]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/dm-thin.c
powerpc: sys_pkey_alloc() and sys_pkey_free() system calls
[mirror_ubuntu-bionic-kernel.git] / drivers / md / dm-thin.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX "thin"
26
27 /*
28 * Tunable constants
29 */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 "A percentage of time allocated for copy on write");
39
40 /*
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
43 */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48 * Device id is restricted to 24 bits.
49 */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
55 *
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
61 * same data blocks.
62 *
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
65 *
66 * Let's say we write to a shared block in what was the origin. The
67 * steps are:
68 *
69 * i) plug io further to this physical block. (see bio_prison code).
70 *
71 * ii) quiesce any read io to that shared data block. Obviously
72 * including all devices that share this block. (see dm_deferred_set code)
73 *
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
76 *
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping). This act of inserting breaks some
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
84 *
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
87 *
88 * Steps (ii) and (iii) occur in parallel.
89 *
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
93 *
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
97 *
98 * - The snap mapping still points to the old block. As it would after
99 * the commit.
100 *
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
108 */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113 * Key building.
114 */
115 enum lock_space {
116 VIRTUAL,
117 PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123 key->virtual = (ls == VIRTUAL);
124 key->dev = dm_thin_dev_id(td);
125 key->block_begin = b;
126 key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 struct dm_cell_key *key)
131 {
132 build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 struct dm_cell_key *key)
137 {
138 build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146 struct rw_semaphore lock;
147 unsigned long threshold;
148 bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153 init_rwsem(&t->lock);
154 t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159 t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164 if (!t->throttle_applied && jiffies > t->threshold) {
165 down_write(&t->lock);
166 t->throttle_applied = true;
167 }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172 if (t->throttle_applied) {
173 t->throttle_applied = false;
174 up_write(&t->lock);
175 }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180 down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185 up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191 * A pool device ties together a metadata device and a data device. It
192 * also provides the interface for creating and destroying internal
193 * devices.
194 */
195 struct dm_thin_new_mapping;
196
197 /*
198 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
199 */
200 enum pool_mode {
201 PM_WRITE, /* metadata may be changed */
202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
203 PM_READ_ONLY, /* metadata may not be changed */
204 PM_FAIL, /* all I/O fails */
205 };
206
207 struct pool_features {
208 enum pool_mode mode;
209
210 bool zero_new_blocks:1;
211 bool discard_enabled:1;
212 bool discard_passdown:1;
213 bool error_if_no_space:1;
214 };
215
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220
221 #define CELL_SORT_ARRAY_SIZE 8192
222
223 struct pool {
224 struct list_head list;
225 struct dm_target *ti; /* Only set if a pool target is bound */
226
227 struct mapped_device *pool_md;
228 struct block_device *md_dev;
229 struct dm_pool_metadata *pmd;
230
231 dm_block_t low_water_blocks;
232 uint32_t sectors_per_block;
233 int sectors_per_block_shift;
234
235 struct pool_features pf;
236 bool low_water_triggered:1; /* A dm event has been sent */
237 bool suspended:1;
238 bool out_of_data_space:1;
239
240 struct dm_bio_prison *prison;
241 struct dm_kcopyd_client *copier;
242
243 struct workqueue_struct *wq;
244 struct throttle throttle;
245 struct work_struct worker;
246 struct delayed_work waker;
247 struct delayed_work no_space_timeout;
248
249 unsigned long last_commit_jiffies;
250 unsigned ref_count;
251
252 spinlock_t lock;
253 struct bio_list deferred_flush_bios;
254 struct list_head prepared_mappings;
255 struct list_head prepared_discards;
256 struct list_head prepared_discards_pt2;
257 struct list_head active_thins;
258
259 struct dm_deferred_set *shared_read_ds;
260 struct dm_deferred_set *all_io_ds;
261
262 struct dm_thin_new_mapping *next_mapping;
263 mempool_t *mapping_pool;
264
265 process_bio_fn process_bio;
266 process_bio_fn process_discard;
267
268 process_cell_fn process_cell;
269 process_cell_fn process_discard_cell;
270
271 process_mapping_fn process_prepared_mapping;
272 process_mapping_fn process_prepared_discard;
273 process_mapping_fn process_prepared_discard_pt2;
274
275 struct dm_bio_prison_cell **cell_sort_array;
276 };
277
278 static enum pool_mode get_pool_mode(struct pool *pool);
279 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
280
281 /*
282 * Target context for a pool.
283 */
284 struct pool_c {
285 struct dm_target *ti;
286 struct pool *pool;
287 struct dm_dev *data_dev;
288 struct dm_dev *metadata_dev;
289 struct dm_target_callbacks callbacks;
290
291 dm_block_t low_water_blocks;
292 struct pool_features requested_pf; /* Features requested during table load */
293 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
294 };
295
296 /*
297 * Target context for a thin.
298 */
299 struct thin_c {
300 struct list_head list;
301 struct dm_dev *pool_dev;
302 struct dm_dev *origin_dev;
303 sector_t origin_size;
304 dm_thin_id dev_id;
305
306 struct pool *pool;
307 struct dm_thin_device *td;
308 struct mapped_device *thin_md;
309
310 bool requeue_mode:1;
311 spinlock_t lock;
312 struct list_head deferred_cells;
313 struct bio_list deferred_bio_list;
314 struct bio_list retry_on_resume_list;
315 struct rb_root sort_bio_list; /* sorted list of deferred bios */
316
317 /*
318 * Ensures the thin is not destroyed until the worker has finished
319 * iterating the active_thins list.
320 */
321 atomic_t refcount;
322 struct completion can_destroy;
323 };
324
325 /*----------------------------------------------------------------*/
326
327 static bool block_size_is_power_of_two(struct pool *pool)
328 {
329 return pool->sectors_per_block_shift >= 0;
330 }
331
332 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
333 {
334 return block_size_is_power_of_two(pool) ?
335 (b << pool->sectors_per_block_shift) :
336 (b * pool->sectors_per_block);
337 }
338
339 /*----------------------------------------------------------------*/
340
341 struct discard_op {
342 struct thin_c *tc;
343 struct blk_plug plug;
344 struct bio *parent_bio;
345 struct bio *bio;
346 };
347
348 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
349 {
350 BUG_ON(!parent);
351
352 op->tc = tc;
353 blk_start_plug(&op->plug);
354 op->parent_bio = parent;
355 op->bio = NULL;
356 }
357
358 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
359 {
360 struct thin_c *tc = op->tc;
361 sector_t s = block_to_sectors(tc->pool, data_b);
362 sector_t len = block_to_sectors(tc->pool, data_e - data_b);
363
364 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
365 GFP_NOWAIT, 0, &op->bio);
366 }
367
368 static void end_discard(struct discard_op *op, int r)
369 {
370 if (op->bio) {
371 /*
372 * Even if one of the calls to issue_discard failed, we
373 * need to wait for the chain to complete.
374 */
375 bio_chain(op->bio, op->parent_bio);
376 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
377 submit_bio(op->bio);
378 }
379
380 blk_finish_plug(&op->plug);
381
382 /*
383 * Even if r is set, there could be sub discards in flight that we
384 * need to wait for.
385 */
386 if (r && !op->parent_bio->bi_status)
387 op->parent_bio->bi_status = errno_to_blk_status(r);
388 bio_endio(op->parent_bio);
389 }
390
391 /*----------------------------------------------------------------*/
392
393 /*
394 * wake_worker() is used when new work is queued and when pool_resume is
395 * ready to continue deferred IO processing.
396 */
397 static void wake_worker(struct pool *pool)
398 {
399 queue_work(pool->wq, &pool->worker);
400 }
401
402 /*----------------------------------------------------------------*/
403
404 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
405 struct dm_bio_prison_cell **cell_result)
406 {
407 int r;
408 struct dm_bio_prison_cell *cell_prealloc;
409
410 /*
411 * Allocate a cell from the prison's mempool.
412 * This might block but it can't fail.
413 */
414 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
415
416 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
417 if (r)
418 /*
419 * We reused an old cell; we can get rid of
420 * the new one.
421 */
422 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
423
424 return r;
425 }
426
427 static void cell_release(struct pool *pool,
428 struct dm_bio_prison_cell *cell,
429 struct bio_list *bios)
430 {
431 dm_cell_release(pool->prison, cell, bios);
432 dm_bio_prison_free_cell(pool->prison, cell);
433 }
434
435 static void cell_visit_release(struct pool *pool,
436 void (*fn)(void *, struct dm_bio_prison_cell *),
437 void *context,
438 struct dm_bio_prison_cell *cell)
439 {
440 dm_cell_visit_release(pool->prison, fn, context, cell);
441 dm_bio_prison_free_cell(pool->prison, cell);
442 }
443
444 static void cell_release_no_holder(struct pool *pool,
445 struct dm_bio_prison_cell *cell,
446 struct bio_list *bios)
447 {
448 dm_cell_release_no_holder(pool->prison, cell, bios);
449 dm_bio_prison_free_cell(pool->prison, cell);
450 }
451
452 static void cell_error_with_code(struct pool *pool,
453 struct dm_bio_prison_cell *cell, blk_status_t error_code)
454 {
455 dm_cell_error(pool->prison, cell, error_code);
456 dm_bio_prison_free_cell(pool->prison, cell);
457 }
458
459 static blk_status_t get_pool_io_error_code(struct pool *pool)
460 {
461 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
462 }
463
464 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
465 {
466 cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
467 }
468
469 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
470 {
471 cell_error_with_code(pool, cell, 0);
472 }
473
474 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
475 {
476 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
477 }
478
479 /*----------------------------------------------------------------*/
480
481 /*
482 * A global list of pools that uses a struct mapped_device as a key.
483 */
484 static struct dm_thin_pool_table {
485 struct mutex mutex;
486 struct list_head pools;
487 } dm_thin_pool_table;
488
489 static void pool_table_init(void)
490 {
491 mutex_init(&dm_thin_pool_table.mutex);
492 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
493 }
494
495 static void __pool_table_insert(struct pool *pool)
496 {
497 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
498 list_add(&pool->list, &dm_thin_pool_table.pools);
499 }
500
501 static void __pool_table_remove(struct pool *pool)
502 {
503 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
504 list_del(&pool->list);
505 }
506
507 static struct pool *__pool_table_lookup(struct mapped_device *md)
508 {
509 struct pool *pool = NULL, *tmp;
510
511 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
512
513 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
514 if (tmp->pool_md == md) {
515 pool = tmp;
516 break;
517 }
518 }
519
520 return pool;
521 }
522
523 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
524 {
525 struct pool *pool = NULL, *tmp;
526
527 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
528
529 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
530 if (tmp->md_dev == md_dev) {
531 pool = tmp;
532 break;
533 }
534 }
535
536 return pool;
537 }
538
539 /*----------------------------------------------------------------*/
540
541 struct dm_thin_endio_hook {
542 struct thin_c *tc;
543 struct dm_deferred_entry *shared_read_entry;
544 struct dm_deferred_entry *all_io_entry;
545 struct dm_thin_new_mapping *overwrite_mapping;
546 struct rb_node rb_node;
547 struct dm_bio_prison_cell *cell;
548 };
549
550 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
551 {
552 bio_list_merge(bios, master);
553 bio_list_init(master);
554 }
555
556 static void error_bio_list(struct bio_list *bios, blk_status_t error)
557 {
558 struct bio *bio;
559
560 while ((bio = bio_list_pop(bios))) {
561 bio->bi_status = error;
562 bio_endio(bio);
563 }
564 }
565
566 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
567 blk_status_t error)
568 {
569 struct bio_list bios;
570 unsigned long flags;
571
572 bio_list_init(&bios);
573
574 spin_lock_irqsave(&tc->lock, flags);
575 __merge_bio_list(&bios, master);
576 spin_unlock_irqrestore(&tc->lock, flags);
577
578 error_bio_list(&bios, error);
579 }
580
581 static void requeue_deferred_cells(struct thin_c *tc)
582 {
583 struct pool *pool = tc->pool;
584 unsigned long flags;
585 struct list_head cells;
586 struct dm_bio_prison_cell *cell, *tmp;
587
588 INIT_LIST_HEAD(&cells);
589
590 spin_lock_irqsave(&tc->lock, flags);
591 list_splice_init(&tc->deferred_cells, &cells);
592 spin_unlock_irqrestore(&tc->lock, flags);
593
594 list_for_each_entry_safe(cell, tmp, &cells, user_list)
595 cell_requeue(pool, cell);
596 }
597
598 static void requeue_io(struct thin_c *tc)
599 {
600 struct bio_list bios;
601 unsigned long flags;
602
603 bio_list_init(&bios);
604
605 spin_lock_irqsave(&tc->lock, flags);
606 __merge_bio_list(&bios, &tc->deferred_bio_list);
607 __merge_bio_list(&bios, &tc->retry_on_resume_list);
608 spin_unlock_irqrestore(&tc->lock, flags);
609
610 error_bio_list(&bios, BLK_STS_DM_REQUEUE);
611 requeue_deferred_cells(tc);
612 }
613
614 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
615 {
616 struct thin_c *tc;
617
618 rcu_read_lock();
619 list_for_each_entry_rcu(tc, &pool->active_thins, list)
620 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
621 rcu_read_unlock();
622 }
623
624 static void error_retry_list(struct pool *pool)
625 {
626 error_retry_list_with_code(pool, get_pool_io_error_code(pool));
627 }
628
629 /*
630 * This section of code contains the logic for processing a thin device's IO.
631 * Much of the code depends on pool object resources (lists, workqueues, etc)
632 * but most is exclusively called from the thin target rather than the thin-pool
633 * target.
634 */
635
636 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
637 {
638 struct pool *pool = tc->pool;
639 sector_t block_nr = bio->bi_iter.bi_sector;
640
641 if (block_size_is_power_of_two(pool))
642 block_nr >>= pool->sectors_per_block_shift;
643 else
644 (void) sector_div(block_nr, pool->sectors_per_block);
645
646 return block_nr;
647 }
648
649 /*
650 * Returns the _complete_ blocks that this bio covers.
651 */
652 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
653 dm_block_t *begin, dm_block_t *end)
654 {
655 struct pool *pool = tc->pool;
656 sector_t b = bio->bi_iter.bi_sector;
657 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
658
659 b += pool->sectors_per_block - 1ull; /* so we round up */
660
661 if (block_size_is_power_of_two(pool)) {
662 b >>= pool->sectors_per_block_shift;
663 e >>= pool->sectors_per_block_shift;
664 } else {
665 (void) sector_div(b, pool->sectors_per_block);
666 (void) sector_div(e, pool->sectors_per_block);
667 }
668
669 if (e < b)
670 /* Can happen if the bio is within a single block. */
671 e = b;
672
673 *begin = b;
674 *end = e;
675 }
676
677 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
678 {
679 struct pool *pool = tc->pool;
680 sector_t bi_sector = bio->bi_iter.bi_sector;
681
682 bio_set_dev(bio, tc->pool_dev->bdev);
683 if (block_size_is_power_of_two(pool))
684 bio->bi_iter.bi_sector =
685 (block << pool->sectors_per_block_shift) |
686 (bi_sector & (pool->sectors_per_block - 1));
687 else
688 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
689 sector_div(bi_sector, pool->sectors_per_block);
690 }
691
692 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
693 {
694 bio_set_dev(bio, tc->origin_dev->bdev);
695 }
696
697 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
698 {
699 return op_is_flush(bio->bi_opf) &&
700 dm_thin_changed_this_transaction(tc->td);
701 }
702
703 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
704 {
705 struct dm_thin_endio_hook *h;
706
707 if (bio_op(bio) == REQ_OP_DISCARD)
708 return;
709
710 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
711 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
712 }
713
714 static void issue(struct thin_c *tc, struct bio *bio)
715 {
716 struct pool *pool = tc->pool;
717 unsigned long flags;
718
719 if (!bio_triggers_commit(tc, bio)) {
720 generic_make_request(bio);
721 return;
722 }
723
724 /*
725 * Complete bio with an error if earlier I/O caused changes to
726 * the metadata that can't be committed e.g, due to I/O errors
727 * on the metadata device.
