]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/md/dm-thin-metadata.c
Merge remote-tracking branches 'asoc/topic/cs35l32', 'asoc/topic/cs35l34', 'asoc...
[mirror_ubuntu-jammy-kernel.git] / drivers / md / dm-thin-metadata.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat, Inc.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16
17 /*--------------------------------------------------------------------------
18 * As far as the metadata goes, there is:
19 *
20 * - A superblock in block zero, taking up fewer than 512 bytes for
21 * atomic writes.
22 *
23 * - A space map managing the metadata blocks.
24 *
25 * - A space map managing the data blocks.
26 *
27 * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28 *
29 * - A hierarchical btree, with 2 levels which effectively maps (thin
30 * dev id, virtual block) -> block_time. Block time is a 64-bit
31 * field holding the time in the low 24 bits, and block in the top 48
32 * bits.
33 *
34 * BTrees consist solely of btree_nodes, that fill a block. Some are
35 * internal nodes, as such their values are a __le64 pointing to other
36 * nodes. Leaf nodes can store data of any reasonable size (ie. much
37 * smaller than the block size). The nodes consist of the header,
38 * followed by an array of keys, followed by an array of values. We have
39 * to binary search on the keys so they're all held together to help the
40 * cpu cache.
41 *
42 * Space maps have 2 btrees:
43 *
44 * - One maps a uint64_t onto a struct index_entry. Which points to a
45 * bitmap block, and has some details about how many free entries there
46 * are etc.
47 *
48 * - The bitmap blocks have a header (for the checksum). Then the rest
49 * of the block is pairs of bits. With the meaning being:
50 *
51 * 0 - ref count is 0
52 * 1 - ref count is 1
53 * 2 - ref count is 2
54 * 3 - ref count is higher than 2
55 *
56 * - If the count is higher than 2 then the ref count is entered in a
57 * second btree that directly maps the block_address to a uint32_t ref
58 * count.
59 *
60 * The space map metadata variant doesn't have a bitmaps btree. Instead
61 * it has one single blocks worth of index_entries. This avoids
62 * recursive issues with the bitmap btree needing to allocate space in
63 * order to insert. With a small data block size such as 64k the
64 * metadata support data devices that are hundreds of terrabytes.
65 *
66 * The space maps allocate space linearly from front to back. Space that
67 * is freed in a transaction is never recycled within that transaction.
68 * To try and avoid fragmenting _free_ space the allocator always goes
69 * back and fills in gaps.
70 *
71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72 * from the block manager.
73 *--------------------------------------------------------------------------*/
74
75 #define DM_MSG_PREFIX "thin metadata"
76
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define SECTOR_TO_BLOCK_SHIFT 3
81
82 /*
83 * For btree insert:
84 * 3 for btree insert +
85 * 2 for btree lookup used within space map
86 * For btree remove:
87 * 2 for shadow spine +
88 * 4 for rebalance 3 child node
89 */
90 #define THIN_MAX_CONCURRENT_LOCKS 6
91
92 /* This should be plenty */
93 #define SPACE_MAP_ROOT_SIZE 128
94
95 /*
96 * Little endian on-disk superblock and device details.
97 */
98 struct thin_disk_superblock {
99 __le32 csum; /* Checksum of superblock except for this field. */
100 __le32 flags;
101 __le64 blocknr; /* This block number, dm_block_t. */
102
103 __u8 uuid[16];
104 __le64 magic;
105 __le32 version;
106 __le32 time;
107
108 __le64 trans_id;
109
110 /*
111 * Root held by userspace transactions.
112 */
113 __le64 held_root;
114
115 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
117
118 /*
119 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
120 */
121 __le64 data_mapping_root;
122
123 /*
124 * Device detail root mapping dev_id -> device_details
125 */
126 __le64 device_details_root;
127
128 __le32 data_block_size; /* In 512-byte sectors. */
129
130 __le32 metadata_block_size; /* In 512-byte sectors. */
131 __le64 metadata_nr_blocks;
132
133 __le32 compat_flags;
134 __le32 compat_ro_flags;
135 __le32 incompat_flags;
136 } __packed;
137
138 struct disk_device_details {
139 __le64 mapped_blocks;
140 __le64 transaction_id; /* When created. */
141 __le32 creation_time;
142 __le32 snapshotted_time;
143 } __packed;
144
145 struct dm_pool_metadata {
146 struct hlist_node hash;
147
148 struct block_device *bdev;
149 struct dm_block_manager *bm;
150 struct dm_space_map *metadata_sm;
151 struct dm_space_map *data_sm;
152 struct dm_transaction_manager *tm;
153 struct dm_transaction_manager *nb_tm;
154
155 /*
156 * Two-level btree.
157 * First level holds thin_dev_t.
158 * Second level holds mappings.
159 */
160 struct dm_btree_info info;
161
162 /*
163 * Non-blocking version of the above.
164 */
165 struct dm_btree_info nb_info;
166
167 /*
168 * Just the top level for deleting whole devices.
169 */
170 struct dm_btree_info tl_info;
171
172 /*
173 * Just the bottom level for creating new devices.
174 */
175 struct dm_btree_info bl_info;
176
177 /*
178 * Describes the device details btree.
179 */
180 struct dm_btree_info details_info;
181
182 struct rw_semaphore root_lock;
183 uint32_t time;
184 dm_block_t root;
185 dm_block_t details_root;
186 struct list_head thin_devices;
187 uint64_t trans_id;
188 unsigned long flags;
189 sector_t data_block_size;
190
191 /*
192 * Set if a transaction has to be aborted but the attempt to roll back
193 * to the previous (good) transaction failed. The only pool metadata
194 * operation possible in this state is the closing of the device.
195 */
196 bool fail_io:1;
197
198 /*
199 * Reading the space map roots can fail, so we read it into these
200 * buffers before the superblock is locked and updated.
