]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/dm-table.c
BUG_ON() Conversion in md/dm-table.c
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm-table.c
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <asm/atomic.h>
18
19 #define MAX_DEPTH 16
20 #define NODE_SIZE L1_CACHE_BYTES
21 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
22 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
23
24 struct dm_table {
25 atomic_t holders;
26
27 /* btree table */
28 unsigned int depth;
29 unsigned int counts[MAX_DEPTH]; /* in nodes */
30 sector_t *index[MAX_DEPTH];
31
32 unsigned int num_targets;
33 unsigned int num_allocated;
34 sector_t *highs;
35 struct dm_target *targets;
36
37 /*
38 * Indicates the rw permissions for the new logical
39 * device. This should be a combination of FMODE_READ
40 * and FMODE_WRITE.
41 */
42 int mode;
43
44 /* a list of devices used by this table */
45 struct list_head devices;
46
47 /*
48 * These are optimistic limits taken from all the
49 * targets, some targets will need smaller limits.
50 */
51 struct io_restrictions limits;
52
53 /* events get handed up using this callback */
54 void (*event_fn)(void *);
55 void *event_context;
56 };
57
58 /*
59 * Similar to ceiling(log_size(n))
60 */
61 static unsigned int int_log(unsigned int n, unsigned int base)
62 {
63 int result = 0;
64
65 while (n > 1) {
66 n = dm_div_up(n, base);
67 result++;
68 }
69
70 return result;
71 }
72
73 /*
74 * Returns the minimum that is _not_ zero, unless both are zero.
75 */
76 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
77
78 /*
79 * Combine two io_restrictions, always taking the lower value.
80 */
81 static void combine_restrictions_low(struct io_restrictions *lhs,
82 struct io_restrictions *rhs)
83 {
84 lhs->max_sectors =
85 min_not_zero(lhs->max_sectors, rhs->max_sectors);
86
87 lhs->max_phys_segments =
88 min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments);
89
90 lhs->max_hw_segments =
91 min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments);
92
93 lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size);
94
95 lhs->max_segment_size =
96 min_not_zero(lhs->max_segment_size, rhs->max_segment_size);
97
98 lhs->seg_boundary_mask =
99 min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask);
100 }
101
102 /*
103 * Calculate the index of the child node of the n'th node k'th key.
104 */
105 static inline unsigned int get_child(unsigned int n, unsigned int k)
106 {
107 return (n * CHILDREN_PER_NODE) + k;
108 }
109
110 /*
111 * Return the n'th node of level l from table t.
112 */
113 static inline sector_t *get_node(struct dm_table *t,
114 unsigned int l, unsigned int n)
115 {
116 return t->index[l] + (n * KEYS_PER_NODE);
117 }
118
119 /*
120 * Return the highest key that you could lookup from the n'th
121 * node on level l of the btree.
122 */
123 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
124 {
125 for (; l < t->depth - 1; l++)
126 n = get_child(n, CHILDREN_PER_NODE - 1);
127
128 if (n >= t->counts[l])
129 return (sector_t) - 1;
130
131 return get_node(t, l, n)[KEYS_PER_NODE - 1];
132 }
133
134 /*
135 * Fills in a level of the btree based on the highs of the level
136 * below it.
137 */
138 static int setup_btree_index(unsigned int l, struct dm_table *t)
139 {
140 unsigned int n, k;
141 sector_t *node;
142
143 for (n = 0U; n < t->counts[l]; n++) {
144 node = get_node(t, l, n);
145
146 for (k = 0U; k < KEYS_PER_NODE; k++)
147 node[k] = high(t, l + 1, get_child(n, k));
148 }
149
150 return 0;
151 }
152
153 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
154 {
155 unsigned long size;
156 void *addr;
157
158 /*
159 * Check that we're not going to overflow.
160 */
161 if (nmemb > (ULONG_MAX / elem_size))
162 return NULL;
163
164 size = nmemb * elem_size;
165 addr = vmalloc(size);
166 if (addr)
167 memset(addr, 0, size);
168
169 return addr;
170 }
171
172 /*
173 * highs, and targets are managed as dynamic arrays during a
174 * table load.
175 */
176 static int alloc_targets(struct dm_table *t, unsigned int num)
177 {
178 sector_t *n_highs;
179 struct dm_target *n_targets;
180 int n = t->num_targets;
181
182 /*
183 * Allocate both the target array and offset array at once.
