]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/md/dm-thin.c
UBUNTU: Ubuntu-raspi2-4.10.0-1002.4
[mirror_ubuntu-zesty-kernel.git] / drivers / md / dm-thin.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX "thin"
26
27 /*
28 * Tunable constants
29 */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 "A percentage of time allocated for copy on write");
39
40 /*
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
43 */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48 * Device id is restricted to 24 bits.
49 */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
55 *
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
61 * same data blocks.
62 *
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
65 *
66 * Let's say we write to a shared block in what was the origin. The
67 * steps are:
68 *
69 * i) plug io further to this physical block. (see bio_prison code).
70 *
71 * ii) quiesce any read io to that shared data block. Obviously
72 * including all devices that share this block. (see dm_deferred_set code)
73 *
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
76 *
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping). This act of inserting breaks some
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
84 *
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
87 *
88 * Steps (ii) and (iii) occur in parallel.
89 *
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
93 *
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
97 *
98 * - The snap mapping still points to the old block. As it would after
99 * the commit.
100 *
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
108 */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113 * Key building.
114 */
115 enum lock_space {
116 VIRTUAL,
117 PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123 key->virtual = (ls == VIRTUAL);
124 key->dev = dm_thin_dev_id(td);
125 key->block_begin = b;
126 key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 struct dm_cell_key *key)
131 {
132 build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 struct dm_cell_key *key)
137 {
138 build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146 struct rw_semaphore lock;
147 unsigned long threshold;
148 bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153 init_rwsem(&t->lock);
154 t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159 t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164 if (!t->throttle_applied && jiffies > t->threshold) {
165 down_write(&t->lock);
166 t->throttle_applied = true;
167 }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172 if (t->throttle_applied) {
173 t->throttle_applied = false;
174 up_write(&t->lock);
175 }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180 down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185 up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191 * A pool device ties together a metadata device and a data device. It
192 * also provides the interface for creating and destroying internal
193 * devices.
194 */
195 struct dm_thin_new_mapping;
196
197 /*
198 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
199 */
200 enum pool_mode {
201 PM_WRITE, /* metadata may be changed */
202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
203 PM_READ_ONLY, /* metadata may not be changed */
204 PM_FAIL, /* all I/O fails */
205 };
206
207 struct pool_features {
208 enum pool_mode mode;
209
210 bool zero_new_blocks:1;
211 bool discard_enabled:1;
212 bool discard_passdown:1;
213 bool error_if_no_space:1;
214 };
215
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220
221 #define CELL_SORT_ARRAY_SIZE 8192
222
223 struct pool {
224 struct list_head list;
225 struct dm_target *ti; /* Only set if a pool target is bound */
226
227 struct mapped_device *pool_md;
228 struct block_device *md_dev;
229 struct dm_pool_metadata *pmd;
230
231 dm_block_t low_water_blocks;
232 uint32_t sectors_per_block;
233 int sectors_per_block_shift;
234
235 struct pool_features pf;
236 bool low_water_triggered:1; /* A dm event has been sent */
237 bool suspended:1;
238 bool out_of_data_space:1;
239
240 struct dm_bio_prison *prison;
241 struct dm_kcopyd_client *copier;
242
243 struct workqueue_struct *wq;
244 struct throttle throttle;
245 struct work_struct worker;
246 struct delayed_work waker;
247 struct delayed_work no_space_timeout;
248
249 unsigned long last_commit_jiffies;
250 unsigned ref_count;
251
252 spinlock_t lock;
253 struct bio_list deferred_flush_bios;
254 struct list_head prepared_mappings;
255 struct list_head prepared_discards;
256 struct list_head prepared_discards_pt2;
257 struct list_head active_thins;
258
259 struct dm_deferred_set *shared_read_ds;
260 struct dm_deferred_set *all_io_ds;
261
262 struct dm_thin_new_mapping *next_mapping;
263 mempool_t *mapping_pool;
264
265 process_bio_fn process_bio;
266 process_bio_fn process_discard;
267
268 process_cell_fn process_cell;
269 process_cell_fn process_discard_cell;
270
271 process_mapping_fn process_prepared_mapping;
272 process_mapping_fn process_prepared_discard;
273 process_mapping_fn process_prepared_discard_pt2;
274
275 struct dm_bio_prison_cell **cell_sort_array;
276 };
277
278 static enum pool_mode get_pool_mode(struct pool *pool);
279 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
280
281 /*
282 * Target context for a pool.
283 */
284 struct pool_c {
285 struct dm_target *ti;
286 struct pool *pool;
287 struct dm_dev *data_dev;
288 struct dm_dev *metadata_dev;
289 struct dm_target_callbacks callbacks;
290
291 dm_block_t low_water_blocks;
292 struct pool_features requested_pf; /* Features requested during table load */
293 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
294 };
295
296 /*
297 * Target context for a thin.
298 */
299 struct thin_c {
300 struct list_head list;
301 struct dm_dev *pool_dev;
302 struct dm_dev *origin_dev;
303 sector_t origin_size;
304 dm_thin_id dev_id;
305
306 struct pool *pool;
307 struct dm_thin_device *td;
308 struct mapped_device *thin_md;
309
310 bool requeue_mode:1;
311 spinlock_t lock;
312 struct list_head deferred_cells;
313 struct bio_list deferred_bio_list;
314 struct bio_list retry_on_resume_list;
315 struct rb_root sort_bio_list; /* sorted list of deferred bios */
316
317 /*
318 * Ensures the thin is not destroyed until the worker has finished
319 * iterating the active_thins list.
320 */
321 atomic_t refcount;
322 struct completion can_destroy;
323 };
324
325 /*----------------------------------------------------------------*/
326
327 static bool block_size_is_power_of_two(struct pool *pool)
328 {
329 return pool->sectors_per_block_shift >= 0;
330 }
331
332 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
333 {
334 return block_size_is_power_of_two(pool) ?
335 (b << pool->sectors_per_block_shift) :
336 (b * pool->sectors_per_block);
337 }
338
339 /*----------------------------------------------------------------*/
340
341 struct discard_op {
342 struct thin_c *tc;
343 struct blk_plug plug;
344 struct bio *parent_bio;
345 struct bio *bio;
346 };
347
348 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
349 {
350 BUG_ON(!parent);
351
352 op->tc = tc;
353 blk_start_plug(&op->plug);
354 op->parent_bio = parent;
355 op->bio = NULL;
356 }
357
358 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
359 {
360 struct thin_c *tc = op->tc;
361 sector_t s = block_to_sectors(tc->pool, data_b);
362 sector_t len = block_to_sectors(tc->pool, data_e - data_b);
363
364 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
365 GFP_NOWAIT, 0, &op->bio);
366 }
367
368 static void end_discard(struct discard_op *op, int r)
369 {
370 if (op->bio) {
371 /*
372 * Even if one of the calls to issue_discard failed, we
373 * need to wait for the chain to complete.
374 */
375 bio_chain(op->bio, op->parent_bio);
376 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
377 submit_bio(op->bio);
378 }
379
380 blk_finish_plug(&op->plug);
381
382 /*
383 * Even if r is set, there could be sub discards in flight that we
384 * need to wait for.
385 */
386 if (r && !op->parent_bio->bi_error)
387 op->parent_bio->bi_error = r;
388 bio_endio(op->parent_bio);
389 }
390
391 /*----------------------------------------------------------------*/
392
393 /*
394 * wake_worker() is used when new work is queued and when pool_resume is
395 * ready to continue deferred IO processing.
396 */
397 static void wake_worker(struct pool *pool)
398 {
399 queue_work(pool->wq, &pool->worker);
400 }
401
402 /*----------------------------------------------------------------*/
403
404 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
405 struct dm_bio_prison_cell **cell_result)
406 {
407 int r;
408 struct dm_bio_prison_cell *cell_prealloc;
409
410 /*
411 * Allocate a cell from the prison's mempool.
412 * This might block but it can't fail.
413 */
414 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
415
416 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
417 if (r)
418 /*
419 * We reused an old cell; we can get rid of
420 * the new one.
421 */
422 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
423
424 return r;
425 }
426
427 static void cell_release(struct pool *pool,
428 struct dm_bio_prison_cell *cell,
429 struct bio_list *bios)
430 {
431 dm_cell_release(pool->prison, cell, bios);
432 dm_bio_prison_free_cell(pool->prison, cell);
433 }
434
435 static void cell_visit_release(struct pool *pool,
436 void (*fn)(void *, struct dm_bio_prison_cell *),
437 void *context,
438 struct dm_bio_prison_cell *cell)
439 {
440 dm_cell_visit_release(pool->prison, fn, context, cell);
441 dm_bio_prison_free_cell(pool->prison, cell);
442 }
443
444 static void cell_release_no_holder(struct pool *pool,
445 struct dm_bio_prison_cell *cell,
446 struct bio_list *bios)
447 {
448 dm_cell_release_no_holder(pool->prison, cell, bios);
449 dm_bio_prison_free_cell(pool->prison, cell);
450 }
451
452 static void cell_error_with_code(struct pool *pool,
453 struct dm_bio_prison_cell *cell, int error_code)
454 {
455 dm_cell_error(pool->prison, cell, error_code);
456 dm_bio_prison_free_cell(pool->prison, cell);
457 }
458
459 static int get_pool_io_error_code(struct pool *pool)
460 {
461 return pool->out_of_data_space ? -ENOSPC : -EIO;
462 }
463
464 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
465 {
466 int error = get_pool_io_error_code(pool);
467
468 cell_error_with_code(pool, cell, error);
469 }
470
471 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
472 {
473 cell_error_with_code(pool, cell, 0);
474 }
475
476 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
477 {
478 cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
479 }
480
481 /*----------------------------------------------------------------*/
482
483 /*
484 * A global list of pools that uses a struct mapped_device as a key.
485 */
486 static struct dm_thin_pool_table {
487 struct mutex mutex;
488 struct list_head pools;
489 } dm_thin_pool_table;
490
491 static void pool_table_init(void)
492 {
493 mutex_init(&dm_thin_pool_table.mutex);
494 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
495 }
496
497 static void __pool_table_insert(struct pool *pool)
498 {
499 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
500 list_add(&pool->list, &dm_thin_pool_table.pools);
501 }
502
503 static void __pool_table_remove(struct pool *pool)
504 {
505 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
506 list_del(&pool->list);
507 }
508
509 static struct pool *__pool_table_lookup(struct mapped_device *md)
510 {
511 struct pool *pool = NULL, *tmp;
512
513 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
514
515 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
516 if (tmp->pool_md == md) {
517 pool = tmp;
518 break;
519 }
520 }
521
522 return pool;
523 }
524
525 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
526 {
527 struct pool *pool = NULL, *tmp;
528
529 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
530
531 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
532 if (tmp->md_dev == md_dev) {
533 pool = tmp;
534 break;
535 }
536 }
537
538 return pool;
539 }
540
541 /*----------------------------------------------------------------*/
542
543 struct dm_thin_endio_hook {
544 struct thin_c *tc;
545 struct dm_deferred_entry *shared_read_entry;
546 struct dm_deferred_entry *all_io_entry;
547 struct dm_thin_new_mapping *overwrite_mapping;
548 struct rb_node rb_node;
549 struct dm_bio_prison_cell *cell;
550 };
551
552 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
553 {
554 bio_list_merge(bios, master);
555 bio_list_init(master);
556 }
557
558 static void error_bio_list(struct bio_list *bios, int error)
559 {
560 struct bio *bio;
561
562 while ((bio = bio_list_pop(bios))) {
563 bio->bi_error = error;
564 bio_endio(bio);
565 }
566 }
567
568 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
569 {
570 struct bio_list bios;
571 unsigned long flags;
572
573 bio_list_init(&bios);
574
575 spin_lock_irqsave(&tc->lock, flags);
576 __merge_bio_list(&bios, master);
577 spin_unlock_irqrestore(&tc->lock, flags);
578
579 error_bio_list(&bios, error);
580 }
581
582 static void requeue_deferred_cells(struct thin_c *tc)
583 {
584 struct pool *pool = tc->pool;
585 unsigned long flags;
586 struct list_head cells;
587 struct dm_bio_prison_cell *cell, *tmp;
588
589 INIT_LIST_HEAD(&cells);
590
591 spin_lock_irqsave(&tc->lock, flags);
592 list_splice_init(&tc->deferred_cells, &cells);
593 spin_unlock_irqrestore(&tc->lock, flags);
594
595 list_for_each_entry_safe(cell, tmp, &cells, user_list)
596 cell_requeue(pool, cell);
597 }
598
599 static void requeue_io(struct thin_c *tc)
600 {
601 struct bio_list bios;
602 unsigned long flags;
603
604 bio_list_init(&bios);
605
606 spin_lock_irqsave(&tc->lock, flags);
607 __merge_bio_list(&bios, &tc->deferred_bio_list);
608 __merge_bio_list(&bios, &tc->retry_on_resume_list);
609 spin_unlock_irqrestore(&tc->lock, flags);
610
611 error_bio_list(&bios, DM_ENDIO_REQUEUE);
612 requeue_deferred_cells(tc);
613 }
614
615 static void error_retry_list_with_code(struct pool *pool, int error)
616 {
617 struct thin_c *tc;
618
619 rcu_read_lock();
620 list_for_each_entry_rcu(tc, &pool->active_thins, list)
621 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
622 rcu_read_unlock();
623 }
624
625 static void error_retry_list(struct pool *pool)
626 {
627 int error = get_pool_io_error_code(pool);
628
629 error_retry_list_with_code(pool, error);
630 }
631
632 /*
633 * This section of code contains the logic for processing a thin device's IO.
634 * Much of the code depends on pool object resources (lists, workqueues, etc)
635 * but most is exclusively called from the thin target rather than the thin-pool
636 * target.
637 */
638
639 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
640 {
641 struct pool *pool = tc->pool;
642 sector_t block_nr = bio->bi_iter.bi_sector;
643
644 if (block_size_is_power_of_two(pool))
645 block_nr >>= pool->sectors_per_block_shift;
646 else
647 (void) sector_div(block_nr, pool->sectors_per_block);
648
649 return block_nr;
650 }
651
652 /*
653 * Returns the _complete_ blocks that this bio covers.
654 */
655 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
656 dm_block_t *begin, dm_block_t *end)
657 {
658 struct pool *pool = tc->pool;
659 sector_t b = bio->bi_iter.bi_sector;
660 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
661
662 b += pool->sectors_per_block - 1ull; /* so we round up */
663
664 if (block_size_is_power_of_two(pool)) {
665 b >>= pool->sectors_per_block_shift;
666 e >>= pool->sectors_per_block_shift;
667 } else {
668 (void) sector_div(b, pool->sectors_per_block);
669 (void) sector_div(e, pool->sectors_per_block);
670 }
671
672 if (e < b)
673 /* Can happen if the bio is within a single block. */
674 e = b;
675
676 *begin = b;
677 *end = e;
678 }
679
680 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
681 {
682 struct pool *pool = tc->pool;
683 sector_t bi_sector = bio->bi_iter.bi_sector;
684
685 bio->bi_bdev = tc->pool_dev->bdev;
686 if (block_size_is_power_of_two(pool))
687 bio->bi_iter.bi_sector =
688 (block << pool->sectors_per_block_shift) |
689 (bi_sector & (pool->sectors_per_block - 1));
690 else
691 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
692 sector_div(bi_sector, pool->sectors_per_block);
693 }
694
695 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
696 {
697 bio->bi_bdev = tc->origin_dev->bdev;
698 }
699
700 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
701 {
702 return (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) &&
703 dm_thin_changed_this_transaction(tc->td);
704 }
705
706 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
707 {
708 struct dm_thin_endio_hook *h;
709
710 if (bio_op(bio) == REQ_OP_DISCARD)
711 return;
712
713 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
714 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
715 }
716
717 static void issue(struct thin_c *tc, struct bio *bio)
718 {
719 struct pool *pool = tc->pool;
720 unsigned long flags;
721
722 if (!bio_triggers_commit(tc, bio)) {
723 generic_make_request(bio);
724 return;
725 }
726
727 /*
728 * Complete bio with an error if earlier I/O caused changes to
729 * the metadata that can't be committed e.g, due to I/O errors
730 * on the metadata device.
