]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/md/dm-thin-metadata.c
Merge tag 'vfs-5.7-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[mirror_ubuntu-hirsute-kernel.git] / drivers / md / dm-thin-metadata.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat, Inc.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16
17 /*--------------------------------------------------------------------------
18 * As far as the metadata goes, there is:
19 *
20 * - A superblock in block zero, taking up fewer than 512 bytes for
21 * atomic writes.
22 *
23 * - A space map managing the metadata blocks.
24 *
25 * - A space map managing the data blocks.
26 *
27 * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28 *
29 * - A hierarchical btree, with 2 levels which effectively maps (thin
30 * dev id, virtual block) -> block_time. Block time is a 64-bit
31 * field holding the time in the low 24 bits, and block in the top 40
32 * bits.
33 *
34 * BTrees consist solely of btree_nodes, that fill a block. Some are
35 * internal nodes, as such their values are a __le64 pointing to other
36 * nodes. Leaf nodes can store data of any reasonable size (ie. much
37 * smaller than the block size). The nodes consist of the header,
38 * followed by an array of keys, followed by an array of values. We have
39 * to binary search on the keys so they're all held together to help the
40 * cpu cache.
41 *
42 * Space maps have 2 btrees:
43 *
44 * - One maps a uint64_t onto a struct index_entry. Which points to a
45 * bitmap block, and has some details about how many free entries there
46 * are etc.
47 *
48 * - The bitmap blocks have a header (for the checksum). Then the rest
49 * of the block is pairs of bits. With the meaning being:
50 *
51 * 0 - ref count is 0
52 * 1 - ref count is 1
53 * 2 - ref count is 2
54 * 3 - ref count is higher than 2
55 *
56 * - If the count is higher than 2 then the ref count is entered in a
57 * second btree that directly maps the block_address to a uint32_t ref
58 * count.
59 *
60 * The space map metadata variant doesn't have a bitmaps btree. Instead
61 * it has one single blocks worth of index_entries. This avoids
62 * recursive issues with the bitmap btree needing to allocate space in
63 * order to insert. With a small data block size such as 64k the
64 * metadata support data devices that are hundreds of terrabytes.
65 *
66 * The space maps allocate space linearly from front to back. Space that
67 * is freed in a transaction is never recycled within that transaction.
68 * To try and avoid fragmenting _free_ space the allocator always goes
69 * back and fills in gaps.
70 *
71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72 * from the block manager.
73 *--------------------------------------------------------------------------*/
74
75 #define DM_MSG_PREFIX "thin metadata"
76
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define SECTOR_TO_BLOCK_SHIFT 3
81
82 /*
83 * For btree insert:
84 * 3 for btree insert +
85 * 2 for btree lookup used within space map
86 * For btree remove:
87 * 2 for shadow spine +
88 * 4 for rebalance 3 child node
89 */
90 #define THIN_MAX_CONCURRENT_LOCKS 6
91
92 /* This should be plenty */
93 #define SPACE_MAP_ROOT_SIZE 128
94
95 /*
96 * Little endian on-disk superblock and device details.
97 */
98 struct thin_disk_superblock {
99 __le32 csum; /* Checksum of superblock except for this field. */
100 __le32 flags;
101 __le64 blocknr; /* This block number, dm_block_t. */
102
103 __u8 uuid[16];
104 __le64 magic;
105 __le32 version;
106 __le32 time;
107
108 __le64 trans_id;
109
110 /*
111 * Root held by userspace transactions.
112 */
113 __le64 held_root;
114
115 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
117
118 /*
119 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
120 */
121 __le64 data_mapping_root;
122
123 /*
124 * Device detail root mapping dev_id -> device_details
125 */
126 __le64 device_details_root;
127
128 __le32 data_block_size; /* In 512-byte sectors. */
129
130 __le32 metadata_block_size; /* In 512-byte sectors. */
131 __le64 metadata_nr_blocks;
132
133 __le32 compat_flags;
134 __le32 compat_ro_flags;
135 __le32 incompat_flags;
136 } __packed;
137
138 struct disk_device_details {
139 __le64 mapped_blocks;
140 __le64 transaction_id; /* When created. */
141 __le32 creation_time;
142 __le32 snapshotted_time;
143 } __packed;
144
145 struct dm_pool_metadata {
146 struct hlist_node hash;
147
148 struct block_device *bdev;
149 struct dm_block_manager *bm;
150 struct dm_space_map *metadata_sm;
151 struct dm_space_map *data_sm;
152 struct dm_transaction_manager *tm;
153 struct dm_transaction_manager *nb_tm;
154
155 /*
156 * Two-level btree.
157 * First level holds thin_dev_t.
158 * Second level holds mappings.
159 */
160 struct dm_btree_info info;
161
162 /*
163 * Non-blocking version of the above.
164 */
165 struct dm_btree_info nb_info;
166
167 /*
168 * Just the top level for deleting whole devices.
169 */
170 struct dm_btree_info tl_info;
171
172 /*
173 * Just the bottom level for creating new devices.
174 */
175 struct dm_btree_info bl_info;
176
177 /*
178 * Describes the device details btree.
179 */
180 struct dm_btree_info details_info;
181
182 struct rw_semaphore root_lock;
183 uint32_t time;
184 dm_block_t root;
185 dm_block_t details_root;
186 struct list_head thin_devices;
187 uint64_t trans_id;
188 unsigned long flags;
189 sector_t data_block_size;
190
191 /*
192 * Pre-commit callback.
193 *
194 * This allows the thin provisioning target to run a callback before
195 * the metadata are committed.
196 */
197 dm_pool_pre_commit_fn pre_commit_fn;
198 void *pre_commit_context;
199
200 /*
201 * We reserve a section of the metadata for commit overhead.
202 * All reported space does *not* include this.
203 */
204 dm_block_t metadata_reserve;
205
206 /*
207 * Set if a transaction has to be aborted but the attempt to roll back
208 * to the previous (good) transaction failed. The only pool metadata
209 * operation possible in this state is the closing of the device.
210 */
211 bool fail_io:1;
212
213 /*
214 * Set once a thin-pool has been accessed through one of the interfaces
215 * that imply the pool is in-service (e.g. thin devices created/deleted,
216 * thin-pool message, metadata snapshots, etc).
217 */
218 bool in_service:1;
219
220 /*
221 * Reading the space map roots can fail, so we read it into these
222 * buffers before the superblock is locked and updated.