184 */
185 n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
186 sizeof(sector_t));
187 if (!n_highs)
188 return -ENOMEM;
189
190 n_targets = (struct dm_target *) (n_highs + num);
191
192 if (n) {
193 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
194 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
195 }
196
197 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
198 vfree(t->highs);
199
200 t->num_allocated = num;
201 t->highs = n_highs;
202 t->targets = n_targets;
203
204 return 0;
205 }
206
207 int dm_table_create(struct dm_table **result, int mode, unsigned num_targets)
208 {
209 struct dm_table *t = kmalloc(sizeof(*t), GFP_KERNEL);
210
211 if (!t)
212 return -ENOMEM;
213
214 memset(t, 0, sizeof(*t));
215 INIT_LIST_HEAD(&t->devices);
216 atomic_set(&t->holders, 1);
217
218 if (!num_targets)
219 num_targets = KEYS_PER_NODE;
220
221 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
222
223 if (alloc_targets(t, num_targets)) {
224 kfree(t);
225 t = NULL;
226 return -ENOMEM;
227 }
228
229 t->mode = mode;
230 *result = t;
231 return 0;
232 }
233
234 static void free_devices(struct list_head *devices)
235 {
236 struct list_head *tmp, *next;
237
238 for (tmp = devices->next; tmp != devices; tmp = next) {
239 struct dm_dev *dd = list_entry(tmp, struct dm_dev, list);
240 next = tmp->next;
241 kfree(dd);
242 }
243 }
244
245 static void table_destroy(struct dm_table *t)
246 {
247 unsigned int i;
248
249 /* free the indexes (see dm_table_complete) */
250 if (t->depth >= 2)
251 vfree(t->index[t->depth - 2]);
252
253 /* free the targets */
254 for (i = 0; i < t->num_targets; i++) {
255 struct dm_target *tgt = t->targets + i;
256
257 if (tgt->type->dtr)
258 tgt->type->dtr(tgt);
259
260 dm_put_target_type(tgt->type);
261 }
262
263 vfree(t->highs);
264
265 /* free the device list */
266 if (t->devices.next != &t->devices) {
267 DMWARN("devices still present during destroy: "
268 "dm_table_remove_device calls missing");
269
270 free_devices(&t->devices);
271 }
272
273 kfree(t);
274 }
275
276 void dm_table_get(struct dm_table *t)
277 {
278 atomic_inc(&t->holders);
279 }
280
281 void dm_table_put(struct dm_table *t)
282 {
283 if (!t)
284 return;
285
286 if (atomic_dec_and_test(&t->holders))
287 table_destroy(t);
288 }
289
290 /*
291 * Checks to see if we need to extend highs or targets.
292 */
293 static inline int check_space(struct dm_table *t)
294 {
295 if (t->num_targets >= t->num_allocated)
296 return alloc_targets(t, t->num_allocated * 2);
297
298 return 0;
299 }
300
301 /*
302 * Convert a device path to a dev_t.
303 */
304 static int lookup_device(const char *path, dev_t *dev)
305 {
306 int r;
307 struct nameidata nd;
308 struct inode *inode;
309
310 if ((r = path_lookup(path, LOOKUP_FOLLOW, &nd)))
311 return r;
312
313 inode = nd.dentry->d_inode;
314 if (!inode) {
315 r = -ENOENT;
316 goto out;
317 }
318
319 if (!S_ISBLK(inode->i_mode)) {
320 r = -ENOTBLK;
321 goto out;
322 }
323
324 *dev = inode->i_rdev;
325
326 out:
327 path_release(&nd);
328 return r;
329 }
330
331 /*
332 * See if we've already got a device in the list.
333 */
334 static struct dm_dev *find_device(struct list_head *l, dev_t dev)
335 {
336 struct dm_dev *dd;
337
338 list_for_each_entry (dd, l, list)
339 if (dd->bdev->bd_dev == dev)
340 return dd;
341
342 return NULL;
343 }
344
345 /*
346 * Open a device so we can use it as a map destination.