731 */
732 if (dm_thin_aborted_changes(tc->td)) {
733 bio_io_error(bio);
734 return;
735 }
736
737 /*
738 * Batch together any bios that trigger commits and then issue a
739 * single commit for them in process_deferred_bios().
740 */
741 spin_lock_irqsave(&pool->lock, flags);
742 bio_list_add(&pool->deferred_flush_bios, bio);
743 spin_unlock_irqrestore(&pool->lock, flags);
744 }
745
746 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
747 {
748 remap_to_origin(tc, bio);
749 issue(tc, bio);
750 }
751
752 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
753 dm_block_t block)
754 {
755 remap(tc, bio, block);
756 issue(tc, bio);
757 }
758
759 /*----------------------------------------------------------------*/
760
761 /*
762 * Bio endio functions.
763 */
764 struct dm_thin_new_mapping {
765 struct list_head list;
766
767 bool pass_discard:1;
768 bool maybe_shared:1;
769
770 /*
771 * Track quiescing, copying and zeroing preparation actions. When this
772 * counter hits zero the block is prepared and can be inserted into the
773 * btree.
774 */
775 atomic_t prepare_actions;
776
777 int err;
778 struct thin_c *tc;
779 dm_block_t virt_begin, virt_end;
780 dm_block_t data_block;
781 struct dm_bio_prison_cell *cell;
782
783 /*
784 * If the bio covers the whole area of a block then we can avoid
785 * zeroing or copying. Instead this bio is hooked. The bio will
786 * still be in the cell, so care has to be taken to avoid issuing
787 * the bio twice.
788 */
789 struct bio *bio;
790 bio_end_io_t *saved_bi_end_io;
791 };
792
793 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
794 {
795 struct pool *pool = m->tc->pool;
796
797 if (atomic_dec_and_test(&m->prepare_actions)) {
798 list_add_tail(&m->list, &pool->prepared_mappings);
799 wake_worker(pool);
800 }
801 }
802
803 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
804 {
805 unsigned long flags;
806 struct pool *pool = m->tc->pool;
807
808 spin_lock_irqsave(&pool->lock, flags);
809 __complete_mapping_preparation(m);
810 spin_unlock_irqrestore(&pool->lock, flags);
811 }
812
813 static void copy_complete(int read_err, unsigned long write_err, void *context)
814 {
815 struct dm_thin_new_mapping *m = context;
816
817 m->err = read_err || write_err ? -EIO : 0;
818 complete_mapping_preparation(m);
819 }
820
821 static void overwrite_endio(struct bio *bio)
822 {
823 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
824 struct dm_thin_new_mapping *m = h->overwrite_mapping;
825
826 bio->bi_end_io = m->saved_bi_end_io;
827
828 m->err = bio->bi_error;
829 complete_mapping_preparation(m);
830 }
831
832 /*----------------------------------------------------------------*/
833
834 /*
835 * Workqueue.
836 */
837
838 /*
839 * Prepared mapping jobs.
840 */
841
842 /*
843 * This sends the bios in the cell, except the original holder, back
844 * to the deferred_bios list.
845 */
846 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
847 {
848 struct pool *pool = tc->pool;
849 unsigned long flags;
850
851 spin_lock_irqsave(&tc->lock, flags);
852 cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
853 spin_unlock_irqrestore(&tc->lock, flags);
854
855 wake_worker(pool);
856 }
857
858 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
859
860 struct remap_info {
861 struct thin_c *tc;
862 struct bio_list defer_bios;
863 struct bio_list issue_bios;
864 };
865
866 static void __inc_remap_and_issue_cell(void *context,
867 struct dm_bio_prison_cell *cell)
868 {
869 struct remap_info *info = context;
870 struct bio *bio;
871
872 while ((bio = bio_list_pop(&cell->bios))) {
873 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA) ||
874 bio_op(bio) == REQ_OP_DISCARD)
875 bio_list_add(&info->defer_bios, bio);
876 else {
877 inc_all_io_entry(info->tc->pool, bio);
878
879 /*
880 * We can't issue the bios with the bio prison lock
881 * held, so we add them to a list to issue on
882 * return from this function.
883 */
884 bio_list_add(&info->issue_bios, bio);
885 }
886 }
887 }
888
889 static void inc_remap_and_issue_cell(struct thin_c *tc,
890 struct dm_bio_prison_cell *cell,
891 dm_block_t block)
892 {
893 struct bio *bio;
894 struct remap_info info;
895
896 info.tc = tc;
897 bio_list_init(&info.defer_bios);
898 bio_list_init(&info.issue_bios);
899
900 /*
901 * We have to be careful to inc any bios we're about to issue
902 * before the cell is released, and avoid a race with new bios
903 * being added to the cell.
904 */
905 cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
906 &info, cell);
907
908 while ((bio = bio_list_pop(&info.defer_bios)))
909 thin_defer_bio(tc, bio);
910
911 while ((bio = bio_list_pop(&info.issue_bios)))
912 remap_and_issue(info.tc, bio, block);
913 }
914
915 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
916 {
917 cell_error(m->tc->pool, m->cell);
918 list_del(&m->list);
919 mempool_free(m, m->tc->pool->mapping_pool);
920 }
921
922 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
923 {
924 struct thin_c *tc = m->tc;
925 struct pool *pool = tc->pool;
926 struct bio *bio = m->bio;
927 int r;
928
929 if (m->err) {
930 cell_error(pool, m->cell);
931 goto out;
932 }
933
934 /*
935 * Commit the prepared block into the mapping btree.
936 * Any I/O for this block arriving after this point will get
937 * remapped to it directly.
938 */
939 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
940 if (r) {
941 metadata_operation_failed(pool, "dm_thin_insert_block", r);
942 cell_error(pool, m->cell);
943 goto out;
944 }
945
946 /*
947 * Release any bios held while the block was being provisioned.
948 * If we are processing a write bio that completely covers the block,
949 * we already processed it so can ignore it now when processing
950 * the bios in the cell.
951 */
952 if (bio) {
953 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
954 bio_endio(bio);
955 } else {
956 inc_all_io_entry(tc->pool, m->cell->holder);
957 remap_and_issue(tc, m->cell->holder, m->data_block);
958 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
959 }
960
961 out:
962 list_del(&m->list);
963 mempool_free(m, pool->mapping_pool);
964 }
965
966 /*----------------------------------------------------------------*/
967
968 static void free_discard_mapping(struct dm_thin_new_mapping *m)
969 {
970 struct thin_c *tc = m->tc;
971 if (m->cell)
972 cell_defer_no_holder(tc, m->cell);
973 mempool_free(m, tc->pool->mapping_pool);
974 }
975
976 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
977 {
978 bio_io_error(m->bio);
979 free_discard_mapping(m);
980 }
981
982 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
983 {
984 bio_endio(m->bio);
985 free_discard_mapping(m);
986 }
987
988 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
989 {
990 int r;
991 struct thin_c *tc = m->tc;
992
993 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
994 if (r) {
995 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
996 bio_io_error(m->bio);
997 } else
998 bio_endio(m->bio);
999
1000 cell_defer_no_holder(tc, m->cell);
1001 mempool_free(m, tc->pool->mapping_pool);
1002 }
1003
1004 /*----------------------------------------------------------------*/
1005
1006 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1007 struct bio *discard_parent)
1008 {
1009 /*
1010 * We've already unmapped this range of blocks, but before we
1011 * passdown we have to check that these blocks are now unused.
1012 */
1013 int r = 0;
1014 bool used = true;
1015 struct thin_c *tc = m->tc;
1016 struct pool *pool = tc->pool;
1017 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1018 struct discard_op op;
1019
1020 begin_discard(&op, tc, discard_parent);
1021 while (b != end) {
1022 /* find start of unmapped run */
1023 for (; b < end; b++) {
1024 r = dm_pool_block_is_used(pool->pmd, b, &used);
1025 if (r)
1026 goto out;
1027
1028 if (!used)
1029 break;
1030 }
1031
1032 if (b == end)
1033 break;
1034
1035 /* find end of run */
1036 for (e = b + 1; e != end; e++) {
1037 r = dm_pool_block_is_used(pool->pmd, e, &used);
1038 if (r)
1039 goto out;
1040
1041 if (used)
1042 break;
1043 }
1044
1045 r = issue_discard(&op, b, e);
1046 if (r)
1047 goto out;
1048
1049 b = e;
1050 }
1051 out:
1052 end_discard(&op, r);
1053 }
1054
1055 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1056 {
1057 unsigned long flags;
1058 struct pool *pool = m->tc->pool;
1059
1060 spin_lock_irqsave(&pool->lock, flags);
1061 list_add_tail(&m->list, &pool->prepared_discards_pt2);
1062 spin_unlock_irqrestore(&pool->lock, flags);
1063 wake_worker(pool);
1064 }
1065
1066 static void passdown_endio(struct bio *bio)
1067 {
1068 /*
1069 * It doesn't matter if the passdown discard failed, we still want
1070 * to unmap (we ignore err).
1071 */
1072 queue_passdown_pt2(bio->bi_private);
1073 bio_put(bio);
1074 }
1075
1076 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1077 {
1078 int r;
1079 struct thin_c *tc = m->tc;
1080 struct pool *pool = tc->pool;
1081 struct bio *discard_parent;
1082 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1083
1084 /*
1085 * Only this thread allocates blocks, so we can be sure that the
1086 * newly unmapped blocks will not be allocated before the end of
1087 * the function.
1088 */
1089 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1090 if (r) {
1091 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1092 bio_io_error(m->bio);
1093 cell_defer_no_holder(tc, m->cell);
1094 mempool_free(m, pool->mapping_pool);
1095 return;
1096 }
1097
1098 discard_parent = bio_alloc(GFP_NOIO, 1);
1099 if (!discard_parent) {
1100 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1101 dm_device_name(tc->pool->pool_md));
1102 queue_passdown_pt2(m);
1103
1104 } else {
1105 discard_parent->bi_end_io = passdown_endio;
1106 discard_parent->bi_private = m;
1107
1108 if (m->maybe_shared)
1109 passdown_double_checking_shared_status(m, discard_parent);
1110 else {
1111 struct discard_op op;
1112
1113 begin_discard(&op, tc, discard_parent);
1114 r = issue_discard(&op, m->data_block, data_end);
1115 end_discard(&op, r);
1116 }
1117 }
1118
1119 /*
1120 * Increment the unmapped blocks. This prevents a race between the
1121 * passdown io and reallocation of freed blocks.
1122 */
1123 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1124 if (r) {
1125 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1126 bio_io_error(m->bio);
1127 cell_defer_no_holder(tc, m->cell);
1128 mempool_free(m, pool->mapping_pool);
1129 return;
1130 }
1131 }
1132
1133 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1134 {
1135 int r;
1136 struct thin_c *tc = m->tc;
1137 struct pool *pool = tc->pool;
1138
1139 /*
1140 * The passdown has completed, so now we can decrement all those
1141 * unmapped blocks.
1142 */
1143 r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1144 m->data_block + (m->virt_end - m->virt_begin));
1145 if (r) {
1146 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1147 bio_io_error(m->bio);
1148 } else
1149 bio_endio(m->bio);
1150
1151 cell_defer_no_holder(tc, m->cell);
1152 mempool_free(m, pool->mapping_pool);
1153 }
1154
1155 static void process_prepared(struct pool *pool, struct list_head *head,
1156 process_mapping_fn *fn)
1157 {
1158 unsigned long flags;
1159 struct list_head maps;
1160 struct dm_thin_new_mapping *m, *tmp;
1161
1162 INIT_LIST_HEAD(&maps);
1163 spin_lock_irqsave(&pool->lock, flags);
1164 list_splice_init(head, &maps);
1165 spin_unlock_irqrestore(&pool->lock, flags);
1166
1167 list_for_each_entry_safe(m, tmp, &maps, list)
1168 (*fn)(m);
1169 }
1170
1171 /*
1172 * Deferred bio jobs.
1173 */
1174 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1175 {
1176 return bio->bi_iter.bi_size ==
1177 (pool->sectors_per_block << SECTOR_SHIFT);
1178 }
1179
1180 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1181 {
1182 return (bio_data_dir(bio) == WRITE) &&
1183 io_overlaps_block(pool, bio);
1184 }
1185
1186 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1187 bio_end_io_t *fn)
1188 {
1189 *save = bio->bi_end_io;
1190 bio->bi_end_io = fn;
1191 }
1192
1193 static int ensure_next_mapping(struct pool *pool)
1194 {
1195 if (pool->next_mapping)
1196 return 0;
1197
1198 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1199
1200 return pool->next_mapping ? 0 : -ENOMEM;
1201 }
1202
1203 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1204 {
1205 struct dm_thin_new_mapping *m = pool->next_mapping;
1206
1207 BUG_ON(!pool->next_mapping);
1208
1209 memset(m, 0, sizeof(struct dm_thin_new_mapping));
1210 INIT_LIST_HEAD(&m->list);
1211 m->bio = NULL;
1212
1213 pool->next_mapping = NULL;
1214
1215 return m;
1216 }
1217
1218 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1219 sector_t begin, sector_t end)
1220 {
1221 int r;
1222 struct dm_io_region to;
1223
1224 to.bdev = tc->pool_dev->bdev;
1225 to.sector = begin;
1226 to.count = end - begin;
1227
1228 r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1229 if (r < 0) {
1230 DMERR_LIMIT("dm_kcopyd_zero() failed");
1231 copy_complete(1, 1, m);
1232 }
1233 }
1234
1235 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1236 dm_block_t data_begin,
1237 struct dm_thin_new_mapping *m)
1238 {
1239 struct pool *pool = tc->pool;
1240 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1241
1242 h->overwrite_mapping = m;
1243 m->bio = bio;
1244 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1245 inc_all_io_entry(pool, bio);
1246 remap_and_issue(tc, bio, data_begin);
1247 }
1248
1249 /*
1250 * A partial copy also needs to zero the uncopied region.
1251 */
1252 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1253 struct dm_dev *origin, dm_block_t data_origin,
1254 dm_block_t data_dest,
1255 struct dm_bio_prison_cell *cell, struct bio *bio,
1256 sector_t len)
1257 {
1258 int r;
1259 struct pool *pool = tc->pool;
1260 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1261
1262 m->tc = tc;
1263 m->virt_begin = virt_block;
1264 m->virt_end = virt_block + 1u;
1265 m->data_block = data_dest;
1266 m->cell = cell;
1267
1268 /*
1269 * quiesce action + copy action + an extra reference held for the
1270 * duration of this function (we may need to inc later for a
1271 * partial zero).
