block_alignment(struct dm_table
*table
,
592 struct queue_limits
*limits
)
595 * This function uses arithmetic modulo the logical_block_size
596 * (in units of 512-byte sectors).
598 unsigned short device_logical_block_size_sects
=
599 limits
->logical_block_size
>> SECTOR_SHIFT
;
602 * Offset of the start of the next table entry, mod logical_block_size.
604 unsigned short next_target_start
= 0;
607 * Given an aligned bio that extends beyond the end of a
608 * target, how many sectors must the next target handle?
610 unsigned short remaining
= 0;
612 struct dm_target
*uninitialized_var(ti
);
613 struct queue_limits ti_limits
;
617 * Check each entry in the table in turn.
619 while (i
< dm_table_get_num_targets(table
)) {
620 ti
= dm_table_get_target(table
, i
++);
622 blk_set_stacking_limits(&ti_limits
);
624 /* combine all target devices' limits */
625 if (ti
->type
->iterate_devices
)
626 ti
->type
->iterate_devices(ti
, dm_set_device_limits
,
630 * If the remaining sectors fall entirely within this
631 * table entry are they compatible with its logical_block_size?
633 if (remaining
< ti
->len
&&
634 remaining
& ((ti_limits
.logical_block_size
>>
639 (unsigned short) ((next_target_start
+ ti
->len
) &
640 (device_logical_block_size_sects
- 1));
641 remaining
= next_target_start
?
642 device_logical_block_size_sects
- next_target_start
: 0;
646 DMWARN("%s: table line %u (start sect %llu len %llu) "
647 "not aligned to h/w logical block size %u",
648 dm_device_name(table
->md
), i
,
649 (unsigned long long) ti
->begin
,
650 (unsigned long long) ti
->len
,
651 limits
->logical_block_size
);
658 int dm_table_add_target(struct dm_table
*t
, const char *type
,
659 sector_t start
, sector_t len
, char *params
)
661 int r
= -EINVAL
, argc
;
663 struct dm_target
*tgt
;
666 DMERR("%s: target type %s must appear alone in table",
667 dm_device_name(t
->md
), t
->targets
->type
->name
);
671 BUG_ON(t
->num_targets
>= t
->num_allocated
);
673 tgt
= t
->targets
+ t
->num_targets
;
674 memset(tgt
, 0, sizeof(*tgt
));
677 DMERR("%s: zero-length target", dm_device_name(t
->md
));
681 tgt
->type
= dm_get_target_type(type
);
683 DMERR("%s: %s: unknown target type", dm_device_name(t
->md
),
688 if (dm_target_needs_singleton(tgt
->type
)) {
689 if (t
->num_targets
) {
690 DMERR("%s: target type %s must appear alone in table",
691 dm_device_name(t
->md
), type
);
697 if (dm_target_always_writeable(tgt
->type
) && !(t
->mode
& FMODE_WRITE
)) {
698 DMERR("%s: target type %s may not be included in read-only tables",
699 dm_device_name(t
->md
), type
);
703 if (t
->immutable_target_type
) {
704 if (t
->immutable_target_type
!= tgt
->type
) {
705 DMERR("%s: immutable target type %s cannot be mixed with other target types",
706 dm_device_name(t
->md
), t
->immutable_target_type
->name
);
709 } else if (dm_target_is_immutable(tgt
->type
)) {
710 if (t
->num_targets
) {
711 DMERR("%s: immutable target type %s cannot be mixed with other target types",
712 dm_device_name(t
->md
), tgt
->type
->name
);
715 t
->immutable_target_type
= tgt
->type
;
721 tgt
->error
= "Unknown error";
724 * Does this target adjoin the previous one ?
726 if (!adjoin(t
, tgt
)) {
727 tgt
->error
= "Gap in table";
732 r
= dm_split_args(&argc
, &argv
, params
);
734 tgt
->error
= "couldn't split parameters (insufficient memory)";
738 r
= tgt
->type
->ctr(tgt
, argc
, argv
);
743 t
->highs
[t
->num_targets
++] = tgt
->begin
+ tgt
->len
- 1;
745 if (!tgt
->num_discard_bios
&& tgt
->discards_supported
)
746 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
747 dm_device_name(t
->md
), type
);
752 DMERR("%s: %s: %s", dm_device_name(t
->md
), type
, tgt
->error
);
753 dm_put_target_type(tgt
->type
);
758 * Target argument parsing helpers.
