]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/md/dm-thin-metadata.c
media: adv7604: fix possible use-after-free in adv76xx_remove()
[mirror_ubuntu-hirsute-kernel.git] / drivers / md / dm-thin-metadata.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat, Inc.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16
17 /*--------------------------------------------------------------------------
18 * As far as the metadata goes, there is:
19 *
20 * - A superblock in block zero, taking up fewer than 512 bytes for
21 * atomic writes.
22 *
23 * - A space map managing the metadata blocks.
24 *
25 * - A space map managing the data blocks.
26 *
27 * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28 *
29 * - A hierarchical btree, with 2 levels which effectively maps (thin
30 * dev id, virtual block) -> block_time. Block time is a 64-bit
31 * field holding the time in the low 24 bits, and block in the top 40
32 * bits.
33 *
34 * BTrees consist solely of btree_nodes, that fill a block. Some are
35 * internal nodes, as such their values are a __le64 pointing to other
36 * nodes. Leaf nodes can store data of any reasonable size (ie. much
37 * smaller than the block size). The nodes consist of the header,
38 * followed by an array of keys, followed by an array of values. We have
39 * to binary search on the keys so they're all held together to help the
40 * cpu cache.
41 *
42 * Space maps have 2 btrees:
43 *
44 * - One maps a uint64_t onto a struct index_entry. Which points to a
45 * bitmap block, and has some details about how many free entries there
46 * are etc.
47 *
48 * - The bitmap blocks have a header (for the checksum). Then the rest
49 * of the block is pairs of bits. With the meaning being:
50 *
51 * 0 - ref count is 0
52 * 1 - ref count is 1
53 * 2 - ref count is 2
54 * 3 - ref count is higher than 2
55 *
56 * - If the count is higher than 2 then the ref count is entered in a
57 * second btree that directly maps the block_address to a uint32_t ref
58 * count.
59 *
60 * The space map metadata variant doesn't have a bitmaps btree. Instead
61 * it has one single blocks worth of index_entries. This avoids
62 * recursive issues with the bitmap btree needing to allocate space in
63 * order to insert. With a small data block size such as 64k the
64 * metadata support data devices that are hundreds of terrabytes.
65 *
66 * The space maps allocate space linearly from front to back. Space that
67 * is freed in a transaction is never recycled within that transaction.
68 * To try and avoid fragmenting _free_ space the allocator always goes
69 * back and fills in gaps.
70 *
71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72 * from the block manager.
73 *--------------------------------------------------------------------------*/
74
75 #define DM_MSG_PREFIX "thin metadata"
76
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define SECTOR_TO_BLOCK_SHIFT 3
81
82 /*
83 * For btree insert:
84 * 3 for btree insert +
85 * 2 for btree lookup used within space map
86 * For btree remove:
87 * 2 for shadow spine +
88 * 4 for rebalance 3 child node
89 */
90 #define THIN_MAX_CONCURRENT_LOCKS 6
91
92 /* This should be plenty */
93 #define SPACE_MAP_ROOT_SIZE 128
94
95 /*
96 * Little endian on-disk superblock and device details.
97 */
98 struct thin_disk_superblock {
99 __le32 csum; /* Checksum of superblock except for this field. */
100 __le32 flags;
101 __le64 blocknr; /* This block number, dm_block_t. */
102
103 __u8 uuid[16];
104 __le64 magic;
105 __le32 version;
106 __le32 time;
107
108 __le64 trans_id;
109
110 /*
111 * Root held by userspace transactions.
112 */
113 __le64 held_root;
114
115 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
117
118 /*
119 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
120 */
121 __le64 data_mapping_root;
122
123 /*
124 * Device detail root mapping dev_id -> device_details
125 */
126 __le64 device_details_root;
127
128 __le32 data_block_size; /* In 512-byte sectors. */
129
130 __le32 metadata_block_size; /* In 512-byte sectors. */
131 __le64 metadata_nr_blocks;
132
133 __le32 compat_flags;
134 __le32 compat_ro_flags;
135 __le32 incompat_flags;
136 } __packed;
137
138 struct disk_device_details {
139 __le64 mapped_blocks;
140 __le64 transaction_id; /* When created. */
141 __le32 creation_time;
142 __le32 snapshotted_time;
143 } __packed;
144
145 struct dm_pool_metadata {
146 struct hlist_node hash;
147
148 struct block_device *bdev;
149 struct dm_block_manager *bm;
150 struct dm_space_map *metadata_sm;
151 struct dm_space_map *data_sm;
152 struct dm_transaction_manager *tm;
153 struct dm_transaction_manager *nb_tm;
154
155 /*
156 * Two-level btree.
157 * First level holds thin_dev_t.
158 * Second level holds mappings.
159 */
160 struct dm_btree_info info;
161
162 /*
163 * Non-blocking version of the above.
164 */
165 struct dm_btree_info nb_info;
166
167 /*
168 * Just the top level for deleting whole devices.
169 */
170 struct dm_btree_info tl_info;
171
172 /*
173 * Just the bottom level for creating new devices.
174 */
175 struct dm_btree_info bl_info;
176
177 /*
178 * Describes the device details btree.
179 */
180 struct dm_btree_info details_info;
181
182 struct rw_semaphore root_lock;
183 uint32_t time;
184 dm_block_t root;
185 dm_block_t details_root;
186 struct list_head thin_devices;
187 uint64_t trans_id;
188 unsigned long flags;
189 sector_t data_block_size;
190
191 /*
192 * Pre-commit callback.
193 *
194 * This allows the thin provisioning target to run a callback before
195 * the metadata are committed.
196 */
197 dm_pool_pre_commit_fn pre_commit_fn;
198 void *pre_commit_context;
199
200 /*
201 * We reserve a section of the metadata for commit overhead.
202 * All reported space does *not* include this.
203 */
204 dm_block_t metadata_reserve;
205
206 /*
207 * Set if a transaction has to be aborted but the attempt to roll back
208 * to the previous (good) transaction failed. The only pool metadata
209 * operation possible in this state is the closing of the device.
210 */
211 bool fail_io:1;
212
213 /*
214 * Set once a thin-pool has been accessed through one of the interfaces
215 * that imply the pool is in-service (e.g. thin devices created/deleted,
216 * thin-pool message, metadata snapshots, etc).
217 */
218 bool in_service:1;
219
220 /*
221 * Reading the space map roots can fail, so we read it into these
222 * buffers before the superblock is locked and updated.