1272 */
1273 atomic_set(&m->prepare_actions, 3);
1274
1275 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1276 complete_mapping_preparation(m); /* already quiesced */
1277
1278 /*
1279 * IO to pool_dev remaps to the pool target's data_dev.
1280 *
1281 * If the whole block of data is being overwritten, we can issue the
1282 * bio immediately. Otherwise we use kcopyd to clone the data first.
1283 */
1284 if (io_overwrites_block(pool, bio))
1285 remap_and_issue_overwrite(tc, bio, data_dest, m);
1286 else {
1287 struct dm_io_region from, to;
1288
1289 from.bdev = origin->bdev;
1290 from.sector = data_origin * pool->sectors_per_block;
1291 from.count = len;
1292
1293 to.bdev = tc->pool_dev->bdev;
1294 to.sector = data_dest * pool->sectors_per_block;
1295 to.count = len;
1296
1297 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1298 0, copy_complete, m);
1299 if (r < 0) {
1300 DMERR_LIMIT("dm_kcopyd_copy() failed");
1301 copy_complete(1, 1, m);
1302
1303 /*
1304 * We allow the zero to be issued, to simplify the
1305 * error path. Otherwise we'd need to start
1306 * worrying about decrementing the prepare_actions
1307 * counter.
1308 */
1309 }
1310
1311 /*
1312 * Do we need to zero a tail region?
1313 */
1314 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1315 atomic_inc(&m->prepare_actions);
1316 ll_zero(tc, m,
1317 data_dest * pool->sectors_per_block + len,
1318 (data_dest + 1) * pool->sectors_per_block);
1319 }
1320 }
1321
1322 complete_mapping_preparation(m); /* drop our ref */
1323 }
1324
1325 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1326 dm_block_t data_origin, dm_block_t data_dest,
1327 struct dm_bio_prison_cell *cell, struct bio *bio)
1328 {
1329 schedule_copy(tc, virt_block, tc->pool_dev,
1330 data_origin, data_dest, cell, bio,
1331 tc->pool->sectors_per_block);
1332 }
1333
1334 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1335 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1336 struct bio *bio)
1337 {
1338 struct pool *pool = tc->pool;
1339 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1340
1341 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1342 m->tc = tc;
1343 m->virt_begin = virt_block;
1344 m->virt_end = virt_block + 1u;
1345 m->data_block = data_block;
1346 m->cell = cell;
1347
1348 /*
1349 * If the whole block of data is being overwritten or we are not
1350 * zeroing pre-existing data, we can issue the bio immediately.
1351 * Otherwise we use kcopyd to zero the data first.
1352 */
1353 if (pool->pf.zero_new_blocks) {
1354 if (io_overwrites_block(pool, bio))
1355 remap_and_issue_overwrite(tc, bio, data_block, m);
1356 else
1357 ll_zero(tc, m, data_block * pool->sectors_per_block,
1358 (data_block + 1) * pool->sectors_per_block);
1359 } else
1360 process_prepared_mapping(m);
1361 }
1362
1363 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1364 dm_block_t data_dest,
1365 struct dm_bio_prison_cell *cell, struct bio *bio)
1366 {
1367 struct pool *pool = tc->pool;
1368 sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1369 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1370
1371 if (virt_block_end <= tc->origin_size)
1372 schedule_copy(tc, virt_block, tc->origin_dev,
1373 virt_block, data_dest, cell, bio,
1374 pool->sectors_per_block);
1375
1376 else if (virt_block_begin < tc->origin_size)
1377 schedule_copy(tc, virt_block, tc->origin_dev,
1378 virt_block, data_dest, cell, bio,
1379 tc->origin_size - virt_block_begin);
1380
1381 else
1382 schedule_zero(tc, virt_block, data_dest, cell, bio);
1383 }
1384
1385 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1386
1387 static void check_for_space(struct pool *pool)
1388 {
1389 int r;
1390 dm_block_t nr_free;
1391
1392 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1393 return;
1394
1395 r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1396 if (r)
1397 return;
1398
1399 if (nr_free)
1400 set_pool_mode(pool, PM_WRITE);
1401 }
1402
1403 /*
1404 * A non-zero return indicates read_only or fail_io mode.
1405 * Many callers don't care about the return value.
1406 */
1407 static int commit(struct pool *pool)
1408 {
1409 int r;
1410
1411 if (get_pool_mode(pool) >= PM_READ_ONLY)
1412 return -EINVAL;
1413
1414 r = dm_pool_commit_metadata(pool->pmd);
1415 if (r)
1416 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1417 else
1418 check_for_space(pool);
1419
1420 return r;
1421 }
1422
1423 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1424 {
1425 unsigned long flags;
1426
1427 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1428 DMWARN("%s: reached low water mark for data device: sending event.",
1429 dm_device_name(pool->pool_md));
1430 spin_lock_irqsave(&pool->lock, flags);
1431 pool->low_water_triggered = true;
1432 spin_unlock_irqrestore(&pool->lock, flags);
1433 dm_table_event(pool->ti->table);
1434 }
1435 }
1436
1437 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1438 {
1439 int r;
1440 dm_block_t free_blocks;
1441 struct pool *pool = tc->pool;
1442
1443 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1444 return -EINVAL;
1445
1446 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1447 if (r) {
1448 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1449 return r;
1450 }
1451
1452 check_low_water_mark(pool, free_blocks);
1453
1454 if (!free_blocks) {
1455 /*
1456 * Try to commit to see if that will free up some
1457 * more space.
1458 */
1459 r = commit(pool);
1460 if (r)
1461 return r;
1462
1463 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1464 if (r) {
1465 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1466 return r;
1467 }
1468
1469 if (!free_blocks) {
1470 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1471 return -ENOSPC;
1472 }
1473 }
1474
1475 r = dm_pool_alloc_data_block(pool->pmd, result);
1476 if (r) {
1477 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1478 return r;
1479 }
1480
1481 return 0;
1482 }
1483
1484 /*
1485 * If we have run out of space, queue bios until the device is
1486 * resumed, presumably after having been reloaded with more space.
1487 */
1488 static void retry_on_resume(struct bio *bio)
1489 {
1490 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1491 struct thin_c *tc = h->tc;
1492 unsigned long flags;
1493
1494 spin_lock_irqsave(&tc->lock, flags);
1495 bio_list_add(&tc->retry_on_resume_list, bio);
1496 spin_unlock_irqrestore(&tc->lock, flags);
1497 }
1498
1499 static int should_error_unserviceable_bio(struct pool *pool)
1500 {
1501 enum pool_mode m = get_pool_mode(pool);
1502
1503 switch (m) {
1504 case PM_WRITE:
1505 /* Shouldn't get here */
1506 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1507 return -EIO;
1508
1509 case PM_OUT_OF_DATA_SPACE:
1510 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1511
1512 case PM_READ_ONLY:
1513 case PM_FAIL:
1514 return -EIO;
1515 default:
1516 /* Shouldn't get here */
1517 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1518 return -EIO;
1519 }
1520 }
1521
1522 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1523 {
1524 int error = should_error_unserviceable_bio(pool);
1525
1526 if (error) {
1527 bio->bi_error = error;
1528 bio_endio(bio);
1529 } else
1530 retry_on_resume(bio);
1531 }
1532
1533 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1534 {
1535 struct bio *bio;
1536 struct bio_list bios;
1537 int error;
1538
1539 error = should_error_unserviceable_bio(pool);
1540 if (error) {
1541 cell_error_with_code(pool, cell, error);
1542 return;
1543 }
1544
1545 bio_list_init(&bios);
1546 cell_release(pool, cell, &bios);
1547
1548 while ((bio = bio_list_pop(&bios)))
1549 retry_on_resume(bio);
1550 }
1551
1552 static void process_discard_cell_no_passdown(struct thin_c *tc,
1553 struct dm_bio_prison_cell *virt_cell)
1554 {
1555 struct pool *pool = tc->pool;
1556 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1557
1558 /*
1559 * We don't need to lock the data blocks, since there's no
1560 * passdown. We only lock data blocks for allocation and breaking sharing.
1561 */
1562 m->tc = tc;
1563 m->virt_begin = virt_cell->key.block_begin;
1564 m->virt_end = virt_cell->key.block_end;
1565 m->cell = virt_cell;
1566 m->bio = virt_cell->holder;
1567
1568 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1569 pool->process_prepared_discard(m);
1570 }
1571
1572 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1573 struct bio *bio)
1574 {
1575 struct pool *pool = tc->pool;
1576
1577 int r;
1578 bool maybe_shared;
1579 struct dm_cell_key data_key;
1580 struct dm_bio_prison_cell *data_cell;
1581 struct dm_thin_new_mapping *m;
1582 dm_block_t virt_begin, virt_end, data_begin;
1583
1584 while (begin != end) {
1585 r = ensure_next_mapping(pool);
1586 if (r)
1587 /* we did our best */
1588 return;
1589
1590 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1591 &data_begin, &maybe_shared);
1592 if (r)
1593 /*
1594 * Silently fail, letting any mappings we've
1595 * created complete.
1596 */
1597 break;
1598
1599 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1600 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1601 /* contention, we'll give up with this range */
1602 begin = virt_end;
1603 continue;
1604 }
1605
1606 /*
1607 * IO may still be going to the destination block. We must
1608 * quiesce before we can do the removal.
1609 */
1610 m = get_next_mapping(pool);
1611 m->tc = tc;
1612 m->maybe_shared = maybe_shared;
1613 m->virt_begin = virt_begin;
1614 m->virt_end = virt_end;
1615 m->data_block = data_begin;
1616 m->cell = data_cell;
1617 m->bio = bio;
1618
1619 /*
1620 * The parent bio must not complete before sub discard bios are
1621 * chained to it (see end_discard's bio_chain)!
1622 *
1623 * This per-mapping bi_remaining increment is paired with
1624 * the implicit decrement that occurs via bio_endio() in
1625 * end_discard().
1626 */
1627 bio_inc_remaining(bio);
1628 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1629 pool->process_prepared_discard(m);
1630
1631 begin = virt_end;
1632 }
1633 }
1634
1635 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1636 {
1637 struct bio *bio = virt_cell->holder;
1638 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1639
1640 /*
1641 * The virt_cell will only get freed once the origin bio completes.
1642 * This means it will remain locked while all the individual
1643 * passdown bios are in flight.
1644 */
1645 h->cell = virt_cell;
1646 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1647
1648 /*
1649 * We complete the bio now, knowing that the bi_remaining field
1650 * will prevent completion until the sub range discards have
1651 * completed.
1652 */
1653 bio_endio(bio);
1654 }
1655
1656 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1657 {
1658 dm_block_t begin, end;
1659 struct dm_cell_key virt_key;
1660 struct dm_bio_prison_cell *virt_cell;
1661
1662 get_bio_block_range(tc, bio, &begin, &end);
1663 if (begin == end) {
1664 /*
1665 * The discard covers less than a block.
1666 */
1667 bio_endio(bio);
1668 return;
1669 }
1670
1671 build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1672 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1673 /*
1674 * Potential starvation issue: We're relying on the
1675 * fs/application being well behaved, and not trying to
1676 * send IO to a region at the same time as discarding it.
1677 * If they do this persistently then it's possible this
1678 * cell will never be granted.
1679 */
1680 return;
1681
1682 tc->pool->process_discard_cell(tc, virt_cell);
1683 }
1684
1685 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1686 struct dm_cell_key *key,
1687 struct dm_thin_lookup_result *lookup_result,
1688 struct dm_bio_prison_cell *cell)
1689 {
1690 int r;
1691 dm_block_t data_block;
1692 struct pool *pool = tc->pool;
1693
1694 r = alloc_data_block(tc, &data_block);
1695 switch (r) {
1696 case 0:
1697 schedule_internal_copy(tc, block, lookup_result->block,
1698 data_block, cell, bio);
1699 break;
1700
1701 case -ENOSPC:
1702 retry_bios_on_resume(pool, cell);
1703 break;
1704
1705 default:
1706 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1707 __func__, r);
1708 cell_error(pool, cell);
1709 break;
1710 }
1711 }
1712
1713 static void __remap_and_issue_shared_cell(void *context,
1714 struct dm_bio_prison_cell *cell)
1715 {
1716 struct remap_info *info = context;
1717 struct bio *bio;
1718
1719 while ((bio = bio_list_pop(&cell->bios))) {
1720 if ((bio_data_dir(bio) == WRITE) ||
1721 (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA) ||
1722 bio_op(bio) == REQ_OP_DISCARD))
1723 bio_list_add(&info->defer_bios, bio);
1724 else {
1725 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1726
1727 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1728 inc_all_io_entry(info->tc->pool, bio);
1729 bio_list_add(&info->issue_bios, bio);
1730 }
1731 }
1732 }
1733
1734 static void remap_and_issue_shared_cell(struct thin_c *tc,
1735 struct dm_bio_prison_cell *cell,
1736 dm_block_t block)
1737 {
1738 struct bio *bio;
1739 struct remap_info info;
1740
1741 info.tc = tc;
1742 bio_list_init(&info.defer_bios);
1743 bio_list_init(&info.issue_bios);
1744
1745 cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1746 &info, cell);
1747
1748 while ((bio = bio_list_pop(&info.defer_bios)))
1749 thin_defer_bio(tc, bio);
1750
1751 while ((bio = bio_list_pop(&info.issue_bios)))
1752 remap_and_issue(tc, bio, block);
1753 }
1754
1755 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1756 dm_block_t block,
1757 struct dm_thin_lookup_result *lookup_result,
1758 struct dm_bio_prison_cell *virt_cell)
1759 {
1760 struct dm_bio_prison_cell *data_cell;
1761 struct pool *pool = tc->pool;
1762 struct dm_cell_key key;
1763
1764 /*
1765 * If cell is already occupied, then sharing is already in the process
1766 * of being broken so we have nothing further to do here.
1767 */
1768 build_data_key(tc->td, lookup_result->block, &key);
1769 if (bio_detain(pool, &key, bio, &data_cell)) {
1770 cell_defer_no_holder(tc, virt_cell);
1771 return;
1772 }
1773
1774 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1775 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1776 cell_defer_no_holder(tc, virt_cell);
1777 } else {
1778 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1779
1780 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1781 inc_all_io_entry(pool, bio);
1782 remap_and_issue(tc, bio, lookup_result->block);
1783
1784 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1785 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1786 }
1787 }
1788
1789 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1790 struct dm_bio_prison_cell *cell)
1791 {
1792 int r;
1793 dm_block_t data_block;
1794 struct pool *pool = tc->pool;
1795
1796 /*
1797 * Remap empty bios (flushes) immediately, without provisioning.
1798 */
1799 if (!bio->bi_iter.bi_size) {
1800 inc_all_io_entry(pool, bio);
1801 cell_defer_no_holder(tc, cell);
1802
1803 remap_and_issue(tc, bio, 0);
1804 return;
1805 }
1806
1807 /*
1808 * Fill read bios with zeroes and complete them immediately.