223 */
224 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
225 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
226 };
227
228 struct dm_thin_device {
229 struct list_head list;
230 struct dm_pool_metadata *pmd;
231 dm_thin_id id;
232
233 int open_count;
234 bool changed:1;
235 bool aborted_with_changes:1;
236 uint64_t mapped_blocks;
237 uint64_t transaction_id;
238 uint32_t creation_time;
239 uint32_t snapshotted_time;
240 };
241
242 /*----------------------------------------------------------------
243 * superblock validator
244 *--------------------------------------------------------------*/
245
246 #define SUPERBLOCK_CSUM_XOR 160774
247
248 static void sb_prepare_for_write(struct dm_block_validator *v,
249 struct dm_block *b,
250 size_t block_size)
251 {
252 struct thin_disk_superblock *disk_super = dm_block_data(b);
253
254 disk_super->blocknr = cpu_to_le64(dm_block_location(b));
255 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
256 block_size - sizeof(__le32),
257 SUPERBLOCK_CSUM_XOR));
258 }
259
260 static int sb_check(struct dm_block_validator *v,
261 struct dm_block *b,
262 size_t block_size)
263 {
264 struct thin_disk_superblock *disk_super = dm_block_data(b);
265 __le32 csum_le;
266
267 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
268 DMERR("sb_check failed: blocknr %llu: "
269 "wanted %llu", le64_to_cpu(disk_super->blocknr),
270 (unsigned long long)dm_block_location(b));
271 return -ENOTBLK;
272 }
273
274 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
275 DMERR("sb_check failed: magic %llu: "
276 "wanted %llu", le64_to_cpu(disk_super->magic),
277 (unsigned long long)THIN_SUPERBLOCK_MAGIC);
278 return -EILSEQ;
279 }
280
281 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
282 block_size - sizeof(__le32),
283 SUPERBLOCK_CSUM_XOR));
284 if (csum_le != disk_super->csum) {
285 DMERR("sb_check failed: csum %u: wanted %u",
286 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
287 return -EILSEQ;
288 }
289
290 return 0;
291 }
292
293 static struct dm_block_validator sb_validator = {
294 .name = "superblock",
295 .prepare_for_write = sb_prepare_for_write,
296 .check = sb_check
297 };
298
299 /*----------------------------------------------------------------
300 * Methods for the btree value types
301 *--------------------------------------------------------------*/
302
303 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
304 {
305 return (b << 24) | t;
306 }
307
308 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
309 {
310 *b = v >> 24;
311 *t = v & ((1 << 24) - 1);
312 }
313
314 static void data_block_inc(void *context, const void *value_le)
315 {
316 struct dm_space_map *sm = context;
317 __le64 v_le;
318 uint64_t b;
319 uint32_t t;
320
321 memcpy(&v_le, value_le, sizeof(v_le));
322 unpack_block_time(le64_to_cpu(v_le), &b, &t);
323 dm_sm_inc_block(sm, b);
324 }
325
326 static void data_block_dec(void *context, const void *value_le)
327 {
328 struct dm_space_map *sm = context;
329 __le64 v_le;
330 uint64_t b;
331 uint32_t t;
332
333 memcpy(&v_le, value_le, sizeof(v_le));
334 unpack_block_time(le64_to_cpu(v_le), &b, &t);
335 dm_sm_dec_block(sm, b);
336 }
337
338 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
339 {
340 __le64 v1_le, v2_le;
341 uint64_t b1, b2;
342 uint32_t t;
343
344 memcpy(&v1_le, value1_le, sizeof(v1_le));
345 memcpy(&v2_le, value2_le, sizeof(v2_le));
346 unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
347 unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
348
349 return b1 == b2;
350 }
351
352 static void subtree_inc(void *context, const void *value)
353 {
354 struct dm_btree_info *info = context;
355 __le64 root_le;
356 uint64_t root;
357
358 memcpy(&root_le, value, sizeof(root_le));
359 root = le64_to_cpu(root_le);
360 dm_tm_inc(info->tm, root);
361 }
362
363 static void subtree_dec(void *context, const void *value)
364 {
365 struct dm_btree_info *info = context;
366 __le64 root_le;
367 uint64_t root;
368
369 memcpy(&root_le, value, sizeof(root_le));
370 root = le64_to_cpu(root_le);
371 if (dm_btree_del(info, root))
372 DMERR("btree delete failed");
373 }
374
375 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
376 {
377 __le64 v1_le, v2_le;
378 memcpy(&v1_le, value1_le, sizeof(v1_le));
379 memcpy(&v2_le, value2_le, sizeof(v2_le));
380
381 return v1_le == v2_le;
382 }
383
384 /*----------------------------------------------------------------*/
385
386 /*
387 * Variant that is used for in-core only changes or code that
388 * shouldn't put the pool in service on its own (e.g. commit).
389 */
390 static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd)
391 __acquires(pmd->root_lock)
392 {
393 down_write(&pmd->root_lock);
394 }
395
396 static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
397 {
398 pmd_write_lock_in_core(pmd);
399 if (unlikely(!pmd->in_service))
400 pmd->in_service = true;
401 }
402
403 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
404 __releases(pmd->root_lock)
405 {
406 up_write(&pmd->root_lock);
407 }
408
409 /*----------------------------------------------------------------*/
410
411 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
412 struct dm_block **sblock)
413 {
414 return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
415 &sb_validator, sblock);
416 }
417
418 static int superblock_lock(struct dm_pool_metadata *pmd,
419 struct dm_block **sblock)
420 {
421 return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
422 &sb_validator, sblock);
423 }
424
425 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
426 {
427 int r;
428 unsigned i;
429 struct dm_block *b;
430 __le64 *data_le, zero = cpu_to_le64(0);
431 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
432
433 /*
434 * We can't use a validator here - it may be all zeroes.