728 */
729 if (dm_thin_aborted_changes(tc->td)) {
730 bio_io_error(bio);
731 return;
732 }
733
734 /*
735 * Batch together any bios that trigger commits and then issue a
736 * single commit for them in process_deferred_bios().
737 */
738 spin_lock_irqsave(&pool->lock, flags);
739 bio_list_add(&pool->deferred_flush_bios, bio);
740 spin_unlock_irqrestore(&pool->lock, flags);
741 }
742
743 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
744 {
745 remap_to_origin(tc, bio);
746 issue(tc, bio);
747 }
748
749 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
750 dm_block_t block)
751 {
752 remap(tc, bio, block);
753 issue(tc, bio);
754 }
755
756 /*----------------------------------------------------------------*/
757
758 /*
759 * Bio endio functions.
760 */
761 struct dm_thin_new_mapping {
762 struct list_head list;
763
764 bool pass_discard:1;
765 bool maybe_shared:1;
766
767 /*
768 * Track quiescing, copying and zeroing preparation actions. When this
769 * counter hits zero the block is prepared and can be inserted into the
770 * btree.
771 */
772 atomic_t prepare_actions;
773
774 blk_status_t status;
775 struct thin_c *tc;
776 dm_block_t virt_begin, virt_end;
777 dm_block_t data_block;
778 struct dm_bio_prison_cell *cell;
779
780 /*
781 * If the bio covers the whole area of a block then we can avoid
782 * zeroing or copying. Instead this bio is hooked. The bio will
783 * still be in the cell, so care has to be taken to avoid issuing
784 * the bio twice.
785 */
786 struct bio *bio;
787 bio_end_io_t *saved_bi_end_io;
788 };
789
790 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
791 {
792 struct pool *pool = m->tc->pool;
793
794 if (atomic_dec_and_test(&m->prepare_actions)) {
795 list_add_tail(&m->list, &pool->prepared_mappings);
796 wake_worker(pool);
797 }
798 }
799
800 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
801 {
802 unsigned long flags;
803 struct pool *pool = m->tc->pool;
804
805 spin_lock_irqsave(&pool->lock, flags);
806 __complete_mapping_preparation(m);
807 spin_unlock_irqrestore(&pool->lock, flags);
808 }
809
810 static void copy_complete(int read_err, unsigned long write_err, void *context)
811 {
812 struct dm_thin_new_mapping *m = context;
813
814 m->status = read_err || write_err ? BLK_STS_IOERR : 0;
815 complete_mapping_preparation(m);
816 }
817
818 static void overwrite_endio(struct bio *bio)
819 {
820 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
821 struct dm_thin_new_mapping *m = h->overwrite_mapping;
822
823 bio->bi_end_io = m->saved_bi_end_io;
824
825 m->status = bio->bi_status;
826 complete_mapping_preparation(m);
827 }
828
829 /*----------------------------------------------------------------*/
830
831 /*
832 * Workqueue.
833 */
834
835 /*
836 * Prepared mapping jobs.
837 */
838
839 /*
840 * This sends the bios in the cell, except the original holder, back
841 * to the deferred_bios list.
842 */
843 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
844 {
845 struct pool *pool = tc->pool;
846 unsigned long flags;
847
848 spin_lock_irqsave(&tc->lock, flags);
849 cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
850 spin_unlock_irqrestore(&tc->lock, flags);
851
852 wake_worker(pool);
853 }
854
855 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
856
857 struct remap_info {
858 struct thin_c *tc;
859 struct bio_list defer_bios;
860 struct bio_list issue_bios;
861 };
862
863 static void __inc_remap_and_issue_cell(void *context,
864 struct dm_bio_prison_cell *cell)
865 {
866 struct remap_info *info = context;
867 struct bio *bio;
868
869 while ((bio = bio_list_pop(&cell->bios))) {
870 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
871 bio_list_add(&info->defer_bios, bio);
872 else {
873 inc_all_io_entry(info->tc->pool, bio);
874
875 /*
876 * We can't issue the bios with the bio prison lock
877 * held, so we add them to a list to issue on
878 * return from this function.
879 */
880 bio_list_add(&info->issue_bios, bio);
881 }
882 }
883 }
884
885 static void inc_remap_and_issue_cell(struct thin_c *tc,
886 struct dm_bio_prison_cell *cell,
887 dm_block_t block)
888 {
889 struct bio *bio;
890 struct remap_info info;
891
892 info.tc = tc;
893 bio_list_init(&info.defer_bios);
894 bio_list_init(&info.issue_bios);
895
896 /*
897 * We have to be careful to inc any bios we're about to issue
898 * before the cell is released, and avoid a race with new bios
899 * being added to the cell.
900 */
901 cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
902 &info, cell);
903
904 while ((bio = bio_list_pop(&info.defer_bios)))
905 thin_defer_bio(tc, bio);
906
907 while ((bio = bio_list_pop(&info.issue_bios)))
908 remap_and_issue(info.tc, bio, block);
909 }
910
911 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
912 {
913 cell_error(m->tc->pool, m->cell);
914 list_del(&m->list);
915 mempool_free(m, m->tc->pool->mapping_pool);
916 }
917
918 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
919 {
920 struct thin_c *tc = m->tc;
921 struct pool *pool = tc->pool;
922 struct bio *bio = m->bio;
923 int r;
924
925 if (m->status) {
926 cell_error(pool, m->cell);
927 goto out;
928 }
929
930 /*
931 * Commit the prepared block into the mapping btree.
932 * Any I/O for this block arriving after this point will get
933 * remapped to it directly.
934 */
935 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
936 if (r) {
937 metadata_operation_failed(pool, "dm_thin_insert_block", r);
938 cell_error(pool, m->cell);
939 goto out;
940 }
941
942 /*
943 * Release any bios held while the block was being provisioned.
944 * If we are processing a write bio that completely covers the block,
945 * we already processed it so can ignore it now when processing
946 * the bios in the cell.
947 */
948 if (bio) {
949 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
950 bio_endio(bio);
951 } else {
952 inc_all_io_entry(tc->pool, m->cell->holder);
953 remap_and_issue(tc, m->cell->holder, m->data_block);
954 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
955 }
956
957 out:
958 list_del(&m->list);
959 mempool_free(m, pool->mapping_pool);
960 }
961
962 /*----------------------------------------------------------------*/
963
964 static void free_discard_mapping(struct dm_thin_new_mapping *m)
965 {
966 struct thin_c *tc = m->tc;
967 if (m->cell)
968 cell_defer_no_holder(tc, m->cell);
969 mempool_free(m, tc->pool->mapping_pool);
970 }
971
972 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
973 {
974 bio_io_error(m->bio);
975 free_discard_mapping(m);
976 }
977
978 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
979 {
980 bio_endio(m->bio);
981 free_discard_mapping(m);
982 }
983
984 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
985 {
986 int r;
987 struct thin_c *tc = m->tc;
988
989 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
990 if (r) {
991 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
992 bio_io_error(m->bio);
993 } else
994 bio_endio(m->bio);
995
996 cell_defer_no_holder(tc, m->cell);
997 mempool_free(m, tc->pool->mapping_pool);
998 }
999
1000 /*----------------------------------------------------------------*/
1001
1002 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1003 struct bio *discard_parent)
1004 {
1005 /*
1006 * We've already unmapped this range of blocks, but before we
1007 * passdown we have to check that these blocks are now unused.
1008 */
1009 int r = 0;
1010 bool used = true;
1011 struct thin_c *tc = m->tc;
1012 struct pool *pool = tc->pool;
1013 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1014 struct discard_op op;
1015
1016 begin_discard(&op, tc, discard_parent);
1017 while (b != end) {
1018 /* find start of unmapped run */
1019 for (; b < end; b++) {
1020 r = dm_pool_block_is_used(pool->pmd, b, &used);
1021 if (r)
1022 goto out;
1023
1024 if (!used)
1025 break;
1026 }
1027
1028 if (b == end)
1029 break;
1030
1031 /* find end of run */
1032 for (e = b + 1; e != end; e++) {
1033 r = dm_pool_block_is_used(pool->pmd, e, &used);
1034 if (r)
1035 goto out;
1036
1037 if (used)
1038 break;
1039 }
1040
1041 r = issue_discard(&op, b, e);
1042 if (r)
1043 goto out;
1044
1045 b = e;
1046 }
1047 out:
1048 end_discard(&op, r);
1049 }
1050
1051 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1052 {
1053 unsigned long flags;
1054 struct pool *pool = m->tc->pool;
1055
1056 spin_lock_irqsave(&pool->lock, flags);
1057 list_add_tail(&m->list, &pool->prepared_discards_pt2);
1058 spin_unlock_irqrestore(&pool->lock, flags);
1059 wake_worker(pool);
1060 }
1061
1062 static void passdown_endio(struct bio *bio)
1063 {
1064 /*
1065 * It doesn't matter if the passdown discard failed, we still want
1066 * to unmap (we ignore err).
1067 */
1068 queue_passdown_pt2(bio->bi_private);
1069 bio_put(bio);
1070 }
1071
1072 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1073 {
1074 int r;
1075 struct thin_c *tc = m->tc;
1076 struct pool *pool = tc->pool;
1077 struct bio *discard_parent;
1078 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1079
1080 /*
1081 * Only this thread allocates blocks, so we can be sure that the
1082 * newly unmapped blocks will not be allocated before the end of
1083 * the function.
1084 */
1085 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1086 if (r) {
1087 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1088 bio_io_error(m->bio);
1089 cell_defer_no_holder(tc, m->cell);
1090 mempool_free(m, pool->mapping_pool);
1091 return;
1092 }
1093
1094 /*
1095 * Increment the unmapped blocks. This prevents a race between the
1096 * passdown io and reallocation of freed blocks.
1097 */
1098 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1099 if (r) {
1100 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1101 bio_io_error(m->bio);
1102 cell_defer_no_holder(tc, m->cell);
1103 mempool_free(m, pool->mapping_pool);
1104 return;
1105 }
1106
1107 discard_parent = bio_alloc(GFP_NOIO, 1);
1108 if (!discard_parent) {
1109 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1110 dm_device_name(tc->pool->pool_md));
1111 queue_passdown_pt2(m);
1112
1113 } else {
1114 discard_parent->bi_end_io = passdown_endio;
1115 discard_parent->bi_private = m;
1116
1117 if (m->maybe_shared)
1118 passdown_double_checking_shared_status(m, discard_parent);
1119 else {
1120 struct discard_op op;
1121
1122 begin_discard(&op, tc, discard_parent);
1123 r = issue_discard(&op, m->data_block, data_end);
1124 end_discard(&op, r);
1125 }
1126 }
1127 }
1128
1129 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1130 {
1131 int r;
1132 struct thin_c *tc = m->tc;
1133 struct pool *pool = tc->pool;
1134
1135 /*
1136 * The passdown has completed, so now we can decrement all those
1137 * unmapped blocks.
1138 */
1139 r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1140 m->data_block + (m->virt_end - m->virt_begin));
1141 if (r) {
1142 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1143 bio_io_error(m->bio);
1144 } else
1145 bio_endio(m->bio);
1146
1147 cell_defer_no_holder(tc, m->cell);
1148 mempool_free(m, pool->mapping_pool);
1149 }
1150
1151 static void process_prepared(struct pool *pool, struct list_head *head,
1152 process_mapping_fn *fn)
1153 {
1154 unsigned long flags;
1155 struct list_head maps;
1156 struct dm_thin_new_mapping *m, *tmp;
1157
1158 INIT_LIST_HEAD(&maps);
1159 spin_lock_irqsave(&pool->lock, flags);
1160 list_splice_init(head, &maps);
1161 spin_unlock_irqrestore(&pool->lock, flags);
1162
1163 list_for_each_entry_safe(m, tmp, &maps, list)
1164 (*fn)(m);
1165 }
1166
1167 /*
1168 * Deferred bio jobs.
1169 */
1170 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1171 {
1172 return bio->bi_iter.bi_size ==
1173 (pool->sectors_per_block << SECTOR_SHIFT);
1174 }
1175
1176 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1177 {
1178 return (bio_data_dir(bio) == WRITE) &&
1179 io_overlaps_block(pool, bio);
1180 }
1181
1182 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1183 bio_end_io_t *fn)
1184 {
1185 *save = bio->bi_end_io;
1186 bio->bi_end_io = fn;
1187 }
1188
1189 static int ensure_next_mapping(struct pool *pool)
1190 {
1191 if (pool->next_mapping)
1192 return 0;
1193
1194 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1195
1196 return pool->next_mapping ? 0 : -ENOMEM;
1197 }
1198
1199 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1200 {
1201 struct dm_thin_new_mapping *m = pool->next_mapping;
1202
1203 BUG_ON(!pool->next_mapping);
1204
1205 memset(m, 0, sizeof(struct dm_thin_new_mapping));
1206 INIT_LIST_HEAD(&m->list);
1207 m->bio = NULL;
1208
1209 pool->next_mapping = NULL;
1210
1211 return m;
1212 }
1213
1214 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1215 sector_t begin, sector_t end)
1216 {
1217 int r;
1218 struct dm_io_region to;
1219
1220 to.bdev = tc->pool_dev->bdev;
1221 to.sector = begin;
1222 to.count = end - begin;
1223
1224 r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1225 if (r < 0) {
1226 DMERR_LIMIT("dm_kcopyd_zero() failed");
1227 copy_complete(1, 1, m);
1228 }
1229 }
1230
1231 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1232 dm_block_t data_begin,
1233 struct dm_thin_new_mapping *m)
1234 {
1235 struct pool *pool = tc->pool;
1236 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1237
1238 h->overwrite_mapping = m;
1239 m->bio = bio;
1240 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1241 inc_all_io_entry(pool, bio);
1242 remap_and_issue(tc, bio, data_begin);
1243 }
1244
1245 /*
1246 * A partial copy also needs to zero the uncopied region.
1247 */
1248 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1249 struct dm_dev *origin, dm_block_t data_origin,
1250 dm_block_t data_dest,
1251 struct dm_bio_prison_cell *cell, struct bio *bio,
1252 sector_t len)
1253 {
1254 int r;
1255 struct pool *pool = tc->pool;
1256 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1257
1258 m->tc = tc;
1259 m->virt_begin = virt_block;
1260 m->virt_end = virt_block + 1u;
1261 m->data_block = data_dest;
1262 m->cell = cell;
1263
1264 /*
1265 * quiesce action + copy action + an extra reference held for the
1266 * duration of this function (we may need to inc later for a
1267 * partial zero).