1809 */
1810 if (bio_data_dir(bio) == READ) {
1811 zero_fill_bio(bio);
1812 cell_defer_no_holder(tc, cell);
1813 bio_endio(bio);
1814 return;
1815 }
1816
1817 r = alloc_data_block(tc, &data_block);
1818 switch (r) {
1819 case 0:
1820 if (tc->origin_dev)
1821 schedule_external_copy(tc, block, data_block, cell, bio);
1822 else
1823 schedule_zero(tc, block, data_block, cell, bio);
1824 break;
1825
1826 case -ENOSPC:
1827 retry_bios_on_resume(pool, cell);
1828 break;
1829
1830 default:
1831 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1832 __func__, r);
1833 cell_error(pool, cell);
1834 break;
1835 }
1836 }
1837
1838 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1839 {
1840 int r;
1841 struct pool *pool = tc->pool;
1842 struct bio *bio = cell->holder;
1843 dm_block_t block = get_bio_block(tc, bio);
1844 struct dm_thin_lookup_result lookup_result;
1845
1846 if (tc->requeue_mode) {
1847 cell_requeue(pool, cell);
1848 return;
1849 }
1850
1851 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1852 switch (r) {
1853 case 0:
1854 if (lookup_result.shared)
1855 process_shared_bio(tc, bio, block, &lookup_result, cell);
1856 else {
1857 inc_all_io_entry(pool, bio);
1858 remap_and_issue(tc, bio, lookup_result.block);
1859 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1860 }
1861 break;
1862
1863 case -ENODATA:
1864 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1865 inc_all_io_entry(pool, bio);
1866 cell_defer_no_holder(tc, cell);
1867
1868 if (bio_end_sector(bio) <= tc->origin_size)
1869 remap_to_origin_and_issue(tc, bio);
1870
1871 else if (bio->bi_iter.bi_sector < tc->origin_size) {
1872 zero_fill_bio(bio);
1873 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1874 remap_to_origin_and_issue(tc, bio);
1875
1876 } else {
1877 zero_fill_bio(bio);
1878 bio_endio(bio);
1879 }
1880 } else
1881 provision_block(tc, bio, block, cell);
1882 break;
1883
1884 default:
1885 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1886 __func__, r);
1887 cell_defer_no_holder(tc, cell);
1888 bio_io_error(bio);
1889 break;
1890 }
1891 }
1892
1893 static void process_bio(struct thin_c *tc, struct bio *bio)
1894 {
1895 struct pool *pool = tc->pool;
1896 dm_block_t block = get_bio_block(tc, bio);
1897 struct dm_bio_prison_cell *cell;
1898 struct dm_cell_key key;
1899
1900 /*
1901 * If cell is already occupied, then the block is already
1902 * being provisioned so we have nothing further to do here.
1903 */
1904 build_virtual_key(tc->td, block, &key);
1905 if (bio_detain(pool, &key, bio, &cell))
1906 return;
1907
1908 process_cell(tc, cell);
1909 }
1910
1911 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1912 struct dm_bio_prison_cell *cell)
1913 {
1914 int r;
1915 int rw = bio_data_dir(bio);
1916 dm_block_t block = get_bio_block(tc, bio);
1917 struct dm_thin_lookup_result lookup_result;
1918
1919 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1920 switch (r) {
1921 case 0:
1922 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1923 handle_unserviceable_bio(tc->pool, bio);
1924 if (cell)
1925 cell_defer_no_holder(tc, cell);
1926 } else {
1927 inc_all_io_entry(tc->pool, bio);
1928 remap_and_issue(tc, bio, lookup_result.block);
1929 if (cell)
1930 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1931 }
1932 break;
1933
1934 case -ENODATA:
1935 if (cell)
1936 cell_defer_no_holder(tc, cell);
1937 if (rw != READ) {
1938 handle_unserviceable_bio(tc->pool, bio);
1939 break;
1940 }
1941
1942 if (tc->origin_dev) {
1943 inc_all_io_entry(tc->pool, bio);
1944 remap_to_origin_and_issue(tc, bio);
1945 break;
1946 }
1947
1948 zero_fill_bio(bio);
1949 bio_endio(bio);
1950 break;
1951
1952 default:
1953 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1954 __func__, r);
1955 if (cell)
1956 cell_defer_no_holder(tc, cell);
1957 bio_io_error(bio);
1958 break;
1959 }
1960 }
1961
1962 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1963 {
1964 __process_bio_read_only(tc, bio, NULL);
1965 }
1966
1967 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1968 {
1969 __process_bio_read_only(tc, cell->holder, cell);
1970 }
1971
1972 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1973 {
1974 bio_endio(bio);
1975 }
1976
1977 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1978 {
1979 bio_io_error(bio);
1980 }
1981
1982 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1983 {
1984 cell_success(tc->pool, cell);
1985 }
1986
1987 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1988 {
1989 cell_error(tc->pool, cell);
1990 }
1991
1992 /*
1993 * FIXME: should we also commit due to size of transaction, measured in
1994 * metadata blocks?
1995 */
1996 static int need_commit_due_to_time(struct pool *pool)
1997 {
1998 return !time_in_range(jiffies, pool->last_commit_jiffies,
1999 pool->last_commit_jiffies + COMMIT_PERIOD);
2000 }
2001
2002 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2003 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2004
2005 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2006 {
2007 struct rb_node **rbp, *parent;
2008 struct dm_thin_endio_hook *pbd;
2009 sector_t bi_sector = bio->bi_iter.bi_sector;
2010
2011 rbp = &tc->sort_bio_list.rb_node;
2012 parent = NULL;
2013 while (*rbp) {
2014 parent = *rbp;
2015 pbd = thin_pbd(parent);
2016
2017 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2018 rbp = &(*rbp)->rb_left;
2019 else
2020 rbp = &(*rbp)->rb_right;
2021 }
2022
2023 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2024 rb_link_node(&pbd->rb_node, parent, rbp);
2025 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2026 }
2027
2028 static void __extract_sorted_bios(struct thin_c *tc)
2029 {
2030 struct rb_node *node;
2031 struct dm_thin_endio_hook *pbd;
2032 struct bio *bio;
2033
2034 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2035 pbd = thin_pbd(node);
2036 bio = thin_bio(pbd);
2037
2038 bio_list_add(&tc->deferred_bio_list, bio);
2039 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2040 }
2041
2042 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2043 }
2044
2045 static void __sort_thin_deferred_bios(struct thin_c *tc)
2046 {
2047 struct bio *bio;
2048 struct bio_list bios;
2049
2050 bio_list_init(&bios);
2051 bio_list_merge(&bios, &tc->deferred_bio_list);
2052 bio_list_init(&tc->deferred_bio_list);
2053
2054 /* Sort deferred_bio_list using rb-tree */
2055 while ((bio = bio_list_pop(&bios)))
2056 __thin_bio_rb_add(tc, bio);
2057
2058 /*
2059 * Transfer the sorted bios in sort_bio_list back to
2060 * deferred_bio_list to allow lockless submission of
2061 * all bios.
2062 */
2063 __extract_sorted_bios(tc);
2064 }
2065
2066 static void process_thin_deferred_bios(struct thin_c *tc)
2067 {
2068 struct pool *pool = tc->pool;
2069 unsigned long flags;
2070 struct bio *bio;
2071 struct bio_list bios;
2072 struct blk_plug plug;
2073 unsigned count = 0;
2074
2075 if (tc->requeue_mode) {
2076 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
2077 return;
2078 }
2079
2080 bio_list_init(&bios);
2081
2082 spin_lock_irqsave(&tc->lock, flags);
2083
2084 if (bio_list_empty(&tc->deferred_bio_list)) {
2085 spin_unlock_irqrestore(&tc->lock, flags);
2086 return;
2087 }
2088
2089 __sort_thin_deferred_bios(tc);
2090
2091 bio_list_merge(&bios, &tc->deferred_bio_list);
2092 bio_list_init(&tc->deferred_bio_list);
2093
2094 spin_unlock_irqrestore(&tc->lock, flags);
2095
2096 blk_start_plug(&plug);
2097 while ((bio = bio_list_pop(&bios))) {
2098 /*
2099 * If we've got no free new_mapping structs, and processing
2100 * this bio might require one, we pause until there are some
2101 * prepared mappings to process.
2102 */
2103 if (ensure_next_mapping(pool)) {
2104 spin_lock_irqsave(&tc->lock, flags);
2105 bio_list_add(&tc->deferred_bio_list, bio);
2106 bio_list_merge(&tc->deferred_bio_list, &bios);
2107 spin_unlock_irqrestore(&tc->lock, flags);
2108 break;
2109 }
2110
2111 if (bio_op(bio) == REQ_OP_DISCARD)
2112 pool->process_discard(tc, bio);
2113 else
2114 pool->process_bio(tc, bio);
2115
2116 if ((count++ & 127) == 0) {
2117 throttle_work_update(&pool->throttle);
2118 dm_pool_issue_prefetches(pool->pmd);
2119 }
2120 }
2121 blk_finish_plug(&plug);
2122 }
2123
2124 static int cmp_cells(const void *lhs, const void *rhs)
2125 {
2126 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2127 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2128
2129 BUG_ON(!lhs_cell->holder);
2130 BUG_ON(!rhs_cell->holder);
2131
2132 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2133 return -1;
2134
2135 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2136 return 1;
2137
2138 return 0;
2139 }
2140
2141 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2142 {
2143 unsigned count = 0;
2144 struct dm_bio_prison_cell *cell, *tmp;
2145
2146 list_for_each_entry_safe(cell, tmp, cells, user_list) {
2147 if (count >= CELL_SORT_ARRAY_SIZE)
2148 break;
2149
2150 pool->cell_sort_array[count++] = cell;
2151 list_del(&cell->user_list);
2152 }
2153
2154 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2155
2156 return count;
2157 }
2158
2159 static void process_thin_deferred_cells(struct thin_c *tc)
2160 {
2161 struct pool *pool = tc->pool;
2162 unsigned long flags;
2163 struct list_head cells;
2164 struct dm_bio_prison_cell *cell;
2165 unsigned i, j, count;
2166
2167 INIT_LIST_HEAD(&cells);
2168
2169 spin_lock_irqsave(&tc->lock, flags);
2170 list_splice_init(&tc->deferred_cells, &cells);
2171 spin_unlock_irqrestore(&tc->lock, flags);
2172
2173 if (list_empty(&cells))
2174 return;
2175
2176 do {
2177 count = sort_cells(tc->pool, &cells);
2178
2179 for (i = 0; i < count; i++) {
2180 cell = pool->cell_sort_array[i];
2181 BUG_ON(!cell->holder);
2182
2183 /*
2184 * If we've got no free new_mapping structs, and processing
2185 * this bio might require one, we pause until there are some
2186 * prepared mappings to process.
2187 */
2188 if (ensure_next_mapping(pool)) {
2189 for (j = i; j < count; j++)
2190 list_add(&pool->cell_sort_array[j]->user_list, &cells);
2191
2192 spin_lock_irqsave(&tc->lock, flags);
2193 list_splice(&cells, &tc->deferred_cells);
2194 spin_unlock_irqrestore(&tc->lock, flags);
2195 return;
2196 }
2197
2198 if (bio_op(cell->holder) == REQ_OP_DISCARD)
2199 pool->process_discard_cell(tc, cell);
2200 else
2201 pool->process_cell(tc, cell);
2202 }
2203 } while (!list_empty(&cells));
2204 }
2205
2206 static void thin_get(struct thin_c *tc);
2207 static void thin_put(struct thin_c *tc);
2208
2209 /*
2210 * We can't hold rcu_read_lock() around code that can block. So we
2211 * find a thin with the rcu lock held; bump a refcount; then drop
2212 * the lock.
2213 */
2214 static struct thin_c *get_first_thin(struct pool *pool)
2215 {
2216 struct thin_c *tc = NULL;
2217
2218 rcu_read_lock();
2219 if (!list_empty(&pool->active_thins)) {
2220 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2221 thin_get(tc);
2222 }
2223 rcu_read_unlock();
2224
2225 return tc;
2226 }
2227
2228 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2229 {
2230 struct thin_c *old_tc = tc;
2231
2232 rcu_read_lock();
2233 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2234 thin_get(tc);
2235 thin_put(old_tc);
2236 rcu_read_unlock();
2237 return tc;
2238 }
2239 thin_put(old_tc);
2240 rcu_read_unlock();
2241
2242 return NULL;
2243 }
2244
2245 static void process_deferred_bios(struct pool *pool)
2246 {
2247 unsigned long flags;
2248 struct bio *bio;
2249 struct bio_list bios;
2250 struct thin_c *tc;
2251
2252 tc = get_first_thin(pool);
2253 while (tc) {
2254 process_thin_deferred_cells(tc);
2255 process_thin_deferred_bios(tc);
2256 tc = get_next_thin(pool, tc);
2257 }
2258
2259 /*
2260 * If there are any deferred flush bios, we must commit
2261 * the metadata before issuing them.
2262 */
2263 bio_list_init(&bios);
2264 spin_lock_irqsave(&pool->lock, flags);
2265 bio_list_merge(&bios, &pool->deferred_flush_bios);
2266 bio_list_init(&pool->deferred_flush_bios);
2267 spin_unlock_irqrestore(&pool->lock, flags);
2268
2269 if (bio_list_empty(&bios) &&
2270 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2271 return;
2272
2273 if (commit(pool)) {
2274 while ((bio = bio_list_pop(&bios)))
2275 bio_io_error(bio);
2276 return;
2277 }
2278 pool->last_commit_jiffies = jiffies;
2279
2280 while ((bio = bio_list_pop(&bios)))
2281 generic_make_request(bio);
2282 }
2283
2284 static void do_worker(struct work_struct *ws)
2285 {
2286 struct pool *pool = container_of(ws, struct pool, worker);
2287
2288 throttle_work_start(&pool->throttle);
2289 dm_pool_issue_prefetches(pool->pmd);
2290 throttle_work_update(&pool->throttle);
2291 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2292 throttle_work_update(&pool->throttle);
2293 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2294 throttle_work_update(&pool->throttle);
2295 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2296 throttle_work_update(&pool->throttle);
2297 process_deferred_bios(pool);
2298 throttle_work_complete(&pool->throttle);
2299 }
2300
2301 /*
2302 * We want to commit periodically so that not too much
2303 * unwritten data builds up.