223 */
224 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
225 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
226 };
227
228 struct dm_thin_device {
229 struct list_head list;
230 struct dm_pool_metadata *pmd;
231 dm_thin_id id;
232
233 int open_count;
234 bool changed:1;
235 bool aborted_with_changes:1;
236 uint64_t mapped_blocks;
237 uint64_t transaction_id;
238 uint32_t creation_time;
239 uint32_t snapshotted_time;
240 };
241
242 /*----------------------------------------------------------------
243 * superblock validator
244 *--------------------------------------------------------------*/
245
246 #define SUPERBLOCK_CSUM_XOR 160774
247
248 static void sb_prepare_for_write(struct dm_block_validator *v,
249 struct dm_block *b,
250 size_t block_size)
251 {
252 struct thin_disk_superblock *disk_super = dm_block_data(b);
253
254 disk_super->blocknr = cpu_to_le64(dm_block_location(b));
255 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
256 block_size - sizeof(__le32),
257 SUPERBLOCK_CSUM_XOR));
258 }
259
260 static int sb_check(struct dm_block_validator *v,
261 struct dm_block *b,
262 size_t block_size)
263 {
264 struct thin_disk_superblock *disk_super = dm_block_data(b);
265 __le32 csum_le;
266
267 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
268 DMERR("sb_check failed: blocknr %llu: "
269 "wanted %llu", le64_to_cpu(disk_super->blocknr),
270 (unsigned long long)dm_block_location(b));
271 return -ENOTBLK;
272 }
273
274 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
275 DMERR("sb_check failed: magic %llu: "
276 "wanted %llu", le64_to_cpu(disk_super->magic),
277 (unsigned long long)THIN_SUPERBLOCK_MAGIC);
278 return -EILSEQ;
279 }
280
281 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
282 block_size - sizeof(__le32),
283 SUPERBLOCK_CSUM_XOR));
284 if (csum_le != disk_super->csum) {
285 DMERR("sb_check failed: csum %u: wanted %u",
286 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
287 return -EILSEQ;
288 }
289
290 return 0;
291 }
292
293 static struct dm_block_validator sb_validator = {
294 .name = "superblock",
295 .prepare_for_write = sb_prepare_for_write,
296 .check = sb_check
297 };
298
299 /*----------------------------------------------------------------
300 * Methods for the btree value types
301 *--------------------------------------------------------------*/
302
303 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
304 {
305 return (b << 24) | t;
306 }
307
308 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
309 {
310 *b = v >> 24;
311 *t = v & ((1 << 24) - 1);
312 }
313
314 static void data_block_inc(void *context, const void *value_le)
315 {
316 struct dm_space_map *sm = context;
317 __le64 v_le;
318 uint64_t b;
319 uint32_t t;
320
321 memcpy(&v_le, value_le, sizeof(v_le));
322 unpack_block_time(le64_to_cpu(v_le), &b, &t);
323 dm_sm_inc_block(sm, b);
324 }
325
326 static void data_block_dec(void *context, const void *value_le)
327 {
328 struct dm_space_map *sm = context;
329 __le64 v_le;
330 uint64_t b;
331 uint32_t t;
332
333 memcpy(&v_le, value_le, sizeof(v_le));
334 unpack_block_time(le64_to_cpu(v_le), &b, &t);
335 dm_sm_dec_block(sm, b);
336 }
337
338 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
339 {
340 __le64 v1_le, v2_le;
341 uint64_t b1, b2;
342 uint32_t t;
343
344 memcpy(&v1_le, value1_le, sizeof(v1_le));
345 memcpy(&v2_le, value2_le, sizeof(v2_le));
346 unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
347 unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
348
349 return b1 == b2;
350 }
351
352 static void subtree_inc(void *context, const void *value)
353 {
354 struct dm_btree_info *info = context;
355 __le64 root_le;
356 uint64_t root;
357
358 memcpy(&root_le, value, sizeof(root_le));
359 root = le64_to_cpu(root_le);
360 dm_tm_inc(info->tm, root);
361 }
362
363 static void subtree_dec(void *context, const void *value)
364 {
365 struct dm_btree_info *info = context;
366 __le64 root_le;
367 uint64_t root;
368
369 memcpy(&root_le, value, sizeof(root_le));
370 root = le64_to_cpu(root_le);
371 if (dm_btree_del(info, root))
372 DMERR("btree delete failed");
373 }
374
375 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
376 {
377 __le64 v1_le, v2_le;
378 memcpy(&v1_le, value1_le, sizeof(v1_le));
379 memcpy(&v2_le, value2_le, sizeof(v2_le));
380
381 return v1_le == v2_le;
382 }
383
384 /*----------------------------------------------------------------*/
385
386 /*
387 * Variant that is used for in-core only changes or code that
388 * shouldn't put the pool in service on its own (e.g. commit).
389 */
390 static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd)
391 __acquires(pmd->root_lock)
392 {
393 down_write(&pmd->root_lock);
394 }
395
396 static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
397 {
398 pmd_write_lock_in_core(pmd);
399 if (unlikely(!pmd->in_service))
400 pmd->in_service = true;
401 }
402
403 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
404 __releases(pmd->root_lock)
405 {
406 up_write(&pmd->root_lock);
407 }
408
409 /*----------------------------------------------------------------*/
410
411 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
412 struct dm_block **sblock)
413 {
414 return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
415 &sb_validator, sblock);
416 }
417
418 static int superblock_lock(struct dm_pool_metadata *pmd,
419 struct dm_block **sblock)
420 {
421 return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
422 &sb_validator, sblock);
423 }
424
425 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
426 {
427 int r;
428 unsigned i;
429 struct dm_block *b;
430 __le64 *data_le, zero = cpu_to_le64(0);
431 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
432
433 /*
434 * We can't use a validator here - it may be all zeroes.