435 */
436 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
437 if (r)
438 return r;
439
440 data_le = dm_block_data(b);
441 *result = 1;
442 for (i = 0; i < block_size; i++) {
443 if (data_le[i] != zero) {
444 *result = 0;
445 break;
446 }
447 }
448
449 dm_bm_unlock(b);
450
451 return 0;
452 }
453
454 static void __setup_btree_details(struct dm_pool_metadata *pmd)
455 {
456 pmd->info.tm = pmd->tm;
457 pmd->info.levels = 2;
458 pmd->info.value_type.context = pmd->data_sm;
459 pmd->info.value_type.size = sizeof(__le64);
460 pmd->info.value_type.inc = data_block_inc;
461 pmd->info.value_type.dec = data_block_dec;
462 pmd->info.value_type.equal = data_block_equal;
463
464 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
465 pmd->nb_info.tm = pmd->nb_tm;
466
467 pmd->tl_info.tm = pmd->tm;
468 pmd->tl_info.levels = 1;
469 pmd->tl_info.value_type.context = &pmd->bl_info;
470 pmd->tl_info.value_type.size = sizeof(__le64);
471 pmd->tl_info.value_type.inc = subtree_inc;
472 pmd->tl_info.value_type.dec = subtree_dec;
473 pmd->tl_info.value_type.equal = subtree_equal;
474
475 pmd->bl_info.tm = pmd->tm;
476 pmd->bl_info.levels = 1;
477 pmd->bl_info.value_type.context = pmd->data_sm;
478 pmd->bl_info.value_type.size = sizeof(__le64);
479 pmd->bl_info.value_type.inc = data_block_inc;
480 pmd->bl_info.value_type.dec = data_block_dec;
481 pmd->bl_info.value_type.equal = data_block_equal;
482
483 pmd->details_info.tm = pmd->tm;
484 pmd->details_info.levels = 1;
485 pmd->details_info.value_type.context = NULL;
486 pmd->details_info.value_type.size = sizeof(struct disk_device_details);
487 pmd->details_info.value_type.inc = NULL;
488 pmd->details_info.value_type.dec = NULL;
489 pmd->details_info.value_type.equal = NULL;
490 }
491
492 static int save_sm_roots(struct dm_pool_metadata *pmd)
493 {
494 int r;
495 size_t len;
496
497 r = dm_sm_root_size(pmd->metadata_sm, &len);
498 if (r < 0)
499 return r;
500
501 r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
502 if (r < 0)
503 return r;
504
505 r = dm_sm_root_size(pmd->data_sm, &len);
506 if (r < 0)
507 return r;
508
509 return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
510 }
511
512 static void copy_sm_roots(struct dm_pool_metadata *pmd,
513 struct thin_disk_superblock *disk)
514 {
515 memcpy(&disk->metadata_space_map_root,
516 &pmd->metadata_space_map_root,
517 sizeof(pmd->metadata_space_map_root));
518
519 memcpy(&disk->data_space_map_root,
520 &pmd->data_space_map_root,
521 sizeof(pmd->data_space_map_root));
522 }
523
524 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
525 {
526 int r;
527 struct dm_block *sblock;
528 struct thin_disk_superblock *disk_super;
529 sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
530
531 if (bdev_size > THIN_METADATA_MAX_SECTORS)
532 bdev_size = THIN_METADATA_MAX_SECTORS;
533
534 r = dm_sm_commit(pmd->data_sm);
535 if (r < 0)
536 return r;
537
538 r = dm_tm_pre_commit(pmd->tm);
539 if (r < 0)
540 return r;
541
542 r = save_sm_roots(pmd);
543 if (r < 0)
544 return r;
545
546 r = superblock_lock_zero(pmd, &sblock);
547 if (r)
548 return r;
549
550 disk_super = dm_block_data(sblock);
551 disk_super->flags = 0;
552 memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
553 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
554 disk_super->version = cpu_to_le32(THIN_VERSION);
555 disk_super->time = 0;
556 disk_super->trans_id = 0;
557 disk_super->held_root = 0;
558
559 copy_sm_roots(pmd, disk_super);
560
561 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
562 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
563 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
564 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
565 disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
566
567 return dm_tm_commit(pmd->tm, sblock);
568 }
569
570 static int __format_metadata(struct dm_pool_metadata *pmd)
571 {
572 int r;
573
574 r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
575 &pmd->tm, &pmd->metadata_sm);
576 if (r < 0) {
577 DMERR("tm_create_with_sm failed");
578 return r;
579 }
580
581 pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
582 if (IS_ERR(pmd->data_sm)) {
583 DMERR("sm_disk_create failed");
584 r = PTR_ERR(pmd->data_sm);
585 goto bad_cleanup_tm;
586 }
587
588 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
589 if (!pmd->nb_tm) {
590 DMERR("could not create non-blocking clone tm");
591 r = -ENOMEM;
592 goto bad_cleanup_data_sm;
593 }
594
595 __setup_btree_details(pmd);
596
597 r = dm_btree_empty(&pmd->info, &pmd->root);
598 if (r < 0)
599 goto bad_cleanup_nb_tm;
600
601 r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
602 if (r < 0) {
603 DMERR("couldn't create devices root");
604 goto bad_cleanup_nb_tm;
605 }
606
607 r = __write_initial_superblock(pmd);
608 if (r)
609 goto bad_cleanup_nb_tm;
610
611 return 0;
612
613 bad_cleanup_nb_tm:
614 dm_tm_destroy(pmd->nb_tm);
615 bad_cleanup_data_sm:
616 dm_sm_destroy(pmd->data_sm);
617 bad_cleanup_tm:
618 dm_tm_destroy(pmd->tm);
619 dm_sm_destroy(pmd->metadata_sm);
620
621 return r;
622 }
623
624 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
625 struct dm_pool_metadata *pmd)
626 {
627 uint32_t features;
628
629 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
630 if (features) {
631 DMERR("could not access metadata due to unsupported optional features (%lx).",
632 (unsigned long)features);
633 return -EINVAL;
634 }
635
636 /*
637 * Check for read-only metadata to skip the following RDWR checks.
638 */
639 if (get_disk_ro(pmd->bdev->bd_disk))
640 return 0;
641
642 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
643 if (features) {
644 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
645 (unsigned long)features);
646 return -EINVAL;
647 }
648
649 return 0;
650 }
651
652 static int __open_metadata(struct dm_pool_metadata *pmd)
653 {
654 int r;
655 struct dm_block *sblock;
656 struct thin_disk_superblock *disk_super;
657
658 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
659 &sb_validator, &sblock);
660 if (r < 0) {
661 DMERR("couldn't read superblock");
662 return r;
663 }
664
665 disk_super = dm_block_data(sblock);
666
667 /* Verify the data block size hasn't changed */
668 if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
669 DMERR("changing the data block size (from %u to %llu) is not supported",
670 le32_to_cpu(disk_super->data_block_size),
671 (unsigned long long)pmd->data_block_size);
672 r = -EINVAL;
673 goto bad_unlock_sblock;
674 }
675
676 r = __check_incompat_features(disk_super, pmd);
677 if (r < 0)
678 goto bad_unlock_sblock;
679
680 r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
681 disk_super->metadata_space_map_root,
682 sizeof(disk_super->metadata_space_map_root),
683 &pmd->tm, &pmd->metadata_sm);
684 if (r < 0) {
685 DMERR("tm_open_with_sm failed");
686 goto bad_unlock_sblock;
687 }
688
689 pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
690 sizeof(disk_super->data_space_map_root));
691 if (IS_ERR(pmd->data_sm)) {
692 DMERR("sm_disk_open failed");
693 r = PTR_ERR(pmd->data_sm);
694 goto bad_cleanup_tm;
695 }
696
697 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
698 if (!pmd->nb_tm) {
699 DMERR("could not create non-blocking clone tm");
700 r = -ENOMEM;
701 goto bad_cleanup_data_sm;
702 }
703
704 __setup_btree_details(pmd);
705 dm_bm_unlock(sblock);
706
707 return 0;
708
709 bad_cleanup_data_sm:
710 dm_sm_destroy(pmd->data_sm);
711 bad_cleanup_tm:
712 dm_tm_destroy(pmd->tm);
713 dm_sm_destroy(pmd->metadata_sm);
714 bad_unlock_sblock:
715 dm_bm_unlock(sblock);
716
717 return r;
718 }
719
720 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
721 {
722 int r, unformatted;
723
724 r = __superblock_all_zeroes(pmd->bm, &unformatted);
725 if (r)
726 return r;
727
728 if (unformatted)
729 return format_device ? __format_metadata(pmd) : -EPERM;
730
731 return __open_metadata(pmd);
732 }
733
734 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
735 {
736 int r;
737
738 pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
739 THIN_MAX_CONCURRENT_LOCKS);
740 if (IS_ERR(pmd->bm)) {
741 DMERR("could not create block manager");
742 return PTR_ERR(pmd->bm);
743 }
744
745 r = __open_or_format_metadata(pmd, format_device);
746 if (r)
747 dm_block_manager_destroy(pmd->bm);
748
749 return r;
750 }
751
752 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
753 {
754 dm_sm_destroy(pmd->data_sm);
755 dm_sm_destroy(pmd->metadata_sm);
756 dm_tm_destroy(pmd->nb_tm);
757 dm_tm_destroy(pmd->tm);
758 dm_block_manager_destroy(pmd->bm);
759 }
760
761 static int __begin_transaction(struct dm_pool_metadata *pmd)
762 {
763 int r;
764 struct thin_disk_superblock *disk_super;
765 struct dm_block *sblock;
766
767 /*
768 * We re-read the superblock every time. Shouldn't need to do this
769 * really.