201 */
202 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
203 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
204 };
205
206 struct dm_thin_device {
207 struct list_head list;
208 struct dm_pool_metadata *pmd;
209 dm_thin_id id;
210
211 int open_count;
212 bool changed:1;
213 bool aborted_with_changes:1;
214 uint64_t mapped_blocks;
215 uint64_t transaction_id;
216 uint32_t creation_time;
217 uint32_t snapshotted_time;
218 };
219
220 /*----------------------------------------------------------------
221 * superblock validator
222 *--------------------------------------------------------------*/
223
224 #define SUPERBLOCK_CSUM_XOR 160774
225
226 static void sb_prepare_for_write(struct dm_block_validator *v,
227 struct dm_block *b,
228 size_t block_size)
229 {
230 struct thin_disk_superblock *disk_super = dm_block_data(b);
231
232 disk_super->blocknr = cpu_to_le64(dm_block_location(b));
233 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
234 block_size - sizeof(__le32),
235 SUPERBLOCK_CSUM_XOR));
236 }
237
238 static int sb_check(struct dm_block_validator *v,
239 struct dm_block *b,
240 size_t block_size)
241 {
242 struct thin_disk_superblock *disk_super = dm_block_data(b);
243 __le32 csum_le;
244
245 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
246 DMERR("sb_check failed: blocknr %llu: "
247 "wanted %llu", le64_to_cpu(disk_super->blocknr),
248 (unsigned long long)dm_block_location(b));
249 return -ENOTBLK;
250 }
251
252 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
253 DMERR("sb_check failed: magic %llu: "
254 "wanted %llu", le64_to_cpu(disk_super->magic),
255 (unsigned long long)THIN_SUPERBLOCK_MAGIC);
256 return -EILSEQ;
257 }
258
259 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
260 block_size - sizeof(__le32),
261 SUPERBLOCK_CSUM_XOR));
262 if (csum_le != disk_super->csum) {
263 DMERR("sb_check failed: csum %u: wanted %u",
264 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
265 return -EILSEQ;
266 }
267
268 return 0;
269 }
270
271 static struct dm_block_validator sb_validator = {
272 .name = "superblock",
273 .prepare_for_write = sb_prepare_for_write,
274 .check = sb_check
275 };
276
277 /*----------------------------------------------------------------
278 * Methods for the btree value types
279 *--------------------------------------------------------------*/
280
281 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
282 {
283 return (b << 24) | t;
284 }
285
286 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
287 {
288 *b = v >> 24;
289 *t = v & ((1 << 24) - 1);
290 }
291
292 static void data_block_inc(void *context, const void *value_le)
293 {
294 struct dm_space_map *sm = context;
295 __le64 v_le;
296 uint64_t b;
297 uint32_t t;
298
299 memcpy(&v_le, value_le, sizeof(v_le));
300 unpack_block_time(le64_to_cpu(v_le), &b, &t);
301 dm_sm_inc_block(sm, b);
302 }
303
304 static void data_block_dec(void *context, const void *value_le)
305 {
306 struct dm_space_map *sm = context;
307 __le64 v_le;
308 uint64_t b;
309 uint32_t t;
310
311 memcpy(&v_le, value_le, sizeof(v_le));
312 unpack_block_time(le64_to_cpu(v_le), &b, &t);
313 dm_sm_dec_block(sm, b);
314 }
315
316 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
317 {
318 __le64 v1_le, v2_le;
319 uint64_t b1, b2;
320 uint32_t t;
321
322 memcpy(&v1_le, value1_le, sizeof(v1_le));
323 memcpy(&v2_le, value2_le, sizeof(v2_le));
324 unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
325 unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
326
327 return b1 == b2;
328 }
329
330 static void subtree_inc(void *context, const void *value)
331 {
332 struct dm_btree_info *info = context;
333 __le64 root_le;
334 uint64_t root;
335
336 memcpy(&root_le, value, sizeof(root_le));
337 root = le64_to_cpu(root_le);
338 dm_tm_inc(info->tm, root);
339 }
340
341 static void subtree_dec(void *context, const void *value)
342 {
343 struct dm_btree_info *info = context;
344 __le64 root_le;
345 uint64_t root;
346
347 memcpy(&root_le, value, sizeof(root_le));
348 root = le64_to_cpu(root_le);
349 if (dm_btree_del(info, root))
350 DMERR("btree delete failed");
351 }
352
353 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
354 {
355 __le64 v1_le, v2_le;
356 memcpy(&v1_le, value1_le, sizeof(v1_le));
357 memcpy(&v2_le, value2_le, sizeof(v2_le));
358
359 return v1_le == v2_le;
360 }
361
362 /*----------------------------------------------------------------*/
363
364 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
365 struct dm_block **sblock)
366 {
367 return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
368 &sb_validator, sblock);
369 }
370
371 static int superblock_lock(struct dm_pool_metadata *pmd,
372 struct dm_block **sblock)
373 {
374 return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
375 &sb_validator, sblock);
376 }
377
378 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
379 {
380 int r;
381 unsigned i;
382 struct dm_block *b;
383 __le64 *data_le, zero = cpu_to_le64(0);
384 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
385
386 /*
387 * We can't use a validator here - it may be all zeroes.
388 */
389 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
390 if (r)
391 return r;
392
393 data_le = dm_block_data(b);
394 *result = 1;
395 for (i = 0; i < block_size; i++) {
396 if (data_le[i] != zero) {
397 *result = 0;
398 break;
399 }
400 }
401
402 dm_bm_unlock(b);
403
404 return 0;
405 }
406
407 static void __setup_btree_details(struct dm_pool_metadata *pmd)
408 {
409 pmd->info.tm = pmd->tm;
410 pmd->info.levels = 2;
411 pmd->info.value_type.context = pmd->data_sm;
412 pmd->info.value_type.size = sizeof(__le64);
413 pmd->info.value_type.inc = data_block_inc;
414 pmd->info.value_type.dec = data_block_dec;
415 pmd->info.value_type.equal = data_block_equal;
416
417 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
418 pmd->nb_info.tm = pmd->nb_tm;
419
420 pmd->tl_info.tm = pmd->tm;
421 pmd->tl_info.levels = 1;
422 pmd->tl_info.value_type.context = &pmd->bl_info;
423 pmd->tl_info.value_type.size = sizeof(__le64);
424 pmd->tl_info.value_type.inc = subtree_inc;
425 pmd->tl_info.value_type.dec = subtree_dec;
426 pmd->tl_info.value_type.equal = subtree_equal;
427
428 pmd->bl_info.tm = pmd->tm;
429 pmd->bl_info.levels = 1;
430 pmd->bl_info.value_type.context = pmd->data_sm;
431 pmd->bl_info.value_type.size = sizeof(__le64);
432 pmd->bl_info.value_type.inc = data_block_inc;
433 pmd->bl_info.value_type.dec = data_block_dec;
434 pmd->bl_info.value_type.equal = data_block_equal;
435
436 pmd->details_info.tm = pmd->tm;
437 pmd->details_info.levels = 1;
438 pmd->details_info.value_type.context = NULL;
439 pmd->details_info.value_type.size = sizeof(struct disk_device_details);
440 pmd->details_info.value_type.inc = NULL;
441 pmd->details_info.value_type.dec = NULL;
442 pmd->details_info.value_type.equal = NULL;
443 }
444
445 static int save_sm_roots(struct dm_pool_metadata *pmd)
446 {
447 int r;
448 size_t len;