347 */
348 static int open_dev(struct dm_dev *d, dev_t dev)
349 {
350 static char *_claim_ptr = "I belong to device-mapper";
351 struct block_device *bdev;
352
353 int r;
354
355 BUG_ON(d->bdev);
356
357 bdev = open_by_devnum(dev, d->mode);
358 if (IS_ERR(bdev))
359 return PTR_ERR(bdev);
360 r = bd_claim(bdev, _claim_ptr);
361 if (r)
362 blkdev_put(bdev);
363 else
364 d->bdev = bdev;
365 return r;
366 }
367
368 /*
369 * Close a device that we've been using.
370 */
371 static void close_dev(struct dm_dev *d)
372 {
373 if (!d->bdev)
374 return;
375
376 bd_release(d->bdev);
377 blkdev_put(d->bdev);
378 d->bdev = NULL;
379 }
380
381 /*
382 * If possible (ie. blk_size[major] is set), this checks an area
383 * of a destination device is valid.
384 */
385 static int check_device_area(struct dm_dev *dd, sector_t start, sector_t len)
386 {
387 sector_t dev_size;
388 dev_size = dd->bdev->bd_inode->i_size >> SECTOR_SHIFT;
389 return ((start < dev_size) && (len <= (dev_size - start)));
390 }
391
392 /*
393 * This upgrades the mode on an already open dm_dev. Being
394 * careful to leave things as they were if we fail to reopen the
395 * device.
396 */
397 static int upgrade_mode(struct dm_dev *dd, int new_mode)
398 {
399 int r;
400 struct dm_dev dd_copy;
401 dev_t dev = dd->bdev->bd_dev;
402
403 dd_copy = *dd;
404
405 dd->mode |= new_mode;
406 dd->bdev = NULL;
407 r = open_dev(dd, dev);
408 if (!r)
409 close_dev(&dd_copy);
410 else
411 *dd = dd_copy;
412
413 return r;
414 }
415
416 /*
417 * Add a device to the list, or just increment the usage count if
418 * it's already present.
419 */
420 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
421 const char *path, sector_t start, sector_t len,
422 int mode, struct dm_dev **result)
423 {
424 int r;
425 dev_t dev;
426 struct dm_dev *dd;
427 unsigned int major, minor;
428
429 BUG_ON(!t);
430
431 if (sscanf(path, "%u:%u", &major, &minor) == 2) {
432 /* Extract the major/minor numbers */
433 dev = MKDEV(major, minor);
434 if (MAJOR(dev) != major || MINOR(dev) != minor)
435 return -EOVERFLOW;
436 } else {
437 /* convert the path to a device */
438 if ((r = lookup_device(path, &dev)))
439 return r;
440 }
441
442 dd = find_device(&t->devices, dev);
443 if (!dd) {
444 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
445 if (!dd)
446 return -ENOMEM;
447
448 dd->mode = mode;
449 dd->bdev = NULL;
450
451 if ((r = open_dev(dd, dev))) {
452 kfree(dd);
453 return r;
454 }
455
456 format_dev_t(dd->name, dev);
457
458 atomic_set(&dd->count, 0);
459 list_add(&dd->list, &t->devices);
460
461 } else if (dd->mode != (mode | dd->mode)) {
462 r = upgrade_mode(dd, mode);
463 if (r)
464 return r;
465 }
466 atomic_inc(&dd->count);
467
468 if (!check_device_area(dd, start, len)) {
469 DMWARN("device %s too small for target", path);
470 dm_put_device(ti, dd);
471 return -EINVAL;
472 }
473
474 *result = dd;
475
476 return 0;
477 }
478
479
480 int dm_get_device(struct dm_target *ti, const char *path, sector_t start,
481 sector_t len, int mode, struct dm_dev **result)
482 {
483 int r = __table_get_device(ti->table, ti, path,
484 start, len, mode, result);
485 if (!r) {
486 request_queue_t *q = bdev_get_queue((*result)->bdev);
487 struct io_restrictions *rs = &ti->limits;
488
489 /*
490 * Combine the device limits low.
491 *
492 * FIXME: if we move an io_restriction struct
493 * into q this would just be a call to
494 * combine_restrictions_low()
495 */
496 rs->max_sectors =
497 min_not_zero(rs->max_sectors, q->max_sectors);
498
499 /* FIXME: Device-Mapper on top of RAID-0 breaks because DM
500 * currently doesn't honor MD's merge_bvec_fn routine.