1268 */
1269 atomic_set(&m->prepare_actions, 3);
1270
1271 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1272 complete_mapping_preparation(m); /* already quiesced */
1273
1274 /*
1275 * IO to pool_dev remaps to the pool target's data_dev.
1276 *
1277 * If the whole block of data is being overwritten, we can issue the
1278 * bio immediately. Otherwise we use kcopyd to clone the data first.
1279 */
1280 if (io_overwrites_block(pool, bio))
1281 remap_and_issue_overwrite(tc, bio, data_dest, m);
1282 else {
1283 struct dm_io_region from, to;
1284
1285 from.bdev = origin->bdev;
1286 from.sector = data_origin * pool->sectors_per_block;
1287 from.count = len;
1288
1289 to.bdev = tc->pool_dev->bdev;
1290 to.sector = data_dest * pool->sectors_per_block;
1291 to.count = len;
1292
1293 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1294 0, copy_complete, m);
1295 if (r < 0) {
1296 DMERR_LIMIT("dm_kcopyd_copy() failed");
1297 copy_complete(1, 1, m);
1298
1299 /*
1300 * We allow the zero to be issued, to simplify the
1301 * error path. Otherwise we'd need to start
1302 * worrying about decrementing the prepare_actions
1303 * counter.
1304 */
1305 }
1306
1307 /*
1308 * Do we need to zero a tail region?
1309 */
1310 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1311 atomic_inc(&m->prepare_actions);
1312 ll_zero(tc, m,
1313 data_dest * pool->sectors_per_block + len,
1314 (data_dest + 1) * pool->sectors_per_block);
1315 }
1316 }
1317
1318 complete_mapping_preparation(m); /* drop our ref */
1319 }
1320
1321 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1322 dm_block_t data_origin, dm_block_t data_dest,
1323 struct dm_bio_prison_cell *cell, struct bio *bio)
1324 {
1325 schedule_copy(tc, virt_block, tc->pool_dev,
1326 data_origin, data_dest, cell, bio,
1327 tc->pool->sectors_per_block);
1328 }
1329
1330 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1331 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1332 struct bio *bio)
1333 {
1334 struct pool *pool = tc->pool;
1335 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1336
1337 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1338 m->tc = tc;
1339 m->virt_begin = virt_block;
1340 m->virt_end = virt_block + 1u;
1341 m->data_block = data_block;
1342 m->cell = cell;
1343
1344 /*
1345 * If the whole block of data is being overwritten or we are not
1346 * zeroing pre-existing data, we can issue the bio immediately.
1347 * Otherwise we use kcopyd to zero the data first.
1348 */
1349 if (pool->pf.zero_new_blocks) {
1350 if (io_overwrites_block(pool, bio))
1351 remap_and_issue_overwrite(tc, bio, data_block, m);
1352 else
1353 ll_zero(tc, m, data_block * pool->sectors_per_block,
1354 (data_block + 1) * pool->sectors_per_block);
1355 } else
1356 process_prepared_mapping(m);
1357 }
1358
1359 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1360 dm_block_t data_dest,
1361 struct dm_bio_prison_cell *cell, struct bio *bio)
1362 {
1363 struct pool *pool = tc->pool;
1364 sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1365 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1366
1367 if (virt_block_end <= tc->origin_size)
1368 schedule_copy(tc, virt_block, tc->origin_dev,
1369 virt_block, data_dest, cell, bio,
1370 pool->sectors_per_block);
1371
1372 else if (virt_block_begin < tc->origin_size)
1373 schedule_copy(tc, virt_block, tc->origin_dev,
1374 virt_block, data_dest, cell, bio,
1375 tc->origin_size - virt_block_begin);
1376
1377 else
1378 schedule_zero(tc, virt_block, data_dest, cell, bio);
1379 }
1380
1381 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1382
1383 static void requeue_bios(struct pool *pool);
1384
1385 static void check_for_space(struct pool *pool)
1386 {
1387 int r;
1388 dm_block_t nr_free;
1389
1390 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1391 return;
1392
1393 r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1394 if (r)
1395 return;
1396
1397 if (nr_free) {
1398 set_pool_mode(pool, PM_WRITE);
1399 requeue_bios(pool);
1400 }
1401 }
1402
1403 /*
1404 * A non-zero return indicates read_only or fail_io mode.
1405 * Many callers don't care about the return value.
1406 */
1407 static int commit(struct pool *pool)
1408 {
1409 int r;
1410
1411 if (get_pool_mode(pool) >= PM_READ_ONLY)
1412 return -EINVAL;
1413
1414 r = dm_pool_commit_metadata(pool->pmd);
1415 if (r)
1416 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1417 else
1418 check_for_space(pool);
1419
1420 return r;
1421 }
1422
1423 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1424 {
1425 unsigned long flags;
1426
1427 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1428 DMWARN("%s: reached low water mark for data device: sending event.",
1429 dm_device_name(pool->pool_md));
1430 spin_lock_irqsave(&pool->lock, flags);
1431 pool->low_water_triggered = true;
1432 spin_unlock_irqrestore(&pool->lock, flags);
1433 dm_table_event(pool->ti->table);
1434 }
1435 }
1436
1437 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1438 {
1439 int r;
1440 dm_block_t free_blocks;
1441 struct pool *pool = tc->pool;
1442
1443 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1444 return -EINVAL;
1445
1446 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1447 if (r) {
1448 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1449 return r;
1450 }
1451
1452 check_low_water_mark(pool, free_blocks);
1453
1454 if (!free_blocks) {
1455 /*
1456 * Try to commit to see if that will free up some
1457 * more space.
1458 */
1459 r = commit(pool);
1460 if (r)
1461 return r;
1462
1463 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1464 if (r) {
1465 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1466 return r;
1467 }
1468
1469 if (!free_blocks) {
1470 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1471 return -ENOSPC;
1472 }
1473 }
1474
1475 r = dm_pool_alloc_data_block(pool->pmd, result);
1476 if (r) {
1477 if (r == -ENOSPC)
1478 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1479 else
1480 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1481 return r;
1482 }
1483
1484 return 0;
1485 }
1486
1487 /*
1488 * If we have run out of space, queue bios until the device is
1489 * resumed, presumably after having been reloaded with more space.
1490 */
1491 static void retry_on_resume(struct bio *bio)
1492 {
1493 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1494 struct thin_c *tc = h->tc;
1495 unsigned long flags;
1496
1497 spin_lock_irqsave(&tc->lock, flags);
1498 bio_list_add(&tc->retry_on_resume_list, bio);
1499 spin_unlock_irqrestore(&tc->lock, flags);
1500 }
1501
1502 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1503 {
1504 enum pool_mode m = get_pool_mode(pool);
1505
1506 switch (m) {
1507 case PM_WRITE:
1508 /* Shouldn't get here */
1509 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1510 return BLK_STS_IOERR;
1511
1512 case PM_OUT_OF_DATA_SPACE:
1513 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1514
1515 case PM_READ_ONLY:
1516 case PM_FAIL:
1517 return BLK_STS_IOERR;
1518 default:
1519 /* Shouldn't get here */
1520 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1521 return BLK_STS_IOERR;
1522 }
1523 }
1524
1525 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1526 {
1527 blk_status_t error = should_error_unserviceable_bio(pool);
1528
1529 if (error) {
1530 bio->bi_status = error;
1531 bio_endio(bio);
1532 } else
1533 retry_on_resume(bio);
1534 }
1535
1536 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1537 {
1538 struct bio *bio;
1539 struct bio_list bios;
1540 blk_status_t error;
1541
1542 error = should_error_unserviceable_bio(pool);
1543 if (error) {
1544 cell_error_with_code(pool, cell, error);
1545 return;
1546 }
1547
1548 bio_list_init(&bios);
1549 cell_release(pool, cell, &bios);
1550
1551 while ((bio = bio_list_pop(&bios)))
1552 retry_on_resume(bio);
1553 }
1554
1555 static void process_discard_cell_no_passdown(struct thin_c *tc,
1556 struct dm_bio_prison_cell *virt_cell)
1557 {
1558 struct pool *pool = tc->pool;
1559 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1560
1561 /*
1562 * We don't need to lock the data blocks, since there's no
1563 * passdown. We only lock data blocks for allocation and breaking sharing.
1564 */
1565 m->tc = tc;
1566 m->virt_begin = virt_cell->key.block_begin;
1567 m->virt_end = virt_cell->key.block_end;
1568 m->cell = virt_cell;
1569 m->bio = virt_cell->holder;
1570
1571 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1572 pool->process_prepared_discard(m);
1573 }
1574
1575 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1576 struct bio *bio)
1577 {
1578 struct pool *pool = tc->pool;
1579
1580 int r;
1581 bool maybe_shared;
1582 struct dm_cell_key data_key;
1583 struct dm_bio_prison_cell *data_cell;
1584 struct dm_thin_new_mapping *m;
1585 dm_block_t virt_begin, virt_end, data_begin;
1586
1587 while (begin != end) {
1588 r = ensure_next_mapping(pool);
1589 if (r)
1590 /* we did our best */
1591 return;
1592
1593 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1594 &data_begin, &maybe_shared);
1595 if (r)
1596 /*
1597 * Silently fail, letting any mappings we've
1598 * created complete.
1599 */
1600 break;
1601
1602 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1603 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1604 /* contention, we'll give up with this range */
1605 begin = virt_end;
1606 continue;
1607 }
1608
1609 /*
1610 * IO may still be going to the destination block. We must
1611 * quiesce before we can do the removal.
1612 */
1613 m = get_next_mapping(pool);
1614 m->tc = tc;
1615 m->maybe_shared = maybe_shared;
1616 m->virt_begin = virt_begin;
1617 m->virt_end = virt_end;
1618 m->data_block = data_begin;
1619 m->cell = data_cell;
1620 m->bio = bio;
1621
1622 /*
1623 * The parent bio must not complete before sub discard bios are
1624 * chained to it (see end_discard's bio_chain)!
1625 *
1626 * This per-mapping bi_remaining increment is paired with
1627 * the implicit decrement that occurs via bio_endio() in
1628 * end_discard().
1629 */
1630 bio_inc_remaining(bio);
1631 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1632 pool->process_prepared_discard(m);
1633
1634 begin = virt_end;
1635 }
1636 }
1637
1638 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1639 {
1640 struct bio *bio = virt_cell->holder;
1641 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1642
1643 /*
1644 * The virt_cell will only get freed once the origin bio completes.
1645 * This means it will remain locked while all the individual
1646 * passdown bios are in flight.
1647 */
1648 h->cell = virt_cell;
1649 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1650
1651 /*
1652 * We complete the bio now, knowing that the bi_remaining field
1653 * will prevent completion until the sub range discards have
1654 * completed.
1655 */
1656 bio_endio(bio);
1657 }
1658
1659 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1660 {
1661 dm_block_t begin, end;
1662 struct dm_cell_key virt_key;
1663 struct dm_bio_prison_cell *virt_cell;
1664
1665 get_bio_block_range(tc, bio, &begin, &end);
1666 if (begin == end) {
1667 /*
1668 * The discard covers less than a block.
1669 */
1670 bio_endio(bio);
1671 return;
1672 }
1673
1674 build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1675 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1676 /*
1677 * Potential starvation issue: We're relying on the
1678 * fs/application being well behaved, and not trying to
1679 * send IO to a region at the same time as discarding it.
1680 * If they do this persistently then it's possible this
1681 * cell will never be granted.
1682 */
1683 return;
1684
1685 tc->pool->process_discard_cell(tc, virt_cell);
1686 }
1687
1688 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1689 struct dm_cell_key *key,
1690 struct dm_thin_lookup_result *lookup_result,
1691 struct dm_bio_prison_cell *cell)
1692 {
1693 int r;
1694 dm_block_t data_block;
1695 struct pool *pool = tc->pool;
1696
1697 r = alloc_data_block(tc, &data_block);
1698 switch (r) {
1699 case 0:
1700 schedule_internal_copy(tc, block, lookup_result->block,
1701 data_block, cell, bio);
1702 break;
1703
1704 case -ENOSPC:
1705 retry_bios_on_resume(pool, cell);
1706 break;
1707
1708 default:
1709 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1710 __func__, r);
1711 cell_error(pool, cell);
1712 break;
1713 }
1714 }
1715
1716 static void __remap_and_issue_shared_cell(void *context,
1717 struct dm_bio_prison_cell *cell)
1718 {
1719 struct remap_info *info = context;
1720 struct bio *bio;
1721
1722 while ((bio = bio_list_pop(&cell->bios))) {
1723 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1724 bio_op(bio) == REQ_OP_DISCARD)
1725 bio_list_add(&info->defer_bios, bio);
1726 else {
1727 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1728
1729 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1730 inc_all_io_entry(info->tc->pool, bio);
1731 bio_list_add(&info->issue_bios, bio);
1732 }
1733 }
1734 }
1735
1736 static void remap_and_issue_shared_cell(struct thin_c *tc,
1737 struct dm_bio_prison_cell *cell,
1738 dm_block_t block)
1739 {
1740 struct bio *bio;
1741 struct remap_info info;
1742
1743 info.tc = tc;
1744 bio_list_init(&info.defer_bios);
1745 bio_list_init(&info.issue_bios);
1746
1747 cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1748 &info, cell);
1749
1750 while ((bio = bio_list_pop(&info.defer_bios)))
1751 thin_defer_bio(tc, bio);
1752
1753 while ((bio = bio_list_pop(&info.issue_bios)))
1754 remap_and_issue(tc, bio, block);
1755 }
1756
1757 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1758 dm_block_t block,
1759 struct dm_thin_lookup_result *lookup_result,
1760 struct dm_bio_prison_cell *virt_cell)
1761 {
1762 struct dm_bio_prison_cell *data_cell;
1763 struct pool *pool = tc->pool;
1764 struct dm_cell_key key;
1765
1766 /*
1767 * If cell is already occupied, then sharing is already in the process
1768 * of being broken so we have nothing further to do here.
1769 */
1770 build_data_key(tc->td, lookup_result->block, &key);
1771 if (bio_detain(pool, &key, bio, &data_cell)) {
1772 cell_defer_no_holder(tc, virt_cell);
1773 return;
1774 }
1775
1776 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1777 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1778 cell_defer_no_holder(tc, virt_cell);
1779 } else {
1780 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1781
1782 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1783 inc_all_io_entry(pool, bio);
1784 remap_and_issue(tc, bio, lookup_result->block);
1785
1786 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1787 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1788 }
1789 }
1790
1791 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1792 struct dm_bio_prison_cell *cell)
1793 {
1794 int r;
1795 dm_block_t data_block;
1796 struct pool *pool = tc->pool;
1797
1798 /*
1799 * Remap empty bios (flushes) immediately, without provisioning.
1800 */
1801 if (!bio->bi_iter.bi_size) {
1802 inc_all_io_entry(pool, bio);
1803 cell_defer_no_holder(tc, cell);
1804
1805 remap_and_issue(tc, bio, 0);
1806 return;
1807 }
1808
1809 /*
1810 * Fill read bios with zeroes and complete them immediately.