449
450 r = dm_sm_root_size(pmd->metadata_sm, &len);
451 if (r < 0)
452 return r;
453
454 r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
455 if (r < 0)
456 return r;
457
458 r = dm_sm_root_size(pmd->data_sm, &len);
459 if (r < 0)
460 return r;
461
462 return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
463 }
464
465 static void copy_sm_roots(struct dm_pool_metadata *pmd,
466 struct thin_disk_superblock *disk)
467 {
468 memcpy(&disk->metadata_space_map_root,
469 &pmd->metadata_space_map_root,
470 sizeof(pmd->metadata_space_map_root));
471
472 memcpy(&disk->data_space_map_root,
473 &pmd->data_space_map_root,
474 sizeof(pmd->data_space_map_root));
475 }
476
477 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
478 {
479 int r;
480 struct dm_block *sblock;
481 struct thin_disk_superblock *disk_super;
482 sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
483
484 if (bdev_size > THIN_METADATA_MAX_SECTORS)
485 bdev_size = THIN_METADATA_MAX_SECTORS;
486
487 r = dm_sm_commit(pmd->data_sm);
488 if (r < 0)
489 return r;
490
491 r = dm_tm_pre_commit(pmd->tm);
492 if (r < 0)
493 return r;
494
495 r = save_sm_roots(pmd);
496 if (r < 0)
497 return r;
498
499 r = superblock_lock_zero(pmd, &sblock);
500 if (r)
501 return r;
502
503 disk_super = dm_block_data(sblock);
504 disk_super->flags = 0;
505 memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
506 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
507 disk_super->version = cpu_to_le32(THIN_VERSION);
508 disk_super->time = 0;
509 disk_super->trans_id = 0;
510 disk_super->held_root = 0;
511
512 copy_sm_roots(pmd, disk_super);
513
514 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
515 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
516 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
517 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
518 disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
519
520 return dm_tm_commit(pmd->tm, sblock);
521 }
522
523 static int __format_metadata(struct dm_pool_metadata *pmd)
524 {
525 int r;
526
527 r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
528 &pmd->tm, &pmd->metadata_sm);
529 if (r < 0) {
530 DMERR("tm_create_with_sm failed");
531 return r;
532 }
533
534 pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
535 if (IS_ERR(pmd->data_sm)) {
536 DMERR("sm_disk_create failed");
537 r = PTR_ERR(pmd->data_sm);
538 goto bad_cleanup_tm;
539 }
540
541 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
542 if (!pmd->nb_tm) {
543 DMERR("could not create non-blocking clone tm");
544 r = -ENOMEM;
545 goto bad_cleanup_data_sm;
546 }
547
548 __setup_btree_details(pmd);
549
550 r = dm_btree_empty(&pmd->info, &pmd->root);
551 if (r < 0)
552 goto bad_cleanup_nb_tm;
553
554 r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
555 if (r < 0) {
556 DMERR("couldn't create devices root");
557 goto bad_cleanup_nb_tm;
558 }
559
560 r = __write_initial_superblock(pmd);
561 if (r)
562 goto bad_cleanup_nb_tm;
563
564 return 0;
565
566 bad_cleanup_nb_tm:
567 dm_tm_destroy(pmd->nb_tm);
568 bad_cleanup_data_sm:
569 dm_sm_destroy(pmd->data_sm);
570 bad_cleanup_tm:
571 dm_tm_destroy(pmd->tm);
572 dm_sm_destroy(pmd->metadata_sm);
573
574 return r;
575 }
576
577 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
578 struct dm_pool_metadata *pmd)
579 {
580 uint32_t features;
581
582 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
583 if (features) {
584 DMERR("could not access metadata due to unsupported optional features (%lx).",
585 (unsigned long)features);
586 return -EINVAL;
587 }
588
589 /*
590 * Check for read-only metadata to skip the following RDWR checks.
591 */
592 if (get_disk_ro(pmd->bdev->bd_disk))
593 return 0;
594
595 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
596 if (features) {
597 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
598 (unsigned long)features);
599 return -EINVAL;
600 }
601
602 return 0;
603 }
604
605 static int __open_metadata(struct dm_pool_metadata *pmd)
606 {
607 int r;
608 struct dm_block *sblock;
609 struct thin_disk_superblock *disk_super;
610
611 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
612 &sb_validator, &sblock);
613 if (r < 0) {
614 DMERR("couldn't read superblock");
615 return r;
616 }
617
618 disk_super = dm_block_data(sblock);
619
620 /* Verify the data block size hasn't changed */
621 if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
622 DMERR("changing the data block size (from %u to %llu) is not supported",
623 le32_to_cpu(disk_super->data_block_size),
624 (unsigned long long)pmd->data_block_size);
625 r = -EINVAL;
626 goto bad_unlock_sblock;
627 }
628
629 r = __check_incompat_features(disk_super, pmd);
630 if (r < 0)
631 goto bad_unlock_sblock;
632
633 r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
634 disk_super->metadata_space_map_root,
635 sizeof(disk_super->metadata_space_map_root),
636 &pmd->tm, &pmd->metadata_sm);
637 if (r < 0) {
638 DMERR("tm_open_with_sm failed");
639 goto bad_unlock_sblock;
640 }
641
642 pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
643 sizeof(disk_super->data_space_map_root));
644 if (IS_ERR(pmd->data_sm)) {
645 DMERR("sm_disk_open failed");
646 r = PTR_ERR(pmd->data_sm);
647 goto bad_cleanup_tm;
648 }
649
650 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
651 if (!pmd->nb_tm) {
652 DMERR("could not create non-blocking clone tm");
653 r = -ENOMEM;
654 goto bad_cleanup_data_sm;
655 }
656
657 __setup_btree_details(pmd);
658 dm_bm_unlock(sblock);
659
660 return 0;
661
662 bad_cleanup_data_sm:
663 dm_sm_destroy(pmd->data_sm);
664 bad_cleanup_tm:
665 dm_tm_destroy(pmd->tm);
666 dm_sm_destroy(pmd->metadata_sm);
667 bad_unlock_sblock:
668 dm_bm_unlock(sblock);
669
670 return r;
671 }
672
673 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
674 {
675 int r, unformatted;
676
677 r = __superblock_all_zeroes(pmd->bm, &unformatted);
678 if (r)
679 return r;
680
681 if (unformatted)
682 return format_device ? __format_metadata(pmd) : -EPERM;
683
684 return __open_metadata(pmd);
685 }
686
687 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
688 {
689 int r;
690
691 pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
692 THIN_MAX_CONCURRENT_LOCKS);
693 if (IS_ERR(pmd->bm)) {
694 DMERR("could not create block manager");
695 return PTR_ERR(pmd->bm);
696 }
697
698 r = __open_or_format_metadata(pmd, format_device);
699 if (r)
700 dm_block_manager_destroy(pmd->bm);
701
702 return r;
703 }
704
705 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
706 {
707 dm_sm_destroy(pmd->data_sm);
708 dm_sm_destroy(pmd->metadata_sm);
709 dm_tm_destroy(pmd->nb_tm);
710 dm_tm_destroy(pmd->tm);
711 dm_block_manager_destroy(pmd->bm);
712 }
713
714 static int __begin_transaction(struct dm_pool_metadata *pmd)
715 {
716 int r;
717 struct thin_disk_superblock *disk_super;
718 struct dm_block *sblock;
719
720 /*
721 * We re-read the superblock every time. Shouldn't need to do this
722 * really.