2304 */
2305 static void do_waker(struct work_struct *ws)
2306 {
2307 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2308 wake_worker(pool);
2309 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2310 }
2311
2312 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2313
2314 /*
2315 * We're holding onto IO to allow userland time to react. After the
2316 * timeout either the pool will have been resized (and thus back in
2317 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2318 */
2319 static void do_no_space_timeout(struct work_struct *ws)
2320 {
2321 struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2322 no_space_timeout);
2323
2324 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2325 pool->pf.error_if_no_space = true;
2326 notify_of_pool_mode_change_to_oods(pool);
2327 error_retry_list_with_code(pool, -ENOSPC);
2328 }
2329 }
2330
2331 /*----------------------------------------------------------------*/
2332
2333 struct pool_work {
2334 struct work_struct worker;
2335 struct completion complete;
2336 };
2337
2338 static struct pool_work *to_pool_work(struct work_struct *ws)
2339 {
2340 return container_of(ws, struct pool_work, worker);
2341 }
2342
2343 static void pool_work_complete(struct pool_work *pw)
2344 {
2345 complete(&pw->complete);
2346 }
2347
2348 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2349 void (*fn)(struct work_struct *))
2350 {
2351 INIT_WORK_ONSTACK(&pw->worker, fn);
2352 init_completion(&pw->complete);
2353 queue_work(pool->wq, &pw->worker);
2354 wait_for_completion(&pw->complete);
2355 }
2356
2357 /*----------------------------------------------------------------*/
2358
2359 struct noflush_work {
2360 struct pool_work pw;
2361 struct thin_c *tc;
2362 };
2363
2364 static struct noflush_work *to_noflush(struct work_struct *ws)
2365 {
2366 return container_of(to_pool_work(ws), struct noflush_work, pw);
2367 }
2368
2369 static void do_noflush_start(struct work_struct *ws)
2370 {
2371 struct noflush_work *w = to_noflush(ws);
2372 w->tc->requeue_mode = true;
2373 requeue_io(w->tc);
2374 pool_work_complete(&w->pw);
2375 }
2376
2377 static void do_noflush_stop(struct work_struct *ws)
2378 {
2379 struct noflush_work *w = to_noflush(ws);
2380 w->tc->requeue_mode = false;
2381 pool_work_complete(&w->pw);
2382 }
2383
2384 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2385 {
2386 struct noflush_work w;
2387
2388 w.tc = tc;
2389 pool_work_wait(&w.pw, tc->pool, fn);
2390 }
2391
2392 /*----------------------------------------------------------------*/
2393
2394 static enum pool_mode get_pool_mode(struct pool *pool)
2395 {
2396 return pool->pf.mode;
2397 }
2398
2399 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2400 {
2401 dm_table_event(pool->ti->table);
2402 DMINFO("%s: switching pool to %s mode",
2403 dm_device_name(pool->pool_md), new_mode);
2404 }
2405
2406 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2407 {
2408 if (!pool->pf.error_if_no_space)
2409 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2410 else
2411 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2412 }
2413
2414 static bool passdown_enabled(struct pool_c *pt)
2415 {
2416 return pt->adjusted_pf.discard_passdown;
2417 }
2418
2419 static void set_discard_callbacks(struct pool *pool)
2420 {
2421 struct pool_c *pt = pool->ti->private;
2422
2423 if (passdown_enabled(pt)) {
2424 pool->process_discard_cell = process_discard_cell_passdown;
2425 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2426 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2427 } else {
2428 pool->process_discard_cell = process_discard_cell_no_passdown;
2429 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2430 }
2431 }
2432
2433 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2434 {
2435 struct pool_c *pt = pool->ti->private;
2436 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2437 enum pool_mode old_mode = get_pool_mode(pool);
2438 unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2439
2440 /*
2441 * Never allow the pool to transition to PM_WRITE mode if user
2442 * intervention is required to verify metadata and data consistency.
2443 */
2444 if (new_mode == PM_WRITE && needs_check) {
2445 DMERR("%s: unable to switch pool to write mode until repaired.",
2446 dm_device_name(pool->pool_md));
2447 if (old_mode != new_mode)
2448 new_mode = old_mode;
2449 else
2450 new_mode = PM_READ_ONLY;
2451 }
2452 /*
2453 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2454 * not going to recover without a thin_repair. So we never let the
2455 * pool move out of the old mode.
2456 */
2457 if (old_mode == PM_FAIL)
2458 new_mode = old_mode;
2459
2460 switch (new_mode) {
2461 case PM_FAIL:
2462 if (old_mode != new_mode)
2463 notify_of_pool_mode_change(pool, "failure");
2464 dm_pool_metadata_read_only(pool->pmd);
2465 pool->process_bio = process_bio_fail;
2466 pool->process_discard = process_bio_fail;
2467 pool->process_cell = process_cell_fail;
2468 pool->process_discard_cell = process_cell_fail;
2469 pool->process_prepared_mapping = process_prepared_mapping_fail;
2470 pool->process_prepared_discard = process_prepared_discard_fail;
2471
2472 error_retry_list(pool);
2473 break;
2474
2475 case PM_READ_ONLY:
2476 if (old_mode != new_mode)
2477 notify_of_pool_mode_change(pool, "read-only");
2478 dm_pool_metadata_read_only(pool->pmd);
2479 pool->process_bio = process_bio_read_only;
2480 pool->process_discard = process_bio_success;
2481 pool->process_cell = process_cell_read_only;
2482 pool->process_discard_cell = process_cell_success;
2483 pool->process_prepared_mapping = process_prepared_mapping_fail;
2484 pool->process_prepared_discard = process_prepared_discard_success;
2485
2486 error_retry_list(pool);
2487 break;
2488
2489 case PM_OUT_OF_DATA_SPACE:
2490 /*
2491 * Ideally we'd never hit this state; the low water mark
2492 * would trigger userland to extend the pool before we
2493 * completely run out of data space. However, many small
2494 * IOs to unprovisioned space can consume data space at an
2495 * alarming rate. Adjust your low water mark if you're
2496 * frequently seeing this mode.
2497 */
2498 if (old_mode != new_mode)
2499 notify_of_pool_mode_change_to_oods(pool);
2500 pool->out_of_data_space = true;
2501 pool->process_bio = process_bio_read_only;
2502 pool->process_discard = process_discard_bio;
2503 pool->process_cell = process_cell_read_only;
2504 pool->process_prepared_mapping = process_prepared_mapping;
2505 set_discard_callbacks(pool);
2506
2507 if (!pool->pf.error_if_no_space && no_space_timeout)
2508 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2509 break;
2510
2511 case PM_WRITE:
2512 if (old_mode != new_mode)
2513 notify_of_pool_mode_change(pool, "write");
2514 pool->out_of_data_space = false;
2515 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2516 dm_pool_metadata_read_write(pool->pmd);
2517 pool->process_bio = process_bio;
2518 pool->process_discard = process_discard_bio;
2519 pool->process_cell = process_cell;
2520 pool->process_prepared_mapping = process_prepared_mapping;
2521 set_discard_callbacks(pool);
2522 break;
2523 }
2524
2525 pool->pf.mode = new_mode;
2526 /*
2527 * The pool mode may have changed, sync it so bind_control_target()
2528 * doesn't cause an unexpected mode transition on resume.
2529 */
2530 pt->adjusted_pf.mode = new_mode;
2531 }
2532
2533 static void abort_transaction(struct pool *pool)
2534 {
2535 const char *dev_name = dm_device_name(pool->pool_md);
2536
2537 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2538 if (dm_pool_abort_metadata(pool->pmd)) {
2539 DMERR("%s: failed to abort metadata transaction", dev_name);
2540 set_pool_mode(pool, PM_FAIL);
2541 }
2542
2543 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2544 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2545 set_pool_mode(pool, PM_FAIL);
2546 }
2547 }
2548
2549 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2550 {
2551 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2552 dm_device_name(pool->pool_md), op, r);
2553
2554 abort_transaction(pool);
2555 set_pool_mode(pool, PM_READ_ONLY);
2556 }
2557
2558 /*----------------------------------------------------------------*/
2559
2560 /*
2561 * Mapping functions.
2562 */
2563
2564 /*
2565 * Called only while mapping a thin bio to hand it over to the workqueue.
2566 */
2567 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2568 {
2569 unsigned long flags;
2570 struct pool *pool = tc->pool;
2571
2572 spin_lock_irqsave(&tc->lock, flags);
2573 bio_list_add(&tc->deferred_bio_list, bio);
2574 spin_unlock_irqrestore(&tc->lock, flags);
2575
2576 wake_worker(pool);
2577 }
2578
2579 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2580 {
2581 struct pool *pool = tc->pool;
2582
2583 throttle_lock(&pool->throttle);
2584 thin_defer_bio(tc, bio);
2585 throttle_unlock(&pool->throttle);
2586 }
2587
2588 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2589 {
2590 unsigned long flags;
2591 struct pool *pool = tc->pool;
2592
2593 throttle_lock(&pool->throttle);
2594 spin_lock_irqsave(&tc->lock, flags);
2595 list_add_tail(&cell->user_list, &tc->deferred_cells);
2596 spin_unlock_irqrestore(&tc->lock, flags);
2597 throttle_unlock(&pool->throttle);
2598
2599 wake_worker(pool);
2600 }
2601
2602 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2603 {
2604 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2605
2606 h->tc = tc;
2607 h->shared_read_entry = NULL;
2608 h->all_io_entry = NULL;
2609 h->overwrite_mapping = NULL;
2610 h->cell = NULL;
2611 }
2612
2613 /*
2614 * Non-blocking function called from the thin target's map function.
2615 */
2616 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2617 {
2618 int r;
2619 struct thin_c *tc = ti->private;
2620 dm_block_t block = get_bio_block(tc, bio);
2621 struct dm_thin_device *td = tc->td;
2622 struct dm_thin_lookup_result result;
2623 struct dm_bio_prison_cell *virt_cell, *data_cell;
2624 struct dm_cell_key key;
2625
2626 thin_hook_bio(tc, bio);
2627
2628 if (tc->requeue_mode) {
2629 bio->bi_error = DM_ENDIO_REQUEUE;
2630 bio_endio(bio);
2631 return DM_MAPIO_SUBMITTED;
2632 }
2633
2634 if (get_pool_mode(tc->pool) == PM_FAIL) {
2635 bio_io_error(bio);
2636 return DM_MAPIO_SUBMITTED;
2637 }
2638
2639 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA) ||
2640 bio_op(bio) == REQ_OP_DISCARD) {
2641 thin_defer_bio_with_throttle(tc, bio);
2642 return DM_MAPIO_SUBMITTED;
2643 }
2644
2645 /*
2646 * We must hold the virtual cell before doing the lookup, otherwise
2647 * there's a race with discard.
2648 */
2649 build_virtual_key(tc->td, block, &key);
2650 if (bio_detain(tc->pool, &key, bio, &virt_cell))
2651 return DM_MAPIO_SUBMITTED;
2652
2653 r = dm_thin_find_block(td, block, 0, &result);
2654
2655 /*
2656 * Note that we defer readahead too.
2657 */
2658 switch (r) {
2659 case 0:
2660 if (unlikely(result.shared)) {
2661 /*
2662 * We have a race condition here between the
2663 * result.shared value returned by the lookup and
2664 * snapshot creation, which may cause new
2665 * sharing.
2666 *
2667 * To avoid this always quiesce the origin before
2668 * taking the snap. You want to do this anyway to
2669 * ensure a consistent application view
2670 * (i.e. lockfs).
2671 *
2672 * More distant ancestors are irrelevant. The
2673 * shared flag will be set in their case.
2674 */
2675 thin_defer_cell(tc, virt_cell);
2676 return DM_MAPIO_SUBMITTED;
2677 }
2678
2679 build_data_key(tc->td, result.block, &key);
2680 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2681 cell_defer_no_holder(tc, virt_cell);
2682 return DM_MAPIO_SUBMITTED;
2683 }
2684
2685 inc_all_io_entry(tc->pool, bio);
2686 cell_defer_no_holder(tc, data_cell);
2687 cell_defer_no_holder(tc, virt_cell);
2688
2689 remap(tc, bio, result.block);
2690 return DM_MAPIO_REMAPPED;
2691
2692 case -ENODATA:
2693 case -EWOULDBLOCK:
2694 thin_defer_cell(tc, virt_cell);
2695 return DM_MAPIO_SUBMITTED;
2696
2697 default:
2698 /*
2699 * Must always call bio_io_error on failure.
2700 * dm_thin_find_block can fail with -EINVAL if the
2701 * pool is switched to fail-io mode.
2702 */
2703 bio_io_error(bio);
2704 cell_defer_no_holder(tc, virt_cell);
2705 return DM_MAPIO_SUBMITTED;
2706 }
2707 }
2708
2709 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2710 {
2711 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2712 struct request_queue *q;
2713
2714 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2715 return 1;
2716
2717 q = bdev_get_queue(pt->data_dev->bdev);
2718 return bdi_congested(&q->backing_dev_info, bdi_bits);
2719 }
2720
2721 static void requeue_bios(struct pool *pool)
2722 {
2723 unsigned long flags;
2724 struct thin_c *tc;
2725
2726 rcu_read_lock();
2727 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2728 spin_lock_irqsave(&tc->lock, flags);
2729 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2730 bio_list_init(&tc->retry_on_resume_list);
2731 spin_unlock_irqrestore(&tc->lock, flags);
2732 }
2733 rcu_read_unlock();
2734 }
2735
2736 /*----------------------------------------------------------------
2737 * Binding of control targets to a pool object
2738 *--------------------------------------------------------------*/
2739 static bool data_dev_supports_discard(struct pool_c *pt)
2740 {
2741 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2742
2743 return q && blk_queue_discard(q);
2744 }
2745
2746 static bool is_factor(sector_t block_size, uint32_t n)
2747 {
2748 return !sector_div(block_size, n);
2749 }
2750
2751 /*
2752 * If discard_passdown was enabled verify that the data device
2753 * supports discards. Disable discard_passdown if not.
2754 */
2755 static void disable_passdown_if_not_supported(struct pool_c *pt)
2756 {
2757 struct pool *pool = pt->pool;
2758 struct block_device *data_bdev = pt->data_dev->bdev;
2759 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2760 const char *reason = NULL;
2761 char buf[BDEVNAME_SIZE];
2762
2763 if (!pt->adjusted_pf.discard_passdown)
2764 return;
2765
2766 if (!data_dev_supports_discard(pt))
2767 reason = "discard unsupported";
2768
2769 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2770 reason = "max discard sectors smaller than a block";
2771
2772 if (reason) {
2773 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2774 pt->adjusted_pf.discard_passdown = false;
2775 }
2776 }
2777
2778 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2779 {
2780 struct pool_c *pt = ti->private;
2781
2782 /*
2783 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2784 */
2785 enum pool_mode old_mode = get_pool_mode(pool);
2786 enum pool_mode new_mode = pt->adjusted_pf.mode;
2787
2788 /*
2789 * Don't change the pool's mode until set_pool_mode() below.
2790 * Otherwise the pool's process_* function pointers may
2791 * not match the desired pool mode.