1811 */
1812 if (bio_data_dir(bio) == READ) {
1813 zero_fill_bio(bio);
1814 cell_defer_no_holder(tc, cell);
1815 bio_endio(bio);
1816 return;
1817 }
1818
1819 r = alloc_data_block(tc, &data_block);
1820 switch (r) {
1821 case 0:
1822 if (tc->origin_dev)
1823 schedule_external_copy(tc, block, data_block, cell, bio);
1824 else
1825 schedule_zero(tc, block, data_block, cell, bio);
1826 break;
1827
1828 case -ENOSPC:
1829 retry_bios_on_resume(pool, cell);
1830 break;
1831
1832 default:
1833 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1834 __func__, r);
1835 cell_error(pool, cell);
1836 break;
1837 }
1838 }
1839
1840 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1841 {
1842 int r;
1843 struct pool *pool = tc->pool;
1844 struct bio *bio = cell->holder;
1845 dm_block_t block = get_bio_block(tc, bio);
1846 struct dm_thin_lookup_result lookup_result;
1847
1848 if (tc->requeue_mode) {
1849 cell_requeue(pool, cell);
1850 return;
1851 }
1852
1853 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1854 switch (r) {
1855 case 0:
1856 if (lookup_result.shared)
1857 process_shared_bio(tc, bio, block, &lookup_result, cell);
1858 else {
1859 inc_all_io_entry(pool, bio);
1860 remap_and_issue(tc, bio, lookup_result.block);
1861 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1862 }
1863 break;
1864
1865 case -ENODATA:
1866 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1867 inc_all_io_entry(pool, bio);
1868 cell_defer_no_holder(tc, cell);
1869
1870 if (bio_end_sector(bio) <= tc->origin_size)
1871 remap_to_origin_and_issue(tc, bio);
1872
1873 else if (bio->bi_iter.bi_sector < tc->origin_size) {
1874 zero_fill_bio(bio);
1875 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1876 remap_to_origin_and_issue(tc, bio);
1877
1878 } else {
1879 zero_fill_bio(bio);
1880 bio_endio(bio);
1881 }
1882 } else
1883 provision_block(tc, bio, block, cell);
1884 break;
1885
1886 default:
1887 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1888 __func__, r);
1889 cell_defer_no_holder(tc, cell);
1890 bio_io_error(bio);
1891 break;
1892 }
1893 }
1894
1895 static void process_bio(struct thin_c *tc, struct bio *bio)
1896 {
1897 struct pool *pool = tc->pool;
1898 dm_block_t block = get_bio_block(tc, bio);
1899 struct dm_bio_prison_cell *cell;
1900 struct dm_cell_key key;
1901
1902 /*
1903 * If cell is already occupied, then the block is already
1904 * being provisioned so we have nothing further to do here.
1905 */
1906 build_virtual_key(tc->td, block, &key);
1907 if (bio_detain(pool, &key, bio, &cell))
1908 return;
1909
1910 process_cell(tc, cell);
1911 }
1912
1913 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1914 struct dm_bio_prison_cell *cell)
1915 {
1916 int r;
1917 int rw = bio_data_dir(bio);
1918 dm_block_t block = get_bio_block(tc, bio);
1919 struct dm_thin_lookup_result lookup_result;
1920
1921 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1922 switch (r) {
1923 case 0:
1924 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1925 handle_unserviceable_bio(tc->pool, bio);
1926 if (cell)
1927 cell_defer_no_holder(tc, cell);
1928 } else {
1929 inc_all_io_entry(tc->pool, bio);
1930 remap_and_issue(tc, bio, lookup_result.block);
1931 if (cell)
1932 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1933 }
1934 break;
1935
1936 case -ENODATA:
1937 if (cell)
1938 cell_defer_no_holder(tc, cell);
1939 if (rw != READ) {
1940 handle_unserviceable_bio(tc->pool, bio);
1941 break;
1942 }
1943
1944 if (tc->origin_dev) {
1945 inc_all_io_entry(tc->pool, bio);
1946 remap_to_origin_and_issue(tc, bio);
1947 break;
1948 }
1949
1950 zero_fill_bio(bio);
1951 bio_endio(bio);
1952 break;
1953
1954 default:
1955 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1956 __func__, r);
1957 if (cell)
1958 cell_defer_no_holder(tc, cell);
1959 bio_io_error(bio);
1960 break;
1961 }
1962 }
1963
1964 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1965 {
1966 __process_bio_read_only(tc, bio, NULL);
1967 }
1968
1969 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1970 {
1971 __process_bio_read_only(tc, cell->holder, cell);
1972 }
1973
1974 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1975 {
1976 bio_endio(bio);
1977 }
1978
1979 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1980 {
1981 bio_io_error(bio);
1982 }
1983
1984 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1985 {
1986 cell_success(tc->pool, cell);
1987 }
1988
1989 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1990 {
1991 cell_error(tc->pool, cell);
1992 }
1993
1994 /*
1995 * FIXME: should we also commit due to size of transaction, measured in
1996 * metadata blocks?
1997 */
1998 static int need_commit_due_to_time(struct pool *pool)
1999 {
2000 return !time_in_range(jiffies, pool->last_commit_jiffies,
2001 pool->last_commit_jiffies + COMMIT_PERIOD);
2002 }
2003
2004 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2005 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2006
2007 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2008 {
2009 struct rb_node **rbp, *parent;
2010 struct dm_thin_endio_hook *pbd;
2011 sector_t bi_sector = bio->bi_iter.bi_sector;
2012
2013 rbp = &tc->sort_bio_list.rb_node;
2014 parent = NULL;
2015 while (*rbp) {
2016 parent = *rbp;
2017 pbd = thin_pbd(parent);
2018
2019 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2020 rbp = &(*rbp)->rb_left;
2021 else
2022 rbp = &(*rbp)->rb_right;
2023 }
2024
2025 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2026 rb_link_node(&pbd->rb_node, parent, rbp);
2027 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2028 }
2029
2030 static void __extract_sorted_bios(struct thin_c *tc)
2031 {
2032 struct rb_node *node;
2033 struct dm_thin_endio_hook *pbd;
2034 struct bio *bio;
2035
2036 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2037 pbd = thin_pbd(node);
2038 bio = thin_bio(pbd);
2039
2040 bio_list_add(&tc->deferred_bio_list, bio);
2041 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2042 }
2043
2044 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2045 }
2046
2047 static void __sort_thin_deferred_bios(struct thin_c *tc)
2048 {
2049 struct bio *bio;
2050 struct bio_list bios;
2051
2052 bio_list_init(&bios);
2053 bio_list_merge(&bios, &tc->deferred_bio_list);
2054 bio_list_init(&tc->deferred_bio_list);
2055
2056 /* Sort deferred_bio_list using rb-tree */
2057 while ((bio = bio_list_pop(&bios)))
2058 __thin_bio_rb_add(tc, bio);
2059
2060 /*
2061 * Transfer the sorted bios in sort_bio_list back to
2062 * deferred_bio_list to allow lockless submission of
2063 * all bios.
2064 */
2065 __extract_sorted_bios(tc);
2066 }
2067
2068 static void process_thin_deferred_bios(struct thin_c *tc)
2069 {
2070 struct pool *pool = tc->pool;
2071 unsigned long flags;
2072 struct bio *bio;
2073 struct bio_list bios;
2074 struct blk_plug plug;
2075 unsigned count = 0;
2076
2077 if (tc->requeue_mode) {
2078 error_thin_bio_list(tc, &tc->deferred_bio_list,
2079 BLK_STS_DM_REQUEUE);
2080 return;
2081 }
2082
2083 bio_list_init(&bios);
2084
2085 spin_lock_irqsave(&tc->lock, flags);
2086
2087 if (bio_list_empty(&tc->deferred_bio_list)) {
2088 spin_unlock_irqrestore(&tc->lock, flags);
2089 return;
2090 }
2091
2092 __sort_thin_deferred_bios(tc);
2093
2094 bio_list_merge(&bios, &tc->deferred_bio_list);
2095 bio_list_init(&tc->deferred_bio_list);
2096
2097 spin_unlock_irqrestore(&tc->lock, flags);
2098
2099 blk_start_plug(&plug);
2100 while ((bio = bio_list_pop(&bios))) {
2101 /*
2102 * If we've got no free new_mapping structs, and processing
2103 * this bio might require one, we pause until there are some
2104 * prepared mappings to process.
2105 */
2106 if (ensure_next_mapping(pool)) {
2107 spin_lock_irqsave(&tc->lock, flags);
2108 bio_list_add(&tc->deferred_bio_list, bio);
2109 bio_list_merge(&tc->deferred_bio_list, &bios);
2110 spin_unlock_irqrestore(&tc->lock, flags);
2111 break;
2112 }
2113
2114 if (bio_op(bio) == REQ_OP_DISCARD)
2115 pool->process_discard(tc, bio);
2116 else
2117 pool->process_bio(tc, bio);
2118
2119 if ((count++ & 127) == 0) {
2120 throttle_work_update(&pool->throttle);
2121 dm_pool_issue_prefetches(pool->pmd);
2122 }
2123 }
2124 blk_finish_plug(&plug);
2125 }
2126
2127 static int cmp_cells(const void *lhs, const void *rhs)
2128 {
2129 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2130 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2131
2132 BUG_ON(!lhs_cell->holder);
2133 BUG_ON(!rhs_cell->holder);
2134
2135 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2136 return -1;
2137
2138 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2139 return 1;
2140
2141 return 0;
2142 }
2143
2144 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2145 {
2146 unsigned count = 0;
2147 struct dm_bio_prison_cell *cell, *tmp;
2148
2149 list_for_each_entry_safe(cell, tmp, cells, user_list) {
2150 if (count >= CELL_SORT_ARRAY_SIZE)
2151 break;
2152
2153 pool->cell_sort_array[count++] = cell;
2154 list_del(&cell->user_list);
2155 }
2156
2157 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2158
2159 return count;
2160 }
2161
2162 static void process_thin_deferred_cells(struct thin_c *tc)
2163 {
2164 struct pool *pool = tc->pool;
2165 unsigned long flags;
2166 struct list_head cells;
2167 struct dm_bio_prison_cell *cell;
2168 unsigned i, j, count;
2169
2170 INIT_LIST_HEAD(&cells);
2171
2172 spin_lock_irqsave(&tc->lock, flags);
2173 list_splice_init(&tc->deferred_cells, &cells);
2174 spin_unlock_irqrestore(&tc->lock, flags);
2175
2176 if (list_empty(&cells))
2177 return;
2178
2179 do {
2180 count = sort_cells(tc->pool, &cells);
2181
2182 for (i = 0; i < count; i++) {
2183 cell = pool->cell_sort_array[i];
2184 BUG_ON(!cell->holder);
2185
2186 /*
2187 * If we've got no free new_mapping structs, and processing
2188 * this bio might require one, we pause until there are some
2189 * prepared mappings to process.
2190 */
2191 if (ensure_next_mapping(pool)) {
2192 for (j = i; j < count; j++)
2193 list_add(&pool->cell_sort_array[j]->user_list, &cells);
2194
2195 spin_lock_irqsave(&tc->lock, flags);
2196 list_splice(&cells, &tc->deferred_cells);
2197 spin_unlock_irqrestore(&tc->lock, flags);
2198 return;
2199 }
2200
2201 if (bio_op(cell->holder) == REQ_OP_DISCARD)
2202 pool->process_discard_cell(tc, cell);
2203 else
2204 pool->process_cell(tc, cell);
2205 }
2206 } while (!list_empty(&cells));
2207 }
2208
2209 static void thin_get(struct thin_c *tc);
2210 static void thin_put(struct thin_c *tc);
2211
2212 /*
2213 * We can't hold rcu_read_lock() around code that can block. So we
2214 * find a thin with the rcu lock held; bump a refcount; then drop
2215 * the lock.
2216 */
2217 static struct thin_c *get_first_thin(struct pool *pool)
2218 {
2219 struct thin_c *tc = NULL;
2220
2221 rcu_read_lock();
2222 if (!list_empty(&pool->active_thins)) {
2223 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2224 thin_get(tc);
2225 }
2226 rcu_read_unlock();
2227
2228 return tc;
2229 }
2230
2231 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2232 {
2233 struct thin_c *old_tc = tc;
2234
2235 rcu_read_lock();
2236 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2237 thin_get(tc);
2238 thin_put(old_tc);
2239 rcu_read_unlock();
2240 return tc;
2241 }
2242 thin_put(old_tc);
2243 rcu_read_unlock();
2244
2245 return NULL;
2246 }
2247
2248 static void process_deferred_bios(struct pool *pool)
2249 {
2250 unsigned long flags;
2251 struct bio *bio;
2252 struct bio_list bios;
2253 struct thin_c *tc;
2254
2255 tc = get_first_thin(pool);
2256 while (tc) {
2257 process_thin_deferred_cells(tc);
2258 process_thin_deferred_bios(tc);
2259 tc = get_next_thin(pool, tc);
2260 }
2261
2262 /*
2263 * If there are any deferred flush bios, we must commit
2264 * the metadata before issuing them.
2265 */
2266 bio_list_init(&bios);
2267 spin_lock_irqsave(&pool->lock, flags);
2268 bio_list_merge(&bios, &pool->deferred_flush_bios);
2269 bio_list_init(&pool->deferred_flush_bios);
2270 spin_unlock_irqrestore(&pool->lock, flags);
2271
2272 if (bio_list_empty(&bios) &&
2273 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2274 return;
2275
2276 if (commit(pool)) {
2277 while ((bio = bio_list_pop(&bios)))
2278 bio_io_error(bio);
2279 return;
2280 }
2281 pool->last_commit_jiffies = jiffies;
2282
2283 while ((bio = bio_list_pop(&bios)))
2284 generic_make_request(bio);
2285 }
2286
2287 static void do_worker(struct work_struct *ws)
2288 {
2289 struct pool *pool = container_of(ws, struct pool, worker);
2290
2291 throttle_work_start(&pool->throttle);
2292 dm_pool_issue_prefetches(pool->pmd);
2293 throttle_work_update(&pool->throttle);
2294 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2295 throttle_work_update(&pool->throttle);
2296 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2297 throttle_work_update(&pool->throttle);
2298 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2299 throttle_work_update(&pool->throttle);
2300 process_deferred_bios(pool);
2301 throttle_work_complete(&pool->throttle);
2302 }
2303
2304 /*
2305 * We want to commit periodically so that not too much
2306 * unwritten data builds up.