723 */
724 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
725 &sb_validator, &sblock);
726 if (r)
727 return r;
728
729 disk_super = dm_block_data(sblock);
730 pmd->time = le32_to_cpu(disk_super->time);
731 pmd->root = le64_to_cpu(disk_super->data_mapping_root);
732 pmd->details_root = le64_to_cpu(disk_super->device_details_root);
733 pmd->trans_id = le64_to_cpu(disk_super->trans_id);
734 pmd->flags = le32_to_cpu(disk_super->flags);
735 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
736
737 dm_bm_unlock(sblock);
738 return 0;
739 }
740
741 static int __write_changed_details(struct dm_pool_metadata *pmd)
742 {
743 int r;
744 struct dm_thin_device *td, *tmp;
745 struct disk_device_details details;
746 uint64_t key;
747
748 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
749 if (!td->changed)
750 continue;
751
752 key = td->id;
753
754 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
755 details.transaction_id = cpu_to_le64(td->transaction_id);
756 details.creation_time = cpu_to_le32(td->creation_time);
757 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
758 __dm_bless_for_disk(&details);
759
760 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
761 &key, &details, &pmd->details_root);
762 if (r)
763 return r;
764
765 if (td->open_count)
766 td->changed = 0;
767 else {
768 list_del(&td->list);
769 kfree(td);
770 }
771 }
772
773 return 0;
774 }
775
776 static int __commit_transaction(struct dm_pool_metadata *pmd)
777 {
778 int r;
779 size_t metadata_len, data_len;
780 struct thin_disk_superblock *disk_super;
781 struct dm_block *sblock;
782
783 /*
784 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
785 */
786 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
787
788 r = __write_changed_details(pmd);
789 if (r < 0)
790 return r;
791
792 r = dm_sm_commit(pmd->data_sm);
793 if (r < 0)
794 return r;
795
796 r = dm_tm_pre_commit(pmd->tm);
797 if (r < 0)
798 return r;
799
800 r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
801 if (r < 0)
802 return r;
803
804 r = dm_sm_root_size(pmd->data_sm, &data_len);
805 if (r < 0)
806 return r;
807
808 r = save_sm_roots(pmd);
809 if (r < 0)
810 return r;
811
812 r = superblock_lock(pmd, &sblock);
813 if (r)
814 return r;
815
816 disk_super = dm_block_data(sblock);
817 disk_super->time = cpu_to_le32(pmd->time);
818 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
819 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
820 disk_super->trans_id = cpu_to_le64(pmd->trans_id);
821 disk_super->flags = cpu_to_le32(pmd->flags);
822
823 copy_sm_roots(pmd, disk_super);
824
825 return dm_tm_commit(pmd->tm, sblock);
826 }
827
828 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
829 sector_t data_block_size,
830 bool format_device)
831 {
832 int r;
833 struct dm_pool_metadata *pmd;
834
835 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
836 if (!pmd) {
837 DMERR("could not allocate metadata struct");
838 return ERR_PTR(-ENOMEM);
839 }
840
841 init_rwsem(&pmd->root_lock);
842 pmd->time = 0;
843 INIT_LIST_HEAD(&pmd->thin_devices);
844 pmd->fail_io = false;
845 pmd->bdev = bdev;
846 pmd->data_block_size = data_block_size;
847
848 r = __create_persistent_data_objects(pmd, format_device);
849 if (r) {
850 kfree(pmd);
851 return ERR_PTR(r);
852 }
853
854 r = __begin_transaction(pmd);
855 if (r < 0) {
856 if (dm_pool_metadata_close(pmd) < 0)
857 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
858 return ERR_PTR(r);
859 }
860
861 return pmd;
862 }
863
864 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
865 {
866 int r;
867 unsigned open_devices = 0;
868 struct dm_thin_device *td, *tmp;
869
870 down_read(&pmd->root_lock);
871 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
872 if (td->open_count)
873 open_devices++;
874 else {
875 list_del(&td->list);
876 kfree(td);
877 }
878 }
879 up_read(&pmd->root_lock);
880
881 if (open_devices) {
882 DMERR("attempt to close pmd when %u device(s) are still open",
883 open_devices);
884 return -EBUSY;
885 }
886
887 if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) {
888 r = __commit_transaction(pmd);
889 if (r < 0)
890 DMWARN("%s: __commit_transaction() failed, error = %d",
891 __func__, r);
892 }
893
894 if (!pmd->fail_io)
895 __destroy_persistent_data_objects(pmd);
896
897 kfree(pmd);
898 return 0;
899 }
900
901 /*
902 * __open_device: Returns @td corresponding to device with id @dev,
903 * creating it if @create is set and incrementing @td->open_count.
904 * On failure, @td is undefined.
905 */
906 static int __open_device(struct dm_pool_metadata *pmd,
907 dm_thin_id dev, int create,
908 struct dm_thin_device **td)
909 {
910 int r, changed = 0;
911 struct dm_thin_device *td2;
912 uint64_t key = dev;
913 struct disk_device_details details_le;
914
915 /*
916 * If the device is already open, return it.
917 */
918 list_for_each_entry(td2, &pmd->thin_devices, list)
919 if (td2->id == dev) {
920 /*
921 * May not create an already-open device.
922 */
923 if (create)
924 return -EEXIST;
925
926 td2->open_count++;
927 *td = td2;
928 return 0;
929 }
930
931 /*
932 * Check the device exists.
933 */
934 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
935 &key, &details_le);
936 if (r) {
937 if (r != -ENODATA || !create)
938 return r;
939
940 /*
941 * Create new device.