435 */
436 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
437 if (r)
438 return r;
439
440 data_le = dm_block_data(b);
441 *result = 1;
442 for (i = 0; i < block_size; i++) {
443 if (data_le[i] != zero) {
444 *result = 0;
445 break;
446 }
447 }
448
449 dm_bm_unlock(b);
450
451 return 0;
452 }
453
454 static void __setup_btree_details(struct dm_pool_metadata *pmd)
455 {
456 pmd->info.tm = pmd->tm;
457 pmd->info.levels = 2;
458 pmd->info.value_type.context = pmd->data_sm;
459 pmd->info.value_type.size = sizeof(__le64);
460 pmd->info.value_type.inc = data_block_inc;
461 pmd->info.value_type.dec = data_block_dec;
462 pmd->info.value_type.equal = data_block_equal;
463
464 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
465 pmd->nb_info.tm = pmd->nb_tm;
466
467 pmd->tl_info.tm = pmd->tm;
468 pmd->tl_info.levels = 1;
469 pmd->tl_info.value_type.context = &pmd->bl_info;
470 pmd->tl_info.value_type.size = sizeof(__le64);
471 pmd->tl_info.value_type.inc = subtree_inc;
472 pmd->tl_info.value_type.dec = subtree_dec;
473 pmd->tl_info.value_type.equal = subtree_equal;
474
475 pmd->bl_info.tm = pmd->tm;
476 pmd->bl_info.levels = 1;
477 pmd->bl_info.value_type.context = pmd->data_sm;
478 pmd->bl_info.value_type.size = sizeof(__le64);
479 pmd->bl_info.value_type.inc = data_block_inc;
480 pmd->bl_info.value_type.dec = data_block_dec;
481 pmd->bl_info.value_type.equal = data_block_equal;
482
483 pmd->details_info.tm = pmd->tm;
484 pmd->details_info.levels = 1;
485 pmd->details_info.value_type.context = NULL;
486 pmd->details_info.value_type.size = sizeof(struct disk_device_details);
487 pmd->details_info.value_type.inc = NULL;
488 pmd->details_info.value_type.dec = NULL;
489 pmd->details_info.value_type.equal = NULL;
490 }
491
492 static int save_sm_roots(struct dm_pool_metadata *pmd)
493 {
494 int r;
495 size_t len;
496
497 r = dm_sm_root_size(pmd->metadata_sm, &len);
498 if (r < 0)
499 return r;
500
501 r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
502 if (r < 0)
503 return r;
504
505 r = dm_sm_root_size(pmd->data_sm, &len);
506 if (r < 0)
507 return r;
508
509 return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
510 }
511
512 static void copy_sm_roots(struct dm_pool_metadata *pmd,
513 struct thin_disk_superblock *disk)
514 {
515 memcpy(&disk->metadata_space_map_root,
516 &pmd->metadata_space_map_root,
517 sizeof(pmd->metadata_space_map_root));
518
519 memcpy(&disk->data_space_map_root,
520 &pmd->data_space_map_root,
521 sizeof(pmd->data_space_map_root));
522 }
523
524 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
525 {
526 int r;
527 struct dm_block *sblock;
528 struct thin_disk_superblock *disk_super;
529 sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
530
531 if (bdev_size > THIN_METADATA_MAX_SECTORS)
532 bdev_size = THIN_METADATA_MAX_SECTORS;
533
534 r = dm_sm_commit(pmd->data_sm);
535 if (r < 0)
536 return r;
537
538 r = dm_tm_pre_commit(pmd->tm);
539 if (r < 0)
540 return r;
541
542 r = save_sm_roots(pmd);
543 if (r < 0)
544 return r;
545
546 r = superblock_lock_zero(pmd, &sblock);
547 if (r)
548 return r;
549
550 disk_super = dm_block_data(sblock);
551 disk_super->flags = 0;
552 memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
553 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
554 disk_super->version = cpu_to_le32(THIN_VERSION);
555 disk_super->time = 0;
556 disk_super->trans_id = 0;
557 disk_super->held_root = 0;
558
559 copy_sm_roots(pmd, disk_super);
560
561 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
562 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
563 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
564 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
565 disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
566
567 return dm_tm_commit(pmd->tm, sblock);
568 }
569
570 static int __format_metadata(struct dm_pool_metadata *pmd)
571 {
572 int r;
573
574 r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
575 &pmd->tm, &pmd->metadata_sm);
576 if (r < 0) {
577 DMERR("tm_create_with_sm failed");
578 return r;
579 }
580
581 pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
582 if (IS_ERR(pmd->data_sm)) {
583 DMERR("sm_disk_create failed");
584 r = PTR_ERR(pmd->data_sm);
585 goto bad_cleanup_tm;
586 }
587
588 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
589 if (!pmd->nb_tm) {
590 DMERR("could not create non-blocking clone tm");
591 r = -ENOMEM;
592 goto bad_cleanup_data_sm;
593 }
594
595 __setup_btree_details(pmd);
596
597 r = dm_btree_empty(&pmd->info, &pmd->root);
598 if (r < 0)
599 goto bad_cleanup_nb_tm;
600
601 r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
602 if (r < 0) {
603 DMERR("couldn't create devices root");
604 goto bad_cleanup_nb_tm;
605 }
606
607 r = __write_initial_superblock(pmd);
608 if (r)
609 goto bad_cleanup_nb_tm;
610
611 return 0;
612
613 bad_cleanup_nb_tm:
614 dm_tm_destroy(pmd->nb_tm);
615 bad_cleanup_data_sm:
616 dm_sm_destroy(pmd->data_sm);
617 bad_cleanup_tm:
618 dm_tm_destroy(pmd->tm);
619 dm_sm_destroy(pmd->metadata_sm);
620
621 return r;
622 }
623
624 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
625 struct dm_pool_metadata *pmd)
626 {
627 uint32_t features;
628
629 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
630 if (features) {
631 DMERR("could not access metadata due to unsupported optional features (%lx).",
632 (unsigned long)features);
633 return -EINVAL;
634 }
635
636 /*
637 * Check for read-only metadata to skip the following RDWR checks.
638 */
639 if (get_disk_ro(pmd->bdev->bd_disk))
640 return 0;
641
642 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
643 if (features) {
644 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
645 (unsigned long)features);
646 return -EINVAL;
647 }
648
649 return 0;
650 }
651
652 static int __open_metadata(struct dm_pool_metadata *pmd)
653 {
654 int r;
655 struct dm_block *sblock;
656 struct thin_disk_superblock *disk_super;
657
658 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
659 &sb_validator, &sblock);
660 if (r < 0) {
661 DMERR("couldn't read superblock");
662 return r;
663 }
664
665 disk_super = dm_block_data(sblock);
666
667 /* Verify the data block size hasn't changed */
668 if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
669 DMERR("changing the data block size (from %u to %llu) is not supported",
670 le32_to_cpu(disk_super->data_block_size),
671 (unsigned long long)pmd->data_block_size);
672 r = -EINVAL;
673 goto bad_unlock_sblock;
674 }
675
676 r = __check_incompat_features(disk_super, pmd);
677 if (r < 0)
678 goto bad_unlock_sblock;
679
680 r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
681 disk_super->metadata_space_map_root,
682 sizeof(disk_super->metadata_space_map_root),
683 &pmd->tm, &pmd->metadata_sm);
684 if (r < 0) {
685 DMERR("tm_open_with_sm failed");
686 goto bad_unlock_sblock;
687 }
688
689 pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
690 sizeof(disk_super->data_space_map_root));
691 if (IS_ERR(pmd->data_sm)) {
692 DMERR("sm_disk_open failed");
693 r = PTR_ERR(pmd->data_sm);
694 goto bad_cleanup_tm;
695 }
696
697 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
698 if (!pmd->nb_tm) {
699 DMERR("could not create non-blocking clone tm");
700 r = -ENOMEM;
701 goto bad_cleanup_data_sm;
702 }
703
704 __setup_btree_details(pmd);
705 dm_bm_unlock(sblock);
706
707 return 0;
708
709 bad_cleanup_data_sm:
710 dm_sm_destroy(pmd->data_sm);
711 bad_cleanup_tm:
712 dm_tm_destroy(pmd->tm);
713 dm_sm_destroy(pmd->metadata_sm);
714 bad_unlock_sblock:
715 dm_bm_unlock(sblock);
716
717 return r;
718 }
719
720 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
721 {
722 int r, unformatted;
723
724 r = __superblock_all_zeroes(pmd->bm, &unformatted);
725 if (r)
726 return r;
727
728 if (unformatted)
729 return format_device ? __format_metadata(pmd) : -EPERM;
730
731 return __open_metadata(pmd);
732 }
733
734 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
735 {
736 int r;
737
738 pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
739 THIN_MAX_CONCURRENT_LOCKS);
740 if (IS_ERR(pmd->bm)) {
741 DMERR("could not create block manager");
742 r = PTR_ERR(pmd->bm);
743 pmd->bm = NULL;
744 return r;
745 }
746
747 r = __open_or_format_metadata(pmd, format_device);
748 if (r) {
749 dm_block_manager_destroy(pmd->bm);
750 pmd->bm = NULL;
751 }
752
753 return r;
754 }
755
756 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
757 {
758 dm_sm_destroy(pmd->data_sm);
759 dm_sm_destroy(pmd->metadata_sm);
760 dm_tm_destroy(pmd->nb_tm);
761 dm_tm_destroy(pmd->tm);
762 dm_block_manager_destroy(pmd->bm);
763 }
764
765 static int __begin_transaction(struct dm_pool_metadata *pmd)
766 {
767 int r;
768 struct thin_disk_superblock *disk_super;
769 struct dm_block *sblock;
770
771 /*
772 * We re-read the superblock every time. Shouldn't need to do this
773 * really.