770 */
771 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
772 &sb_validator, &sblock);
773 if (r)
774 return r;
775
776 disk_super = dm_block_data(sblock);
777 pmd->time = le32_to_cpu(disk_super->time);
778 pmd->root = le64_to_cpu(disk_super->data_mapping_root);
779 pmd->details_root = le64_to_cpu(disk_super->device_details_root);
780 pmd->trans_id = le64_to_cpu(disk_super->trans_id);
781 pmd->flags = le32_to_cpu(disk_super->flags);
782 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
783
784 dm_bm_unlock(sblock);
785 return 0;
786 }
787
788 static int __write_changed_details(struct dm_pool_metadata *pmd)
789 {
790 int r;
791 struct dm_thin_device *td, *tmp;
792 struct disk_device_details details;
793 uint64_t key;
794
795 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
796 if (!td->changed)
797 continue;
798
799 key = td->id;
800
801 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
802 details.transaction_id = cpu_to_le64(td->transaction_id);
803 details.creation_time = cpu_to_le32(td->creation_time);
804 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
805 __dm_bless_for_disk(&details);
806
807 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
808 &key, &details, &pmd->details_root);
809 if (r)
810 return r;
811
812 if (td->open_count)
813 td->changed = false;
814 else {
815 list_del(&td->list);
816 kfree(td);
817 }
818 }
819
820 return 0;
821 }
822
823 static int __commit_transaction(struct dm_pool_metadata *pmd)
824 {
825 int r;
826 struct thin_disk_superblock *disk_super;
827 struct dm_block *sblock;
828
829 /*
830 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
831 */
832 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
833 BUG_ON(!rwsem_is_locked(&pmd->root_lock));
834
835 if (unlikely(!pmd->in_service))
836 return 0;
837
838 if (pmd->pre_commit_fn) {
839 r = pmd->pre_commit_fn(pmd->pre_commit_context);
840 if (r < 0) {
841 DMERR("pre-commit callback failed");
842 return r;
843 }
844 }
845
846 r = __write_changed_details(pmd);
847 if (r < 0)
848 return r;
849
850 r = dm_sm_commit(pmd->data_sm);
851 if (r < 0)
852 return r;
853
854 r = dm_tm_pre_commit(pmd->tm);
855 if (r < 0)
856 return r;
857
858 r = save_sm_roots(pmd);
859 if (r < 0)
860 return r;
861
862 r = superblock_lock(pmd, &sblock);
863 if (r)
864 return r;
865
866 disk_super = dm_block_data(sblock);
867 disk_super->time = cpu_to_le32(pmd->time);
868 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
869 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
870 disk_super->trans_id = cpu_to_le64(pmd->trans_id);
871 disk_super->flags = cpu_to_le32(pmd->flags);
872
873 copy_sm_roots(pmd, disk_super);
874
875 return dm_tm_commit(pmd->tm, sblock);
876 }
877
878 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
879 {
880 int r;
881 dm_block_t total;
882 dm_block_t max_blocks = 4096; /* 16M */
883
884 r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
885 if (r) {
886 DMERR("could not get size of metadata device");
887 pmd->metadata_reserve = max_blocks;
888 } else
889 pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
890 }
891
892 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
893 sector_t data_block_size,
894 bool format_device)
895 {
896 int r;
897 struct dm_pool_metadata *pmd;
898
899 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
900 if (!pmd) {
901 DMERR("could not allocate metadata struct");
902 return ERR_PTR(-ENOMEM);
903 }
904
905 init_rwsem(&pmd->root_lock);
906 pmd->time = 0;
907 INIT_LIST_HEAD(&pmd->thin_devices);
908 pmd->fail_io = false;
909 pmd->in_service = false;
910 pmd->bdev = bdev;
911 pmd->data_block_size = data_block_size;
912 pmd->pre_commit_fn = NULL;
913 pmd->pre_commit_context = NULL;
914
915 r = __create_persistent_data_objects(pmd, format_device);
916 if (r) {
917 kfree(pmd);
918 return ERR_PTR(r);
919 }
920
921 r = __begin_transaction(pmd);
922 if (r < 0) {
923 if (dm_pool_metadata_close(pmd) < 0)
924 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
925 return ERR_PTR(r);
926 }
927
928 __set_metadata_reserve(pmd);
929
930 return pmd;
931 }
932
933 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
934 {
935 int r;
936 unsigned open_devices = 0;
937 struct dm_thin_device *td, *tmp;
938
939 down_read(&pmd->root_lock);
940 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
941 if (td->open_count)
942 open_devices++;
943 else {
944 list_del(&td->list);
945 kfree(td);
946 }
947 }
948 up_read(&pmd->root_lock);
949
950 if (open_devices) {
951 DMERR("attempt to close pmd when %u device(s) are still open",
952 open_devices);
953 return -EBUSY;
954 }
955
956 pmd_write_lock_in_core(pmd);
957 if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) {
958 r = __commit_transaction(pmd);
959 if (r < 0)
960 DMWARN("%s: __commit_transaction() failed, error = %d",
961 __func__, r);
962 }
963 pmd_write_unlock(pmd);
964 if (!pmd->fail_io)
965 __destroy_persistent_data_objects(pmd);
966
967 kfree(pmd);
968 return 0;
969 }
970
971 /*
972 * __open_device: Returns @td corresponding to device with id @dev,
973 * creating it if @create is set and incrementing @td->open_count.
974 * On failure, @td is undefined.
975 */
976 static int __open_device(struct dm_pool_metadata *pmd,
977 dm_thin_id dev, int create,
978 struct dm_thin_device **td)
979 {
980 int r, changed = 0;
981 struct dm_thin_device *td2;
982 uint64_t key = dev;
983 struct disk_device_details details_le;
984
985 /*
986 * If the device is already open, return it.
987 */
988 list_for_each_entry(td2, &pmd->thin_devices, list)
989 if (td2->id == dev) {
990 /*
991 * May not create an already-open device.
992 */
993 if (create)
994 return -EEXIST;
995
996 td2->open_count++;
997 *td = td2;
998 return 0;
999 }
1000
1001 /*
1002 * Check the device exists.
1003 */
1004 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1005 &key, &details_le);
1006 if (r) {
1007 if (r != -ENODATA || !create)
1008 return r;
1009
1010 /*
1011 * Create new device.