2792 */
2793 pt->adjusted_pf.mode = old_mode;
2794
2795 pool->ti = ti;
2796 pool->pf = pt->adjusted_pf;
2797 pool->low_water_blocks = pt->low_water_blocks;
2798
2799 set_pool_mode(pool, new_mode);
2800
2801 return 0;
2802 }
2803
2804 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2805 {
2806 if (pool->ti == ti)
2807 pool->ti = NULL;
2808 }
2809
2810 /*----------------------------------------------------------------
2811 * Pool creation
2812 *--------------------------------------------------------------*/
2813 /* Initialize pool features. */
2814 static void pool_features_init(struct pool_features *pf)
2815 {
2816 pf->mode = PM_WRITE;
2817 pf->zero_new_blocks = true;
2818 pf->discard_enabled = true;
2819 pf->discard_passdown = true;
2820 pf->error_if_no_space = false;
2821 }
2822
2823 static void __pool_destroy(struct pool *pool)
2824 {
2825 __pool_table_remove(pool);
2826
2827 vfree(pool->cell_sort_array);
2828 if (dm_pool_metadata_close(pool->pmd) < 0)
2829 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2830
2831 dm_bio_prison_destroy(pool->prison);
2832 dm_kcopyd_client_destroy(pool->copier);
2833
2834 if (pool->wq)
2835 destroy_workqueue(pool->wq);
2836
2837 if (pool->next_mapping)
2838 mempool_free(pool->next_mapping, pool->mapping_pool);
2839 mempool_destroy(pool->mapping_pool);
2840 dm_deferred_set_destroy(pool->shared_read_ds);
2841 dm_deferred_set_destroy(pool->all_io_ds);
2842 kfree(pool);
2843 }
2844
2845 static struct kmem_cache *_new_mapping_cache;
2846
2847 static struct pool *pool_create(struct mapped_device *pool_md,
2848 struct block_device *metadata_dev,
2849 unsigned long block_size,
2850 int read_only, char **error)
2851 {
2852 int r;
2853 void *err_p;
2854 struct pool *pool;
2855 struct dm_pool_metadata *pmd;
2856 bool format_device = read_only ? false : true;
2857
2858 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2859 if (IS_ERR(pmd)) {
2860 *error = "Error creating metadata object";
2861 return (struct pool *)pmd;
2862 }
2863
2864 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2865 if (!pool) {
2866 *error = "Error allocating memory for pool";
2867 err_p = ERR_PTR(-ENOMEM);
2868 goto bad_pool;
2869 }
2870
2871 pool->pmd = pmd;
2872 pool->sectors_per_block = block_size;
2873 if (block_size & (block_size - 1))
2874 pool->sectors_per_block_shift = -1;
2875 else
2876 pool->sectors_per_block_shift = __ffs(block_size);
2877 pool->low_water_blocks = 0;
2878 pool_features_init(&pool->pf);
2879 pool->prison = dm_bio_prison_create();
2880 if (!pool->prison) {
2881 *error = "Error creating pool's bio prison";
2882 err_p = ERR_PTR(-ENOMEM);
2883 goto bad_prison;
2884 }
2885
2886 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2887 if (IS_ERR(pool->copier)) {
2888 r = PTR_ERR(pool->copier);
2889 *error = "Error creating pool's kcopyd client";
2890 err_p = ERR_PTR(r);
2891 goto bad_kcopyd_client;
2892 }
2893
2894 /*
2895 * Create singlethreaded workqueue that will service all devices
2896 * that use this metadata.
2897 */
2898 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2899 if (!pool->wq) {
2900 *error = "Error creating pool's workqueue";
2901 err_p = ERR_PTR(-ENOMEM);
2902 goto bad_wq;
2903 }
2904
2905 throttle_init(&pool->throttle);
2906 INIT_WORK(&pool->worker, do_worker);
2907 INIT_DELAYED_WORK(&pool->waker, do_waker);
2908 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2909 spin_lock_init(&pool->lock);
2910 bio_list_init(&pool->deferred_flush_bios);
2911 INIT_LIST_HEAD(&pool->prepared_mappings);
2912 INIT_LIST_HEAD(&pool->prepared_discards);
2913 INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2914 INIT_LIST_HEAD(&pool->active_thins);
2915 pool->low_water_triggered = false;
2916 pool->suspended = true;
2917 pool->out_of_data_space = false;
2918
2919 pool->shared_read_ds = dm_deferred_set_create();
2920 if (!pool->shared_read_ds) {
2921 *error = "Error creating pool's shared read deferred set";
2922 err_p = ERR_PTR(-ENOMEM);
2923 goto bad_shared_read_ds;
2924 }
2925
2926 pool->all_io_ds = dm_deferred_set_create();
2927 if (!pool->all_io_ds) {
2928 *error = "Error creating pool's all io deferred set";
2929 err_p = ERR_PTR(-ENOMEM);
2930 goto bad_all_io_ds;
2931 }
2932
2933 pool->next_mapping = NULL;
2934 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2935 _new_mapping_cache);
2936 if (!pool->mapping_pool) {
2937 *error = "Error creating pool's mapping mempool";
2938 err_p = ERR_PTR(-ENOMEM);
2939 goto bad_mapping_pool;
2940 }
2941
2942 pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2943 if (!pool->cell_sort_array) {
2944 *error = "Error allocating cell sort array";
2945 err_p = ERR_PTR(-ENOMEM);
2946 goto bad_sort_array;
2947 }
2948
2949 pool->ref_count = 1;
2950 pool->last_commit_jiffies = jiffies;
2951 pool->pool_md = pool_md;
2952 pool->md_dev = metadata_dev;
2953 __pool_table_insert(pool);
2954
2955 return pool;
2956
2957 bad_sort_array:
2958 mempool_destroy(pool->mapping_pool);
2959 bad_mapping_pool:
2960 dm_deferred_set_destroy(pool->all_io_ds);
2961 bad_all_io_ds:
2962 dm_deferred_set_destroy(pool->shared_read_ds);
2963 bad_shared_read_ds:
2964 destroy_workqueue(pool->wq);
2965 bad_wq:
2966 dm_kcopyd_client_destroy(pool->copier);
2967 bad_kcopyd_client:
2968 dm_bio_prison_destroy(pool->prison);
2969 bad_prison:
2970 kfree(pool);
2971 bad_pool:
2972 if (dm_pool_metadata_close(pmd))
2973 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2974
2975 return err_p;
2976 }
2977
2978 static void __pool_inc(struct pool *pool)
2979 {
2980 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2981 pool->ref_count++;
2982 }
2983
2984 static void __pool_dec(struct pool *pool)
2985 {
2986 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2987 BUG_ON(!pool->ref_count);
2988 if (!--pool->ref_count)
2989 __pool_destroy(pool);
2990 }
2991
2992 static struct pool *__pool_find(struct mapped_device *pool_md,
2993 struct block_device *metadata_dev,
2994 unsigned long block_size, int read_only,
2995 char **error, int *created)
2996 {
2997 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2998
2999 if (pool) {
3000 if (pool->pool_md != pool_md) {
3001 *error = "metadata device already in use by a pool";
3002 return ERR_PTR(-EBUSY);
3003 }
3004 __pool_inc(pool);
3005
3006 } else {
3007 pool = __pool_table_lookup(pool_md);
3008 if (pool) {
3009 if (pool->md_dev != metadata_dev) {
3010 *error = "different pool cannot replace a pool";
3011 return ERR_PTR(-EINVAL);
3012 }
3013 __pool_inc(pool);
3014
3015 } else {
3016 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3017 *created = 1;
3018 }
3019 }
3020
3021 return pool;
3022 }
3023
3024 /*----------------------------------------------------------------
3025 * Pool target methods
3026 *--------------------------------------------------------------*/
3027 static void pool_dtr(struct dm_target *ti)
3028 {
3029 struct pool_c *pt = ti->private;
3030
3031 mutex_lock(&dm_thin_pool_table.mutex);
3032
3033 unbind_control_target(pt->pool, ti);
3034 __pool_dec(pt->pool);
3035 dm_put_device(ti, pt->metadata_dev);
3036 dm_put_device(ti, pt->data_dev);
3037 kfree(pt);
3038
3039 mutex_unlock(&dm_thin_pool_table.mutex);
3040 }
3041
3042 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3043 struct dm_target *ti)
3044 {
3045 int r;
3046 unsigned argc;
3047 const char *arg_name;
3048
3049 static struct dm_arg _args[] = {
3050 {0, 4, "Invalid number of pool feature arguments"},
3051 };
3052
3053 /*
3054 * No feature arguments supplied.
3055 */
3056 if (!as->argc)
3057 return 0;
3058
3059 r = dm_read_arg_group(_args, as, &argc, &ti->error);
3060 if (r)
3061 return -EINVAL;
3062
3063 while (argc && !r) {
3064 arg_name = dm_shift_arg(as);
3065 argc--;
3066
3067 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3068 pf->zero_new_blocks = false;
3069
3070 else if (!strcasecmp(arg_name, "ignore_discard"))
3071 pf->discard_enabled = false;
3072
3073 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3074 pf->discard_passdown = false;
3075
3076 else if (!strcasecmp(arg_name, "read_only"))
3077 pf->mode = PM_READ_ONLY;
3078
3079 else if (!strcasecmp(arg_name, "error_if_no_space"))
3080 pf->error_if_no_space = true;
3081
3082 else {
3083 ti->error = "Unrecognised pool feature requested";
3084 r = -EINVAL;
3085 break;
3086 }
3087 }
3088
3089 return r;
3090 }
3091
3092 static void metadata_low_callback(void *context)
3093 {
3094 struct pool *pool = context;
3095
3096 DMWARN("%s: reached low water mark for metadata device: sending event.",
3097 dm_device_name(pool->pool_md));
3098
3099 dm_table_event(pool->ti->table);
3100 }
3101
3102 static sector_t get_dev_size(struct block_device *bdev)
3103 {
3104 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3105 }
3106
3107 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3108 {
3109 sector_t metadata_dev_size = get_dev_size(bdev);
3110 char buffer[BDEVNAME_SIZE];
3111
3112 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3113 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3114 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3115 }
3116
3117 static sector_t get_metadata_dev_size(struct block_device *bdev)
3118 {
3119 sector_t metadata_dev_size = get_dev_size(bdev);
3120
3121 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3122 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3123
3124 return metadata_dev_size;
3125 }
3126
3127 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3128 {
3129 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3130
3131 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3132
3133 return metadata_dev_size;
3134 }
3135
3136 /*
3137 * When a metadata threshold is crossed a dm event is triggered, and
3138 * userland should respond by growing the metadata device. We could let
3139 * userland set the threshold, like we do with the data threshold, but I'm
3140 * not sure they know enough to do this well.
3141 */
3142 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3143 {
3144 /*
3145 * 4M is ample for all ops with the possible exception of thin
3146 * device deletion which is harmless if it fails (just retry the
3147 * delete after you've grown the device).
3148 */
3149 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3150 return min((dm_block_t)1024ULL /* 4M */, quarter);
3151 }
3152
3153 /*
3154 * thin-pool <metadata dev> <data dev>
3155 * <data block size (sectors)>
3156 * <low water mark (blocks)>
3157 * [<#feature args> [<arg>]*]
3158 *
3159 * Optional feature arguments are:
3160 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3161 * ignore_discard: disable discard
3162 * no_discard_passdown: don't pass discards down to the data device
3163 * read_only: Don't allow any changes to be made to the pool metadata.
3164 * error_if_no_space: error IOs, instead of queueing, if no space.
3165 */
3166 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3167 {
3168 int r, pool_created = 0;
3169 struct pool_c *pt;
3170 struct pool *pool;
3171 struct pool_features pf;
3172 struct dm_arg_set as;
3173 struct dm_dev *data_dev;
3174 unsigned long block_size;
3175 dm_block_t low_water_blocks;
3176 struct dm_dev *metadata_dev;
3177 fmode_t metadata_mode;
3178
3179 /*
3180 * FIXME Remove validation from scope of lock.
3181 */
3182 mutex_lock(&dm_thin_pool_table.mutex);
3183
3184 if (argc < 4) {
3185 ti->error = "Invalid argument count";
3186 r = -EINVAL;
3187 goto out_unlock;
3188 }
3189
3190 as.argc = argc;
3191 as.argv = argv;
3192
3193 /*
3194 * Set default pool features.
3195 */
3196 pool_features_init(&pf);
3197
3198 dm_consume_args(&as, 4);
3199 r = parse_pool_features(&as, &pf, ti);
3200 if (r)
3201 goto out_unlock;
3202
3203 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3204 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3205 if (r) {
3206 ti->error = "Error opening metadata block device";
3207 goto out_unlock;
3208 }
3209 warn_if_metadata_device_too_big(metadata_dev->bdev);
3210
3211 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3212 if (r) {
3213 ti->error = "Error getting data device";
3214 goto out_metadata;
3215 }
3216
3217 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3218 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3219 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3220 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3221 ti->error = "Invalid block size";
3222 r = -EINVAL;
3223 goto out;
3224 }
3225
3226 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3227 ti->error = "Invalid low water mark";
3228 r = -EINVAL;
3229 goto out;
3230 }
3231
3232 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3233 if (!pt) {
3234 r = -ENOMEM;
3235 goto out;
3236 }
3237
3238 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3239 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3240 if (IS_ERR(pool)) {
3241 r = PTR_ERR(pool);
3242 goto out_free_pt;
3243 }
3244
3245 /*
3246 * 'pool_created' reflects whether this is the first table load.
3247 * Top level discard support is not allowed to be changed after
3248 * initial load. This would require a pool reload to trigger thin
3249 * device changes.
3250 */
3251 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3252 ti->error = "Discard support cannot be disabled once enabled";
3253 r = -EINVAL;
3254 goto out_flags_changed;
3255 }
3256
3257 pt->pool = pool;
3258 pt->ti = ti;
3259 pt->metadata_dev = metadata_dev;
3260 pt->data_dev = data_dev;
3261 pt->low_water_blocks = low_water_blocks;
3262 pt->adjusted_pf = pt->requested_pf = pf;
3263 ti->num_flush_bios = 1;
3264
3265 /*
3266 * Only need to enable discards if the pool should pass
3267 * them down to the data device. The thin device's discard
3268 * processing will cause mappings to be removed from the btree.
3269 */
3270 ti->discard_zeroes_data_unsupported = true;
3271 if (pf.discard_enabled && pf.discard_passdown) {
3272 ti->num_discard_bios = 1;
3273
3274 /*
3275 * Setting 'discards_supported' circumvents the normal
3276 * stacking of discard limits (this keeps the pool and
3277 * thin devices' discard limits consistent).
3278 */
3279 ti->discards_supported = true;
3280 }
3281 ti->private = pt;
3282
3283 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3284 calc_metadata_threshold(pt),
3285 metadata_low_callback,
3286 pool);
3287 if (r)
3288 goto out_flags_changed;
3289
3290 pt->callbacks.congested_fn = pool_is_congested;
3291 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3292
3293 mutex_unlock(&dm_thin_pool_table.mutex);
3294
3295 return 0;
3296
3297 out_flags_changed:
3298 __pool_dec(pool);
3299 out_free_pt:
3300 kfree(pt);
3301 out:
3302 dm_put_device(ti, data_dev);
3303 out_metadata:
3304 dm_put_device(ti, metadata_dev);
3305 out_unlock:
3306 mutex_unlock(&dm_thin_pool_table.mutex);
3307
3308 return r;
3309 }
3310
3311 static int pool_map(struct dm_target *ti, struct bio *bio)
3312 {
3313 int r;
3314 struct pool_c *pt = ti->private;
3315 struct pool *pool = pt->pool;
3316 unsigned long flags;
3317
3318 /*
3319 * As this is a singleton target, ti->begin is always zero.