774 */
775 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
776 &sb_validator, &sblock);
777 if (r)
778 return r;
779
780 disk_super = dm_block_data(sblock);
781 pmd->time = le32_to_cpu(disk_super->time);
782 pmd->root = le64_to_cpu(disk_super->data_mapping_root);
783 pmd->details_root = le64_to_cpu(disk_super->device_details_root);
784 pmd->trans_id = le64_to_cpu(disk_super->trans_id);
785 pmd->flags = le32_to_cpu(disk_super->flags);
786 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
787
788 dm_bm_unlock(sblock);
789 return 0;
790 }
791
792 static int __write_changed_details(struct dm_pool_metadata *pmd)
793 {
794 int r;
795 struct dm_thin_device *td, *tmp;
796 struct disk_device_details details;
797 uint64_t key;
798
799 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
800 if (!td->changed)
801 continue;
802
803 key = td->id;
804
805 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
806 details.transaction_id = cpu_to_le64(td->transaction_id);
807 details.creation_time = cpu_to_le32(td->creation_time);
808 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
809 __dm_bless_for_disk(&details);
810
811 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
812 &key, &details, &pmd->details_root);
813 if (r)
814 return r;
815
816 if (td->open_count)
817 td->changed = false;
818 else {
819 list_del(&td->list);
820 kfree(td);
821 }
822 }
823
824 return 0;
825 }
826
827 static int __commit_transaction(struct dm_pool_metadata *pmd)
828 {
829 int r;
830 struct thin_disk_superblock *disk_super;
831 struct dm_block *sblock;
832
833 /*
834 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
835 */
836 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
837 BUG_ON(!rwsem_is_locked(&pmd->root_lock));
838
839 if (unlikely(!pmd->in_service))
840 return 0;
841
842 if (pmd->pre_commit_fn) {
843 r = pmd->pre_commit_fn(pmd->pre_commit_context);
844 if (r < 0) {
845 DMERR("pre-commit callback failed");
846 return r;
847 }
848 }
849
850 r = __write_changed_details(pmd);
851 if (r < 0)
852 return r;
853
854 r = dm_sm_commit(pmd->data_sm);
855 if (r < 0)
856 return r;
857
858 r = dm_tm_pre_commit(pmd->tm);
859 if (r < 0)
860 return r;
861
862 r = save_sm_roots(pmd);
863 if (r < 0)
864 return r;
865
866 r = superblock_lock(pmd, &sblock);
867 if (r)
868 return r;
869
870 disk_super = dm_block_data(sblock);
871 disk_super->time = cpu_to_le32(pmd->time);
872 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
873 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
874 disk_super->trans_id = cpu_to_le64(pmd->trans_id);
875 disk_super->flags = cpu_to_le32(pmd->flags);
876
877 copy_sm_roots(pmd, disk_super);
878
879 return dm_tm_commit(pmd->tm, sblock);
880 }
881
882 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
883 {
884 int r;
885 dm_block_t total;
886 dm_block_t max_blocks = 4096; /* 16M */
887
888 r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
889 if (r) {
890 DMERR("could not get size of metadata device");
891 pmd->metadata_reserve = max_blocks;
892 } else
893 pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
894 }
895
896 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
897 sector_t data_block_size,
898 bool format_device)
899 {
900 int r;
901 struct dm_pool_metadata *pmd;
902
903 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
904 if (!pmd) {
905 DMERR("could not allocate metadata struct");
906 return ERR_PTR(-ENOMEM);
907 }
908
909 init_rwsem(&pmd->root_lock);
910 pmd->time = 0;
911 INIT_LIST_HEAD(&pmd->thin_devices);
912 pmd->fail_io = false;
913 pmd->in_service = false;
914 pmd->bdev = bdev;
915 pmd->data_block_size = data_block_size;
916 pmd->pre_commit_fn = NULL;
917 pmd->pre_commit_context = NULL;
918
919 r = __create_persistent_data_objects(pmd, format_device);
920 if (r) {
921 kfree(pmd);
922 return ERR_PTR(r);
923 }
924
925 r = __begin_transaction(pmd);
926 if (r < 0) {
927 if (dm_pool_metadata_close(pmd) < 0)
928 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
929 return ERR_PTR(r);
930 }
931
932 __set_metadata_reserve(pmd);
933
934 return pmd;
935 }
936
937 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
938 {
939 int r;
940 unsigned open_devices = 0;
941 struct dm_thin_device *td, *tmp;
942
943 down_read(&pmd->root_lock);
944 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
945 if (td->open_count)
946 open_devices++;
947 else {
948 list_del(&td->list);
949 kfree(td);
950 }
951 }
952 up_read(&pmd->root_lock);
953
954 if (open_devices) {
955 DMERR("attempt to close pmd when %u device(s) are still open",
956 open_devices);
957 return -EBUSY;
958 }
959
960 pmd_write_lock_in_core(pmd);
961 if (!pmd->fail_io && !dm_bm_is_read_only(pmd->bm)) {
962 r = __commit_transaction(pmd);
963 if (r < 0)
964 DMWARN("%s: __commit_transaction() failed, error = %d",
965 __func__, r);
966 }
967 pmd_write_unlock(pmd);
968 if (!pmd->fail_io)
969 __destroy_persistent_data_objects(pmd);
970
971 kfree(pmd);
972 return 0;
973 }
974
975 /*
976 * __open_device: Returns @td corresponding to device with id @dev,
977 * creating it if @create is set and incrementing @td->open_count.
978 * On failure, @td is undefined.
979 */
980 static int __open_device(struct dm_pool_metadata *pmd,
981 dm_thin_id dev, int create,
982 struct dm_thin_device **td)
983 {
984 int r, changed = 0;
985 struct dm_thin_device *td2;
986 uint64_t key = dev;
987 struct disk_device_details details_le;
988
989 /*
990 * If the device is already open, return it.
991 */
992 list_for_each_entry(td2, &pmd->thin_devices, list)
993 if (td2->id == dev) {
994 /*
995 * May not create an already-open device.
996 */
997 if (create)
998 return -EEXIST;
999
1000 td2->open_count++;
1001 *td = td2;
1002 return 0;
1003 }
1004
1005 /*
1006 * Check the device exists.
1007 */
1008 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1009 &key, &details_le);
1010 if (r) {
1011 if (r != -ENODATA || !create)
1012 return r;
1013
1014 /*
1015 * Create new device.