942 */
943 changed = 1;
944 details_le.mapped_blocks = 0;
945 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
946 details_le.creation_time = cpu_to_le32(pmd->time);
947 details_le.snapshotted_time = cpu_to_le32(pmd->time);
948 }
949
950 *td = kmalloc(sizeof(**td), GFP_NOIO);
951 if (!*td)
952 return -ENOMEM;
953
954 (*td)->pmd = pmd;
955 (*td)->id = dev;
956 (*td)->open_count = 1;
957 (*td)->changed = changed;
958 (*td)->aborted_with_changes = false;
959 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
960 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
961 (*td)->creation_time = le32_to_cpu(details_le.creation_time);
962 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
963
964 list_add(&(*td)->list, &pmd->thin_devices);
965
966 return 0;
967 }
968
969 static void __close_device(struct dm_thin_device *td)
970 {
971 --td->open_count;
972 }
973
974 static int __create_thin(struct dm_pool_metadata *pmd,
975 dm_thin_id dev)
976 {
977 int r;
978 dm_block_t dev_root;
979 uint64_t key = dev;
980 struct disk_device_details details_le;
981 struct dm_thin_device *td;
982 __le64 value;
983
984 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
985 &key, &details_le);
986 if (!r)
987 return -EEXIST;
988
989 /*
990 * Create an empty btree for the mappings.
991 */
992 r = dm_btree_empty(&pmd->bl_info, &dev_root);
993 if (r)
994 return r;
995
996 /*
997 * Insert it into the main mapping tree.
998 */
999 value = cpu_to_le64(dev_root);
1000 __dm_bless_for_disk(&value);
1001 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1002 if (r) {
1003 dm_btree_del(&pmd->bl_info, dev_root);
1004 return r;
1005 }
1006
1007 r = __open_device(pmd, dev, 1, &td);
1008 if (r) {
1009 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1010 dm_btree_del(&pmd->bl_info, dev_root);
1011 return r;
1012 }
1013 __close_device(td);
1014
1015 return r;
1016 }
1017
1018 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1019 {
1020 int r = -EINVAL;
1021
1022 down_write(&pmd->root_lock);
1023 if (!pmd->fail_io)
1024 r = __create_thin(pmd, dev);
1025 up_write(&pmd->root_lock);
1026
1027 return r;
1028 }
1029
1030 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1031 struct dm_thin_device *snap,
1032 dm_thin_id origin, uint32_t time)
1033 {
1034 int r;
1035 struct dm_thin_device *td;
1036
1037 r = __open_device(pmd, origin, 0, &td);
1038 if (r)
1039 return r;
1040
1041 td->changed = 1;
1042 td->snapshotted_time = time;
1043
1044 snap->mapped_blocks = td->mapped_blocks;
1045 snap->snapshotted_time = time;
1046 __close_device(td);
1047
1048 return 0;
1049 }
1050
1051 static int __create_snap(struct dm_pool_metadata *pmd,
1052 dm_thin_id dev, dm_thin_id origin)
1053 {
1054 int r;
1055 dm_block_t origin_root;
1056 uint64_t key = origin, dev_key = dev;
1057 struct dm_thin_device *td;
1058 struct disk_device_details details_le;
1059 __le64 value;
1060
1061 /* check this device is unused */
1062 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1063 &dev_key, &details_le);
1064 if (!r)
1065 return -EEXIST;
1066
1067 /* find the mapping tree for the origin */
1068 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1069 if (r)
1070 return r;
1071 origin_root = le64_to_cpu(value);
1072
1073 /* clone the origin, an inc will do */
1074 dm_tm_inc(pmd->tm, origin_root);
1075
1076 /* insert into the main mapping tree */
1077 value = cpu_to_le64(origin_root);
1078 __dm_bless_for_disk(&value);
1079 key = dev;
1080 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1081 if (r) {
1082 dm_tm_dec(pmd->tm, origin_root);
1083 return r;
1084 }
1085
1086 pmd->time++;
1087
1088 r = __open_device(pmd, dev, 1, &td);
1089 if (r)
1090 goto bad;
1091
1092 r = __set_snapshot_details(pmd, td, origin, pmd->time);
1093 __close_device(td);
1094
1095 if (r)
1096 goto bad;
1097
1098 return 0;
1099
1100 bad:
1101 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1102 dm_btree_remove(&pmd->details_info, pmd->details_root,
1103 &key, &pmd->details_root);
1104 return r;
1105 }
1106
1107 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1108 dm_thin_id dev,
1109 dm_thin_id origin)
1110 {
1111 int r = -EINVAL;
1112
1113 down_write(&pmd->root_lock);
1114 if (!pmd->fail_io)
1115 r = __create_snap(pmd, dev, origin);
1116 up_write(&pmd->root_lock);
1117
1118 return r;
1119 }
1120
1121 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1122 {
1123 int r;
1124 uint64_t key = dev;
1125 struct dm_thin_device *td;
1126
1127 /* TODO: failure should mark the transaction invalid */
1128 r = __open_device(pmd, dev, 0, &td);
1129 if (r)
1130 return r;
1131
1132 if (td->open_count > 1) {
1133 __close_device(td);
1134 return -EBUSY;
1135 }
1136
1137 list_del(&td->list);
1138 kfree(td);
1139 r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1140 &key, &pmd->details_root);
1141 if (r)
1142 return r;
1143
1144 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1145 if (r)
1146 return r;
1147
1148 return 0;
1149 }
1150
1151 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1152 dm_thin_id dev)
1153 {
1154 int r = -EINVAL;
1155
1156 down_write(&pmd->root_lock);
1157 if (!pmd->fail_io)
1158 r = __delete_device(pmd, dev);
1159 up_write(&pmd->root_lock);
1160
1161 return r;
1162 }
1163
1164 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1165 uint64_t current_id,
1166 uint64_t new_id)
1167 {
1168 int r = -EINVAL;
1169
1170 down_write(&pmd->root_lock);
1171
1172 if (pmd->fail_io)
1173 goto out;
1174
1175 if (pmd->trans_id != current_id) {
1176 DMERR("mismatched transaction id");
1177 goto out;
1178 }
1179
1180 pmd->trans_id = new_id;
1181 r = 0;
1182
1183 out:
1184 up_write(&pmd->root_lock);
1185
1186 return r;
1187 }
1188
1189 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1190 uint64_t *result)
1191 {
1192 int r = -EINVAL;
1193
1194 down_read(&pmd->root_lock);
1195 if (!pmd->fail_io) {
1196 *result = pmd->trans_id;
1197 r = 0;
1198 }
1199 up_read(&pmd->root_lock);
1200
1201 return r;
1202 }
1203
1204 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1205 {
1206 int r, inc;
1207 struct thin_disk_superblock *disk_super;
1208 struct dm_block *copy, *sblock;
1209 dm_block_t held_root;
1210
1211 /*
1212 * We commit to ensure the btree roots which we increment in a
1213 * moment are up to date.
1214 */
1215 __commit_transaction(pmd);
1216
1217 /*
1218 * Copy the superblock.
1219 */
1220 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1221 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1222 &sb_validator, &copy, &inc);
1223 if (r)
1224 return r;
1225
1226 BUG_ON(!inc);
1227
1228 held_root = dm_block_location(copy);
1229 disk_super = dm_block_data(copy);
1230
1231 if (le64_to_cpu(disk_super->held_root)) {
1232 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1233
1234 dm_tm_dec(pmd->tm, held_root);
1235 dm_tm_unlock(pmd->tm, copy);
1236 return -EBUSY;
1237 }
1238
1239 /*
1240 * Wipe the spacemap since we're not publishing this.