3320 */
3321 spin_lock_irqsave(&pool->lock, flags);
3322 bio->bi_bdev = pt->data_dev->bdev;
3323 r = DM_MAPIO_REMAPPED;
3324 spin_unlock_irqrestore(&pool->lock, flags);
3325
3326 return r;
3327 }
3328
3329 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3330 {
3331 int r;
3332 struct pool_c *pt = ti->private;
3333 struct pool *pool = pt->pool;
3334 sector_t data_size = ti->len;
3335 dm_block_t sb_data_size;
3336
3337 *need_commit = false;
3338
3339 (void) sector_div(data_size, pool->sectors_per_block);
3340
3341 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3342 if (r) {
3343 DMERR("%s: failed to retrieve data device size",
3344 dm_device_name(pool->pool_md));
3345 return r;
3346 }
3347
3348 if (data_size < sb_data_size) {
3349 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3350 dm_device_name(pool->pool_md),
3351 (unsigned long long)data_size, sb_data_size);
3352 return -EINVAL;
3353
3354 } else if (data_size > sb_data_size) {
3355 if (dm_pool_metadata_needs_check(pool->pmd)) {
3356 DMERR("%s: unable to grow the data device until repaired.",
3357 dm_device_name(pool->pool_md));
3358 return 0;
3359 }
3360
3361 if (sb_data_size)
3362 DMINFO("%s: growing the data device from %llu to %llu blocks",
3363 dm_device_name(pool->pool_md),
3364 sb_data_size, (unsigned long long)data_size);
3365 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3366 if (r) {
3367 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3368 return r;
3369 }
3370
3371 *need_commit = true;
3372 }
3373
3374 return 0;
3375 }
3376
3377 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3378 {
3379 int r;
3380 struct pool_c *pt = ti->private;
3381 struct pool *pool = pt->pool;
3382 dm_block_t metadata_dev_size, sb_metadata_dev_size;
3383
3384 *need_commit = false;
3385
3386 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3387
3388 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3389 if (r) {
3390 DMERR("%s: failed to retrieve metadata device size",
3391 dm_device_name(pool->pool_md));
3392 return r;
3393 }
3394
3395 if (metadata_dev_size < sb_metadata_dev_size) {
3396 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3397 dm_device_name(pool->pool_md),
3398 metadata_dev_size, sb_metadata_dev_size);
3399 return -EINVAL;
3400
3401 } else if (metadata_dev_size > sb_metadata_dev_size) {
3402 if (dm_pool_metadata_needs_check(pool->pmd)) {
3403 DMERR("%s: unable to grow the metadata device until repaired.",
3404 dm_device_name(pool->pool_md));
3405 return 0;
3406 }
3407
3408 warn_if_metadata_device_too_big(pool->md_dev);
3409 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3410 dm_device_name(pool->pool_md),
3411 sb_metadata_dev_size, metadata_dev_size);
3412 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3413 if (r) {
3414 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3415 return r;
3416 }
3417
3418 *need_commit = true;
3419 }
3420
3421 return 0;
3422 }
3423
3424 /*
3425 * Retrieves the number of blocks of the data device from
3426 * the superblock and compares it to the actual device size,
3427 * thus resizing the data device in case it has grown.
3428 *
3429 * This both copes with opening preallocated data devices in the ctr
3430 * being followed by a resume
3431 * -and-
3432 * calling the resume method individually after userspace has
3433 * grown the data device in reaction to a table event.
3434 */
3435 static int pool_preresume(struct dm_target *ti)
3436 {
3437 int r;
3438 bool need_commit1, need_commit2;
3439 struct pool_c *pt = ti->private;
3440 struct pool *pool = pt->pool;
3441
3442 /*
3443 * Take control of the pool object.
3444 */
3445 r = bind_control_target(pool, ti);
3446 if (r)
3447 return r;
3448
3449 r = maybe_resize_data_dev(ti, &need_commit1);
3450 if (r)
3451 return r;
3452
3453 r = maybe_resize_metadata_dev(ti, &need_commit2);
3454 if (r)
3455 return r;
3456
3457 if (need_commit1 || need_commit2)
3458 (void) commit(pool);
3459
3460 return 0;
3461 }
3462
3463 static void pool_suspend_active_thins(struct pool *pool)
3464 {
3465 struct thin_c *tc;
3466
3467 /* Suspend all active thin devices */
3468 tc = get_first_thin(pool);
3469 while (tc) {
3470 dm_internal_suspend_noflush(tc->thin_md);
3471 tc = get_next_thin(pool, tc);
3472 }
3473 }
3474
3475 static void pool_resume_active_thins(struct pool *pool)
3476 {
3477 struct thin_c *tc;
3478
3479 /* Resume all active thin devices */
3480 tc = get_first_thin(pool);
3481 while (tc) {
3482 dm_internal_resume(tc->thin_md);
3483 tc = get_next_thin(pool, tc);
3484 }
3485 }
3486
3487 static void pool_resume(struct dm_target *ti)
3488 {
3489 struct pool_c *pt = ti->private;
3490 struct pool *pool = pt->pool;
3491 unsigned long flags;
3492
3493 /*
3494 * Must requeue active_thins' bios and then resume
3495 * active_thins _before_ clearing 'suspend' flag.
3496 */
3497 requeue_bios(pool);
3498 pool_resume_active_thins(pool);
3499
3500 spin_lock_irqsave(&pool->lock, flags);
3501 pool->low_water_triggered = false;
3502 pool->suspended = false;
3503 spin_unlock_irqrestore(&pool->lock, flags);
3504
3505 do_waker(&pool->waker.work);
3506 }
3507
3508 static void pool_presuspend(struct dm_target *ti)
3509 {
3510 struct pool_c *pt = ti->private;
3511 struct pool *pool = pt->pool;
3512 unsigned long flags;
3513
3514 spin_lock_irqsave(&pool->lock, flags);
3515 pool->suspended = true;
3516 spin_unlock_irqrestore(&pool->lock, flags);
3517
3518 pool_suspend_active_thins(pool);
3519 }
3520
3521 static void pool_presuspend_undo(struct dm_target *ti)
3522 {
3523 struct pool_c *pt = ti->private;
3524 struct pool *pool = pt->pool;
3525 unsigned long flags;
3526
3527 pool_resume_active_thins(pool);
3528
3529 spin_lock_irqsave(&pool->lock, flags);
3530 pool->suspended = false;
3531 spin_unlock_irqrestore(&pool->lock, flags);
3532 }
3533
3534 static void pool_postsuspend(struct dm_target *ti)
3535 {
3536 struct pool_c *pt = ti->private;
3537 struct pool *pool = pt->pool;
3538
3539 cancel_delayed_work_sync(&pool->waker);
3540 cancel_delayed_work_sync(&pool->no_space_timeout);
3541 flush_workqueue(pool->wq);
3542 (void) commit(pool);
3543 }
3544
3545 static int check_arg_count(unsigned argc, unsigned args_required)
3546 {
3547 if (argc != args_required) {
3548 DMWARN("Message received with %u arguments instead of %u.",
3549 argc, args_required);
3550 return -EINVAL;
3551 }
3552
3553 return 0;
3554 }
3555
3556 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3557 {
3558 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3559 *dev_id <= MAX_DEV_ID)
3560 return 0;
3561
3562 if (warning)
3563 DMWARN("Message received with invalid device id: %s", arg);
3564
3565 return -EINVAL;
3566 }
3567
3568 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3569 {
3570 dm_thin_id dev_id;
3571 int r;
3572
3573 r = check_arg_count(argc, 2);
3574 if (r)
3575 return r;
3576
3577 r = read_dev_id(argv[1], &dev_id, 1);
3578 if (r)
3579 return r;
3580
3581 r = dm_pool_create_thin(pool->pmd, dev_id);
3582 if (r) {
3583 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3584 argv[1]);
3585 return r;
3586 }
3587
3588 return 0;
3589 }
3590
3591 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3592 {
3593 dm_thin_id dev_id;
3594 dm_thin_id origin_dev_id;
3595 int r;
3596
3597 r = check_arg_count(argc, 3);
3598 if (r)
3599 return r;
3600
3601 r = read_dev_id(argv[1], &dev_id, 1);
3602 if (r)
3603 return r;
3604
3605 r = read_dev_id(argv[2], &origin_dev_id, 1);
3606 if (r)
3607 return r;
3608
3609 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3610 if (r) {
3611 DMWARN("Creation of new snapshot %s of device %s failed.",
3612 argv[1], argv[2]);
3613 return r;
3614 }
3615
3616 return 0;
3617 }
3618
3619 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3620 {
3621 dm_thin_id dev_id;
3622 int r;
3623
3624 r = check_arg_count(argc, 2);
3625 if (r)
3626 return r;
3627
3628 r = read_dev_id(argv[1], &dev_id, 1);
3629 if (r)
3630 return r;
3631
3632 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3633 if (r)
3634 DMWARN("Deletion of thin device %s failed.", argv[1]);
3635
3636 return r;
3637 }
3638
3639 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3640 {
3641 dm_thin_id old_id, new_id;
3642 int r;
3643
3644 r = check_arg_count(argc, 3);
3645 if (r)
3646 return r;
3647
3648 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3649 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3650 return -EINVAL;
3651 }
3652
3653 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3654 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3655 return -EINVAL;
3656 }
3657
3658 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3659 if (r) {
3660 DMWARN("Failed to change transaction id from %s to %s.",
3661 argv[1], argv[2]);
3662 return r;
3663 }
3664
3665 return 0;
3666 }
3667
3668 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3669 {
3670 int r;
3671
3672 r = check_arg_count(argc, 1);
3673 if (r)
3674 return r;
3675
3676 (void) commit(pool);
3677
3678 r = dm_pool_reserve_metadata_snap(pool->pmd);
3679 if (r)
3680 DMWARN("reserve_metadata_snap message failed.");
3681
3682 return r;
3683 }
3684
3685 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3686 {
3687 int r;
3688
3689 r = check_arg_count(argc, 1);
3690 if (r)
3691 return r;
3692
3693 r = dm_pool_release_metadata_snap(pool->pmd);
3694 if (r)
3695 DMWARN("release_metadata_snap message failed.");
3696
3697 return r;
3698 }
3699
3700 /*
3701 * Messages supported:
3702 * create_thin <dev_id>
3703 * create_snap <dev_id> <origin_id>
3704 * delete <dev_id>
3705 * set_transaction_id <current_trans_id> <new_trans_id>
3706 * reserve_metadata_snap
3707 * release_metadata_snap
3708 */
3709 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3710 {
3711 int r = -EINVAL;
3712 struct pool_c *pt = ti->private;
3713 struct pool *pool = pt->pool;
3714
3715 if (get_pool_mode(pool) >= PM_READ_ONLY) {
3716 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3717 dm_device_name(pool->pool_md));
3718 return -EOPNOTSUPP;
3719 }
3720
3721 if (!strcasecmp(argv[0], "create_thin"))
3722 r = process_create_thin_mesg(argc, argv, pool);
3723
3724 else if (!strcasecmp(argv[0], "create_snap"))
3725 r = process_create_snap_mesg(argc, argv, pool);
3726
3727 else if (!strcasecmp(argv[0], "delete"))
3728 r = process_delete_mesg(argc, argv, pool);
3729
3730 else if (!strcasecmp(argv[0], "set_transaction_id"))
3731 r = process_set_transaction_id_mesg(argc, argv, pool);
3732
3733 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3734 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3735
3736 else if (!strcasecmp(argv[0], "release_metadata_snap"))
3737 r = process_release_metadata_snap_mesg(argc, argv, pool);
3738
3739 else
3740 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3741
3742 if (!r)
3743 (void) commit(pool);
3744
3745 return r;
3746 }
3747
3748 static void emit_flags(struct pool_features *pf, char *result,
3749 unsigned sz, unsigned maxlen)
3750 {
3751 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3752 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3753 pf->error_if_no_space;
3754 DMEMIT("%u ", count);
3755
3756 if (!pf->zero_new_blocks)
3757 DMEMIT("skip_block_zeroing ");
3758
3759 if (!pf->discard_enabled)
3760 DMEMIT("ignore_discard ");
3761
3762 if (!pf->discard_passdown)
3763 DMEMIT("no_discard_passdown ");
3764
3765 if (pf->mode == PM_READ_ONLY)
3766 DMEMIT("read_only ");
3767
3768 if (pf->error_if_no_space)
3769 DMEMIT("error_if_no_space ");
3770 }
3771
3772 /*
3773 * Status line is:
3774 * <transaction id> <used metadata sectors>/<total metadata sectors>
3775 * <used data sectors>/<total data sectors> <held metadata root>
3776 * <pool mode> <discard config> <no space config> <needs_check>
3777 */
3778 static void pool_status(struct dm_target *ti, status_type_t type,
3779 unsigned status_flags, char *result, unsigned maxlen)
3780 {
3781 int r;
3782 unsigned sz = 0;
3783 uint64_t transaction_id;
3784 dm_block_t nr_free_blocks_data;
3785 dm_block_t nr_free_blocks_metadata;
3786 dm_block_t nr_blocks_data;
3787 dm_block_t nr_blocks_metadata;
3788 dm_block_t held_root;
3789 char buf[BDEVNAME_SIZE];
3790 char buf2[BDEVNAME_SIZE];
3791 struct pool_c *pt = ti->private;
3792 struct pool *pool = pt->pool;
3793
3794 switch (type) {
3795 case STATUSTYPE_INFO:
3796 if (get_pool_mode(pool) == PM_FAIL) {
3797 DMEMIT("Fail");
3798 break;
3799 }
3800
3801 /* Commit to ensure statistics aren't out-of-date */
3802 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3803 (void) commit(pool);
3804
3805 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3806 if (r) {
3807 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3808 dm_device_name(pool->pool_md), r);
3809 goto err;
3810 }
3811
3812 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3813 if (r) {
3814 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3815 dm_device_name(pool->pool_md), r);
3816 goto err;
3817 }
3818
3819 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3820 if (r) {
3821 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3822 dm_device_name(pool->pool_md), r);
3823 goto err;
3824 }
3825
3826 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3827 if (r) {
3828 DMERR("%s: dm_pool_get_free_block_count returned %d",
3829 dm_device_name(pool->pool_md), r);
3830 goto err;
3831 }
3832
3833 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3834 if (r) {
3835 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3836 dm_device_name(pool->pool_md), r);
3837 goto err;
3838 }
3839
3840 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3841 if (r) {
3842 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3843 dm_device_name(pool->pool_md), r);
3844 goto err;
3845 }
3846
3847 DMEMIT("%llu %llu/%llu %llu/%llu ",
3848 (unsigned long long)transaction_id,
3849 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3850 (unsigned long long)nr_blocks_metadata,
3851 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3852 (unsigned long long)nr_blocks_data);
3853
3854 if (held_root)
3855 DMEMIT("%llu ", held_root);
3856 else
3857 DMEMIT("- ");
3858
3859 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3860 DMEMIT("out_of_data_space ");
3861 else if (pool->pf.mode == PM_READ_ONLY)
3862 DMEMIT("ro ");
3863 else
3864 DMEMIT("rw ");
3865
3866 if (!pool->pf.discard_enabled)
3867 DMEMIT("ignore_discard ");
3868 else if (pool->pf.discard_passdown)
3869 DMEMIT("discard_passdown ");
3870 else
3871 DMEMIT("no_discard_passdown ");
3872
3873 if (pool->pf.error_if_no_space)
3874 DMEMIT("error_if_no_space ");
3875 else
3876 DMEMIT("queue_if_no_space ");
3877
3878 if (dm_pool_metadata_needs_check(pool->pmd))
3879 DMEMIT("needs_check ");
3880 else
3881 DMEMIT("- ");
3882
3883 break;
3884
3885 case STATUSTYPE_TABLE:
3886 DMEMIT("%s %s %lu %llu ",
3887 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3888 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3889 (unsigned long)pool->sectors_per_block,
3890 (unsigned long long)pt->low_water_blocks);
3891 emit_flags(&pt->requested_pf, result, sz, maxlen);
3892 break;
3893 }
3894 return;
3895
3896 err:
3897 DMEMIT("Error");
3898 }
3899
3900 static int pool_iterate_devices(struct dm_target *ti,
3901 iterate_devices_callout_fn fn, void *data)
3902 {
3903 struct pool_c *pt = ti->private;
3904
3905 return fn(ti, pt->data_dev, 0, ti->len, data);
3906 }
3907
3908 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3909 {
3910 struct pool_c *pt = ti->private;
3911 struct pool *pool = pt->pool;
3912 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3913
3914 /*
3915 * If max_sectors is smaller than pool->sectors_per_block adjust it
3916 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3917 * This is especially beneficial when the pool's data device is a RAID
3918 * device that has a full stripe width that matches pool->sectors_per_block
3919 * -- because even though partial RAID stripe-sized IOs will be issued to a
3920 * single RAID stripe; when aggregated they will end on a full RAID stripe
3921 * boundary.. which avoids additional partial RAID stripe writes cascading
3922 */
3923 if (limits->max_sectors < pool->sectors_per_block) {
3924 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3925 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3926 limits->max_sectors--;
3927 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3928 }
3929 }
3930
3931 /*
3932 * If the system-determined stacked limits are compatible with the
3933 * pool's blocksize (io_opt is a factor) do not override them.