760 static int validate_next_arg(struct dm_arg
*arg
, struct dm_arg_set
*arg_set
,
761 unsigned *value
, char **error
, unsigned grouped
)
763 const char *arg_str
= dm_shift_arg(arg_set
);
767 (sscanf(arg_str
, "%u%c", value
, &dummy
) != 1) ||
768 (*value
< arg
->min
) ||
769 (*value
> arg
->max
) ||
770 (grouped
&& arg_set
->argc
< *value
)) {
778 int dm_read_arg(struct dm_arg
*arg
, struct dm_arg_set
*arg_set
,
779 unsigned *value
, char **error
)
781 return validate_next_arg(arg
, arg_set
, value
, error
, 0);
783 EXPORT_SYMBOL(dm_read_arg
);
785 int dm_read_arg_group(struct dm_arg
*arg
, struct dm_arg_set
*arg_set
,
786 unsigned *value
, char **error
)
788 return validate_next_arg(arg
, arg_set
, value
, error
, 1);
790 EXPORT_SYMBOL(dm_read_arg_group
);
792 const char *dm_shift_arg(struct dm_arg_set
*as
)
805 EXPORT_SYMBOL(dm_shift_arg
);
807 void dm_consume_args(struct dm_arg_set
*as
, unsigned num_args
)
809 BUG_ON(as
->argc
< num_args
);
810 as
->argc
-= num_args
;
811 as
->argv
+= num_args
;
813 EXPORT_SYMBOL(dm_consume_args
);
815 static bool __table_type_request_based(unsigned table_type
)
817 return (table_type
== DM_TYPE_REQUEST_BASED
||
818 table_type
== DM_TYPE_MQ_REQUEST_BASED
);
821 static int dm_table_set_type(struct dm_table
*t
)
824 unsigned bio_based
= 0, request_based
= 0, hybrid
= 0;
825 bool use_blk_mq
= false;
826 struct dm_target
*tgt
;
827 struct dm_dev_internal
*dd
;
828 struct list_head
*devices
;
829 unsigned live_md_type
= dm_get_md_type(t
->md
);
831 for (i
= 0; i
< t
->num_targets
; i
++) {
832 tgt
= t
->targets
+ i
;
833 if (dm_target_hybrid(tgt
))
835 else if (dm_target_request_based(tgt
))
840 if (bio_based
&& request_based
) {
841 DMWARN("Inconsistent table: different target types"
842 " can't be mixed up");
847 if (hybrid
&& !bio_based
&& !request_based
) {
849 * The targets can work either way.
850 * Determine the type from the live device.
851 * Default to bio-based if device is new.
853 if (__table_type_request_based(live_md_type
))
860 /* We must use this table as bio-based */
861 t
->type
= DM_TYPE_BIO_BASED
;
865 BUG_ON(!request_based
); /* No targets in this table */
868 * Request-based dm supports only tables that have a single target now.
869 * To support multiple targets, request splitting support is needed,
870 * and that needs lots of changes in the block-layer.
871 * (e.g. request completion process for partial completion.)