1241 */
1242 memset(&disk_super->data_space_map_root, 0,
1243 sizeof(disk_super->data_space_map_root));
1244 memset(&disk_super->metadata_space_map_root, 0,
1245 sizeof(disk_super->metadata_space_map_root));
1246
1247 /*
1248 * Increment the data structures that need to be preserved.
1249 */
1250 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1251 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1252 dm_tm_unlock(pmd->tm, copy);
1253
1254 /*
1255 * Write the held root into the superblock.
1256 */
1257 r = superblock_lock(pmd, &sblock);
1258 if (r) {
1259 dm_tm_dec(pmd->tm, held_root);
1260 return r;
1261 }
1262
1263 disk_super = dm_block_data(sblock);
1264 disk_super->held_root = cpu_to_le64(held_root);
1265 dm_bm_unlock(sblock);
1266 return 0;
1267 }
1268
1269 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1270 {
1271 int r = -EINVAL;
1272
1273 down_write(&pmd->root_lock);
1274 if (!pmd->fail_io)
1275 r = __reserve_metadata_snap(pmd);
1276 up_write(&pmd->root_lock);
1277
1278 return r;
1279 }
1280
1281 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1282 {
1283 int r;
1284 struct thin_disk_superblock *disk_super;
1285 struct dm_block *sblock, *copy;
1286 dm_block_t held_root;
1287
1288 r = superblock_lock(pmd, &sblock);
1289 if (r)
1290 return r;
1291
1292 disk_super = dm_block_data(sblock);
1293 held_root = le64_to_cpu(disk_super->held_root);
1294 disk_super->held_root = cpu_to_le64(0);
1295
1296 dm_bm_unlock(sblock);
1297
1298 if (!held_root) {
1299 DMWARN("No pool metadata snapshot found: nothing to release.");
1300 return -EINVAL;
1301 }
1302
1303 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1304 if (r)
1305 return r;
1306
1307 disk_super = dm_block_data(copy);
1308 dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1309 dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1310 dm_sm_dec_block(pmd->metadata_sm, held_root);
1311
1312 dm_tm_unlock(pmd->tm, copy);
1313
1314 return 0;
1315 }
1316
1317 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1318 {
1319 int r = -EINVAL;
1320
1321 down_write(&pmd->root_lock);
1322 if (!pmd->fail_io)
1323 r = __release_metadata_snap(pmd);
1324 up_write(&pmd->root_lock);
1325
1326 return r;
1327 }
1328
1329 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1330 dm_block_t *result)
1331 {
1332 int r;
1333 struct thin_disk_superblock *disk_super;
1334 struct dm_block *sblock;
1335
1336 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1337 &sb_validator, &sblock);
1338 if (r)
1339 return r;
1340
1341 disk_super = dm_block_data(sblock);
1342 *result = le64_to_cpu(disk_super->held_root);
1343
1344 dm_bm_unlock(sblock);
1345
1346 return 0;
1347 }
1348
1349 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1350 dm_block_t *result)
1351 {
1352 int r = -EINVAL;
1353
1354 down_read(&pmd->root_lock);
1355 if (!pmd->fail_io)
1356 r = __get_metadata_snap(pmd, result);
1357 up_read(&pmd->root_lock);
1358
1359 return r;
1360 }
1361
1362 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1363 struct dm_thin_device **td)
1364 {
1365 int r = -EINVAL;
1366
1367 down_write(&pmd->root_lock);
1368 if (!pmd->fail_io)
1369 r = __open_device(pmd, dev, 0, td);
1370 up_write(&pmd->root_lock);
1371
1372 return r;
1373 }
1374
1375 int dm_pool_close_thin_device(struct dm_thin_device *td)
1376 {
1377 down_write(&td->pmd->root_lock);
1378 __close_device(td);
1379 up_write(&td->pmd->root_lock);
1380
1381 return 0;
1382 }
1383
1384 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1385 {
1386 return td->id;
1387 }
1388
1389 /*
1390 * Check whether @time (of block creation) is older than @td's last snapshot.
1391 * If so then the associated block is shared with the last snapshot device.
1392 * Any block on a device created *after* the device last got snapshotted is
1393 * necessarily not shared.
1394 */
1395 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1396 {
1397 return td->snapshotted_time > time;
1398 }
1399
1400 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1401 struct dm_thin_lookup_result *result)
1402 {
1403 uint64_t block_time = 0;
1404 dm_block_t exception_block;
1405 uint32_t exception_time;
1406
1407 block_time = le64_to_cpu(value);
1408 unpack_block_time(block_time, &exception_block, &exception_time);
1409 result->block = exception_block;
1410 result->shared = __snapshotted_since(td, exception_time);
1411 }
1412
1413 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1414 int can_issue_io, struct dm_thin_lookup_result *result)
1415 {
1416 int r;
1417 __le64 value;
1418 struct dm_pool_metadata *pmd = td->pmd;
1419 dm_block_t keys[2] = { td->id, block };
1420 struct dm_btree_info *info;
1421
1422 if (can_issue_io) {
1423 info = &pmd->info;
1424 } else
1425 info = &pmd->nb_info;
1426
1427 r = dm_btree_lookup(info, pmd->root, keys, &value);
1428 if (!r)
1429 unpack_lookup_result(td, value, result);
1430
1431 return r;
1432 }
1433
1434 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1435 int can_issue_io, struct dm_thin_lookup_result *result)
1436 {
1437 int r;
1438 struct dm_pool_metadata *pmd = td->pmd;
1439
1440 down_read(&pmd->root_lock);
1441 if (pmd->fail_io) {
1442 up_read(&pmd->root_lock);
1443 return -EINVAL;
1444 }
1445
1446 r = __find_block(td, block, can_issue_io, result);
1447
1448 up_read(&pmd->root_lock);
1449 return r;
1450 }
1451
1452 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1453 dm_block_t *vblock,
1454 struct dm_thin_lookup_result *result)
1455 {
1456 int r;
1457 __le64 value;
1458 struct dm_pool_metadata *pmd = td->pmd;
1459 dm_block_t keys[2] = { td->id, block };
1460
1461 r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1462 if (!r)
1463 unpack_lookup_result(td, value, result);
1464
1465 return r;
1466 }
1467
1468 static int __find_mapped_range(struct dm_thin_device *td,
1469 dm_block_t begin, dm_block_t end,
1470 dm_block_t *thin_begin, dm_block_t *thin_end,
1471 dm_block_t *pool_begin, bool *maybe_shared)
1472 {
1473 int r;
1474 dm_block_t pool_end;
1475 struct dm_thin_lookup_result lookup;
1476
1477 if (end < begin)
1478 return -ENODATA;
1479
1480 r = __find_next_mapped_block(td, begin, &begin, &lookup);
1481 if (r)
1482 return r;
1483
1484 if (begin >= end)
1485 return -ENODATA;
1486
1487 *thin_begin = begin;
1488 *pool_begin = lookup.block;
1489 *maybe_shared = lookup.shared;