1016 */
1017 changed = 1;
1018 details_le.mapped_blocks = 0;
1019 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
1020 details_le.creation_time = cpu_to_le32(pmd->time);
1021 details_le.snapshotted_time = cpu_to_le32(pmd->time);
1022 }
1023
1024 *td = kmalloc(sizeof(**td), GFP_NOIO);
1025 if (!*td)
1026 return -ENOMEM;
1027
1028 (*td)->pmd = pmd;
1029 (*td)->id = dev;
1030 (*td)->open_count = 1;
1031 (*td)->changed = changed;
1032 (*td)->aborted_with_changes = false;
1033 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1034 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1035 (*td)->creation_time = le32_to_cpu(details_le.creation_time);
1036 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1037
1038 list_add(&(*td)->list, &pmd->thin_devices);
1039
1040 return 0;
1041 }
1042
1043 static void __close_device(struct dm_thin_device *td)
1044 {
1045 --td->open_count;
1046 }
1047
1048 static int __create_thin(struct dm_pool_metadata *pmd,
1049 dm_thin_id dev)
1050 {
1051 int r;
1052 dm_block_t dev_root;
1053 uint64_t key = dev;
1054 struct dm_thin_device *td;
1055 __le64 value;
1056
1057 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1058 &key, NULL);
1059 if (!r)
1060 return -EEXIST;
1061
1062 /*
1063 * Create an empty btree for the mappings.
1064 */
1065 r = dm_btree_empty(&pmd->bl_info, &dev_root);
1066 if (r)
1067 return r;
1068
1069 /*
1070 * Insert it into the main mapping tree.
1071 */
1072 value = cpu_to_le64(dev_root);
1073 __dm_bless_for_disk(&value);
1074 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1075 if (r) {
1076 dm_btree_del(&pmd->bl_info, dev_root);
1077 return r;
1078 }
1079
1080 r = __open_device(pmd, dev, 1, &td);
1081 if (r) {
1082 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1083 dm_btree_del(&pmd->bl_info, dev_root);
1084 return r;
1085 }
1086 __close_device(td);
1087
1088 return r;
1089 }
1090
1091 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1092 {
1093 int r = -EINVAL;
1094
1095 pmd_write_lock(pmd);
1096 if (!pmd->fail_io)
1097 r = __create_thin(pmd, dev);
1098 pmd_write_unlock(pmd);
1099
1100 return r;
1101 }
1102
1103 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1104 struct dm_thin_device *snap,
1105 dm_thin_id origin, uint32_t time)
1106 {
1107 int r;
1108 struct dm_thin_device *td;
1109
1110 r = __open_device(pmd, origin, 0, &td);
1111 if (r)
1112 return r;
1113
1114 td->changed = true;
1115 td->snapshotted_time = time;
1116
1117 snap->mapped_blocks = td->mapped_blocks;
1118 snap->snapshotted_time = time;
1119 __close_device(td);
1120
1121 return 0;
1122 }
1123
1124 static int __create_snap(struct dm_pool_metadata *pmd,
1125 dm_thin_id dev, dm_thin_id origin)
1126 {
1127 int r;
1128 dm_block_t origin_root;
1129 uint64_t key = origin, dev_key = dev;
1130 struct dm_thin_device *td;
1131 __le64 value;
1132
1133 /* check this device is unused */
1134 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1135 &dev_key, NULL);
1136 if (!r)
1137 return -EEXIST;
1138
1139 /* find the mapping tree for the origin */
1140 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1141 if (r)
1142 return r;
1143 origin_root = le64_to_cpu(value);
1144
1145 /* clone the origin, an inc will do */
1146 dm_tm_inc(pmd->tm, origin_root);
1147
1148 /* insert into the main mapping tree */
1149 value = cpu_to_le64(origin_root);
1150 __dm_bless_for_disk(&value);
1151 key = dev;
1152 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1153 if (r) {
1154 dm_tm_dec(pmd->tm, origin_root);
1155 return r;
1156 }
1157
1158 pmd->time++;
1159
1160 r = __open_device(pmd, dev, 1, &td);
1161 if (r)
1162 goto bad;
1163
1164 r = __set_snapshot_details(pmd, td, origin, pmd->time);
1165 __close_device(td);
1166
1167 if (r)
1168 goto bad;
1169
1170 return 0;
1171
1172 bad:
1173 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1174 dm_btree_remove(&pmd->details_info, pmd->details_root,
1175 &key, &pmd->details_root);
1176 return r;
1177 }
1178
1179 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1180 dm_thin_id dev,
1181 dm_thin_id origin)
1182 {
1183 int r = -EINVAL;
1184
1185 pmd_write_lock(pmd);
1186 if (!pmd->fail_io)
1187 r = __create_snap(pmd, dev, origin);
1188 pmd_write_unlock(pmd);
1189
1190 return r;
1191 }
1192
1193 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1194 {
1195 int r;
1196 uint64_t key = dev;
1197 struct dm_thin_device *td;
1198
1199 /* TODO: failure should mark the transaction invalid */
1200 r = __open_device(pmd, dev, 0, &td);
1201 if (r)
1202 return r;
1203
1204 if (td->open_count > 1) {
1205 __close_device(td);
1206 return -EBUSY;
1207 }
1208
1209 list_del(&td->list);
1210 kfree(td);
1211 r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1212 &key, &pmd->details_root);
1213 if (r)
1214 return r;
1215
1216 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1217 if (r)
1218 return r;
1219
1220 return 0;
1221 }
1222
1223 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1224 dm_thin_id dev)
1225 {
1226 int r = -EINVAL;
1227
1228 pmd_write_lock(pmd);
1229 if (!pmd->fail_io)
1230 r = __delete_device(pmd, dev);
1231 pmd_write_unlock(pmd);
1232
1233 return r;
1234 }
1235
1236 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1237 uint64_t current_id,
1238 uint64_t new_id)
1239 {
1240 int r = -EINVAL;
1241
1242 pmd_write_lock(pmd);
1243
1244 if (pmd->fail_io)
1245 goto out;
1246
1247 if (pmd->trans_id != current_id) {
1248 DMERR("mismatched transaction id");
1249 goto out;
1250 }
1251
1252 pmd->trans_id = new_id;
1253 r = 0;
1254
1255 out:
1256 pmd_write_unlock(pmd);
1257
1258 return r;
1259 }
1260
1261 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1262 uint64_t *result)
1263 {
1264 int r = -EINVAL;
1265
1266 down_read(&pmd->root_lock);
1267 if (!pmd->fail_io) {
1268 *result = pmd->trans_id;
1269 r = 0;
1270 }
1271 up_read(&pmd->root_lock);
1272
1273 return r;
1274 }
1275
1276 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1277 {
1278 int r, inc;
1279 struct thin_disk_superblock *disk_super;
1280 struct dm_block *copy, *sblock;
1281 dm_block_t held_root;
1282
1283 /*
1284 * We commit to ensure the btree roots which we increment in a
1285 * moment are up to date.
1286 */
1287 r = __commit_transaction(pmd);
1288 if (r < 0) {
1289 DMWARN("%s: __commit_transaction() failed, error = %d",
1290 __func__, r);
1291 return r;
1292 }
1293
1294 /*
1295 * Copy the superblock.