2307 */
2308 static void do_waker(struct work_struct *ws)
2309 {
2310 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2311 wake_worker(pool);
2312 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2313 }
2314
2315 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2316
2317 /*
2318 * We're holding onto IO to allow userland time to react. After the
2319 * timeout either the pool will have been resized (and thus back in
2320 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2321 */
2322 static void do_no_space_timeout(struct work_struct *ws)
2323 {
2324 struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2325 no_space_timeout);
2326
2327 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2328 pool->pf.error_if_no_space = true;
2329 notify_of_pool_mode_change_to_oods(pool);
2330 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2331 }
2332 }
2333
2334 /*----------------------------------------------------------------*/
2335
2336 struct pool_work {
2337 struct work_struct worker;
2338 struct completion complete;
2339 };
2340
2341 static struct pool_work *to_pool_work(struct work_struct *ws)
2342 {
2343 return container_of(ws, struct pool_work, worker);
2344 }
2345
2346 static void pool_work_complete(struct pool_work *pw)
2347 {
2348 complete(&pw->complete);
2349 }
2350
2351 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2352 void (*fn)(struct work_struct *))
2353 {
2354 INIT_WORK_ONSTACK(&pw->worker, fn);
2355 init_completion(&pw->complete);
2356 queue_work(pool->wq, &pw->worker);
2357 wait_for_completion(&pw->complete);
2358 }
2359
2360 /*----------------------------------------------------------------*/
2361
2362 struct noflush_work {
2363 struct pool_work pw;
2364 struct thin_c *tc;
2365 };
2366
2367 static struct noflush_work *to_noflush(struct work_struct *ws)
2368 {
2369 return container_of(to_pool_work(ws), struct noflush_work, pw);
2370 }
2371
2372 static void do_noflush_start(struct work_struct *ws)
2373 {
2374 struct noflush_work *w = to_noflush(ws);
2375 w->tc->requeue_mode = true;
2376 requeue_io(w->tc);
2377 pool_work_complete(&w->pw);
2378 }
2379
2380 static void do_noflush_stop(struct work_struct *ws)
2381 {
2382 struct noflush_work *w = to_noflush(ws);
2383 w->tc->requeue_mode = false;
2384 pool_work_complete(&w->pw);
2385 }
2386
2387 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2388 {
2389 struct noflush_work w;
2390
2391 w.tc = tc;
2392 pool_work_wait(&w.pw, tc->pool, fn);
2393 }
2394
2395 /*----------------------------------------------------------------*/
2396
2397 static enum pool_mode get_pool_mode(struct pool *pool)
2398 {
2399 return pool->pf.mode;
2400 }
2401
2402 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2403 {
2404 dm_table_event(pool->ti->table);
2405 DMINFO("%s: switching pool to %s mode",
2406 dm_device_name(pool->pool_md), new_mode);
2407 }
2408
2409 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2410 {
2411 if (!pool->pf.error_if_no_space)
2412 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2413 else
2414 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2415 }
2416
2417 static bool passdown_enabled(struct pool_c *pt)
2418 {
2419 return pt->adjusted_pf.discard_passdown;
2420 }
2421
2422 static void set_discard_callbacks(struct pool *pool)
2423 {
2424 struct pool_c *pt = pool->ti->private;
2425
2426 if (passdown_enabled(pt)) {
2427 pool->process_discard_cell = process_discard_cell_passdown;
2428 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2429 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2430 } else {
2431 pool->process_discard_cell = process_discard_cell_no_passdown;
2432 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2433 }
2434 }
2435
2436 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2437 {
2438 struct pool_c *pt = pool->ti->private;
2439 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2440 enum pool_mode old_mode = get_pool_mode(pool);
2441 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2442
2443 /*
2444 * Never allow the pool to transition to PM_WRITE mode if user
2445 * intervention is required to verify metadata and data consistency.
2446 */
2447 if (new_mode == PM_WRITE && needs_check) {
2448 DMERR("%s: unable to switch pool to write mode until repaired.",
2449 dm_device_name(pool->pool_md));
2450 if (old_mode != new_mode)
2451 new_mode = old_mode;
2452 else
2453 new_mode = PM_READ_ONLY;
2454 }
2455 /*
2456 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2457 * not going to recover without a thin_repair. So we never let the
2458 * pool move out of the old mode.
2459 */
2460 if (old_mode == PM_FAIL)
2461 new_mode = old_mode;
2462
2463 switch (new_mode) {
2464 case PM_FAIL:
2465 if (old_mode != new_mode)
2466 notify_of_pool_mode_change(pool, "failure");
2467 dm_pool_metadata_read_only(pool->pmd);
2468 pool->process_bio = process_bio_fail;
2469 pool->process_discard = process_bio_fail;
2470 pool->process_cell = process_cell_fail;
2471 pool->process_discard_cell = process_cell_fail;
2472 pool->process_prepared_mapping = process_prepared_mapping_fail;
2473 pool->process_prepared_discard = process_prepared_discard_fail;
2474
2475 error_retry_list(pool);
2476 break;
2477
2478 case PM_READ_ONLY:
2479 if (old_mode != new_mode)
2480 notify_of_pool_mode_change(pool, "read-only");
2481 dm_pool_metadata_read_only(pool->pmd);
2482 pool->process_bio = process_bio_read_only;
2483 pool->process_discard = process_bio_success;
2484 pool->process_cell = process_cell_read_only;
2485 pool->process_discard_cell = process_cell_success;
2486 pool->process_prepared_mapping = process_prepared_mapping_fail;
2487 pool->process_prepared_discard = process_prepared_discard_success;
2488
2489 error_retry_list(pool);
2490 break;
2491
2492 case PM_OUT_OF_DATA_SPACE:
2493 /*
2494 * Ideally we'd never hit this state; the low water mark
2495 * would trigger userland to extend the pool before we
2496 * completely run out of data space. However, many small
2497 * IOs to unprovisioned space can consume data space at an
2498 * alarming rate. Adjust your low water mark if you're
2499 * frequently seeing this mode.
2500 */
2501 if (old_mode != new_mode)
2502 notify_of_pool_mode_change_to_oods(pool);
2503 pool->out_of_data_space = true;
2504 pool->process_bio = process_bio_read_only;
2505 pool->process_discard = process_discard_bio;
2506 pool->process_cell = process_cell_read_only;
2507 pool->process_prepared_mapping = process_prepared_mapping;
2508 set_discard_callbacks(pool);
2509
2510 if (!pool->pf.error_if_no_space && no_space_timeout)
2511 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2512 break;
2513
2514 case PM_WRITE:
2515 if (old_mode != new_mode)
2516 notify_of_pool_mode_change(pool, "write");
2517 pool->out_of_data_space = false;
2518 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2519 dm_pool_metadata_read_write(pool->pmd);
2520 pool->process_bio = process_bio;
2521 pool->process_discard = process_discard_bio;
2522 pool->process_cell = process_cell;
2523 pool->process_prepared_mapping = process_prepared_mapping;
2524 set_discard_callbacks(pool);
2525 break;
2526 }
2527
2528 pool->pf.mode = new_mode;
2529 /*
2530 * The pool mode may have changed, sync it so bind_control_target()
2531 * doesn't cause an unexpected mode transition on resume.
2532 */
2533 pt->adjusted_pf.mode = new_mode;
2534 }
2535
2536 static void abort_transaction(struct pool *pool)
2537 {
2538 const char *dev_name = dm_device_name(pool->pool_md);
2539
2540 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2541 if (dm_pool_abort_metadata(pool->pmd)) {
2542 DMERR("%s: failed to abort metadata transaction", dev_name);
2543 set_pool_mode(pool, PM_FAIL);
2544 }
2545
2546 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2547 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2548 set_pool_mode(pool, PM_FAIL);
2549 }
2550 }
2551
2552 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2553 {
2554 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2555 dm_device_name(pool->pool_md), op, r);
2556
2557 abort_transaction(pool);
2558 set_pool_mode(pool, PM_READ_ONLY);
2559 }
2560
2561 /*----------------------------------------------------------------*/
2562
2563 /*
2564 * Mapping functions.
2565 */
2566
2567 /*
2568 * Called only while mapping a thin bio to hand it over to the workqueue.
2569 */
2570 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2571 {
2572 unsigned long flags;
2573 struct pool *pool = tc->pool;
2574
2575 spin_lock_irqsave(&tc->lock, flags);
2576 bio_list_add(&tc->deferred_bio_list, bio);
2577 spin_unlock_irqrestore(&tc->lock, flags);
2578
2579 wake_worker(pool);
2580 }
2581
2582 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2583 {
2584 struct pool *pool = tc->pool;
2585
2586 throttle_lock(&pool->throttle);
2587 thin_defer_bio(tc, bio);
2588 throttle_unlock(&pool->throttle);
2589 }
2590
2591 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2592 {
2593 unsigned long flags;
2594 struct pool *pool = tc->pool;
2595
2596 throttle_lock(&pool->throttle);
2597 spin_lock_irqsave(&tc->lock, flags);
2598 list_add_tail(&cell->user_list, &tc->deferred_cells);
2599 spin_unlock_irqrestore(&tc->lock, flags);
2600 throttle_unlock(&pool->throttle);
2601
2602 wake_worker(pool);
2603 }
2604
2605 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2606 {
2607 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2608
2609 h->tc = tc;
2610 h->shared_read_entry = NULL;
2611 h->all_io_entry = NULL;
2612 h->overwrite_mapping = NULL;
2613 h->cell = NULL;
2614 }
2615
2616 /*
2617 * Non-blocking function called from the thin target's map function.
2618 */
2619 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2620 {
2621 int r;
2622 struct thin_c *tc = ti->private;
2623 dm_block_t block = get_bio_block(tc, bio);
2624 struct dm_thin_device *td = tc->td;
2625 struct dm_thin_lookup_result result;
2626 struct dm_bio_prison_cell *virt_cell, *data_cell;
2627 struct dm_cell_key key;
2628
2629 thin_hook_bio(tc, bio);
2630
2631 if (tc->requeue_mode) {
2632 bio->bi_status = BLK_STS_DM_REQUEUE;
2633 bio_endio(bio);
2634 return DM_MAPIO_SUBMITTED;
2635 }
2636
2637 if (get_pool_mode(tc->pool) == PM_FAIL) {
2638 bio_io_error(bio);
2639 return DM_MAPIO_SUBMITTED;
2640 }
2641
2642 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2643 thin_defer_bio_with_throttle(tc, bio);
2644 return DM_MAPIO_SUBMITTED;
2645 }
2646
2647 /*
2648 * We must hold the virtual cell before doing the lookup, otherwise
2649 * there's a race with discard.
2650 */
2651 build_virtual_key(tc->td, block, &key);
2652 if (bio_detain(tc->pool, &key, bio, &virt_cell))
2653 return DM_MAPIO_SUBMITTED;
2654
2655 r = dm_thin_find_block(td, block, 0, &result);
2656
2657 /*
2658 * Note that we defer readahead too.
2659 */
2660 switch (r) {
2661 case 0:
2662 if (unlikely(result.shared)) {
2663 /*
2664 * We have a race condition here between the
2665 * result.shared value returned by the lookup and
2666 * snapshot creation, which may cause new
2667 * sharing.
2668 *
2669 * To avoid this always quiesce the origin before
2670 * taking the snap. You want to do this anyway to
2671 * ensure a consistent application view
2672 * (i.e. lockfs).
2673 *
2674 * More distant ancestors are irrelevant. The
2675 * shared flag will be set in their case.
2676 */
2677 thin_defer_cell(tc, virt_cell);
2678 return DM_MAPIO_SUBMITTED;
2679 }
2680
2681 build_data_key(tc->td, result.block, &key);
2682 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2683 cell_defer_no_holder(tc, virt_cell);
2684 return DM_MAPIO_SUBMITTED;
2685 }
2686
2687 inc_all_io_entry(tc->pool, bio);
2688 cell_defer_no_holder(tc, data_cell);
2689 cell_defer_no_holder(tc, virt_cell);
2690
2691 remap(tc, bio, result.block);
2692 return DM_MAPIO_REMAPPED;
2693
2694 case -ENODATA:
2695 case -EWOULDBLOCK:
2696 thin_defer_cell(tc, virt_cell);
2697 return DM_MAPIO_SUBMITTED;
2698
2699 default:
2700 /*
2701 * Must always call bio_io_error on failure.
2702 * dm_thin_find_block can fail with -EINVAL if the
2703 * pool is switched to fail-io mode.
2704 */
2705 bio_io_error(bio);
2706 cell_defer_no_holder(tc, virt_cell);
2707 return DM_MAPIO_SUBMITTED;
2708 }
2709 }
2710
2711 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2712 {
2713 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2714 struct request_queue *q;
2715
2716 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2717 return 1;
2718
2719 q = bdev_get_queue(pt->data_dev->bdev);
2720 return bdi_congested(q->backing_dev_info, bdi_bits);
2721 }
2722
2723 static void requeue_bios(struct pool *pool)
2724 {
2725 unsigned long flags;
2726 struct thin_c *tc;
2727
2728 rcu_read_lock();
2729 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2730 spin_lock_irqsave(&tc->lock, flags);
2731 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2732 bio_list_init(&tc->retry_on_resume_list);
2733 spin_unlock_irqrestore(&tc->lock, flags);
2734 }
2735 rcu_read_unlock();
2736 }
2737
2738 /*----------------------------------------------------------------
2739 * Binding of control targets to a pool object
2740 *--------------------------------------------------------------*/
2741 static bool data_dev_supports_discard(struct pool_c *pt)
2742 {
2743 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2744
2745 return q && blk_queue_discard(q);
2746 }
2747
2748 static bool is_factor(sector_t block_size, uint32_t n)
2749 {
2750 return !sector_div(block_size, n);
2751 }
2752
2753 /*
2754 * If discard_passdown was enabled verify that the data device
2755 * supports discards. Disable discard_passdown if not.
2756 */
2757 static void disable_passdown_if_not_supported(struct pool_c *pt)
2758 {
2759 struct pool *pool = pt->pool;
2760 struct block_device *data_bdev = pt->data_dev->bdev;
2761 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2762 const char *reason = NULL;
2763 char buf[BDEVNAME_SIZE];
2764
2765 if (!pt->adjusted_pf.discard_passdown)
2766 return;
2767
2768 if (!data_dev_supports_discard(pt))
2769 reason = "discard unsupported";
2770
2771 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2772 reason = "max discard sectors smaller than a block";
2773
2774 if (reason) {
2775 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2776 pt->adjusted_pf.discard_passdown = false;
2777 }
2778 }
2779
2780 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2781 {
2782 struct pool_c *pt = ti->private;
2783
2784 /*
2785 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2786 */
2787 enum pool_mode old_mode = get_pool_mode(pool);
2788 enum pool_mode new_mode = pt->adjusted_pf.mode;
2789
2790 /*
2791 * Don't change the pool's mode until set_pool_mode() below.
2792 * Otherwise the pool's process_* function pointers may
2793 * not match the desired pool mode.