1490
1491 begin++;
1492 pool_end = *pool_begin + 1;
1493 while (begin != end) {
1494 r = __find_block(td, begin, true, &lookup);
1495 if (r) {
1496 if (r == -ENODATA)
1497 break;
1498 else
1499 return r;
1500 }
1501
1502 if ((lookup.block != pool_end) ||
1503 (lookup.shared != *maybe_shared))
1504 break;
1505
1506 pool_end++;
1507 begin++;
1508 }
1509
1510 *thin_end = begin;
1511 return 0;
1512 }
1513
1514 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1515 dm_block_t begin, dm_block_t end,
1516 dm_block_t *thin_begin, dm_block_t *thin_end,
1517 dm_block_t *pool_begin, bool *maybe_shared)
1518 {
1519 int r = -EINVAL;
1520 struct dm_pool_metadata *pmd = td->pmd;
1521
1522 down_read(&pmd->root_lock);
1523 if (!pmd->fail_io) {
1524 r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1525 pool_begin, maybe_shared);
1526 }
1527 up_read(&pmd->root_lock);
1528
1529 return r;
1530 }
1531
1532 static int __insert(struct dm_thin_device *td, dm_block_t block,
1533 dm_block_t data_block)
1534 {
1535 int r, inserted;
1536 __le64 value;
1537 struct dm_pool_metadata *pmd = td->pmd;
1538 dm_block_t keys[2] = { td->id, block };
1539
1540 value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1541 __dm_bless_for_disk(&value);
1542
1543 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1544 &pmd->root, &inserted);
1545 if (r)
1546 return r;
1547
1548 td->changed = 1;
1549 if (inserted)
1550 td->mapped_blocks++;
1551
1552 return 0;
1553 }
1554
1555 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1556 dm_block_t data_block)
1557 {
1558 int r = -EINVAL;
1559
1560 down_write(&td->pmd->root_lock);
1561 if (!td->pmd->fail_io)
1562 r = __insert(td, block, data_block);
1563 up_write(&td->pmd->root_lock);
1564
1565 return r;
1566 }
1567
1568 static int __remove(struct dm_thin_device *td, dm_block_t block)
1569 {
1570 int r;
1571 struct dm_pool_metadata *pmd = td->pmd;
1572 dm_block_t keys[2] = { td->id, block };
1573
1574 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1575 if (r)
1576 return r;
1577
1578 td->mapped_blocks--;
1579 td->changed = 1;
1580
1581 return 0;
1582 }
1583
1584 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1585 {
1586 int r;
1587 unsigned count, total_count = 0;
1588 struct dm_pool_metadata *pmd = td->pmd;
1589 dm_block_t keys[1] = { td->id };
1590 __le64 value;
1591 dm_block_t mapping_root;
1592
1593 /*
1594 * Find the mapping tree
1595 */
1596 r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1597 if (r)
1598 return r;
1599
1600 /*
1601 * Remove from the mapping tree, taking care to inc the
1602 * ref count so it doesn't get deleted.
1603 */
1604 mapping_root = le64_to_cpu(value);
1605 dm_tm_inc(pmd->tm, mapping_root);
1606 r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1607 if (r)
1608 return r;
1609
1610 /*
1611 * Remove leaves stops at the first unmapped entry, so we have to
1612 * loop round finding mapped ranges.
1613 */
1614 while (begin < end) {
1615 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1616 if (r == -ENODATA)
1617 break;
1618
1619 if (r)
1620 return r;
1621
1622 if (begin >= end)
1623 break;
1624
1625 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1626 if (r)
1627 return r;
1628
1629 total_count += count;
1630 }
1631
1632 td->mapped_blocks -= total_count;
1633 td->changed = 1;
1634
1635 /*
1636 * Reinsert the mapping tree.
1637 */
1638 value = cpu_to_le64(mapping_root);
1639 __dm_bless_for_disk(&value);
1640 return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1641 }
1642
1643 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1644 {
1645 int r = -EINVAL;
1646
1647 down_write(&td->pmd->root_lock);
1648 if (!td->pmd->fail_io)
1649 r = __remove(td, block);
1650 up_write(&td->pmd->root_lock);
1651
1652 return r;
1653 }
1654
1655 int dm_thin_remove_range(struct dm_thin_device *td,
1656 dm_block_t begin, dm_block_t end)
1657 {
1658 int r = -EINVAL;
1659
1660 down_write(&td->pmd->root_lock);
1661 if (!td->pmd->fail_io)
1662 r = __remove_range(td, begin, end);
1663 up_write(&td->pmd->root_lock);
1664
1665 return r;
1666 }
1667
1668 int dm_pool_block_is_used(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1669 {
1670 int r;
1671 uint32_t ref_count;
1672
1673 down_read(&pmd->root_lock);
1674 r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1675 if (!r)
1676 *result = (ref_count != 0);
1677 up_read(&pmd->root_lock);
1678
1679 return r;
1680 }
1681
1682 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1683 {
1684 int r = 0;
1685
1686 down_write(&pmd->root_lock);
1687 for (; b != e; b++) {
1688 r = dm_sm_inc_block(pmd->data_sm, b);
1689 if (r)
1690 break;
1691 }
1692 up_write(&pmd->root_lock);
1693
1694 return r;
1695 }
1696
1697 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1698 {
1699 int r = 0;
1700
1701 down_write(&pmd->root_lock);
1702 for (; b != e; b++) {
1703 r = dm_sm_dec_block(pmd->data_sm, b);
1704 if (r)
1705 break;
1706 }
1707 up_write(&pmd->root_lock);
1708
1709 return r;
1710 }
1711
1712 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1713 {
1714 int r;
1715
1716 down_read(&td->pmd->root_lock);
1717 r = td->changed;
1718 up_read(&td->pmd->root_lock);
1719
1720 return r;
1721 }
1722
1723 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1724 {
1725 bool r = false;
1726 struct dm_thin_device *td, *tmp;
1727
1728 down_read(&pmd->root_lock);
1729 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1730 if (td->changed) {
1731 r = td->changed;
1732 break;
1733 }
1734 }
1735 up_read(&pmd->root_lock);
1736
1737 return r;
1738 }
1739
1740 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1741 {
1742 bool r;
1743
1744 down_read(&td->pmd->root_lock);
1745 r = td->aborted_with_changes;
1746 up_read(&td->pmd->root_lock);
1747
1748 return r;
1749 }
1750
1751 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1752 {
1753 int r = -EINVAL;
1754
1755 down_write(&pmd->root_lock);
1756 if (!pmd->fail_io)
1757 r = dm_sm_new_block(pmd->data_sm, result);
1758 up_write(&pmd->root_lock);
1759
1760 return r;
1761 }
1762
1763 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1764 {
1765 int r = -EINVAL;
1766
1767 down_write(&pmd->root_lock);
1768 if (pmd->fail_io)
1769 goto out;
1770
1771 r = __commit_transaction(pmd);
1772 if (r <= 0)
1773 goto out;
1774
1775 /*
1776 * Open the next transaction.