501 * In this case, we'll force DM to use PAGE_SIZE or
502 * smaller I/O, just to be safe. A better fix is in the
503 * works, but add this for the time being so it will at
504 * least operate correctly.
505 */
506 if (q->merge_bvec_fn)
507 rs->max_sectors =
508 min_not_zero(rs->max_sectors,
509 (unsigned int) (PAGE_SIZE >> 9));
510
511 rs->max_phys_segments =
512 min_not_zero(rs->max_phys_segments,
513 q->max_phys_segments);
514
515 rs->max_hw_segments =
516 min_not_zero(rs->max_hw_segments, q->max_hw_segments);
517
518 rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size);
519
520 rs->max_segment_size =
521 min_not_zero(rs->max_segment_size, q->max_segment_size);
522
523 rs->seg_boundary_mask =
524 min_not_zero(rs->seg_boundary_mask,
525 q->seg_boundary_mask);
526 }
527
528 return r;
529 }
530
531 /*
532 * Decrement a devices use count and remove it if necessary.
533 */
534 void dm_put_device(struct dm_target *ti, struct dm_dev *dd)
535 {
536 if (atomic_dec_and_test(&dd->count)) {
537 close_dev(dd);
538 list_del(&dd->list);
539 kfree(dd);
540 }
541 }
542
543 /*
544 * Checks to see if the target joins onto the end of the table.
545 */
546 static int adjoin(struct dm_table *table, struct dm_target *ti)
547 {
548 struct dm_target *prev;
549
550 if (!table->num_targets)
551 return !ti->begin;
552
553 prev = &table->targets[table->num_targets - 1];
554 return (ti->begin == (prev->begin + prev->len));
555 }
556
557 /*
558 * Used to dynamically allocate the arg array.
559 */
560 static char **realloc_argv(unsigned *array_size, char **old_argv)
561 {
562 char **argv;
563 unsigned new_size;
564
565 new_size = *array_size ? *array_size * 2 : 64;
566 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
567 if (argv) {
568 memcpy(argv, old_argv, *array_size * sizeof(*argv));
569 *array_size = new_size;
570 }
571
572 kfree(old_argv);
573 return argv;
574 }
575
576 /*
577 * Destructively splits up the argument list to pass to ctr.
578 */
579 int dm_split_args(int *argc, char ***argvp, char *input)
580 {
581 char *start, *end = input, *out, **argv = NULL;
582 unsigned array_size = 0;
583
584 *argc = 0;
585 argv = realloc_argv(&array_size, argv);
586 if (!argv)
587 return -ENOMEM;
588
589 while (1) {
590 start = end;
591
592 /* Skip whitespace */
593 while (*start && isspace(*start))
594 start++;
595
596 if (!*start)
597 break; /* success, we hit the end */
598
599 /* 'out' is used to remove any back-quotes */
600 end = out = start;
601 while (*end) {
602 /* Everything apart from '\0' can be quoted */
603 if (*end == '\\' && *(end + 1)) {
604 *out++ = *(end + 1);
605 end += 2;
606 continue;
607 }
608
609 if (isspace(*end))
610 break; /* end of token */
611
612 *out++ = *end++;
613 }
614
615 /* have we already filled the array ? */
616 if ((*argc + 1) > array_size) {
617 argv = realloc_argv(&array_size, argv);
618 if (!argv)
619 return -ENOMEM;
620 }
621
622 /* we know this is whitespace */
623 if (*end)
624 end++;
625
626 /* terminate the string and put it in the array */
627 *out = '\0';
628 argv[*argc] = start;
629 (*argc)++;
630 }
631
632 *argvp = argv;
633 return 0;
634 }
635
636 static void check_for_valid_limits(struct io_restrictions *rs)
637 {
638 if (!rs->max_sectors)
639 rs->max_sectors = SAFE_MAX_SECTORS;
640 if (!rs->max_phys_segments)
641 rs->max_phys_segments = MAX_PHYS_SEGMENTS;
642 if (!rs->max_hw_segments)
643 rs->max_hw_segments = MAX_HW_SEGMENTS;
644 if (!rs->hardsect_size)
645 rs->hardsect_size = 1 << SECTOR_SHIFT;
646 if (!rs->max_segment_size)
647 rs->max_segment_size = MAX_SEGMENT_SIZE;
648 if (!rs->seg_boundary_mask)
649 rs->seg_boundary_mask = -1;
650 }
651
652 int dm_table_add_target(struct dm_table *t, const char *type,
653 sector_t start, sector_t len, char *params)
654 {
655 int r = -EINVAL, argc;
656 char **argv;
657 struct dm_target *tgt;
658
659 if ((r = check_space(t)))
660 return r;
661
662 tgt = t->targets + t->num_targets;
663 memset(tgt, 0, sizeof(*tgt));
664
665 if (!len) {
666 tgt->error = "zero-length target";
667 DMERR("%s", tgt->error);
668 return -EINVAL;
669 }
670
671 tgt->type = dm_get_target_type(type);
672 if (!tgt->type) {
673 tgt->error = "unknown target type";
674 DMERR("%s", tgt->error);
675 return -EINVAL;
676 }
677
678 tgt->table = t;
679 tgt->begin = start;
680 tgt->len = len;
681 tgt->error = "Unknown error";
682
683 /*
684 * Does this target adjoin the previous one ?