1296 */
1297 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1298 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1299 &sb_validator, &copy, &inc);
1300 if (r)
1301 return r;
1302
1303 BUG_ON(!inc);
1304
1305 held_root = dm_block_location(copy);
1306 disk_super = dm_block_data(copy);
1307
1308 if (le64_to_cpu(disk_super->held_root)) {
1309 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1310
1311 dm_tm_dec(pmd->tm, held_root);
1312 dm_tm_unlock(pmd->tm, copy);
1313 return -EBUSY;
1314 }
1315
1316 /*
1317 * Wipe the spacemap since we're not publishing this.
1318 */
1319 memset(&disk_super->data_space_map_root, 0,
1320 sizeof(disk_super->data_space_map_root));
1321 memset(&disk_super->metadata_space_map_root, 0,
1322 sizeof(disk_super->metadata_space_map_root));
1323
1324 /*
1325 * Increment the data structures that need to be preserved.
1326 */
1327 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1328 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1329 dm_tm_unlock(pmd->tm, copy);
1330
1331 /*
1332 * Write the held root into the superblock.
1333 */
1334 r = superblock_lock(pmd, &sblock);
1335 if (r) {
1336 dm_tm_dec(pmd->tm, held_root);
1337 return r;
1338 }
1339
1340 disk_super = dm_block_data(sblock);
1341 disk_super->held_root = cpu_to_le64(held_root);
1342 dm_bm_unlock(sblock);
1343 return 0;
1344 }
1345
1346 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1347 {
1348 int r = -EINVAL;
1349
1350 pmd_write_lock(pmd);
1351 if (!pmd->fail_io)
1352 r = __reserve_metadata_snap(pmd);
1353 pmd_write_unlock(pmd);
1354
1355 return r;
1356 }
1357
1358 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1359 {
1360 int r;
1361 struct thin_disk_superblock *disk_super;
1362 struct dm_block *sblock, *copy;
1363 dm_block_t held_root;
1364
1365 r = superblock_lock(pmd, &sblock);
1366 if (r)
1367 return r;
1368
1369 disk_super = dm_block_data(sblock);
1370 held_root = le64_to_cpu(disk_super->held_root);
1371 disk_super->held_root = cpu_to_le64(0);
1372
1373 dm_bm_unlock(sblock);
1374
1375 if (!held_root) {
1376 DMWARN("No pool metadata snapshot found: nothing to release.");
1377 return -EINVAL;
1378 }
1379
1380 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1381 if (r)
1382 return r;
1383
1384 disk_super = dm_block_data(copy);
1385 dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1386 dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1387 dm_sm_dec_block(pmd->metadata_sm, held_root);
1388
1389 dm_tm_unlock(pmd->tm, copy);
1390
1391 return 0;
1392 }
1393
1394 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1395 {
1396 int r = -EINVAL;
1397
1398 pmd_write_lock(pmd);
1399 if (!pmd->fail_io)
1400 r = __release_metadata_snap(pmd);
1401 pmd_write_unlock(pmd);
1402
1403 return r;
1404 }
1405
1406 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1407 dm_block_t *result)
1408 {
1409 int r;
1410 struct thin_disk_superblock *disk_super;
1411 struct dm_block *sblock;
1412
1413 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1414 &sb_validator, &sblock);
1415 if (r)
1416 return r;
1417
1418 disk_super = dm_block_data(sblock);
1419 *result = le64_to_cpu(disk_super->held_root);
1420
1421 dm_bm_unlock(sblock);
1422
1423 return 0;
1424 }
1425
1426 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1427 dm_block_t *result)
1428 {
1429 int r = -EINVAL;
1430
1431 down_read(&pmd->root_lock);
1432 if (!pmd->fail_io)
1433 r = __get_metadata_snap(pmd, result);
1434 up_read(&pmd->root_lock);
1435
1436 return r;
1437 }
1438
1439 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1440 struct dm_thin_device **td)
1441 {
1442 int r = -EINVAL;
1443
1444 pmd_write_lock_in_core(pmd);
1445 if (!pmd->fail_io)
1446 r = __open_device(pmd, dev, 0, td);
1447 pmd_write_unlock(pmd);
1448
1449 return r;
1450 }
1451
1452 int dm_pool_close_thin_device(struct dm_thin_device *td)
1453 {
1454 pmd_write_lock_in_core(td->pmd);
1455 __close_device(td);
1456 pmd_write_unlock(td->pmd);
1457
1458 return 0;
1459 }
1460
1461 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1462 {
1463 return td->id;
1464 }
1465
1466 /*
1467 * Check whether @time (of block creation) is older than @td's last snapshot.
1468 * If so then the associated block is shared with the last snapshot device.
1469 * Any block on a device created *after* the device last got snapshotted is
1470 * necessarily not shared.
1471 */
1472 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1473 {
1474 return td->snapshotted_time > time;
1475 }
1476
1477 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1478 struct dm_thin_lookup_result *result)
1479 {
1480 uint64_t block_time = 0;
1481 dm_block_t exception_block;
1482 uint32_t exception_time;
1483
1484 block_time = le64_to_cpu(value);
1485 unpack_block_time(block_time, &exception_block, &exception_time);
1486 result->block = exception_block;
1487 result->shared = __snapshotted_since(td, exception_time);
1488 }
1489
1490 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1491 int can_issue_io, struct dm_thin_lookup_result *result)
1492 {
1493 int r;
1494 __le64 value;
1495 struct dm_pool_metadata *pmd = td->pmd;
1496 dm_block_t keys[2] = { td->id, block };
1497 struct dm_btree_info *info;
1498
1499 if (can_issue_io) {
1500 info = &pmd->info;
1501 } else
1502 info = &pmd->nb_info;
1503
1504 r = dm_btree_lookup(info, pmd->root, keys, &value);
1505 if (!r)
1506 unpack_lookup_result(td, value, result);
1507
1508 return r;
1509 }
1510
1511 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1512 int can_issue_io, struct dm_thin_lookup_result *result)
1513 {
1514 int r;
1515 struct dm_pool_metadata *pmd = td->pmd;
1516
1517 down_read(&pmd->root_lock);
1518 if (pmd->fail_io) {
1519 up_read(&pmd->root_lock);
1520 return -EINVAL;
1521 }
1522
1523 r = __find_block(td, block, can_issue_io, result);
1524
1525 up_read(&pmd->root_lock);
1526 return r;
1527 }
1528
1529 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1530 dm_block_t *vblock,
1531 struct dm_thin_lookup_result *result)
1532 {
1533 int r;
1534 __le64 value;
1535 struct dm_pool_metadata *pmd = td->pmd;
1536 dm_block_t keys[2] = { td->id, block };
1537
1538 r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1539 if (!r)
1540 unpack_lookup_result(td, value, result);
1541
1542 return r;
1543 }
1544
1545 static int __find_mapped_range(struct dm_thin_device *td,
1546 dm_block_t begin, dm_block_t end,
1547 dm_block_t *thin_begin, dm_block_t *thin_end,
1548 dm_block_t *pool_begin, bool *maybe_shared)
1549 {