2794 */
2795 pt->adjusted_pf.mode = old_mode;
2796
2797 pool->ti = ti;
2798 pool->pf = pt->adjusted_pf;
2799 pool->low_water_blocks = pt->low_water_blocks;
2800
2801 set_pool_mode(pool, new_mode);
2802
2803 return 0;
2804 }
2805
2806 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2807 {
2808 if (pool->ti == ti)
2809 pool->ti = NULL;
2810 }
2811
2812 /*----------------------------------------------------------------
2813 * Pool creation
2814 *--------------------------------------------------------------*/
2815 /* Initialize pool features. */
2816 static void pool_features_init(struct pool_features *pf)
2817 {
2818 pf->mode = PM_WRITE;
2819 pf->zero_new_blocks = true;
2820 pf->discard_enabled = true;
2821 pf->discard_passdown = true;
2822 pf->error_if_no_space = false;
2823 }
2824
2825 static void __pool_destroy(struct pool *pool)
2826 {
2827 __pool_table_remove(pool);
2828
2829 vfree(pool->cell_sort_array);
2830 if (dm_pool_metadata_close(pool->pmd) < 0)
2831 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2832
2833 dm_bio_prison_destroy(pool->prison);
2834 dm_kcopyd_client_destroy(pool->copier);
2835
2836 if (pool->wq)
2837 destroy_workqueue(pool->wq);
2838
2839 if (pool->next_mapping)
2840 mempool_free(pool->next_mapping, pool->mapping_pool);
2841 mempool_destroy(pool->mapping_pool);
2842 dm_deferred_set_destroy(pool->shared_read_ds);
2843 dm_deferred_set_destroy(pool->all_io_ds);
2844 kfree(pool);
2845 }
2846
2847 static struct kmem_cache *_new_mapping_cache;
2848
2849 static struct pool *pool_create(struct mapped_device *pool_md,
2850 struct block_device *metadata_dev,
2851 unsigned long block_size,
2852 int read_only, char **error)
2853 {
2854 int r;
2855 void *err_p;
2856 struct pool *pool;
2857 struct dm_pool_metadata *pmd;
2858 bool format_device = read_only ? false : true;
2859
2860 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2861 if (IS_ERR(pmd)) {
2862 *error = "Error creating metadata object";
2863 return (struct pool *)pmd;
2864 }
2865
2866 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2867 if (!pool) {
2868 *error = "Error allocating memory for pool";
2869 err_p = ERR_PTR(-ENOMEM);
2870 goto bad_pool;
2871 }
2872
2873 pool->pmd = pmd;
2874 pool->sectors_per_block = block_size;
2875 if (block_size & (block_size - 1))
2876 pool->sectors_per_block_shift = -1;
2877 else
2878 pool->sectors_per_block_shift = __ffs(block_size);
2879 pool->low_water_blocks = 0;
2880 pool_features_init(&pool->pf);
2881 pool->prison = dm_bio_prison_create();
2882 if (!pool->prison) {
2883 *error = "Error creating pool's bio prison";
2884 err_p = ERR_PTR(-ENOMEM);
2885 goto bad_prison;
2886 }
2887
2888 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2889 if (IS_ERR(pool->copier)) {
2890 r = PTR_ERR(pool->copier);
2891 *error = "Error creating pool's kcopyd client";
2892 err_p = ERR_PTR(r);
2893 goto bad_kcopyd_client;
2894 }
2895
2896 /*
2897 * Create singlethreaded workqueue that will service all devices
2898 * that use this metadata.
2899 */
2900 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2901 if (!pool->wq) {
2902 *error = "Error creating pool's workqueue";
2903 err_p = ERR_PTR(-ENOMEM);
2904 goto bad_wq;
2905 }
2906
2907 throttle_init(&pool->throttle);
2908 INIT_WORK(&pool->worker, do_worker);
2909 INIT_DELAYED_WORK(&pool->waker, do_waker);
2910 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2911 spin_lock_init(&pool->lock);
2912 bio_list_init(&pool->deferred_flush_bios);
2913 INIT_LIST_HEAD(&pool->prepared_mappings);
2914 INIT_LIST_HEAD(&pool->prepared_discards);
2915 INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2916 INIT_LIST_HEAD(&pool->active_thins);
2917 pool->low_water_triggered = false;
2918 pool->suspended = true;
2919 pool->out_of_data_space = false;
2920
2921 pool->shared_read_ds = dm_deferred_set_create();
2922 if (!pool->shared_read_ds) {
2923 *error = "Error creating pool's shared read deferred set";
2924 err_p = ERR_PTR(-ENOMEM);
2925 goto bad_shared_read_ds;
2926 }
2927
2928 pool->all_io_ds = dm_deferred_set_create();
2929 if (!pool->all_io_ds) {
2930 *error = "Error creating pool's all io deferred set";
2931 err_p = ERR_PTR(-ENOMEM);
2932 goto bad_all_io_ds;
2933 }
2934
2935 pool->next_mapping = NULL;
2936 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2937 _new_mapping_cache);
2938 if (!pool->mapping_pool) {
2939 *error = "Error creating pool's mapping mempool";
2940 err_p = ERR_PTR(-ENOMEM);
2941 goto bad_mapping_pool;
2942 }
2943
2944 pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2945 if (!pool->cell_sort_array) {
2946 *error = "Error allocating cell sort array";
2947 err_p = ERR_PTR(-ENOMEM);
2948 goto bad_sort_array;
2949 }
2950
2951 pool->ref_count = 1;
2952 pool->last_commit_jiffies = jiffies;
2953 pool->pool_md = pool_md;
2954 pool->md_dev = metadata_dev;
2955 __pool_table_insert(pool);
2956
2957 return pool;
2958
2959 bad_sort_array:
2960 mempool_destroy(pool->mapping_pool);
2961 bad_mapping_pool:
2962 dm_deferred_set_destroy(pool->all_io_ds);
2963 bad_all_io_ds:
2964 dm_deferred_set_destroy(pool->shared_read_ds);
2965 bad_shared_read_ds:
2966 destroy_workqueue(pool->wq);
2967 bad_wq:
2968 dm_kcopyd_client_destroy(pool->copier);
2969 bad_kcopyd_client:
2970 dm_bio_prison_destroy(pool->prison);
2971 bad_prison:
2972 kfree(pool);
2973 bad_pool:
2974 if (dm_pool_metadata_close(pmd))
2975 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2976
2977 return err_p;
2978 }
2979
2980 static void __pool_inc(struct pool *pool)
2981 {
2982 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2983 pool->ref_count++;
2984 }
2985
2986 static void __pool_dec(struct pool *pool)
2987 {
2988 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2989 BUG_ON(!pool->ref_count);
2990 if (!--pool->ref_count)
2991 __pool_destroy(pool);
2992 }
2993
2994 static struct pool *__pool_find(struct mapped_device *pool_md,
2995 struct block_device *metadata_dev,
2996 unsigned long block_size, int read_only,
2997 char **error, int *created)
2998 {
2999 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3000
3001 if (pool) {
3002 if (pool->pool_md != pool_md) {
3003 *error = "metadata device already in use by a pool";
3004 return ERR_PTR(-EBUSY);
3005 }
3006 __pool_inc(pool);
3007
3008 } else {
3009 pool = __pool_table_lookup(pool_md);
3010 if (pool) {
3011 if (pool->md_dev != metadata_dev) {
3012 *error = "different pool cannot replace a pool";
3013 return ERR_PTR(-EINVAL);
3014 }
3015 __pool_inc(pool);
3016
3017 } else {
3018 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3019 *created = 1;
3020 }
3021 }
3022
3023 return pool;
3024 }
3025
3026 /*----------------------------------------------------------------
3027 * Pool target methods
3028 *--------------------------------------------------------------*/
3029 static void pool_dtr(struct dm_target *ti)
3030 {
3031 struct pool_c *pt = ti->private;
3032
3033 mutex_lock(&dm_thin_pool_table.mutex);
3034
3035 unbind_control_target(pt->pool, ti);
3036 __pool_dec(pt->pool);
3037 dm_put_device(ti, pt->metadata_dev);
3038 dm_put_device(ti, pt->data_dev);
3039 kfree(pt);
3040
3041 mutex_unlock(&dm_thin_pool_table.mutex);
3042 }
3043
3044 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3045 struct dm_target *ti)
3046 {
3047 int r;
3048 unsigned argc;
3049 const char *arg_name;
3050
3051 static const struct dm_arg _args[] = {
3052 {0, 4, "Invalid number of pool feature arguments"},
3053 };
3054
3055 /*
3056 * No feature arguments supplied.
3057 */
3058 if (!as->argc)
3059 return 0;
3060
3061 r = dm_read_arg_group(_args, as, &argc, &ti->error);
3062 if (r)
3063 return -EINVAL;
3064
3065 while (argc && !r) {
3066 arg_name = dm_shift_arg(as);
3067 argc--;
3068
3069 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3070 pf->zero_new_blocks = false;
3071
3072 else if (!strcasecmp(arg_name, "ignore_discard"))
3073 pf->discard_enabled = false;
3074
3075 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3076 pf->discard_passdown = false;
3077
3078 else if (!strcasecmp(arg_name, "read_only"))
3079 pf->mode = PM_READ_ONLY;
3080
3081 else if (!strcasecmp(arg_name, "error_if_no_space"))
3082 pf->error_if_no_space = true;
3083
3084 else {
3085 ti->error = "Unrecognised pool feature requested";
3086 r = -EINVAL;
3087 break;
3088 }
3089 }
3090
3091 return r;
3092 }
3093
3094 static void metadata_low_callback(void *context)
3095 {
3096 struct pool *pool = context;
3097
3098 DMWARN("%s: reached low water mark for metadata device: sending event.",
3099 dm_device_name(pool->pool_md));
3100
3101 dm_table_event(pool->ti->table);
3102 }
3103
3104 static sector_t get_dev_size(struct block_device *bdev)
3105 {
3106 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3107 }
3108
3109 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3110 {
3111 sector_t metadata_dev_size = get_dev_size(bdev);
3112 char buffer[BDEVNAME_SIZE];
3113
3114 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3115 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3116 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3117 }
3118
3119 static sector_t get_metadata_dev_size(struct block_device *bdev)
3120 {
3121 sector_t metadata_dev_size = get_dev_size(bdev);
3122
3123 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3124 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3125
3126 return metadata_dev_size;
3127 }
3128
3129 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3130 {
3131 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3132
3133 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3134
3135 return metadata_dev_size;
3136 }
3137
3138 /*
3139 * When a metadata threshold is crossed a dm event is triggered, and
3140 * userland should respond by growing the metadata device. We could let
3141 * userland set the threshold, like we do with the data threshold, but I'm
3142 * not sure they know enough to do this well.
3143 */
3144 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3145 {
3146 /*
3147 * 4M is ample for all ops with the possible exception of thin
3148 * device deletion which is harmless if it fails (just retry the
3149 * delete after you've grown the device).
3150 */
3151 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3152 return min((dm_block_t)1024ULL /* 4M */, quarter);
3153 }
3154
3155 /*
3156 * thin-pool <metadata dev> <data dev>
3157 * <data block size (sectors)>
3158 * <low water mark (blocks)>
3159 * [<#feature args> [<arg>]*]
3160 *
3161 * Optional feature arguments are:
3162 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3163 * ignore_discard: disable discard
3164 * no_discard_passdown: don't pass discards down to the data device
3165 * read_only: Don't allow any changes to be made to the pool metadata.
3166 * error_if_no_space: error IOs, instead of queueing, if no space.
3167 */
3168 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3169 {
3170 int r, pool_created = 0;
3171 struct pool_c *pt;
3172 struct pool *pool;
3173 struct pool_features pf;
3174 struct dm_arg_set as;
3175 struct dm_dev *data_dev;
3176 unsigned long block_size;
3177 dm_block_t low_water_blocks;
3178 struct dm_dev *metadata_dev;
3179 fmode_t metadata_mode;
3180
3181 /*
3182 * FIXME Remove validation from scope of lock.
3183 */
3184 mutex_lock(&dm_thin_pool_table.mutex);
3185
3186 if (argc < 4) {
3187 ti->error = "Invalid argument count";
3188 r = -EINVAL;
3189 goto out_unlock;
3190 }
3191
3192 as.argc = argc;
3193 as.argv = argv;
3194
3195 /*
3196 * Set default pool features.
3197 */
3198 pool_features_init(&pf);
3199
3200 dm_consume_args(&as, 4);
3201 r = parse_pool_features(&as, &pf, ti);
3202 if (r)
3203 goto out_unlock;
3204
3205 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3206 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3207 if (r) {
3208 ti->error = "Error opening metadata block device";
3209 goto out_unlock;
3210 }
3211 warn_if_metadata_device_too_big(metadata_dev->bdev);
3212
3213 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3214 if (r) {
3215 ti->error = "Error getting data device";
3216 goto out_metadata;
3217 }
3218
3219 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3220 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3221 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3222 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3223 ti->error = "Invalid block size";
3224 r = -EINVAL;
3225 goto out;
3226 }
3227
3228 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3229 ti->error = "Invalid low water mark";
3230 r = -EINVAL;
3231 goto out;
3232 }
3233
3234 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3235 if (!pt) {
3236 r = -ENOMEM;
3237 goto out;
3238 }
3239
3240 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3241 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3242 if (IS_ERR(pool)) {
3243 r = PTR_ERR(pool);
3244 goto out_free_pt;
3245 }
3246
3247 /*
3248 * 'pool_created' reflects whether this is the first table load.
3249 * Top level discard support is not allowed to be changed after
3250 * initial load. This would require a pool reload to trigger thin
3251 * device changes.
3252 */
3253 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3254 ti->error = "Discard support cannot be disabled once enabled";
3255 r = -EINVAL;
3256 goto out_flags_changed;
3257 }
3258
3259 pt->pool = pool;
3260 pt->ti = ti;
3261 pt->metadata_dev = metadata_dev;
3262 pt->data_dev = data_dev;
3263 pt->low_water_blocks = low_water_blocks;
3264 pt->adjusted_pf = pt->requested_pf = pf;
3265 ti->num_flush_bios = 1;
3266
3267 /*
3268 * Only need to enable discards if the pool should pass
3269 * them down to the data device. The thin device's discard
3270 * processing will cause mappings to be removed from the btree.
3271 */
3272 if (pf.discard_enabled && pf.discard_passdown) {
3273 ti->num_discard_bios = 1;
3274
3275 /*
3276 * Setting 'discards_supported' circumvents the normal
3277 * stacking of discard limits (this keeps the pool and
3278 * thin devices' discard limits consistent).
3279 */
3280 ti->discards_supported = true;
3281 }
3282 ti->private = pt;
3283
3284 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3285 calc_metadata_threshold(pt),
3286 metadata_low_callback,
3287 pool);
3288 if (r)
3289 goto out_flags_changed;
3290
3291 pt->callbacks.congested_fn = pool_is_congested;
3292 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3293
3294 mutex_unlock(&dm_thin_pool_table.mutex);
3295
3296 return 0;
3297
3298 out_flags_changed:
3299 __pool_dec(pool);
3300 out_free_pt:
3301 kfree(pt);
3302 out:
3303 dm_put_device(ti, data_dev);
3304 out_metadata:
3305 dm_put_device(ti, metadata_dev);
3306 out_unlock:
3307 mutex_unlock(&dm_thin_pool_table.mutex);
3308
3309 return r;
3310 }
3311
3312 static int pool_map(struct dm_target *ti, struct bio *bio)
3313 {
3314 int r;
3315 struct pool_c *pt = ti->private;
3316 struct pool *pool = pt->pool;
3317 unsigned long flags;
3318
3319 /*
3320 * As this is a singleton target, ti->begin is always zero.