873 if (t
->num_targets
> 1) {
874 DMWARN("Request-based dm doesn't support multiple targets yet");
878 /* Non-request-stackable devices can't be used for request-based dm */
879 devices
= dm_table_get_devices(t
);
880 list_for_each_entry(dd
, devices
, list
) {
881 struct request_queue
*q
= bdev_get_queue(dd
->dm_dev
->bdev
);
883 if (!blk_queue_stackable(q
)) {
884 DMERR("table load rejected: including"
885 " non-request-stackable devices");
894 /* verify _all_ devices in the table are blk-mq devices */
895 list_for_each_entry(dd
, devices
, list
)
896 if (!bdev_get_queue(dd
->dm_dev
->bdev
)->mq_ops
) {
897 DMERR("table load rejected: not all devices"
898 " are blk-mq request-stackable");
901 t
->type
= DM_TYPE_MQ_REQUEST_BASED
;
903 } else if (list_empty(devices
) && __table_type_request_based(live_md_type
)) {
904 /* inherit live MD type */
905 t
->type
= live_md_type
;
908 t
->type
= DM_TYPE_REQUEST_BASED
;
913 unsigned dm_table_get_type(struct dm_table
*t
)
918 struct target_type
*dm_table_get_immutable_target_type(struct dm_table
*t
)
920 return t
->immutable_target_type
;
923 bool dm_table_request_based(struct dm_table
*t
)
925 return __table_type_request_based(dm_table_get_type(t
));
928 bool dm_table_mq_request_based(struct dm_table
*t
)
930 return dm_table_get_type(t
) == DM_TYPE_MQ_REQUEST_BASED
;
933 static int dm_table_alloc_md_mempools(struct dm_table
*t
, struct mapped_device
*md
)
935 unsigned type
= dm_table_get_type(t
);
936 unsigned per_bio_data_size
= 0;
937 struct dm_target
*tgt
;
940 if (unlikely(type
== DM_TYPE_NONE
)) {
941 DMWARN("no table type is set, can't allocate mempools");
945 if (type
== DM_TYPE_BIO_BASED
)
946 for (i
= 0; i
< t
->num_targets
; i
++) {
947 tgt
= t
->targets
+ i
;
948 per_bio_data_size
= max(per_bio_data_size
, tgt
->per_bio_data_size
);
951 t
->mempools
= dm_alloc_md_mempools(md
, type
, t
->integrity_supported
, per_bio_data_size
);
958 void dm_table_free_md_mempools(struct dm_table
*t
)
960 dm_free_md_mempools(t
->mempools
);
964 struct dm_md_mempools
*dm_table_get_md_mempools(struct dm_table
*t
)
969 static int setup_indexes(struct dm_table
*t
)
972 unsigned int total
= 0;
975 /* allocate the space for *all* the indexes */
976 for (i
= t
->depth
- 2; i
>= 0; i
--) {
977 t
->counts
[i
] = dm_div_up(t
->counts
[i
+ 1], CHILDREN_PER_NODE
);
978 total
+= t
->counts
[i
];
981 indexes
= (sector_t
*) dm_vcalloc(total
, (unsigned long) NODE_SIZE
);
985 /* set up internal nodes, bottom-up */
986 for (i
= t
->depth
- 2; i
>= 0; i
--) {
987 t
->index
[i
] = indexes
;
988 indexes
+= (KEYS_PER_NODE
* t
->counts
[i
]);
989 setup_btree_index(i
, t
);
996 * Builds the btree to index the map.
998 static int dm_table_build_index(struct dm_table
*t
)
1001 unsigned int leaf_nodes
;
1003 /* how many indexes will the btree have ? */
1004 leaf_nodes
= dm_div_up(t
->num_targets
, KEYS_PER_NODE
);
1005 t
->depth
= 1 + int_log(leaf_nodes
, CHILDREN_PER_NODE
);
1007 /* leaf layer has already been set up */
1008 t
->counts
[t
->depth
- 1] = leaf_nodes
;
1009 t
->index
[t
->depth
- 1] = t
->highs
;
1012 r
= setup_indexes(t
);
1017 static bool integrity_profile_exists(struct gendisk
*disk
)
1019 return !!blk_get_integrity(disk
);
1023 * Get a disk whose integrity profile reflects the table's profile.
1024 * Returns NULL if integrity support was inconsistent or unavailable.
1026 static struct gendisk
* dm_table_get_integrity_disk(struct dm_table
*t
)
1028 struct list_head
*devices
= dm_table_get_devices(t
);
1029 struct dm_dev_internal
*dd
= NULL
;
1030 struct gendisk
*prev_disk
= NULL
, *template_disk
= NULL
;
1032 list_for_each_entry(dd
, devices
, list
) {
1033 template_disk
= dd
->dm_dev
->bdev
->bd_disk
;
1034 if (!integrity_profile_exists(template_disk
))
1036 else if (prev_disk
&&
1037 blk_integrity_compare(prev_disk
, template_disk
) < 0)
1039 prev_disk
= template_disk
;
1042 return template_disk
;
1046 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1047 dm_device_name(t
->md
),
1048 prev_disk
->disk_name
,
1049 template_disk
->disk_name
);
1054 * Register the mapped device for blk_integrity support if the
1055 * underlying devices have an integrity profile. But all devices may
1056 * not have matching profiles (checking all devices isn't reliable
1057 * during table load because this table may use other DM device(s) which
1058 * must be resumed before they will have an initialized integity
1059 * profile). Consequently, stacked DM devices force a 2 stage integrity
1060 * profile validation: First pass during table load, final pass during
1063 static int dm_table_register_integrity(struct dm_table
*t
)
1065 struct mapped_device
*md
= t
->md
;
1066 struct gendisk
*template_disk
= NULL
;
1068 template_disk
= dm_table_get_integrity_disk(t
);
1072 if (!integrity_profile_exists(dm_disk(md
))) {
1073 t
->integrity_supported
= 1;
1075 * Register integrity profile during table load; we can do
1076 * this because the final profile must match during resume.