1012 */
1013 changed = 1;
1014 details_le.mapped_blocks = 0;
1015 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
1016 details_le.creation_time = cpu_to_le32(pmd->time);
1017 details_le.snapshotted_time = cpu_to_le32(pmd->time);
1018 }
1019
1020 *td = kmalloc(sizeof(**td), GFP_NOIO);
1021 if (!*td)
1022 return -ENOMEM;
1023
1024 (*td)->pmd = pmd;
1025 (*td)->id = dev;
1026 (*td)->open_count = 1;
1027 (*td)->changed = changed;
1028 (*td)->aborted_with_changes = false;
1029 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1030 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1031 (*td)->creation_time = le32_to_cpu(details_le.creation_time);
1032 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1033
1034 list_add(&(*td)->list, &pmd->thin_devices);
1035
1036 return 0;
1037 }
1038
1039 static void __close_device(struct dm_thin_device *td)
1040 {
1041 --td->open_count;
1042 }
1043
1044 static int __create_thin(struct dm_pool_metadata *pmd,
1045 dm_thin_id dev)
1046 {
1047 int r;
1048 dm_block_t dev_root;
1049 uint64_t key = dev;
1050 struct disk_device_details details_le;
1051 struct dm_thin_device *td;
1052 __le64 value;
1053
1054 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1055 &key, &details_le);
1056 if (!r)
1057 return -EEXIST;
1058
1059 /*
1060 * Create an empty btree for the mappings.
1061 */
1062 r = dm_btree_empty(&pmd->bl_info, &dev_root);
1063 if (r)
1064 return r;
1065
1066 /*
1067 * Insert it into the main mapping tree.
1068 */
1069 value = cpu_to_le64(dev_root);
1070 __dm_bless_for_disk(&value);
1071 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1072 if (r) {
1073 dm_btree_del(&pmd->bl_info, dev_root);
1074 return r;
1075 }
1076
1077 r = __open_device(pmd, dev, 1, &td);
1078 if (r) {
1079 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1080 dm_btree_del(&pmd->bl_info, dev_root);
1081 return r;
1082 }
1083 __close_device(td);
1084
1085 return r;
1086 }
1087
1088 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1089 {
1090 int r = -EINVAL;
1091
1092 pmd_write_lock(pmd);
1093 if (!pmd->fail_io)
1094 r = __create_thin(pmd, dev);
1095 pmd_write_unlock(pmd);
1096
1097 return r;
1098 }
1099
1100 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1101 struct dm_thin_device *snap,
1102 dm_thin_id origin, uint32_t time)
1103 {
1104 int r;
1105 struct dm_thin_device *td;
1106
1107 r = __open_device(pmd, origin, 0, &td);
1108 if (r)
1109 return r;
1110
1111 td->changed = true;
1112 td->snapshotted_time = time;
1113
1114 snap->mapped_blocks = td->mapped_blocks;
1115 snap->snapshotted_time = time;
1116 __close_device(td);
1117
1118 return 0;
1119 }
1120
1121 static int __create_snap(struct dm_pool_metadata *pmd,
1122 dm_thin_id dev, dm_thin_id origin)
1123 {
1124 int r;
1125 dm_block_t origin_root;
1126 uint64_t key = origin, dev_key = dev;
1127 struct dm_thin_device *td;
1128 struct disk_device_details details_le;
1129 __le64 value;
1130
1131 /* check this device is unused */
1132 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1133 &dev_key, &details_le);
1134 if (!r)
1135 return -EEXIST;
1136
1137 /* find the mapping tree for the origin */
1138 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1139 if (r)
1140 return r;
1141 origin_root = le64_to_cpu(value);
1142
1143 /* clone the origin, an inc will do */
1144 dm_tm_inc(pmd->tm, origin_root);
1145
1146 /* insert into the main mapping tree */
1147 value = cpu_to_le64(origin_root);
1148 __dm_bless_for_disk(&value);
1149 key = dev;
1150 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1151 if (r) {
1152 dm_tm_dec(pmd->tm, origin_root);
1153 return r;
1154 }
1155
1156 pmd->time++;
1157
1158 r = __open_device(pmd, dev, 1, &td);
1159 if (r)
1160 goto bad;
1161
1162 r = __set_snapshot_details(pmd, td, origin, pmd->time);
1163 __close_device(td);
1164
1165 if (r)
1166 goto bad;
1167
1168 return 0;
1169
1170 bad:
1171 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1172 dm_btree_remove(&pmd->details_info, pmd->details_root,
1173 &key, &pmd->details_root);
1174 return r;
1175 }
1176
1177 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1178 dm_thin_id dev,
1179 dm_thin_id origin)
1180 {
1181 int r = -EINVAL;
1182
1183 pmd_write_lock(pmd);
1184 if (!pmd->fail_io)
1185 r = __create_snap(pmd, dev, origin);
1186 pmd_write_unlock(pmd);
1187
1188 return r;
1189 }
1190
1191 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1192 {
1193 int r;
1194 uint64_t key = dev;
1195 struct dm_thin_device *td;
1196
1197 /* TODO: failure should mark the transaction invalid */
1198 r = __open_device(pmd, dev, 0, &td);
1199 if (r)
1200 return r;
1201
1202 if (td->open_count > 1) {
1203 __close_device(td);
1204 return -EBUSY;
1205 }
1206
1207 list_del(&td->list);
1208 kfree(td);
1209 r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1210 &key, &pmd->details_root);
1211 if (r)
1212 return r;
1213
1214 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1215 if (r)
1216 return r;
1217
1218 return 0;
1219 }
1220
1221 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1222 dm_thin_id dev)
1223 {
1224 int r = -EINVAL;
1225
1226 pmd_write_lock(pmd);
1227 if (!pmd->fail_io)
1228 r = __delete_device(pmd, dev);
1229 pmd_write_unlock(pmd);
1230
1231 return r;
1232 }
1233
1234 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1235 uint64_t current_id,
1236 uint64_t new_id)
1237 {
1238 int r = -EINVAL;
1239
1240 pmd_write_lock(pmd);
1241
1242 if (pmd->fail_io)
1243 goto out;
1244
1245 if (pmd->trans_id != current_id) {
1246 DMERR("mismatched transaction id");
1247 goto out;
1248 }
1249
1250 pmd->trans_id = new_id;
1251 r = 0;
1252
1253 out:
1254 pmd_write_unlock(pmd);
1255
1256 return r;
1257 }
1258
1259 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1260 uint64_t *result)
1261 {
1262 int r = -EINVAL;
1263
1264 down_read(&pmd->root_lock);
1265 if (!pmd->fail_io) {
1266 *result = pmd->trans_id;
1267 r = 0;
1268 }
1269 up_read(&pmd->root_lock);
1270
1271 return r;
1272 }
1273
1274 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1275 {
1276 int r, inc;
1277 struct thin_disk_superblock *disk_super;
1278 struct dm_block *copy, *sblock;
1279 dm_block_t held_root;
1280
1281 /*
1282 * We commit to ensure the btree roots which we increment in a
1283 * moment are up to date.
1284 */
1285 r = __commit_transaction(pmd);
1286 if (r < 0) {
1287 DMWARN("%s: __commit_transaction() failed, error = %d",
1288 __func__, r);
1289 return r;
1290 }
1291
1292 /*
1293 * Copy the superblock.