685 */
686 if (!adjoin(t, tgt)) {
687 tgt->error = "Gap in table";
688 r = -EINVAL;
689 goto bad;
690 }
691
692 r = dm_split_args(&argc, &argv, params);
693 if (r) {
694 tgt->error = "couldn't split parameters (insufficient memory)";
695 goto bad;
696 }
697
698 r = tgt->type->ctr(tgt, argc, argv);
699 kfree(argv);
700 if (r)
701 goto bad;
702
703 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
704
705 /* FIXME: the plan is to combine high here and then have
706 * the merge fn apply the target level restrictions. */
707 combine_restrictions_low(&t->limits, &tgt->limits);
708 return 0;
709
710 bad:
711 DMERR("%s", tgt->error);
712 dm_put_target_type(tgt->type);
713 return r;
714 }
715
716 static int setup_indexes(struct dm_table *t)
717 {
718 int i;
719 unsigned int total = 0;
720 sector_t *indexes;
721
722 /* allocate the space for *all* the indexes */
723 for (i = t->depth - 2; i >= 0; i--) {
724 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
725 total += t->counts[i];
726 }
727
728 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
729 if (!indexes)
730 return -ENOMEM;
731
732 /* set up internal nodes, bottom-up */
733 for (i = t->depth - 2, total = 0; i >= 0; i--) {
734 t->index[i] = indexes;
735 indexes += (KEYS_PER_NODE * t->counts[i]);
736 setup_btree_index(i, t);
737 }
738
739 return 0;
740 }
741
742 /*
743 * Builds the btree to index the map.
744 */
745 int dm_table_complete(struct dm_table *t)
746 {
747 int r = 0;
748 unsigned int leaf_nodes;
749
750 check_for_valid_limits(&t->limits);
751
752 /* how many indexes will the btree have ? */
753 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
754 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
755
756 /* leaf layer has already been set up */
757 t->counts[t->depth - 1] = leaf_nodes;
758 t->index[t->depth - 1] = t->highs;
759
760 if (t->depth >= 2)
761 r = setup_indexes(t);
762
763 return r;
764 }
765
766 static DECLARE_MUTEX(_event_lock);
767 void dm_table_event_callback(struct dm_table *t,
768 void (*fn)(void *), void *context)
769 {
770 down(&_event_lock);
771 t->event_fn = fn;
772 t->event_context = context;
773 up(&_event_lock);
774 }
775
776 void dm_table_event(struct dm_table *t)
777 {
778 /*
779 * You can no longer call dm_table_event() from interrupt
780 * context, use a bottom half instead.
781 */
782 BUG_ON(in_interrupt());
783
784 down(&_event_lock);
785 if (t->event_fn)
786 t->event_fn(t->event_context);
787 up(&_event_lock);
788 }
789
790 sector_t dm_table_get_size(struct dm_table *t)
791 {
792 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
793 }
794
795 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
796 {
797 if (index > t->num_targets)
798 return NULL;
799
800 return t->targets + index;
801 }
802
803 /*
804 * Search the btree for the correct target.