1078 blk_integrity_register(dm_disk(md
),
1079 blk_get_integrity(template_disk
));
1084 * If DM device already has an initialized integrity
1085 * profile the new profile should not conflict.
1087 if (blk_integrity_compare(dm_disk(md
), template_disk
) < 0) {
1088 DMWARN("%s: conflict with existing integrity profile: "
1089 "%s profile mismatch",
1090 dm_device_name(t
->md
),
1091 template_disk
->disk_name
);
1095 /* Preserve existing integrity profile */
1096 t
->integrity_supported
= 1;
1101 * Prepares the table for use by building the indices,
1102 * setting the type, and allocating mempools.
1104 int dm_table_complete(struct dm_table
*t
)
1108 r
= dm_table_set_type(t
);
1110 DMERR("unable to set table type");
1114 r
= dm_table_build_index(t
);
1116 DMERR("unable to build btrees");
1120 r
= dm_table_register_integrity(t
);
1122 DMERR("could not register integrity profile.");
1126 r
= dm_table_alloc_md_mempools(t
, t
->md
);
1128 DMERR("unable to allocate mempools");
1133 static DEFINE_MUTEX(_event_lock
);
1134 void dm_table_event_callback(struct dm_table
*t
,
1135 void (*fn
)(void *), void *context
)
1137 mutex_lock(&_event_lock
);
1139 t
->event_context
= context
;
1140 mutex_unlock(&_event_lock
);
1143 void dm_table_event(struct dm_table
*t
)
1146 * You can no longer call dm_table_event() from interrupt
1147 * context, use a bottom half instead.
1149 BUG_ON(in_interrupt());
1151 mutex_lock(&_event_lock
);
1153 t
->event_fn(t
->event_context
);
1154 mutex_unlock(&_event_lock
);
1156 EXPORT_SYMBOL(dm_table_event
);
1158 sector_t
dm_table_get_size(struct dm_table
*t
)
1160 return t
->num_targets
? (t
->highs
[t
->num_targets
- 1] + 1) : 0;
1162 EXPORT_SYMBOL(dm_table_get_size
);
1164 struct dm_target
*dm_table_get_target(struct dm_table
*t
, unsigned int index
)
1166 if (index
>= t
->num_targets
)
1169 return t
->targets
+ index
;
1173 * Search the btree for the correct target.
1175 * Caller should check returned pointer with dm_target_is_valid()
1176 * to trap I/O beyond end of device.
1178 struct dm_target
*dm_table_find_target(struct dm_table
*t
, sector_t sector
)
1180 unsigned int l
, n
= 0, k
= 0;
1183 for (l
= 0; l
< t
->depth
; l
++) {
1184 n
= get_child(n
, k
);
1185 node
= get_node(t
, l
, n
);
1187 for (k
= 0; k
< KEYS_PER_NODE
; k
++)
1188 if (node
[k
] >= sector
)
1192 return &t
->targets
[(KEYS_PER_NODE
* n
) + k
];
1195 static int count_device(struct dm_target
*ti
, struct dm_dev
*dev
,
1196 sector_t start
, sector_t len
, void *data
)
1198 unsigned *num_devices
= data
;
1206 * Check whether a table has no data devices attached using each
1207 * target's iterate_devices method.
1208 * Returns false if the result is unknown because a target doesn't
1209 * support iterate_devices.