1777 */
1778 r = __begin_transaction(pmd);
1779 out:
1780 up_write(&pmd->root_lock);
1781 return r;
1782 }
1783
1784 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1785 {
1786 struct dm_thin_device *td;
1787
1788 list_for_each_entry(td, &pmd->thin_devices, list)
1789 td->aborted_with_changes = td->changed;
1790 }
1791
1792 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1793 {
1794 int r = -EINVAL;
1795
1796 down_write(&pmd->root_lock);
1797 if (pmd->fail_io)
1798 goto out;
1799
1800 __set_abort_with_changes_flags(pmd);
1801 __destroy_persistent_data_objects(pmd);
1802 r = __create_persistent_data_objects(pmd, false);
1803 if (r)
1804 pmd->fail_io = true;
1805
1806 out:
1807 up_write(&pmd->root_lock);
1808
1809 return r;
1810 }
1811
1812 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1813 {
1814 int r = -EINVAL;
1815
1816 down_read(&pmd->root_lock);
1817 if (!pmd->fail_io)
1818 r = dm_sm_get_nr_free(pmd->data_sm, result);
1819 up_read(&pmd->root_lock);
1820
1821 return r;
1822 }
1823
1824 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1825 dm_block_t *result)
1826 {
1827 int r = -EINVAL;
1828
1829 down_read(&pmd->root_lock);
1830 if (!pmd->fail_io)
1831 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1832 up_read(&pmd->root_lock);
1833
1834 return r;
1835 }
1836
1837 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1838 dm_block_t *result)
1839 {
1840 int r = -EINVAL;
1841
1842 down_read(&pmd->root_lock);
1843 if (!pmd->fail_io)
1844 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1845 up_read(&pmd->root_lock);
1846
1847 return r;
1848 }
1849
1850 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1851 {
1852 int r = -EINVAL;
1853
1854 down_read(&pmd->root_lock);
1855 if (!pmd->fail_io)
1856 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1857 up_read(&pmd->root_lock);
1858
1859 return r;
1860 }
1861
1862 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1863 {
1864 int r = -EINVAL;
1865 struct dm_pool_metadata *pmd = td->pmd;
1866
1867 down_read(&pmd->root_lock);
1868 if (!pmd->fail_io) {
1869 *result = td->mapped_blocks;
1870 r = 0;
1871 }
1872 up_read(&pmd->root_lock);
1873
1874 return r;
1875 }
1876
1877 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1878 {
1879 int r;
1880 __le64 value_le;
1881 dm_block_t thin_root;
1882 struct dm_pool_metadata *pmd = td->pmd;
1883
1884 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1885 if (r)
1886 return r;
1887
1888 thin_root = le64_to_cpu(value_le);
1889
1890 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1891 }
1892
1893 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1894 dm_block_t *result)
1895 {
1896 int r = -EINVAL;
1897 struct dm_pool_metadata *pmd = td->pmd;
1898
1899 down_read(&pmd->root_lock);
1900 if (!pmd->fail_io)
1901 r = __highest_block(td, result);
1902 up_read(&pmd->root_lock);
1903
1904 return r;
1905 }
1906
1907 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1908 {
1909 int r;
1910 dm_block_t old_count;
1911
1912 r = dm_sm_get_nr_blocks(sm, &old_count);
1913 if (r)
1914 return r;
1915
1916 if (new_count == old_count)
1917 return 0;
1918
1919 if (new_count < old_count) {
1920 DMERR("cannot reduce size of space map");
1921 return -EINVAL;
1922 }
1923
1924 return dm_sm_extend(sm, new_count - old_count);
1925 }
1926
1927 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1928 {
1929 int r = -EINVAL;
1930
1931 down_write(&pmd->root_lock);
1932 if (!pmd->fail_io)
1933 r = __resize_space_map(pmd->data_sm, new_count);
1934 up_write(&pmd->root_lock);
1935
1936 return r;
1937 }
1938
1939 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1940 {
1941 int r = -EINVAL;
1942
1943 down_write(&pmd->root_lock);
1944 if (!pmd->fail_io)
1945 r = __resize_space_map(pmd->metadata_sm, new_count);
1946 up_write(&pmd->root_lock);
1947
1948 return r;
1949 }
1950
1951 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
1952 {
1953 down_write(&pmd->root_lock);
1954 dm_bm_set_read_only(pmd->bm);
1955 up_write(&pmd->root_lock);
1956 }
1957
1958 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
1959 {
1960 down_write(&pmd->root_lock);
1961 dm_bm_set_read_write(pmd->bm);
1962 up_write(&pmd->root_lock);
1963 }
1964
1965 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
1966 dm_block_t threshold,
1967 dm_sm_threshold_fn fn,
1968 void *context)
1969 {
1970 int r;
1971
1972 down_write(&pmd->root_lock);
1973 r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
1974 up_write(&pmd->root_lock);
1975
1976 return r;
1977 }
1978
1979 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
1980 {
1981 int r;
1982 struct dm_block *sblock;
1983 struct thin_disk_superblock *disk_super;
1984
1985 down_write(&pmd->root_lock);
1986 pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
1987
1988 r = superblock_lock(pmd, &sblock);
1989 if (r) {
1990 DMERR("couldn't read superblock");
1991 goto out;
1992 }
1993
1994 disk_super = dm_block_data(sblock);
1995 disk_super->flags = cpu_to_le32(pmd->flags);
1996
1997 dm_bm_unlock(sblock);
1998 out:
1999 up_write(&pmd->root_lock);
2000 return r;
2001 }
2002
2003 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2004 {
2005 bool needs_check;
2006
2007 down_read(&pmd->root_lock);
2008 needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2009 up_read(&pmd->root_lock);
2010
2011 return needs_check;
2012 }
2013
2014 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2015 {
2016 down_read(&pmd->root_lock);
2017 if (!pmd->fail_io)
2018 dm_tm_issue_prefetches(pmd->tm);
2019 up_read(&pmd->root_lock);
2020 }