3321 */
3322 spin_lock_irqsave(&pool->lock, flags);
3323 bio_set_dev(bio, pt->data_dev->bdev);
3324 r = DM_MAPIO_REMAPPED;
3325 spin_unlock_irqrestore(&pool->lock, flags);
3326
3327 return r;
3328 }
3329
3330 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3331 {
3332 int r;
3333 struct pool_c *pt = ti->private;
3334 struct pool *pool = pt->pool;
3335 sector_t data_size = ti->len;
3336 dm_block_t sb_data_size;
3337
3338 *need_commit = false;
3339
3340 (void) sector_div(data_size, pool->sectors_per_block);
3341
3342 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3343 if (r) {
3344 DMERR("%s: failed to retrieve data device size",
3345 dm_device_name(pool->pool_md));
3346 return r;
3347 }
3348
3349 if (data_size < sb_data_size) {
3350 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3351 dm_device_name(pool->pool_md),
3352 (unsigned long long)data_size, sb_data_size);
3353 return -EINVAL;
3354
3355 } else if (data_size > sb_data_size) {
3356 if (dm_pool_metadata_needs_check(pool->pmd)) {
3357 DMERR("%s: unable to grow the data device until repaired.",
3358 dm_device_name(pool->pool_md));
3359 return 0;
3360 }
3361
3362 if (sb_data_size)
3363 DMINFO("%s: growing the data device from %llu to %llu blocks",
3364 dm_device_name(pool->pool_md),
3365 sb_data_size, (unsigned long long)data_size);
3366 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3367 if (r) {
3368 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3369 return r;
3370 }
3371
3372 *need_commit = true;
3373 }
3374
3375 return 0;
3376 }
3377
3378 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3379 {
3380 int r;
3381 struct pool_c *pt = ti->private;
3382 struct pool *pool = pt->pool;
3383 dm_block_t metadata_dev_size, sb_metadata_dev_size;
3384
3385 *need_commit = false;
3386
3387 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3388
3389 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3390 if (r) {
3391 DMERR("%s: failed to retrieve metadata device size",
3392 dm_device_name(pool->pool_md));
3393 return r;
3394 }
3395
3396 if (metadata_dev_size < sb_metadata_dev_size) {
3397 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3398 dm_device_name(pool->pool_md),
3399 metadata_dev_size, sb_metadata_dev_size);
3400 return -EINVAL;
3401
3402 } else if (metadata_dev_size > sb_metadata_dev_size) {
3403 if (dm_pool_metadata_needs_check(pool->pmd)) {
3404 DMERR("%s: unable to grow the metadata device until repaired.",
3405 dm_device_name(pool->pool_md));
3406 return 0;
3407 }
3408
3409 warn_if_metadata_device_too_big(pool->md_dev);
3410 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3411 dm_device_name(pool->pool_md),
3412 sb_metadata_dev_size, metadata_dev_size);
3413 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3414 if (r) {
3415 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3416 return r;
3417 }
3418
3419 *need_commit = true;
3420 }
3421
3422 return 0;
3423 }
3424
3425 /*
3426 * Retrieves the number of blocks of the data device from
3427 * the superblock and compares it to the actual device size,
3428 * thus resizing the data device in case it has grown.
3429 *
3430 * This both copes with opening preallocated data devices in the ctr
3431 * being followed by a resume
3432 * -and-
3433 * calling the resume method individually after userspace has
3434 * grown the data device in reaction to a table event.
3435 */
3436 static int pool_preresume(struct dm_target *ti)
3437 {
3438 int r;
3439 bool need_commit1, need_commit2;
3440 struct pool_c *pt = ti->private;
3441 struct pool *pool = pt->pool;
3442
3443 /*
3444 * Take control of the pool object.
3445 */
3446 r = bind_control_target(pool, ti);
3447 if (r)
3448 return r;
3449
3450 r = maybe_resize_data_dev(ti, &need_commit1);
3451 if (r)
3452 return r;
3453
3454 r = maybe_resize_metadata_dev(ti, &need_commit2);
3455 if (r)
3456 return r;
3457
3458 if (need_commit1 || need_commit2)
3459 (void) commit(pool);
3460
3461 return 0;
3462 }
3463
3464 static void pool_suspend_active_thins(struct pool *pool)
3465 {
3466 struct thin_c *tc;
3467
3468 /* Suspend all active thin devices */
3469 tc = get_first_thin(pool);
3470 while (tc) {
3471 dm_internal_suspend_noflush(tc->thin_md);
3472 tc = get_next_thin(pool, tc);
3473 }
3474 }
3475
3476 static void pool_resume_active_thins(struct pool *pool)
3477 {
3478 struct thin_c *tc;
3479
3480 /* Resume all active thin devices */
3481 tc = get_first_thin(pool);
3482 while (tc) {
3483 dm_internal_resume(tc->thin_md);
3484 tc = get_next_thin(pool, tc);
3485 }
3486 }
3487
3488 static void pool_resume(struct dm_target *ti)
3489 {
3490 struct pool_c *pt = ti->private;
3491 struct pool *pool = pt->pool;
3492 unsigned long flags;
3493
3494 /*
3495 * Must requeue active_thins' bios and then resume
3496 * active_thins _before_ clearing 'suspend' flag.
3497 */
3498 requeue_bios(pool);
3499 pool_resume_active_thins(pool);
3500
3501 spin_lock_irqsave(&pool->lock, flags);
3502 pool->low_water_triggered = false;
3503 pool->suspended = false;
3504 spin_unlock_irqrestore(&pool->lock, flags);
3505
3506 do_waker(&pool->waker.work);
3507 }
3508
3509 static void pool_presuspend(struct dm_target *ti)
3510 {
3511 struct pool_c *pt = ti->private;
3512 struct pool *pool = pt->pool;
3513 unsigned long flags;
3514
3515 spin_lock_irqsave(&pool->lock, flags);
3516 pool->suspended = true;
3517 spin_unlock_irqrestore(&pool->lock, flags);
3518
3519 pool_suspend_active_thins(pool);
3520 }
3521
3522 static void pool_presuspend_undo(struct dm_target *ti)
3523 {
3524 struct pool_c *pt = ti->private;
3525 struct pool *pool = pt->pool;
3526 unsigned long flags;
3527
3528 pool_resume_active_thins(pool);
3529
3530 spin_lock_irqsave(&pool->lock, flags);
3531 pool->suspended = false;
3532 spin_unlock_irqrestore(&pool->lock, flags);
3533 }
3534
3535 static void pool_postsuspend(struct dm_target *ti)
3536 {
3537 struct pool_c *pt = ti->private;
3538 struct pool *pool = pt->pool;
3539
3540 cancel_delayed_work_sync(&pool->waker);
3541 cancel_delayed_work_sync(&pool->no_space_timeout);
3542 flush_workqueue(pool->wq);
3543 (void) commit(pool);
3544 }
3545
3546 static int check_arg_count(unsigned argc, unsigned args_required)
3547 {
3548 if (argc != args_required) {
3549 DMWARN("Message received with %u arguments instead of %u.",
3550 argc, args_required);
3551 return -EINVAL;
3552 }
3553
3554 return 0;
3555 }
3556
3557 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3558 {
3559 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3560 *dev_id <= MAX_DEV_ID)
3561 return 0;
3562
3563 if (warning)
3564 DMWARN("Message received with invalid device id: %s", arg);
3565
3566 return -EINVAL;
3567 }
3568
3569 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3570 {
3571 dm_thin_id dev_id;
3572 int r;
3573
3574 r = check_arg_count(argc, 2);
3575 if (r)
3576 return r;
3577
3578 r = read_dev_id(argv[1], &dev_id, 1);
3579 if (r)
3580 return r;
3581
3582 r = dm_pool_create_thin(pool->pmd, dev_id);
3583 if (r) {
3584 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3585 argv[1]);
3586 return r;
3587 }
3588
3589 return 0;
3590 }
3591
3592 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3593 {
3594 dm_thin_id dev_id;
3595 dm_thin_id origin_dev_id;
3596 int r;
3597
3598 r = check_arg_count(argc, 3);
3599 if (r)
3600 return r;
3601
3602 r = read_dev_id(argv[1], &dev_id, 1);
3603 if (r)
3604 return r;
3605
3606 r = read_dev_id(argv[2], &origin_dev_id, 1);
3607 if (r)
3608 return r;
3609
3610 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3611 if (r) {
3612 DMWARN("Creation of new snapshot %s of device %s failed.",
3613 argv[1], argv[2]);
3614 return r;
3615 }
3616
3617 return 0;
3618 }
3619
3620 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3621 {
3622 dm_thin_id dev_id;
3623 int r;
3624
3625 r = check_arg_count(argc, 2);
3626 if (r)
3627 return r;
3628
3629 r = read_dev_id(argv[1], &dev_id, 1);
3630 if (r)
3631 return r;
3632
3633 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3634 if (r)
3635 DMWARN("Deletion of thin device %s failed.", argv[1]);
3636
3637 return r;
3638 }
3639
3640 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3641 {
3642 dm_thin_id old_id, new_id;
3643 int r;
3644
3645 r = check_arg_count(argc, 3);
3646 if (r)
3647 return r;
3648
3649 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3650 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3651 return -EINVAL;
3652 }
3653
3654 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3655 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3656 return -EINVAL;
3657 }
3658
3659 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3660 if (r) {
3661 DMWARN("Failed to change transaction id from %s to %s.",
3662 argv[1], argv[2]);
3663 return r;
3664 }
3665
3666 return 0;
3667 }
3668
3669 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3670 {
3671 int r;
3672
3673 r = check_arg_count(argc, 1);
3674 if (r)
3675 return r;
3676
3677 (void) commit(pool);
3678
3679 r = dm_pool_reserve_metadata_snap(pool->pmd);
3680 if (r)
3681 DMWARN("reserve_metadata_snap message failed.");
3682
3683 return r;
3684 }
3685
3686 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3687 {
3688 int r;
3689
3690 r = check_arg_count(argc, 1);
3691 if (r)
3692 return r;
3693
3694 r = dm_pool_release_metadata_snap(pool->pmd);
3695 if (r)
3696 DMWARN("release_metadata_snap message failed.");
3697
3698 return r;
3699 }
3700
3701 /*
3702 * Messages supported:
3703 * create_thin <dev_id>
3704 * create_snap <dev_id> <origin_id>
3705 * delete <dev_id>
3706 * set_transaction_id <current_trans_id> <new_trans_id>
3707 * reserve_metadata_snap
3708 * release_metadata_snap
3709 */
3710 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3711 {
3712 int r = -EINVAL;
3713 struct pool_c *pt = ti->private;
3714 struct pool *pool = pt->pool;
3715
3716 if (get_pool_mode(pool) >= PM_READ_ONLY) {
3717 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3718 dm_device_name(pool->pool_md));
3719 return -EOPNOTSUPP;
3720 }
3721
3722 if (!strcasecmp(argv[0], "create_thin"))
3723 r = process_create_thin_mesg(argc, argv, pool);
3724
3725 else if (!strcasecmp(argv[0], "create_snap"))
3726 r = process_create_snap_mesg(argc, argv, pool);
3727
3728 else if (!strcasecmp(argv[0], "delete"))
3729 r = process_delete_mesg(argc, argv, pool);
3730
3731 else if (!strcasecmp(argv[0], "set_transaction_id"))
3732 r = process_set_transaction_id_mesg(argc, argv, pool);
3733
3734 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3735 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3736
3737 else if (!strcasecmp(argv[0], "release_metadata_snap"))
3738 r = process_release_metadata_snap_mesg(argc, argv, pool);
3739
3740 else
3741 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3742
3743 if (!r)
3744 (void) commit(pool);
3745
3746 return r;
3747 }
3748
3749 static void emit_flags(struct pool_features *pf, char *result,
3750 unsigned sz, unsigned maxlen)
3751 {
3752 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3753 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3754 pf->error_if_no_space;
3755 DMEMIT("%u ", count);
3756
3757 if (!pf->zero_new_blocks)
3758 DMEMIT("skip_block_zeroing ");
3759
3760 if (!pf->discard_enabled)
3761 DMEMIT("ignore_discard ");
3762
3763 if (!pf->discard_passdown)
3764 DMEMIT("no_discard_passdown ");
3765
3766 if (pf->mode == PM_READ_ONLY)
3767 DMEMIT("read_only ");
3768
3769 if (pf->error_if_no_space)
3770 DMEMIT("error_if_no_space ");
3771 }
3772
3773 /*
3774 * Status line is:
3775 * <transaction id> <used metadata sectors>/<total metadata sectors>
3776 * <used data sectors>/<total data sectors> <held metadata root>
3777 * <pool mode> <discard config> <no space config> <needs_check>
3778 */
3779 static void pool_status(struct dm_target *ti, status_type_t type,
3780 unsigned status_flags, char *result, unsigned maxlen)
3781 {
3782 int r;
3783 unsigned sz = 0;
3784 uint64_t transaction_id;
3785 dm_block_t nr_free_blocks_data;
3786 dm_block_t nr_free_blocks_metadata;
3787 dm_block_t nr_blocks_data;
3788 dm_block_t nr_blocks_metadata;
3789 dm_block_t held_root;
3790 char buf[BDEVNAME_SIZE];
3791 char buf2[BDEVNAME_SIZE];
3792 struct pool_c *pt = ti->private;
3793 struct pool *pool = pt->pool;
3794
3795 switch (type) {
3796 case STATUSTYPE_INFO:
3797 if (get_pool_mode(pool) == PM_FAIL) {
3798 DMEMIT("Fail");
3799 break;
3800 }
3801
3802 /* Commit to ensure statistics aren't out-of-date */
3803 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3804 (void) commit(pool);
3805
3806 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3807 if (r) {
3808 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3809 dm_device_name(pool->pool_md), r);
3810 goto err;
3811 }
3812
3813 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3814 if (r) {
3815 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3816 dm_device_name(pool->pool_md), r);
3817 goto err;
3818 }
3819
3820 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3821 if (r) {
3822 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3823 dm_device_name(pool->pool_md), r);
3824 goto err;
3825 }
3826
3827 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3828 if (r) {
3829 DMERR("%s: dm_pool_get_free_block_count returned %d",
3830 dm_device_name(pool->pool_md), r);
3831 goto err;
3832 }
3833
3834 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3835 if (r) {
3836 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3837 dm_device_name(pool->pool_md), r);
3838 goto err;
3839 }
3840
3841 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3842 if (r) {
3843 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3844 dm_device_name(pool->pool_md), r);
3845 goto err;
3846 }
3847
3848 DMEMIT("%llu %llu/%llu %llu/%llu ",
3849 (unsigned long long)transaction_id,
3850 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3851 (unsigned long long)nr_blocks_metadata,
3852 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3853 (unsigned long long)nr_blocks_data);
3854
3855 if (held_root)
3856 DMEMIT("%llu ", held_root);
3857 else
3858 DMEMIT("- ");
3859
3860 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3861 DMEMIT("out_of_data_space ");
3862 else if (pool->pf.mode == PM_READ_ONLY)
3863 DMEMIT("ro ");
3864 else
3865 DMEMIT("rw ");
3866
3867 if (!pool->pf.discard_enabled)
3868 DMEMIT("ignore_discard ");
3869 else if (pool->pf.discard_passdown)
3870 DMEMIT("discard_passdown ");
3871 else
3872 DMEMIT("no_discard_passdown ");
3873
3874 if (pool->pf.error_if_no_space)
3875 DMEMIT("error_if_no_space ");
3876 else
3877 DMEMIT("queue_if_no_space ");
3878
3879 if (dm_pool_metadata_needs_check(pool->pmd))
3880 DMEMIT("needs_check ");
3881 else
3882 DMEMIT("- ");
3883
3884 break;
3885
3886 case STATUSTYPE_TABLE:
3887 DMEMIT("%s %s %lu %llu ",
3888 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3889 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3890 (unsigned long)pool->sectors_per_block,
3891 (unsigned long long)pt->low_water_blocks);
3892 emit_flags(&pt->requested_pf, result, sz, maxlen);
3893 break;
3894 }
3895 return;
3896
3897 err:
3898 DMEMIT("Error");
3899 }
3900
3901 static int pool_iterate_devices(struct dm_target *ti,
3902 iterate_devices_callout_fn fn, void *data)
3903 {
3904 struct pool_c *pt = ti->private;
3905
3906 return fn(ti, pt->data_dev, 0, ti->len, data);
3907 }
3908
3909 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3910 {
3911 struct pool_c *pt = ti->private;
3912 struct pool *pool = pt->pool;
3913 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3914
3915 /*
3916 * If max_sectors is smaller than pool->sectors_per_block adjust it
3917 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3918 * This is especially beneficial when the pool's data device is a RAID
3919 * device that has a full stripe width that matches pool->sectors_per_block
3920 * -- because even though partial RAID stripe-sized IOs will be issued to a
3921 * single RAID stripe; when aggregated they will end on a full RAID stripe
3922 * boundary.. which avoids additional partial RAID stripe writes cascading
3923 */
3924 if (limits->max_sectors < pool->sectors_per_block) {
3925 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3926 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3927 limits->max_sectors--;
3928 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3929 }
3930 }
3931
3932 /*
3933 * If the system-determined stacked limits are compatible with the
3934 * pool's blocksize (io_opt is a factor) do not override them.