3934 */
3935 if (io_opt_sectors < pool->sectors_per_block ||
3936 !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3937 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3938 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3939 else
3940 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3941 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3942 }
3943
3944 /*
3945 * pt->adjusted_pf is a staging area for the actual features to use.
3946 * They get transferred to the live pool in bind_control_target()
3947 * called from pool_preresume().
3948 */
3949 if (!pt->adjusted_pf.discard_enabled) {
3950 /*
3951 * Must explicitly disallow stacking discard limits otherwise the
3952 * block layer will stack them if pool's data device has support.
3953 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3954 * user to see that, so make sure to set all discard limits to 0.
3955 */
3956 limits->discard_granularity = 0;
3957 return;
3958 }
3959
3960 disable_passdown_if_not_supported(pt);
3961
3962 /*
3963 * The pool uses the same discard limits as the underlying data
3964 * device. DM core has already set this up.
3965 */
3966 }
3967
3968 static struct target_type pool_target = {
3969 .name = "thin-pool",
3970 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3971 DM_TARGET_IMMUTABLE,
3972 .version = {1, 19, 0},
3973 .module = THIS_MODULE,
3974 .ctr = pool_ctr,
3975 .dtr = pool_dtr,
3976 .map = pool_map,
3977 .presuspend = pool_presuspend,
3978 .presuspend_undo = pool_presuspend_undo,
3979 .postsuspend = pool_postsuspend,
3980 .preresume = pool_preresume,
3981 .resume = pool_resume,
3982 .message = pool_message,
3983 .status = pool_status,
3984 .iterate_devices = pool_iterate_devices,
3985 .io_hints = pool_io_hints,
3986 };
3987
3988 /*----------------------------------------------------------------
3989 * Thin target methods
3990 *--------------------------------------------------------------*/
3991 static void thin_get(struct thin_c *tc)
3992 {
3993 atomic_inc(&tc->refcount);
3994 }
3995
3996 static void thin_put(struct thin_c *tc)
3997 {
3998 if (atomic_dec_and_test(&tc->refcount))
3999 complete(&tc->can_destroy);
4000 }
4001
4002 static void thin_dtr(struct dm_target *ti)
4003 {
4004 struct thin_c *tc = ti->private;
4005 unsigned long flags;
4006
4007 spin_lock_irqsave(&tc->pool->lock, flags);
4008 list_del_rcu(&tc->list);
4009 spin_unlock_irqrestore(&tc->pool->lock, flags);
4010 synchronize_rcu();
4011
4012 thin_put(tc);
4013 wait_for_completion(&tc->can_destroy);
4014
4015 mutex_lock(&dm_thin_pool_table.mutex);
4016
4017 __pool_dec(tc->pool);
4018 dm_pool_close_thin_device(tc->td);
4019 dm_put_device(ti, tc->pool_dev);
4020 if (tc->origin_dev)
4021 dm_put_device(ti, tc->origin_dev);
4022 kfree(tc);
4023
4024 mutex_unlock(&dm_thin_pool_table.mutex);
4025 }
4026
4027 /*
4028 * Thin target parameters:
4029 *
4030 * <pool_dev> <dev_id> [origin_dev]
4031 *
4032 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4033 * dev_id: the internal device identifier
4034 * origin_dev: a device external to the pool that should act as the origin
4035 *
4036 * If the pool device has discards disabled, they get disabled for the thin
4037 * device as well.
4038 */
4039 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4040 {
4041 int r;
4042 struct thin_c *tc;
4043 struct dm_dev *pool_dev, *origin_dev;
4044 struct mapped_device *pool_md;
4045 unsigned long flags;
4046
4047 mutex_lock(&dm_thin_pool_table.mutex);
4048
4049 if (argc != 2 && argc != 3) {
4050 ti->error = "Invalid argument count";
4051 r = -EINVAL;
4052 goto out_unlock;
4053 }
4054
4055 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4056 if (!tc) {
4057 ti->error = "Out of memory";
4058 r = -ENOMEM;
4059 goto out_unlock;
4060 }
4061 tc->thin_md = dm_table_get_md(ti->table);
4062 spin_lock_init(&tc->lock);
4063 INIT_LIST_HEAD(&tc->deferred_cells);
4064 bio_list_init(&tc->deferred_bio_list);
4065 bio_list_init(&tc->retry_on_resume_list);
4066 tc->sort_bio_list = RB_ROOT;
4067
4068 if (argc == 3) {
4069 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4070 if (r) {
4071 ti->error = "Error opening origin device";
4072 goto bad_origin_dev;
4073 }
4074 tc->origin_dev = origin_dev;
4075 }
4076
4077 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4078 if (r) {
4079 ti->error = "Error opening pool device";
4080 goto bad_pool_dev;
4081 }
4082 tc->pool_dev = pool_dev;
4083
4084 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4085 ti->error = "Invalid device id";
4086 r = -EINVAL;
4087 goto bad_common;
4088 }
4089
4090 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4091 if (!pool_md) {
4092 ti->error = "Couldn't get pool mapped device";
4093 r = -EINVAL;
4094 goto bad_common;
4095 }
4096
4097 tc->pool = __pool_table_lookup(pool_md);
4098 if (!tc->pool) {
4099 ti->error = "Couldn't find pool object";
4100 r = -EINVAL;
4101 goto bad_pool_lookup;
4102 }
4103 __pool_inc(tc->pool);
4104
4105 if (get_pool_mode(tc->pool) == PM_FAIL) {
4106 ti->error = "Couldn't open thin device, Pool is in fail mode";
4107 r = -EINVAL;
4108 goto bad_pool;
4109 }
4110
4111 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4112 if (r) {
4113 ti->error = "Couldn't open thin internal device";
4114 goto bad_pool;
4115 }
4116
4117 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4118 if (r)
4119 goto bad;
4120
4121 ti->num_flush_bios = 1;
4122 ti->flush_supported = true;
4123 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4124
4125 /* In case the pool supports discards, pass them on. */
4126 ti->discard_zeroes_data_unsupported = true;
4127 if (tc->pool->pf.discard_enabled) {
4128 ti->discards_supported = true;
4129 ti->num_discard_bios = 1;
4130 ti->split_discard_bios = false;
4131 }
4132
4133 mutex_unlock(&dm_thin_pool_table.mutex);
4134
4135 spin_lock_irqsave(&tc->pool->lock, flags);
4136 if (tc->pool->suspended) {
4137 spin_unlock_irqrestore(&tc->pool->lock, flags);
4138 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4139 ti->error = "Unable to activate thin device while pool is suspended";
4140 r = -EINVAL;
4141 goto bad;
4142 }
4143 atomic_set(&tc->refcount, 1);
4144 init_completion(&tc->can_destroy);
4145 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4146 spin_unlock_irqrestore(&tc->pool->lock, flags);
4147 /*
4148 * This synchronize_rcu() call is needed here otherwise we risk a
4149 * wake_worker() call finding no bios to process (because the newly
4150 * added tc isn't yet visible). So this reduces latency since we
4151 * aren't then dependent on the periodic commit to wake_worker().
4152 */
4153 synchronize_rcu();
4154
4155 dm_put(pool_md);
4156
4157 return 0;
4158
4159 bad:
4160 dm_pool_close_thin_device(tc->td);
4161 bad_pool:
4162 __pool_dec(tc->pool);
4163 bad_pool_lookup:
4164 dm_put(pool_md);
4165 bad_common:
4166 dm_put_device(ti, tc->pool_dev);
4167 bad_pool_dev:
4168 if (tc->origin_dev)
4169 dm_put_device(ti, tc->origin_dev);
4170 bad_origin_dev:
4171 kfree(tc);
4172 out_unlock:
4173 mutex_unlock(&dm_thin_pool_table.mutex);
4174
4175 return r;
4176 }
4177
4178 static int thin_map(struct dm_target *ti, struct bio *bio)
4179 {
4180 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4181
4182 return thin_bio_map(ti, bio);
4183 }
4184
4185 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
4186 {
4187 unsigned long flags;
4188 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4189 struct list_head work;
4190 struct dm_thin_new_mapping *m, *tmp;
4191 struct pool *pool = h->tc->pool;
4192
4193 if (h->shared_read_entry) {
4194 INIT_LIST_HEAD(&work);
4195 dm_deferred_entry_dec(h->shared_read_entry, &work);
4196
4197 spin_lock_irqsave(&pool->lock, flags);
4198 list_for_each_entry_safe(m, tmp, &work, list) {
4199 list_del(&m->list);
4200 __complete_mapping_preparation(m);
4201 }
4202 spin_unlock_irqrestore(&pool->lock, flags);
4203 }
4204
4205 if (h->all_io_entry) {
4206 INIT_LIST_HEAD(&work);
4207 dm_deferred_entry_dec(h->all_io_entry, &work);
4208 if (!list_empty(&work)) {
4209 spin_lock_irqsave(&pool->lock, flags);
4210 list_for_each_entry_safe(m, tmp, &work, list)
4211 list_add_tail(&m->list, &pool->prepared_discards);
4212 spin_unlock_irqrestore(&pool->lock, flags);
4213 wake_worker(pool);
4214 }
4215 }
4216
4217 if (h->cell)
4218 cell_defer_no_holder(h->tc, h->cell);
4219
4220 return 0;
4221 }
4222
4223 static void thin_presuspend(struct dm_target *ti)
4224 {
4225 struct thin_c *tc = ti->private;
4226
4227 if (dm_noflush_suspending(ti))
4228 noflush_work(tc, do_noflush_start);
4229 }
4230
4231 static void thin_postsuspend(struct dm_target *ti)
4232 {
4233 struct thin_c *tc = ti->private;
4234
4235 /*
4236 * The dm_noflush_suspending flag has been cleared by now, so
4237 * unfortunately we must always run this.
4238 */
4239 noflush_work(tc, do_noflush_stop);
4240 }
4241
4242 static int thin_preresume(struct dm_target *ti)
4243 {
4244 struct thin_c *tc = ti->private;
4245
4246 if (tc->origin_dev)
4247 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4248
4249 return 0;
4250 }
4251
4252 /*
4253 * <nr mapped sectors> <highest mapped sector>
4254 */
4255 static void thin_status(struct dm_target *ti, status_type_t type,
4256 unsigned status_flags, char *result, unsigned maxlen)
4257 {
4258 int r;
4259 ssize_t sz = 0;
4260 dm_block_t mapped, highest;
4261 char buf[BDEVNAME_SIZE];
4262 struct thin_c *tc = ti->private;
4263
4264 if (get_pool_mode(tc->pool) == PM_FAIL) {
4265 DMEMIT("Fail");
4266 return;
4267 }
4268
4269 if (!tc->td)
4270 DMEMIT("-");
4271 else {
4272 switch (type) {
4273 case STATUSTYPE_INFO:
4274 r = dm_thin_get_mapped_count(tc->td, &mapped);
4275 if (r) {
4276 DMERR("dm_thin_get_mapped_count returned %d", r);
4277 goto err;
4278 }
4279
4280 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4281 if (r < 0) {
4282 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4283 goto err;
4284 }
4285
4286 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4287 if (r)
4288 DMEMIT("%llu", ((highest + 1) *
4289 tc->pool->sectors_per_block) - 1);
4290 else
4291 DMEMIT("-");
4292 break;
4293
4294 case STATUSTYPE_TABLE:
4295 DMEMIT("%s %lu",
4296 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4297 (unsigned long) tc->dev_id);
4298 if (tc->origin_dev)
4299 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4300 break;
4301 }
4302 }
4303
4304 return;
4305
4306 err:
4307 DMEMIT("Error");
4308 }
4309
4310 static int thin_iterate_devices(struct dm_target *ti,
4311 iterate_devices_callout_fn fn, void *data)
4312 {
4313 sector_t blocks;
4314 struct thin_c *tc = ti->private;
4315 struct pool *pool = tc->pool;
4316
4317 /*
4318 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4319 * we follow a more convoluted path through to the pool's target.
4320 */
4321 if (!pool->ti)
4322 return 0; /* nothing is bound */
4323
4324 blocks = pool->ti->len;
4325 (void) sector_div(blocks, pool->sectors_per_block);
4326 if (blocks)
4327 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4328
4329 return 0;
4330 }
4331
4332 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4333 {
4334 struct thin_c *tc = ti->private;
4335 struct pool *pool = tc->pool;
4336
4337 if (!pool->pf.discard_enabled)
4338 return;
4339
4340 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4341 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4342 }
4343
4344 static struct target_type thin_target = {
4345 .name = "thin",
4346 .version = {1, 19, 0},
4347 .module = THIS_MODULE,
4348 .ctr = thin_ctr,
4349 .dtr = thin_dtr,
4350 .map = thin_map,
4351 .end_io = thin_endio,
4352 .preresume = thin_preresume,
4353 .presuspend = thin_presuspend,
4354 .postsuspend = thin_postsuspend,
4355 .status = thin_status,
4356 .iterate_devices = thin_iterate_devices,
4357 .io_hints = thin_io_hints,
4358 };
4359
4360 /*----------------------------------------------------------------*/
4361
4362 static int __init dm_thin_init(void)
4363 {
4364 int r;
4365
4366 pool_table_init();
4367
4368 r = dm_register_target(&thin_target);
4369 if (r)
4370 return r;
4371
4372 r = dm_register_target(&pool_target);
4373 if (r)
4374 goto bad_pool_target;
4375
4376 r = -ENOMEM;
4377
4378 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4379 if (!_new_mapping_cache)
4380 goto bad_new_mapping_cache;
4381
4382 return 0;
4383
4384 bad_new_mapping_cache:
4385 dm_unregister_target(&pool_target);
4386 bad_pool_target:
4387 dm_unregister_target(&thin_target);
4388
4389 return r;
4390 }
4391
4392 static void dm_thin_exit(void)
4393 {
4394 dm_unregister_target(&thin_target);
4395 dm_unregister_target(&pool_target);
4396
4397 kmem_cache_destroy(_new_mapping_cache);
4398 }
4399
4400 module_init(dm_thin_init);
4401 module_exit(dm_thin_exit);
4402
4403 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4404 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4405
4406 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4407 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4408 MODULE_LICENSE("GPL");