1550 int r;
1551 dm_block_t pool_end;
1552 struct dm_thin_lookup_result lookup;
1553
1554 if (end < begin)
1555 return -ENODATA;
1556
1557 r = __find_next_mapped_block(td, begin, &begin, &lookup);
1558 if (r)
1559 return r;
1560
1561 if (begin >= end)
1562 return -ENODATA;
1563
1564 *thin_begin = begin;
1565 *pool_begin = lookup.block;
1566 *maybe_shared = lookup.shared;
1567
1568 begin++;
1569 pool_end = *pool_begin + 1;
1570 while (begin != end) {
1571 r = __find_block(td, begin, true, &lookup);
1572 if (r) {
1573 if (r == -ENODATA)
1574 break;
1575 else
1576 return r;
1577 }
1578
1579 if ((lookup.block != pool_end) ||
1580 (lookup.shared != *maybe_shared))
1581 break;
1582
1583 pool_end++;
1584 begin++;
1585 }
1586
1587 *thin_end = begin;
1588 return 0;
1589 }
1590
1591 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1592 dm_block_t begin, dm_block_t end,
1593 dm_block_t *thin_begin, dm_block_t *thin_end,
1594 dm_block_t *pool_begin, bool *maybe_shared)
1595 {
1596 int r = -EINVAL;
1597 struct dm_pool_metadata *pmd = td->pmd;
1598
1599 down_read(&pmd->root_lock);
1600 if (!pmd->fail_io) {
1601 r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1602 pool_begin, maybe_shared);
1603 }
1604 up_read(&pmd->root_lock);
1605
1606 return r;
1607 }
1608
1609 static int __insert(struct dm_thin_device *td, dm_block_t block,
1610 dm_block_t data_block)
1611 {
1612 int r, inserted;
1613 __le64 value;
1614 struct dm_pool_metadata *pmd = td->pmd;
1615 dm_block_t keys[2] = { td->id, block };
1616
1617 value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1618 __dm_bless_for_disk(&value);
1619
1620 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1621 &pmd->root, &inserted);
1622 if (r)
1623 return r;
1624
1625 td->changed = true;
1626 if (inserted)
1627 td->mapped_blocks++;
1628
1629 return 0;
1630 }
1631
1632 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1633 dm_block_t data_block)
1634 {
1635 int r = -EINVAL;
1636
1637 pmd_write_lock(td->pmd);
1638 if (!td->pmd->fail_io)
1639 r = __insert(td, block, data_block);
1640 pmd_write_unlock(td->pmd);
1641
1642 return r;
1643 }
1644
1645 static int __remove(struct dm_thin_device *td, dm_block_t block)
1646 {
1647 int r;
1648 struct dm_pool_metadata *pmd = td->pmd;
1649 dm_block_t keys[2] = { td->id, block };
1650
1651 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1652 if (r)
1653 return r;
1654
1655 td->mapped_blocks--;
1656 td->changed = true;
1657
1658 return 0;
1659 }
1660
1661 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1662 {
1663 int r;
1664 unsigned count, total_count = 0;
1665 struct dm_pool_metadata *pmd = td->pmd;
1666 dm_block_t keys[1] = { td->id };
1667 __le64 value;
1668 dm_block_t mapping_root;
1669
1670 /*
1671 * Find the mapping tree
1672 */
1673 r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1674 if (r)
1675 return r;
1676
1677 /*
1678 * Remove from the mapping tree, taking care to inc the
1679 * ref count so it doesn't get deleted.
1680 */
1681 mapping_root = le64_to_cpu(value);
1682 dm_tm_inc(pmd->tm, mapping_root);
1683 r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1684 if (r)
1685 return r;
1686
1687 /*
1688 * Remove leaves stops at the first unmapped entry, so we have to
1689 * loop round finding mapped ranges.
1690 */
1691 while (begin < end) {
1692 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1693 if (r == -ENODATA)
1694 break;
1695
1696 if (r)
1697 return r;
1698
1699 if (begin >= end)
1700 break;
1701
1702 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1703 if (r)
1704 return r;
1705
1706 total_count += count;
1707 }
1708
1709 td->mapped_blocks -= total_count;
1710 td->changed = true;
1711
1712 /*
1713 * Reinsert the mapping tree.
1714 */
1715 value = cpu_to_le64(mapping_root);
1716 __dm_bless_for_disk(&value);
1717 return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1718 }
1719
1720 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1721 {
1722 int r = -EINVAL;
1723
1724 pmd_write_lock(td->pmd);
1725 if (!td->pmd->fail_io)
1726 r = __remove(td, block);
1727 pmd_write_unlock(td->pmd);
1728
1729 return r;
1730 }
1731
1732 int dm_thin_remove_range(struct dm_thin_device *td,
1733 dm_block_t begin, dm_block_t end)
1734 {
1735 int r = -EINVAL;
1736
1737 pmd_write_lock(td->pmd);
1738 if (!td->pmd->fail_io)
1739 r = __remove_range(td, begin, end);
1740 pmd_write_unlock(td->pmd);
1741
1742 return r;
1743 }
1744
1745 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1746 {
1747 int r;
1748 uint32_t ref_count;
1749
1750 down_read(&pmd->root_lock);
1751 r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1752 if (!r)
1753 *result = (ref_count > 1);
1754 up_read(&pmd->root_lock);
1755
1756 return r;
1757 }
1758
1759 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1760 {
1761 int r = 0;
1762
1763 pmd_write_lock(pmd);
1764 for (; b != e; b++) {
1765 r = dm_sm_inc_block(pmd->data_sm, b);
1766 if (r)
1767 break;
1768 }
1769 pmd_write_unlock(pmd);
1770
1771 return r;
1772 }
1773
1774 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1775 {
1776 int r = 0;
1777
1778 pmd_write_lock(pmd);
1779 for (; b != e; b++) {
1780 r = dm_sm_dec_block(pmd->data_sm, b);
1781 if (r)
1782 break;
1783 }
1784 pmd_write_unlock(pmd);
1785
1786 return r;
1787 }
1788
1789 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1790 {
1791 int r;
1792
1793 down_read(&td->pmd->root_lock);
1794 r = td->changed;
1795 up_read(&td->pmd->root_lock);
1796
1797 return r;
1798 }
1799
1800 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1801 {
1802 bool r = false;
1803 struct dm_thin_device *td, *tmp;
1804
1805 down_read(&pmd->root_lock);
1806 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1807 if (td->changed) {
1808 r = td->changed;
1809 break;
1810 }
1811 }
1812 up_read(&pmd->root_lock);
1813
1814 return r;
1815 }
1816
1817 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1818 {
1819 bool r;
1820
1821 down_read(&td->pmd->root_lock);
1822 r = td->aborted_with_changes;
1823 up_read(&td->pmd->root_lock);
1824
1825 return r;
1826 }
1827
1828 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1829 {
1830 int r = -EINVAL;
1831
1832 pmd_write_lock(pmd);
1833 if (!pmd->fail_io)
1834 r = dm_sm_new_block(pmd->data_sm, result);
1835 pmd_write_unlock(pmd);
1836
1837 return r;
1838 }
1839
1840 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1841 {
1842 int r = -EINVAL;
1843
1844 /*
1845 * Care is taken to not have commit be what
1846 * triggers putting the thin-pool in-service.