3935 */
3936 if (io_opt_sectors < pool->sectors_per_block ||
3937 !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3938 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3939 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3940 else
3941 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3942 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3943 }
3944
3945 /*
3946 * pt->adjusted_pf is a staging area for the actual features to use.
3947 * They get transferred to the live pool in bind_control_target()
3948 * called from pool_preresume().
3949 */
3950 if (!pt->adjusted_pf.discard_enabled) {
3951 /*
3952 * Must explicitly disallow stacking discard limits otherwise the
3953 * block layer will stack them if pool's data device has support.
3954 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3955 * user to see that, so make sure to set all discard limits to 0.
3956 */
3957 limits->discard_granularity = 0;
3958 return;
3959 }
3960
3961 disable_passdown_if_not_supported(pt);
3962
3963 /*
3964 * The pool uses the same discard limits as the underlying data
3965 * device. DM core has already set this up.
3966 */
3967 }
3968
3969 static struct target_type pool_target = {
3970 .name = "thin-pool",
3971 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3972 DM_TARGET_IMMUTABLE,
3973 .version = {1, 19, 0},
3974 .module = THIS_MODULE,
3975 .ctr = pool_ctr,
3976 .dtr = pool_dtr,
3977 .map = pool_map,
3978 .presuspend = pool_presuspend,
3979 .presuspend_undo = pool_presuspend_undo,
3980 .postsuspend = pool_postsuspend,
3981 .preresume = pool_preresume,
3982 .resume = pool_resume,
3983 .message = pool_message,
3984 .status = pool_status,
3985 .iterate_devices = pool_iterate_devices,
3986 .io_hints = pool_io_hints,
3987 };
3988
3989 /*----------------------------------------------------------------
3990 * Thin target methods
3991 *--------------------------------------------------------------*/
3992 static void thin_get(struct thin_c *tc)
3993 {
3994 atomic_inc(&tc->refcount);
3995 }
3996
3997 static void thin_put(struct thin_c *tc)
3998 {
3999 if (atomic_dec_and_test(&tc->refcount))
4000 complete(&tc->can_destroy);
4001 }
4002
4003 static void thin_dtr(struct dm_target *ti)
4004 {
4005 struct thin_c *tc = ti->private;
4006 unsigned long flags;
4007
4008 spin_lock_irqsave(&tc->pool->lock, flags);
4009 list_del_rcu(&tc->list);
4010 spin_unlock_irqrestore(&tc->pool->lock, flags);
4011 synchronize_rcu();
4012
4013 thin_put(tc);
4014 wait_for_completion(&tc->can_destroy);
4015
4016 mutex_lock(&dm_thin_pool_table.mutex);
4017
4018 __pool_dec(tc->pool);
4019 dm_pool_close_thin_device(tc->td);
4020 dm_put_device(ti, tc->pool_dev);
4021 if (tc->origin_dev)
4022 dm_put_device(ti, tc->origin_dev);
4023 kfree(tc);
4024
4025 mutex_unlock(&dm_thin_pool_table.mutex);
4026 }
4027
4028 /*
4029 * Thin target parameters:
4030 *
4031 * <pool_dev> <dev_id> [origin_dev]
4032 *
4033 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4034 * dev_id: the internal device identifier
4035 * origin_dev: a device external to the pool that should act as the origin
4036 *
4037 * If the pool device has discards disabled, they get disabled for the thin
4038 * device as well.
4039 */
4040 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4041 {
4042 int r;
4043 struct thin_c *tc;
4044 struct dm_dev *pool_dev, *origin_dev;
4045 struct mapped_device *pool_md;
4046 unsigned long flags;
4047
4048 mutex_lock(&dm_thin_pool_table.mutex);
4049
4050 if (argc != 2 && argc != 3) {
4051 ti->error = "Invalid argument count";
4052 r = -EINVAL;
4053 goto out_unlock;
4054 }
4055
4056 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4057 if (!tc) {
4058 ti->error = "Out of memory";
4059 r = -ENOMEM;
4060 goto out_unlock;
4061 }
4062 tc->thin_md = dm_table_get_md(ti->table);
4063 spin_lock_init(&tc->lock);
4064 INIT_LIST_HEAD(&tc->deferred_cells);
4065 bio_list_init(&tc->deferred_bio_list);
4066 bio_list_init(&tc->retry_on_resume_list);
4067 tc->sort_bio_list = RB_ROOT;
4068
4069 if (argc == 3) {
4070 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4071 if (r) {
4072 ti->error = "Error opening origin device";
4073 goto bad_origin_dev;
4074 }
4075 tc->origin_dev = origin_dev;
4076 }
4077
4078 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4079 if (r) {
4080 ti->error = "Error opening pool device";
4081 goto bad_pool_dev;
4082 }
4083 tc->pool_dev = pool_dev;
4084
4085 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4086 ti->error = "Invalid device id";
4087 r = -EINVAL;
4088 goto bad_common;
4089 }
4090
4091 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4092 if (!pool_md) {
4093 ti->error = "Couldn't get pool mapped device";
4094 r = -EINVAL;
4095 goto bad_common;
4096 }
4097
4098 tc->pool = __pool_table_lookup(pool_md);
4099 if (!tc->pool) {
4100 ti->error = "Couldn't find pool object";
4101 r = -EINVAL;
4102 goto bad_pool_lookup;
4103 }
4104 __pool_inc(tc->pool);
4105
4106 if (get_pool_mode(tc->pool) == PM_FAIL) {
4107 ti->error = "Couldn't open thin device, Pool is in fail mode";
4108 r = -EINVAL;
4109 goto bad_pool;
4110 }
4111
4112 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4113 if (r) {
4114 ti->error = "Couldn't open thin internal device";
4115 goto bad_pool;
4116 }
4117
4118 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4119 if (r)
4120 goto bad;
4121
4122 ti->num_flush_bios = 1;
4123 ti->flush_supported = true;
4124 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4125
4126 /* In case the pool supports discards, pass them on. */
4127 if (tc->pool->pf.discard_enabled) {
4128 ti->discards_supported = true;
4129 ti->num_discard_bios = 1;
4130 ti->split_discard_bios = false;
4131 }
4132
4133 mutex_unlock(&dm_thin_pool_table.mutex);
4134
4135 spin_lock_irqsave(&tc->pool->lock, flags);
4136 if (tc->pool->suspended) {
4137 spin_unlock_irqrestore(&tc->pool->lock, flags);
4138 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4139 ti->error = "Unable to activate thin device while pool is suspended";
4140 r = -EINVAL;
4141 goto bad;
4142 }
4143 atomic_set(&tc->refcount, 1);
4144 init_completion(&tc->can_destroy);
4145 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4146 spin_unlock_irqrestore(&tc->pool->lock, flags);
4147 /*
4148 * This synchronize_rcu() call is needed here otherwise we risk a
4149 * wake_worker() call finding no bios to process (because the newly
4150 * added tc isn't yet visible). So this reduces latency since we
4151 * aren't then dependent on the periodic commit to wake_worker().
4152 */
4153 synchronize_rcu();
4154
4155 dm_put(pool_md);
4156
4157 return 0;
4158
4159 bad:
4160 dm_pool_close_thin_device(tc->td);
4161 bad_pool:
4162 __pool_dec(tc->pool);
4163 bad_pool_lookup:
4164 dm_put(pool_md);
4165 bad_common:
4166 dm_put_device(ti, tc->pool_dev);
4167 bad_pool_dev:
4168 if (tc->origin_dev)
4169 dm_put_device(ti, tc->origin_dev);
4170 bad_origin_dev:
4171 kfree(tc);
4172 out_unlock:
4173 mutex_unlock(&dm_thin_pool_table.mutex);
4174
4175 return r;
4176 }
4177
4178 static int thin_map(struct dm_target *ti, struct bio *bio)
4179 {
4180 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4181
4182 return thin_bio_map(ti, bio);
4183 }
4184
4185 static int thin_endio(struct dm_target *ti, struct bio *bio,
4186 blk_status_t *err)
4187 {
4188 unsigned long flags;
4189 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4190 struct list_head work;
4191 struct dm_thin_new_mapping *m, *tmp;
4192 struct pool *pool = h->tc->pool;
4193
4194 if (h->shared_read_entry) {
4195 INIT_LIST_HEAD(&work);
4196 dm_deferred_entry_dec(h->shared_read_entry, &work);
4197
4198 spin_lock_irqsave(&pool->lock, flags);
4199 list_for_each_entry_safe(m, tmp, &work, list) {
4200 list_del(&m->list);
4201 __complete_mapping_preparation(m);
4202 }
4203 spin_unlock_irqrestore(&pool->lock, flags);
4204 }
4205
4206 if (h->all_io_entry) {
4207 INIT_LIST_HEAD(&work);
4208 dm_deferred_entry_dec(h->all_io_entry, &work);
4209 if (!list_empty(&work)) {
4210 spin_lock_irqsave(&pool->lock, flags);
4211 list_for_each_entry_safe(m, tmp, &work, list)
4212 list_add_tail(&m->list, &pool->prepared_discards);
4213 spin_unlock_irqrestore(&pool->lock, flags);
4214 wake_worker(pool);
4215 }
4216 }
4217
4218 if (h->cell)
4219 cell_defer_no_holder(h->tc, h->cell);
4220
4221 return DM_ENDIO_DONE;
4222 }
4223
4224 static void thin_presuspend(struct dm_target *ti)
4225 {
4226 struct thin_c *tc = ti->private;
4227
4228 if (dm_noflush_suspending(ti))
4229 noflush_work(tc, do_noflush_start);
4230 }
4231
4232 static void thin_postsuspend(struct dm_target *ti)
4233 {
4234 struct thin_c *tc = ti->private;
4235
4236 /*
4237 * The dm_noflush_suspending flag has been cleared by now, so
4238 * unfortunately we must always run this.
4239 */
4240 noflush_work(tc, do_noflush_stop);
4241 }
4242
4243 static int thin_preresume(struct dm_target *ti)
4244 {
4245 struct thin_c *tc = ti->private;
4246
4247 if (tc->origin_dev)
4248 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4249
4250 return 0;
4251 }
4252
4253 /*
4254 * <nr mapped sectors> <highest mapped sector>
4255 */
4256 static void thin_status(struct dm_target *ti, status_type_t type,
4257 unsigned status_flags, char *result, unsigned maxlen)
4258 {
4259 int r;
4260 ssize_t sz = 0;
4261 dm_block_t mapped, highest;
4262 char buf[BDEVNAME_SIZE];
4263 struct thin_c *tc = ti->private;
4264
4265 if (get_pool_mode(tc->pool) == PM_FAIL) {
4266 DMEMIT("Fail");
4267 return;
4268 }
4269
4270 if (!tc->td)
4271 DMEMIT("-");
4272 else {
4273 switch (type) {
4274 case STATUSTYPE_INFO:
4275 r = dm_thin_get_mapped_count(tc->td, &mapped);
4276 if (r) {
4277 DMERR("dm_thin_get_mapped_count returned %d", r);
4278 goto err;
4279 }
4280
4281 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4282 if (r < 0) {
4283 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4284 goto err;
4285 }
4286
4287 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4288 if (r)
4289 DMEMIT("%llu", ((highest + 1) *
4290 tc->pool->sectors_per_block) - 1);
4291 else
4292 DMEMIT("-");
4293 break;
4294
4295 case STATUSTYPE_TABLE:
4296 DMEMIT("%s %lu",
4297 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4298 (unsigned long) tc->dev_id);
4299 if (tc->origin_dev)
4300 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4301 break;
4302 }
4303 }
4304
4305 return;
4306
4307 err:
4308 DMEMIT("Error");
4309 }
4310
4311 static int thin_iterate_devices(struct dm_target *ti,
4312 iterate_devices_callout_fn fn, void *data)
4313 {
4314 sector_t blocks;
4315 struct thin_c *tc = ti->private;
4316 struct pool *pool = tc->pool;
4317
4318 /*
4319 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4320 * we follow a more convoluted path through to the pool's target.
4321 */
4322 if (!pool->ti)
4323 return 0; /* nothing is bound */
4324
4325 blocks = pool->ti->len;
4326 (void) sector_div(blocks, pool->sectors_per_block);
4327 if (blocks)
4328 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4329
4330 return 0;
4331 }
4332
4333 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4334 {
4335 struct thin_c *tc = ti->private;
4336 struct pool *pool = tc->pool;
4337
4338 if (!pool->pf.discard_enabled)
4339 return;
4340
4341 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4342 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4343 }
4344
4345 static struct target_type thin_target = {
4346 .name = "thin",
4347 .version = {1, 19, 0},
4348 .module = THIS_MODULE,
4349 .ctr = thin_ctr,
4350 .dtr = thin_dtr,
4351 .map = thin_map,
4352 .end_io = thin_endio,
4353 .preresume = thin_preresume,
4354 .presuspend = thin_presuspend,
4355 .postsuspend = thin_postsuspend,
4356 .status = thin_status,
4357 .iterate_devices = thin_iterate_devices,
4358 .io_hints = thin_io_hints,
4359 };
4360
4361 /*----------------------------------------------------------------*/
4362
4363 static int __init dm_thin_init(void)
4364 {
4365 int r = -ENOMEM;
4366
4367 pool_table_init();
4368
4369 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4370 if (!_new_mapping_cache)
4371 return r;
4372
4373 r = dm_register_target(&thin_target);
4374 if (r)
4375 goto bad_new_mapping_cache;
4376
4377 r = dm_register_target(&pool_target);
4378 if (r)
4379 goto bad_thin_target;
4380
4381 return 0;
4382
4383 bad_thin_target:
4384 dm_unregister_target(&thin_target);
4385 bad_new_mapping_cache:
4386 kmem_cache_destroy(_new_mapping_cache);
4387
4388 return r;
4389 }
4390
4391 static void dm_thin_exit(void)
4392 {
4393 dm_unregister_target(&thin_target);
4394 dm_unregister_target(&pool_target);
4395
4396 kmem_cache_destroy(_new_mapping_cache);
4397 }
4398
4399 module_init(dm_thin_init);
4400 module_exit(dm_thin_exit);
4401
4402 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4403 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4404
4405 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4406 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4407 MODULE_LICENSE("GPL");