805 */
806 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
807 {
808 unsigned int l, n = 0, k = 0;
809 sector_t *node;
810
811 for (l = 0; l < t->depth; l++) {
812 n = get_child(n, k);
813 node = get_node(t, l, n);
814
815 for (k = 0; k < KEYS_PER_NODE; k++)
816 if (node[k] >= sector)
817 break;
818 }
819
820 return &t->targets[(KEYS_PER_NODE * n) + k];
821 }
822
823 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q)
824 {
825 /*
826 * Make sure we obey the optimistic sub devices
827 * restrictions.
828 */
829 blk_queue_max_sectors(q, t->limits.max_sectors);
830 q->max_phys_segments = t->limits.max_phys_segments;
831 q->max_hw_segments = t->limits.max_hw_segments;
832 q->hardsect_size = t->limits.hardsect_size;
833 q->max_segment_size = t->limits.max_segment_size;
834 q->seg_boundary_mask = t->limits.seg_boundary_mask;
835 }
836
837 unsigned int dm_table_get_num_targets(struct dm_table *t)
838 {
839 return t->num_targets;
840 }
841
842 struct list_head *dm_table_get_devices(struct dm_table *t)
843 {
844 return &t->devices;
845 }
846
847 int dm_table_get_mode(struct dm_table *t)
848 {
849 return t->mode;
850 }
851
852 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
853 {
854 int i = t->num_targets;
855 struct dm_target *ti = t->targets;
856
857 while (i--) {
858 if (postsuspend) {
859 if (ti->type->postsuspend)
860 ti->type->postsuspend(ti);
861 } else if (ti->type->presuspend)
862 ti->type->presuspend(ti);
863
864 ti++;
865 }
866 }
867
868 void dm_table_presuspend_targets(struct dm_table *t)
869 {
870 if (!t)
871 return;
872
873 return suspend_targets(t, 0);
874 }
875
876 void dm_table_postsuspend_targets(struct dm_table *t)
877 {
878 if (!t)
879 return;
880
881 return suspend_targets(t, 1);
882 }
883
884 void dm_table_resume_targets(struct dm_table *t)
885 {
886 int i;
887
888 for (i = 0; i < t->num_targets; i++) {
889 struct dm_target *ti = t->targets + i;
890
891 if (ti->type->resume)
892 ti->type->resume(ti);
893 }
894 }
895
896 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
897 {
898 struct list_head *d, *devices;
899 int r = 0;
900
901 devices = dm_table_get_devices(t);
902 for (d = devices->next; d != devices; d = d->next) {
903 struct dm_dev *dd = list_entry(d, struct dm_dev, list);
904 request_queue_t *q = bdev_get_queue(dd->bdev);
905 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
906 }
907
908 return r;
909 }
910
911 void dm_table_unplug_all(struct dm_table *t)
912 {
913 struct list_head *d, *devices = dm_table_get_devices(t);
914
915 for (d = devices->next; d != devices; d = d->next) {
916 struct dm_dev *dd = list_entry(d, struct dm_dev, list);
917 request_queue_t *q = bdev_get_queue(dd->bdev);
918
919 if (q->unplug_fn)
920 q->unplug_fn(q);
921 }
922 }
923
924 int dm_table_flush_all(struct dm_table *t)
925 {
926 struct list_head *d, *devices = dm_table_get_devices(t);
927 int ret = 0;
928
929 for (d = devices->next; d != devices; d = d->next) {
930 struct dm_dev *dd = list_entry(d, struct dm_dev, list);
931 request_queue_t *q = bdev_get_queue(dd->bdev);
932 int err;
933
934 if (!q->issue_flush_fn)
935 err = -EOPNOTSUPP;
936 else
937 err = q->issue_flush_fn(q, dd->bdev->bd_disk, NULL);
938
939 if (!ret)
940 ret = err;
941 }
942
943 return ret;
944 }
945
946 EXPORT_SYMBOL(dm_vcalloc);
947 EXPORT_SYMBOL(dm_get_device);
948 EXPORT_SYMBOL(dm_put_device);
949 EXPORT_SYMBOL(dm_table_event);
950 EXPORT_SYMBOL(dm_table_get_size);
951 EXPORT_SYMBOL(dm_table_get_mode);
952 EXPORT_SYMBOL(dm_table_put);
953 EXPORT_SYMBOL(dm_table_get);
954 EXPORT_SYMBOL(dm_table_unplug_all);
955 EXPORT_SYMBOL(dm_table_flush_all);