1211 bool dm_table_has_no_data_devices(struct dm_table
*table
)
1213 struct dm_target
*uninitialized_var(ti
);
1214 unsigned i
= 0, num_devices
= 0;
1216 while (i
< dm_table_get_num_targets(table
)) {
1217 ti
= dm_table_get_target(table
, i
++);
1219 if (!ti
->type
->iterate_devices
)
1222 ti
->type
->iterate_devices(ti
, count_device
, &num_devices
);
1231 * Establish the new table's queue_limits and validate them.
1233 int dm_calculate_queue_limits(struct dm_table
*table
,
1234 struct queue_limits
*limits
)
1236 struct dm_target
*uninitialized_var(ti
);
1237 struct queue_limits ti_limits
;
1240 blk_set_stacking_limits(limits
);
1242 while (i
< dm_table_get_num_targets(table
)) {
1243 blk_set_stacking_limits(&ti_limits
);
1245 ti
= dm_table_get_target(table
, i
++);
1247 if (!ti
->type
->iterate_devices
)
1248 goto combine_limits
;
1251 * Combine queue limits of all the devices this target uses.
1253 ti
->type
->iterate_devices(ti
, dm_set_device_limits
,
1256 /* Set I/O hints portion of queue limits */
1257 if (ti
->type
->io_hints
)
1258 ti
->type
->io_hints(ti
, &ti_limits
);
1261 * Check each device area is consistent with the target's
1262 * overall queue limits.
1264 if (ti
->type
->iterate_devices(ti
, device_area_is_invalid
,
1270 * Merge this target's queue limits into the overall limits
1273 if (blk_stack_limits(limits
, &ti_limits
, 0) < 0)
1274 DMWARN("%s: adding target device "
1275 "(start sect %llu len %llu) "
1276 "caused an alignment inconsistency",
1277 dm_device_name(table
->md
),
1278 (unsigned long long) ti
->begin
,
1279 (unsigned long long) ti
->len
);
1282 return validate_hardware_logical_block_alignment(table
, limits
);
1286 * Verify that all devices have an integrity profile that matches the
1287 * DM device's registered integrity profile. If the profiles don't
1288 * match then unregister the DM device's integrity profile.
1290 static void dm_table_verify_integrity(struct dm_table
*t
)
1292 struct gendisk
*template_disk
= NULL
;
1294 if (t
->integrity_supported
) {
1296 * Verify that the original integrity profile
1297 * matches all the devices in this table.
1299 template_disk
= dm_table_get_integrity_disk(t
);
1300 if (template_disk
&&
1301 blk_integrity_compare(dm_disk(t
->md
), template_disk
) >= 0)
1305 if (integrity_profile_exists(dm_disk(t
->md
))) {
1306 DMWARN("%s: unable to establish an integrity profile",
1307 dm_device_name(t
->md
));
1308 blk_integrity_unregister(dm_disk(t
->md
));
1312 static int device_flush_capable(struct dm_target
*ti
, struct dm_dev
*dev
,
1313 sector_t start
, sector_t len
, void *data
)
1315 unsigned flush
= (*(unsigned *)data
);
1316 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1318 return q
&& (q
->flush_flags
& flush
);
1321 static bool dm_table_supports_flush(struct dm_table
*t
, unsigned flush
)
1323 struct dm_target
*ti
;
1327 * Require at least one underlying device to support flushes.
1328 * t->devices includes internal dm devices such as mirror logs
1329 * so we need to use iterate_devices here, which targets
1330 * supporting flushes must provide.