1847 */
1848 pmd_write_lock_in_core(pmd);
1849 if (pmd->fail_io)
1850 goto out;
1851
1852 r = __commit_transaction(pmd);
1853 if (r < 0)
1854 goto out;
1855
1856 /*
1857 * Open the next transaction.
1858 */
1859 r = __begin_transaction(pmd);
1860 out:
1861 pmd_write_unlock(pmd);
1862 return r;
1863 }
1864
1865 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1866 {
1867 struct dm_thin_device *td;
1868
1869 list_for_each_entry(td, &pmd->thin_devices, list)
1870 td->aborted_with_changes = td->changed;
1871 }
1872
1873 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1874 {
1875 int r = -EINVAL;
1876
1877 pmd_write_lock(pmd);
1878 if (pmd->fail_io)
1879 goto out;
1880
1881 __set_abort_with_changes_flags(pmd);
1882 __destroy_persistent_data_objects(pmd);
1883 r = __create_persistent_data_objects(pmd, false);
1884 if (r)
1885 pmd->fail_io = true;
1886
1887 out:
1888 pmd_write_unlock(pmd);
1889
1890 return r;
1891 }
1892
1893 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1894 {
1895 int r = -EINVAL;
1896
1897 down_read(&pmd->root_lock);
1898 if (!pmd->fail_io)
1899 r = dm_sm_get_nr_free(pmd->data_sm, result);
1900 up_read(&pmd->root_lock);
1901
1902 return r;
1903 }
1904
1905 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1906 dm_block_t *result)
1907 {
1908 int r = -EINVAL;
1909
1910 down_read(&pmd->root_lock);
1911 if (!pmd->fail_io)
1912 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1913
1914 if (!r) {
1915 if (*result < pmd->metadata_reserve)
1916 *result = 0;
1917 else
1918 *result -= pmd->metadata_reserve;
1919 }
1920 up_read(&pmd->root_lock);
1921
1922 return r;
1923 }
1924
1925 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1926 dm_block_t *result)
1927 {
1928 int r = -EINVAL;
1929
1930 down_read(&pmd->root_lock);
1931 if (!pmd->fail_io)
1932 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1933 up_read(&pmd->root_lock);
1934
1935 return r;
1936 }
1937
1938 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1939 {
1940 int r = -EINVAL;
1941
1942 down_read(&pmd->root_lock);
1943 if (!pmd->fail_io)
1944 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1945 up_read(&pmd->root_lock);
1946
1947 return r;
1948 }
1949
1950 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1951 {
1952 int r = -EINVAL;
1953 struct dm_pool_metadata *pmd = td->pmd;
1954
1955 down_read(&pmd->root_lock);
1956 if (!pmd->fail_io) {
1957 *result = td->mapped_blocks;
1958 r = 0;
1959 }
1960 up_read(&pmd->root_lock);
1961
1962 return r;
1963 }
1964
1965 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1966 {
1967 int r;
1968 __le64 value_le;
1969 dm_block_t thin_root;
1970 struct dm_pool_metadata *pmd = td->pmd;
1971
1972 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1973 if (r)
1974 return r;
1975
1976 thin_root = le64_to_cpu(value_le);
1977
1978 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1979 }
1980
1981 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1982 dm_block_t *result)
1983 {
1984 int r = -EINVAL;
1985 struct dm_pool_metadata *pmd = td->pmd;
1986
1987 down_read(&pmd->root_lock);
1988 if (!pmd->fail_io)
1989 r = __highest_block(td, result);
1990 up_read(&pmd->root_lock);
1991
1992 return r;
1993 }
1994
1995 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1996 {
1997 int r;
1998 dm_block_t old_count;
1999
2000 r = dm_sm_get_nr_blocks(sm, &old_count);
2001 if (r)
2002 return r;
2003
2004 if (new_count == old_count)
2005 return 0;
2006
2007 if (new_count < old_count) {
2008 DMERR("cannot reduce size of space map");
2009 return -EINVAL;
2010 }
2011
2012 return dm_sm_extend(sm, new_count - old_count);
2013 }
2014
2015 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2016 {
2017 int r = -EINVAL;
2018
2019 pmd_write_lock(pmd);
2020 if (!pmd->fail_io)
2021 r = __resize_space_map(pmd->data_sm, new_count);
2022 pmd_write_unlock(pmd);
2023
2024 return r;
2025 }
2026
2027 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2028 {
2029 int r = -EINVAL;
2030
2031 pmd_write_lock(pmd);
2032 if (!pmd->fail_io) {
2033 r = __resize_space_map(pmd->metadata_sm, new_count);
2034 if (!r)
2035 __set_metadata_reserve(pmd);
2036 }
2037 pmd_write_unlock(pmd);
2038
2039 return r;
2040 }
2041
2042 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2043 {
2044 pmd_write_lock_in_core(pmd);
2045 dm_bm_set_read_only(pmd->bm);
2046 pmd_write_unlock(pmd);
2047 }
2048
2049 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2050 {
2051 pmd_write_lock_in_core(pmd);
2052 dm_bm_set_read_write(pmd->bm);
2053 pmd_write_unlock(pmd);
2054 }
2055
2056 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2057 dm_block_t threshold,
2058 dm_sm_threshold_fn fn,
2059 void *context)
2060 {
2061 int r;
2062
2063 pmd_write_lock_in_core(pmd);
2064 r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
2065 pmd_write_unlock(pmd);
2066
2067 return r;
2068 }
2069
2070 void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd,
2071 dm_pool_pre_commit_fn fn,
2072 void *context)
2073 {
2074 pmd_write_lock_in_core(pmd);
2075 pmd->pre_commit_fn = fn;
2076 pmd->pre_commit_context = context;
2077 pmd_write_unlock(pmd);
2078 }
2079
2080 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2081 {
2082 int r = -EINVAL;
2083 struct dm_block *sblock;
2084 struct thin_disk_superblock *disk_super;
2085
2086 pmd_write_lock(pmd);
2087 if (pmd->fail_io)
2088 goto out;
2089
2090 pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2091
2092 r = superblock_lock(pmd, &sblock);
2093 if (r) {
2094 DMERR("couldn't lock superblock");
2095 goto out;
2096 }
2097
2098 disk_super = dm_block_data(sblock);
2099 disk_super->flags = cpu_to_le32(pmd->flags);
2100
2101 dm_bm_unlock(sblock);
2102 out:
2103 pmd_write_unlock(pmd);
2104 return r;
2105 }
2106
2107 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2108 {
2109 bool needs_check;
2110
2111 down_read(&pmd->root_lock);
2112 needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2113 up_read(&pmd->root_lock);
2114
2115 return needs_check;
2116 }
2117
2118 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2119 {
2120 down_read(&pmd->root_lock);
2121 if (!pmd->fail_io)
2122 dm_tm_issue_prefetches(pmd->tm);
2123 up_read(&pmd->root_lock);
2124 }