1294 */
1295 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1296 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1297 &sb_validator, &copy, &inc);
1298 if (r)
1299 return r;
1300
1301 BUG_ON(!inc);
1302
1303 held_root = dm_block_location(copy);
1304 disk_super = dm_block_data(copy);
1305
1306 if (le64_to_cpu(disk_super->held_root)) {
1307 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1308
1309 dm_tm_dec(pmd->tm, held_root);
1310 dm_tm_unlock(pmd->tm, copy);
1311 return -EBUSY;
1312 }
1313
1314 /*
1315 * Wipe the spacemap since we're not publishing this.
1316 */
1317 memset(&disk_super->data_space_map_root, 0,
1318 sizeof(disk_super->data_space_map_root));
1319 memset(&disk_super->metadata_space_map_root, 0,
1320 sizeof(disk_super->metadata_space_map_root));
1321
1322 /*
1323 * Increment the data structures that need to be preserved.
1324 */
1325 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1326 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1327 dm_tm_unlock(pmd->tm, copy);
1328
1329 /*
1330 * Write the held root into the superblock.
1331 */
1332 r = superblock_lock(pmd, &sblock);
1333 if (r) {
1334 dm_tm_dec(pmd->tm, held_root);
1335 return r;
1336 }
1337
1338 disk_super = dm_block_data(sblock);
1339 disk_super->held_root = cpu_to_le64(held_root);
1340 dm_bm_unlock(sblock);
1341 return 0;
1342 }
1343
1344 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1345 {
1346 int r = -EINVAL;
1347
1348 pmd_write_lock(pmd);
1349 if (!pmd->fail_io)
1350 r = __reserve_metadata_snap(pmd);
1351 pmd_write_unlock(pmd);
1352
1353 return r;
1354 }
1355
1356 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1357 {
1358 int r;
1359 struct thin_disk_superblock *disk_super;
1360 struct dm_block *sblock, *copy;
1361 dm_block_t held_root;
1362
1363 r = superblock_lock(pmd, &sblock);
1364 if (r)
1365 return r;
1366
1367 disk_super = dm_block_data(sblock);
1368 held_root = le64_to_cpu(disk_super->held_root);
1369 disk_super->held_root = cpu_to_le64(0);
1370
1371 dm_bm_unlock(sblock);
1372
1373 if (!held_root) {
1374 DMWARN("No pool metadata snapshot found: nothing to release.");
1375 return -EINVAL;
1376 }
1377
1378 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1379 if (r)
1380 return r;
1381
1382 disk_super = dm_block_data(copy);
1383 dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1384 dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1385 dm_sm_dec_block(pmd->metadata_sm, held_root);
1386
1387 dm_tm_unlock(pmd->tm, copy);
1388
1389 return 0;
1390 }
1391
1392 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1393 {
1394 int r = -EINVAL;
1395
1396 pmd_write_lock(pmd);
1397 if (!pmd->fail_io)
1398 r = __release_metadata_snap(pmd);
1399 pmd_write_unlock(pmd);
1400
1401 return r;
1402 }
1403
1404 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1405 dm_block_t *result)
1406 {
1407 int r;
1408 struct thin_disk_superblock *disk_super;
1409 struct dm_block *sblock;
1410
1411 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1412 &sb_validator, &sblock);
1413 if (r)
1414 return r;
1415
1416 disk_super = dm_block_data(sblock);
1417 *result = le64_to_cpu(disk_super->held_root);
1418
1419 dm_bm_unlock(sblock);
1420
1421 return 0;
1422 }
1423
1424 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1425 dm_block_t *result)
1426 {
1427 int r = -EINVAL;
1428
1429 down_read(&pmd->root_lock);
1430 if (!pmd->fail_io)
1431 r = __get_metadata_snap(pmd, result);
1432 up_read(&pmd->root_lock);
1433
1434 return r;
1435 }
1436
1437 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1438 struct dm_thin_device **td)
1439 {
1440 int r = -EINVAL;
1441
1442 pmd_write_lock_in_core(pmd);
1443 if (!pmd->fail_io)
1444 r = __open_device(pmd, dev, 0, td);
1445 pmd_write_unlock(pmd);
1446
1447 return r;
1448 }
1449
1450 int dm_pool_close_thin_device(struct dm_thin_device *td)
1451 {
1452 pmd_write_lock_in_core(td->pmd);
1453 __close_device(td);
1454 pmd_write_unlock(td->pmd);
1455
1456 return 0;
1457 }
1458
1459 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1460 {
1461 return td->id;
1462 }
1463
1464 /*
1465 * Check whether @time (of block creation) is older than @td's last snapshot.
1466 * If so then the associated block is shared with the last snapshot device.
1467 * Any block on a device created *after* the device last got snapshotted is
1468 * necessarily not shared.
1469 */
1470 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1471 {
1472 return td->snapshotted_time > time;
1473 }
1474
1475 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1476 struct dm_thin_lookup_result *result)
1477 {
1478 uint64_t block_time = 0;
1479 dm_block_t exception_block;
1480 uint32_t exception_time;
1481
1482 block_time = le64_to_cpu(value);
1483 unpack_block_time(block_time, &exception_block, &exception_time);
1484 result->block = exception_block;
1485 result->shared = __snapshotted_since(td, exception_time);
1486 }
1487
1488 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1489 int can_issue_io, struct dm_thin_lookup_result *result)
1490 {
1491 int r;
1492 __le64 value;
1493 struct dm_pool_metadata *pmd = td->pmd;
1494 dm_block_t keys[2] = { td->id, block };
1495 struct dm_btree_info *info;
1496
1497 if (can_issue_io) {
1498 info = &pmd->info;
1499 } else
1500 info = &pmd->nb_info;
1501
1502 r = dm_btree_lookup(info, pmd->root, keys, &value);
1503 if (!r)
1504 unpack_lookup_result(td, value, result);
1505
1506 return r;
1507 }
1508
1509 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1510 int can_issue_io, struct dm_thin_lookup_result *result)
1511 {
1512 int r;
1513 struct dm_pool_metadata *pmd = td->pmd;
1514
1515 down_read(&pmd->root_lock);
1516 if (pmd->fail_io) {
1517 up_read(&pmd->root_lock);
1518 return -EINVAL;
1519 }
1520
1521 r = __find_block(td, block, can_issue_io, result);
1522
1523 up_read(&pmd->root_lock);
1524 return r;
1525 }
1526
1527 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1528 dm_block_t *vblock,
1529 struct dm_thin_lookup_result *result)
1530 {
1531 int r;
1532 __le64 value;
1533 struct dm_pool_metadata *pmd = td->pmd;
1534 dm_block_t keys[2] = { td->id, block };
1535
1536 r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1537 if (!r)
1538 unpack_lookup_result(td, value, result);
1539
1540 return r;
1541 }
1542
1543 static int __find_mapped_range(struct dm_thin_device *td,
1544 dm_block_t begin, dm_block_t end,
1545 dm_block_t *thin_begin, dm_block_t *thin_end,
1546 dm_block_t *pool_begin, bool *maybe_shared)
1547 {