1332 while (i
< dm_table_get_num_targets(t
)) {
1333 ti
= dm_table_get_target(t
, i
++);
1335 if (!ti
->num_flush_bios
)
1338 if (ti
->flush_supported
)
1341 if (ti
->type
->iterate_devices
&&
1342 ti
->type
->iterate_devices(ti
, device_flush_capable
, &flush
))
1349 static bool dm_table_discard_zeroes_data(struct dm_table
*t
)
1351 struct dm_target
*ti
;
1354 /* Ensure that all targets supports discard_zeroes_data. */
1355 while (i
< dm_table_get_num_targets(t
)) {
1356 ti
= dm_table_get_target(t
, i
++);
1358 if (ti
->discard_zeroes_data_unsupported
)
1365 static int device_is_nonrot(struct dm_target
*ti
, struct dm_dev
*dev
,
1366 sector_t start
, sector_t len
, void *data
)
1368 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1370 return q
&& blk_queue_nonrot(q
);
1373 static int device_is_not_random(struct dm_target
*ti
, struct dm_dev
*dev
,
1374 sector_t start
, sector_t len
, void *data
)
1376 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1378 return q
&& !blk_queue_add_random(q
);
1381 static int queue_supports_sg_merge(struct dm_target
*ti
, struct dm_dev
*dev
,
1382 sector_t start
, sector_t len
, void *data
)
1384 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1386 return q
&& !test_bit(QUEUE_FLAG_NO_SG_MERGE
, &q
->queue_flags
);
1389 static bool dm_table_all_devices_attribute(struct dm_table
*t
,
1390 iterate_devices_callout_fn func
)
1392 struct dm_target
*ti
;
1395 while (i
< dm_table_get_num_targets(t
)) {
1396 ti
= dm_table_get_target(t
, i
++);
1398 if (!ti
->type
->iterate_devices
||
1399 !ti
->type
->iterate_devices(ti
, func
, NULL
))
1406 static int device_not_write_same_capable(struct dm_target
*ti
, struct dm_dev
*dev
,
1407 sector_t start
, sector_t len
, void *data
)
1409 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1411 return q
&& !q
->limits
.max_write_same_sectors
;
1414 static bool dm_table_supports_write_same(struct dm_table
*t
)
1416 struct dm_target
*ti
;
1419 while (i
< dm_table_get_num_targets(t
)) {
1420 ti
= dm_table_get_target(t
, i
++);
1422 if (!ti
->num_write_same_bios
)
1425 if (!ti
->type
->iterate_devices
||
1426 ti
->type
->iterate_devices(ti
, device_not_write_same_capable
, NULL
))
1433 static int device_discard_capable(struct dm_target
*ti
, struct dm_dev
*dev
,
1434 sector_t start
, sector_t len
, void *data
)
1436 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1438 return q
&& blk_queue_discard(q
);
1441 static bool dm_table_supports_discards(struct dm_table
*t
)
1443 struct dm_target
*ti
;
1447 * Unless any target used by the table set discards_supported,
1448 * require at least one underlying device to support discards.
1449 * t->devices includes internal dm devices such as mirror logs
1450 * so we need to use iterate_devices here, which targets
1451 * supporting discard selectively must provide.
1453 while (i
< dm_table_get_num_targets(t
)) {
1454 ti
= dm_table_get_target(t
, i
++);
1456 if (!ti
->num_discard_bios
)
1459 if (ti
->discards_supported
)
1462 if (ti
->type
->iterate_devices
&&
1463 ti
->type
->iterate_devices(ti
, device_discard_capable
, NULL
))
1470 void dm_table_set_restrictions(struct dm_table
*t
, struct request_queue
*q
,
1471 struct queue_limits
*limits
)
1476 * Copy table's limits to the DM device's request_queue
1478 q
->limits
= *limits
;
1480 if (!dm_table_supports_discards(t
))
1481 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
, q
);
1483 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, q
);
1485 if (dm_table_supports_flush(t
, REQ_FLUSH
)) {
1487 if (dm_table_supports_flush(t
, REQ_FUA
))
1490 blk_queue_flush(q
, flush
);
1492 if (!dm_table_discard_zeroes_data(t
))
1493 q
->limits
.discard_zeroes_data
= 0;
1495 /* Ensure that all underlying devices are non-rotational. */
1496 if (dm_table_all_devices_attribute(t
, device_is_nonrot
))
1497 queue_flag_set_unlocked(QUEUE_FLAG_NONROT
, q
);
1499 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT
, q
);
1501 if (!dm_table_supports_write_same(t
))
1502 q
->limits
.max_write_same_sectors
= 0;
1504 if (dm_table_all_devices_attribute(t
, queue_supports_sg_merge
))
1505 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE
, q
);
1507 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE
, q
);
1509 dm_table_verify_integrity(t
);
1512 * Determine whether or not this queue's I/O timings contribute
1513 * to the entropy pool, Only request-based targets use this.
1514 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1517 if (blk_queue_add_random(q
) && dm_table_all_devices_attribute(t
, device_is_not_random
))
1518 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM
, q
);
1521 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1522 * visible to other CPUs because, once the flag is set, incoming bios
1523 * are processed by request-based dm, which refers to the queue
1525 * Until the flag set, bios are passed to bio-based dm and queued to
1526 * md->deferred where queue settings are not needed yet.