1548 int r;
1549 dm_block_t pool_end;
1550 struct dm_thin_lookup_result lookup;
1551
1552 if (end < begin)
1553 return -ENODATA;
1554
1555 r = __find_next_mapped_block(td, begin, &begin, &lookup);
1556 if (r)
1557 return r;
1558
1559 if (begin >= end)
1560 return -ENODATA;
1561
1562 *thin_begin = begin;
1563 *pool_begin = lookup.block;
1564 *maybe_shared = lookup.shared;
1565
1566 begin++;
1567 pool_end = *pool_begin + 1;
1568 while (begin != end) {
1569 r = __find_block(td, begin, true, &lookup);
1570 if (r) {
1571 if (r == -ENODATA)
1572 break;
1573 else
1574 return r;
1575 }
1576
1577 if ((lookup.block != pool_end) ||
1578 (lookup.shared != *maybe_shared))
1579 break;
1580
1581 pool_end++;
1582 begin++;
1583 }
1584
1585 *thin_end = begin;
1586 return 0;
1587 }
1588
1589 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1590 dm_block_t begin, dm_block_t end,
1591 dm_block_t *thin_begin, dm_block_t *thin_end,
1592 dm_block_t *pool_begin, bool *maybe_shared)
1593 {
1594 int r = -EINVAL;
1595 struct dm_pool_metadata *pmd = td->pmd;
1596
1597 down_read(&pmd->root_lock);
1598 if (!pmd->fail_io) {
1599 r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1600 pool_begin, maybe_shared);
1601 }
1602 up_read(&pmd->root_lock);
1603
1604 return r;
1605 }
1606
1607 static int __insert(struct dm_thin_device *td, dm_block_t block,
1608 dm_block_t data_block)
1609 {
1610 int r, inserted;
1611 __le64 value;
1612 struct dm_pool_metadata *pmd = td->pmd;
1613 dm_block_t keys[2] = { td->id, block };
1614
1615 value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1616 __dm_bless_for_disk(&value);
1617
1618 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1619 &pmd->root, &inserted);
1620 if (r)
1621 return r;
1622
1623 td->changed = true;
1624 if (inserted)
1625 td->mapped_blocks++;
1626
1627 return 0;
1628 }
1629
1630 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1631 dm_block_t data_block)
1632 {
1633 int r = -EINVAL;
1634
1635 pmd_write_lock(td->pmd);
1636 if (!td->pmd->fail_io)
1637 r = __insert(td, block, data_block);
1638 pmd_write_unlock(td->pmd);
1639
1640 return r;
1641 }
1642
1643 static int __remove(struct dm_thin_device *td, dm_block_t block)
1644 {
1645 int r;
1646 struct dm_pool_metadata *pmd = td->pmd;
1647 dm_block_t keys[2] = { td->id, block };
1648
1649 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1650 if (r)
1651 return r;
1652
1653 td->mapped_blocks--;
1654 td->changed = true;
1655
1656 return 0;
1657 }
1658
1659 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1660 {
1661 int r;
1662 unsigned count, total_count = 0;
1663 struct dm_pool_metadata *pmd = td->pmd;
1664 dm_block_t keys[1] = { td->id };
1665 __le64 value;
1666 dm_block_t mapping_root;
1667
1668 /*
1669 * Find the mapping tree
1670 */
1671 r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1672 if (r)
1673 return r;
1674
1675 /*
1676 * Remove from the mapping tree, taking care to inc the
1677 * ref count so it doesn't get deleted.
1678 */
1679 mapping_root = le64_to_cpu(value);
1680 dm_tm_inc(pmd->tm, mapping_root);
1681 r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1682 if (r)
1683 return r;
1684
1685 /*
1686 * Remove leaves stops at the first unmapped entry, so we have to
1687 * loop round finding mapped ranges.
1688 */
1689 while (begin < end) {
1690 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1691 if (r == -ENODATA)
1692 break;
1693
1694 if (r)
1695 return r;
1696
1697 if (begin >= end)
1698 break;
1699
1700 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1701 if (r)
1702 return r;
1703
1704 total_count += count;
1705 }
1706
1707 td->mapped_blocks -= total_count;
1708 td->changed = true;
1709
1710 /*
1711 * Reinsert the mapping tree.
1712 */
1713 value = cpu_to_le64(mapping_root);
1714 __dm_bless_for_disk(&value);
1715 return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1716 }
1717
1718 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1719 {
1720 int r = -EINVAL;
1721
1722 pmd_write_lock(td->pmd);
1723 if (!td->pmd->fail_io)
1724 r = __remove(td, block);
1725 pmd_write_unlock(td->pmd);
1726
1727 return r;
1728 }
1729
1730 int dm_thin_remove_range(struct dm_thin_device *td,
1731 dm_block_t begin, dm_block_t end)
1732 {
1733 int r = -EINVAL;
1734
1735 pmd_write_lock(td->pmd);
1736 if (!td->pmd->fail_io)
1737 r = __remove_range(td, begin, end);
1738 pmd_write_unlock(td->pmd);
1739
1740 return r;
1741 }
1742
1743 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1744 {
1745 int r;
1746 uint32_t ref_count;
1747
1748 down_read(&pmd->root_lock);
1749 r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1750 if (!r)
1751 *result = (ref_count > 1);
1752 up_read(&pmd->root_lock);
1753
1754 return r;
1755 }
1756
1757 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1758 {
1759 int r = 0;
1760
1761 pmd_write_lock(pmd);
1762 for (; b != e; b++) {
1763 r = dm_sm_inc_block(pmd->data_sm, b);
1764 if (r)
1765 break;
1766 }
1767 pmd_write_unlock(pmd);
1768
1769 return r;
1770 }
1771
1772 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1773 {
1774 int r = 0;
1775
1776 pmd_write_lock(pmd);
1777 for (; b != e; b++) {
1778 r = dm_sm_dec_block(pmd->data_sm, b);
1779 if (r)
1780 break;
1781 }
1782 pmd_write_unlock(pmd);
1783
1784 return r;
1785 }
1786
1787 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1788 {
1789 int r;
1790
1791 down_read(&td->pmd->root_lock);
1792 r = td->changed;
1793 up_read(&td->pmd->root_lock);
1794
1795 return r;
1796 }
1797
1798 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1799 {
1800 bool r = false;
1801 struct dm_thin_device *td, *tmp;
1802
1803 down_read(&pmd->root_lock);
1804 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1805 if (td->changed) {
1806 r = td->changed;
1807 break;
1808 }
1809 }
1810 up_read(&pmd->root_lock);
1811
1812 return r;
1813 }
1814
1815 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1816 {
1817 bool r;
1818
1819 down_read(&td->pmd->root_lock);
1820 r = td->aborted_with_changes;
1821 up_read(&td->pmd->root_lock);
1822
1823 return r;
1824 }
1825
1826 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1827 {
1828 int r = -EINVAL;
1829
1830 pmd_write_lock(pmd);
1831 if (!pmd->fail_io)
1832 r = dm_sm_new_block(pmd->data_sm, result);
1833 pmd_write_unlock(pmd);
1834
1835 return r;
1836 }
1837
1838 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1839 {
1840 int r = -EINVAL;
1841
1842 /*
1843 * Care is taken to not have commit be what
1844 * triggers putting the thin-pool in-service.
1845 */
1846 pmd_write_lock_in_core(pmd);
1847 if (pmd->fail_io)
1848 goto out;
1849
1850 r = __commit_transaction(pmd);
1851 if (r < 0)
1852 goto out;
1853
1854 /*
1855 * Open the next transaction.
1856 */
1857 r = __begin_transaction(pmd);
1858 out:
1859 pmd_write_unlock(pmd);
1860 return r;
1861 }
1862
1863 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1864 {
1865 struct dm_thin_device *td;
1866
1867 list_for_each_entry(td, &pmd->thin_devices, list)
1868 td->aborted_with_changes = td->changed;
1869 }
1870
1871 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1872 {
1873 int r = -EINVAL;
1874
1875 pmd_write_lock(pmd);
1876 if (pmd->fail_io)
1877 goto out;
1878
1879 __set_abort_with_changes_flags(pmd);
1880 __destroy_persistent_data_objects(pmd);
1881 r = __create_persistent_data_objects(pmd, false);
1882 if (r)
1883 pmd->fail_io = true;
1884
1885 out:
1886 pmd_write_unlock(pmd);
1887
1888 return r;
1889 }
1890
1891 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1892 {
1893 int r = -EINVAL;
1894
1895 down_read(&pmd->root_lock);
1896 if (!pmd->fail_io)
1897 r = dm_sm_get_nr_free(pmd->data_sm, result);
1898 up_read(&pmd->root_lock);
1899
1900 return r;
1901 }
1902
1903 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1904 dm_block_t *result)
1905 {
1906 int r = -EINVAL;
1907
1908 down_read(&pmd->root_lock);
1909 if (!pmd->fail_io)
1910 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1911
1912 if (!r) {
1913 if (*result < pmd->metadata_reserve)
1914 *result = 0;
1915 else
1916 *result -= pmd->metadata_reserve;
1917 }
1918 up_read(&pmd->root_lock);
1919
1920 return r;
1921 }
1922
1923 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1924 dm_block_t *result)
1925 {
1926 int r = -EINVAL;
1927
1928 down_read(&pmd->root_lock);
1929 if (!pmd->fail_io)
1930 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1931 up_read(&pmd->root_lock);
1932
1933 return r;
1934 }
1935
1936 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1937 {
1938 int r = -EINVAL;
1939
1940 down_read(&pmd->root_lock);
1941 if (!pmd->fail_io)
1942 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1943 up_read(&pmd->root_lock);
1944
1945 return r;
1946 }
1947
1948 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1949 {
1950 int r = -EINVAL;
1951 struct dm_pool_metadata *pmd = td->pmd;
1952
1953 down_read(&pmd->root_lock);
1954 if (!pmd->fail_io) {
1955 *result = td->mapped_blocks;
1956 r = 0;
1957 }
1958 up_read(&pmd->root_lock);
1959
1960 return r;
1961 }
1962
1963 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1964 {
1965 int r;
1966 __le64 value_le;
1967 dm_block_t thin_root;
1968 struct dm_pool_metadata *pmd = td->pmd;
1969
1970 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1971 if (r)
1972 return r;
1973
1974 thin_root = le64_to_cpu(value_le);
1975
1976 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1977 }
1978
1979 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1980 dm_block_t *result)
1981 {
1982 int r = -EINVAL;
1983 struct dm_pool_metadata *pmd = td->pmd;
1984
1985 down_read(&pmd->root_lock);
1986 if (!pmd->fail_io)
1987 r = __highest_block(td, result);
1988 up_read(&pmd->root_lock);
1989
1990 return r;
1991 }
1992
1993 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1994 {
1995 int r;
1996 dm_block_t old_count;
1997
1998 r = dm_sm_get_nr_blocks(sm, &old_count);
1999 if (r)
2000 return r;
2001
2002 if (new_count == old_count)
2003 return 0;
2004
2005 if (new_count < old_count) {
2006 DMERR("cannot reduce size of space map");
2007 return -EINVAL;
2008 }
2009
2010 return dm_sm_extend(sm, new_count - old_count);
2011 }
2012
2013 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2014 {
2015 int r = -EINVAL;
2016
2017 pmd_write_lock(pmd);
2018 if (!pmd->fail_io)
2019 r = __resize_space_map(pmd->data_sm, new_count);
2020 pmd_write_unlock(pmd);
2021
2022 return r;
2023 }
2024
2025 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2026 {
2027 int r = -EINVAL;
2028
2029 pmd_write_lock(pmd);
2030 if (!pmd->fail_io) {
2031 r = __resize_space_map(pmd->metadata_sm, new_count);
2032 if (!r)
2033 __set_metadata_reserve(pmd);
2034 }
2035 pmd_write_unlock(pmd);
2036
2037 return r;
2038 }
2039
2040 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2041 {
2042 pmd_write_lock_in_core(pmd);
2043 dm_bm_set_read_only(pmd->bm);
2044 pmd_write_unlock(pmd);
2045 }
2046
2047 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2048 {
2049 pmd_write_lock_in_core(pmd);
2050 dm_bm_set_read_write(pmd->bm);
2051 pmd_write_unlock(pmd);
2052 }
2053
2054 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2055 dm_block_t threshold,
2056 dm_sm_threshold_fn fn,
2057 void *context)
2058 {
2059 int r;
2060
2061 pmd_write_lock_in_core(pmd);
2062 r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
2063 pmd_write_unlock(pmd);
2064
2065 return r;
2066 }
2067
2068 void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd,
2069 dm_pool_pre_commit_fn fn,
2070 void *context)
2071 {
2072 pmd_write_lock_in_core(pmd);
2073 pmd->pre_commit_fn = fn;
2074 pmd->pre_commit_context = context;
2075 pmd_write_unlock(pmd);
2076 }
2077
2078 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2079 {
2080 int r = -EINVAL;
2081 struct dm_block *sblock;
2082 struct thin_disk_superblock *disk_super;
2083
2084 pmd_write_lock(pmd);
2085 if (pmd->fail_io)
2086 goto out;
2087
2088 pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2089
2090 r = superblock_lock(pmd, &sblock);
2091 if (r) {
2092 DMERR("couldn't lock superblock");
2093 goto out;
2094 }
2095
2096 disk_super = dm_block_data(sblock);
2097 disk_super->flags = cpu_to_le32(pmd->flags);
2098
2099 dm_bm_unlock(sblock);
2100 out:
2101 pmd_write_unlock(pmd);
2102 return r;
2103 }
2104
2105 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2106 {
2107 bool needs_check;
2108
2109 down_read(&pmd->root_lock);
2110 needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2111 up_read(&pmd->root_lock);
2112
2113 return needs_check;
2114 }
2115
2116 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2117 {
2118 down_read(&pmd->root_lock);
2119 if (!pmd->fail_io)
2120 dm_tm_issue_prefetches(pmd->tm);
2121 up_read(&pmd->root_lock);
2122 }