1527 * Those bios are passed to request-based dm at the resume time.
1530 if (dm_table_request_based(t
))
1531 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE
, q
);
1534 unsigned int dm_table_get_num_targets(struct dm_table
*t
)
1536 return t
->num_targets
;
1539 struct list_head
*dm_table_get_devices(struct dm_table
*t
)
1544 fmode_t
dm_table_get_mode(struct dm_table
*t
)
1548 EXPORT_SYMBOL(dm_table_get_mode
);
1556 static void suspend_targets(struct dm_table
*t
, enum suspend_mode mode
)
1558 int i
= t
->num_targets
;
1559 struct dm_target
*ti
= t
->targets
;
1564 if (ti
->type
->presuspend
)
1565 ti
->type
->presuspend(ti
);
1567 case PRESUSPEND_UNDO
:
1568 if (ti
->type
->presuspend_undo
)
1569 ti
->type
->presuspend_undo(ti
);
1572 if (ti
->type
->postsuspend
)
1573 ti
->type
->postsuspend(ti
);
1580 void dm_table_presuspend_targets(struct dm_table
*t
)
1585 suspend_targets(t
, PRESUSPEND
);
1588 void dm_table_presuspend_undo_targets(struct dm_table
*t
)
1593 suspend_targets(t
, PRESUSPEND_UNDO
);
1596 void dm_table_postsuspend_targets(struct dm_table
*t
)
1601 suspend_targets(t
, POSTSUSPEND
);
1604 int dm_table_resume_targets(struct dm_table
*t
)
1608 for (i
= 0; i
< t
->num_targets
; i
++) {
1609 struct dm_target
*ti
= t
->targets
+ i
;
1611 if (!ti
->type
->preresume
)
1614 r
= ti
->type
->preresume(ti
);
1616 DMERR("%s: %s: preresume failed, error = %d",
1617 dm_device_name(t
->md
), ti
->type
->name
, r
);
1622 for (i
= 0; i
< t
->num_targets
; i
++) {
1623 struct dm_target
*ti
= t
->targets
+ i
;
1625 if (ti
->type
->resume
)
1626 ti
->type
->resume(ti
);
1632 void dm_table_add_target_callbacks(struct dm_table
*t
, struct dm_target_callbacks
*cb
)
1634 list_add(&cb
->list
, &t
->target_callbacks
);
1636 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks
);
1638 int dm_table_any_congested(struct dm_table
*t
, int bdi_bits
)
1640 struct dm_dev_internal
*dd
;
1641 struct list_head
*devices
= dm_table_get_devices(t
);
1642 struct dm_target_callbacks
*cb
;
1645 list_for_each_entry(dd
, devices
, list
) {
1646 struct request_queue
*q
= bdev_get_queue(dd
->dm_dev
->bdev
);
1647 char b
[BDEVNAME_SIZE
];
1650 r
|= bdi_congested(&q
->backing_dev_info
, bdi_bits
);
1652 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1653 dm_device_name(t
->md
),
1654 bdevname(dd
->dm_dev
->bdev
, b
));
1657 list_for_each_entry(cb
, &t
->target_callbacks
, list
)
1658 if (cb
->congested_fn
)
1659 r
|= cb
->congested_fn(cb
, bdi_bits
);
1664 struct mapped_device
*dm_table_get_md(struct dm_table
*t
)
1668 EXPORT_SYMBOL(dm_table_get_md
);
1670 void dm_table_run_md_queue_async(struct dm_table
*t
)
1672 struct mapped_device
*md
;
1673 struct request_queue
*queue
;
1674 unsigned long flags
;
1676 if (!dm_table_request_based(t
))
1679 md
= dm_table_get_md(t
);
1680 queue
= dm_get_md_queue(md
);
1683 blk_mq_run_hw_queues(queue
, true);
1685 spin_lock_irqsave(queue
->queue_lock
, flags
);
1686 blk_run_queue_async(queue
);
1687 spin_unlock_irqrestore(queue
->queue_lock
, flags
);
1691 EXPORT_SYMBOL(dm_table_run_md_queue_async
);